DE102011076571A1 - Energieversorgungseinrichtung für Wechselrichterschaltungen - Google Patents

Energieversorgungseinrichtung für Wechselrichterschaltungen Download PDF

Info

Publication number
DE102011076571A1
DE102011076571A1 DE102011076571A DE102011076571A DE102011076571A1 DE 102011076571 A1 DE102011076571 A1 DE 102011076571A1 DE 102011076571 A DE102011076571 A DE 102011076571A DE 102011076571 A DE102011076571 A DE 102011076571A DE 102011076571 A1 DE102011076571 A1 DE 102011076571A1
Authority
DE
Germany
Prior art keywords
energy storage
voltage
module
power supply
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102011076571A
Other languages
English (en)
Inventor
Peter Feuerstack
Erik Weissenborn
Martin Kessler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102011076571A priority Critical patent/DE102011076571A1/de
Priority to PCT/EP2012/055945 priority patent/WO2012163572A2/de
Publication of DE102011076571A1 publication Critical patent/DE102011076571A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

Die Erfindung betrifft ein System mit einer Energieversorgungseinrichtung, welche dazu ausgelegt ist, eine Betriebswechselspannung bereitzustellen, und einer Energiespeichereinrichtung zum Erzeugen einer n-phasigen Versorgungsspannung für eine elektrische Maschine, wobei n ≥ 1, mit n parallel geschalteten Energieversorgungszweigen, welche jeweils mit einem von n Phasenanschlüssen verbunden sind, wobei jeder der Energieversorgungszweige eine Vielzahl von in Serie geschalteten Energiespeichermodulen (3) aufweist, welche jeweils umfassen: ein Energiespeicherzellenmodul (5), welches mindestens eine Energiespeicherzelle (5a, 5n) aufweist, eine Koppeleinrichtung (9) mit Koppelelementen (7, 8), welche dazu ausgelegt sind, das Energiespeicherzellenmodul (5) selektiv in den jeweiligen Energieversorgungszweig zu schalten oder zu überbrücken, einen Übertrager (13), der die Betriebswechselspannung der Energieversorgungseinrichtung in eine Modulwechselspannung umsetzt, eine Gleichrichterschaltung (14), die die Modulwechselspannung in eine Modulgleichspannung gleichrichtet, und eine Modulversorgungseinrichtung (15), die mit der Modulgleichspannung betrieben wird, und die dazu ausgelegt ist, die Koppelelemente (7, 8) der Koppeleinrichtungen (9) mit Energie zu versorgen.

Description

  • Die Erfindung betrifft eine Energieversorgungseinrichtung für Wechselrichterschaltungen und ein System mit einer Energieversorgungseinrichtung für eine Energiespeichereinrichtung mit Wechselrichterfunktionalität, insbesondere in einer Batteriedirektumrichterschaltung zur Stromversorgung elektrischer Maschinen.
  • Stand der Technik
  • Es zeichnet sich ab, dass in Zukunft sowohl bei stationären Anwendungen, wie z.B. Windkraftanlagen oder Solaranlagen, wie auch in Fahrzeugen, wie Hybrid- oder Elektrofahrzeugen, vermehrt elektronische Systeme zum Einsatz kommen, die neue Energiespeichertechnologien mit elektrischer Antriebstechnik kombinieren.
  • 1 beispielsweise zeigt die Einspeisung von Drehstrom in eine dreiphasige elektrische Maschine 101. Dabei wird über einen Umrichter in Form eines Pulswechselrichters 102 eine von einem Gleichspannungszwischenkreis 103 bereitgestellte Gleichspannung in eine dreiphasige Wechselspannung umgerichtet. Der Gleichspannungszwischenkreis 103 wird von einem Strang 104 aus seriell verschalteten Batteriemodulen 105 gespeist. Um die für eine jeweilige Anwendung gegebenen Anforderungen an Leistung und Energie erfüllen zu können, werden häufig mehrere Batteriemodule 105 in einer Traktionsbatterie 104 in Serie geschaltet.
  • Die Serienschaltung mehrerer Batteriemodule bringt das Problem mit sich, dass der gesamte Strang ausfällt, wenn ein einziges Batteriemodul ausfällt. Ein solcher Ausfall des Energieversorgungsstrangs kann zu einem Ausfall des Gesamtsystems führen. Weiterhin können temporär oder permanent auftretende Leistungsminderungen eines einzelnen Batteriemoduls zu Leistungsminderungen im gesamten Energieversorgungsstrang führen.
  • In der Druckschrift US 5,642,275 A1 ist ein Batteriesystem mit integrierter Wechselrichterfunktion beschrieben. Systeme dieser Art sind unter dem Namen Multilevel Cascaded Inverter oder auch Battery Direct Inverter (Batteriedirektumrichter, BDI) bekannt. Solche Systeme umfassen Gleichstromquellen in mehreren Energiespeichermodulsträngen, welche direkt an eine elektrische Maschine oder ein elektrisches Netz anschließbar sind. Dabei können einphasige oder mehrphasige Versorgungsspannungen generiert werden. Die Energiespeichermodulstränge weisen dabei eine Mehrzahl von in Serie geschalteten Energiespeichermodulen auf, wobei jedes Energiespeichermodul mindestens eine Batteriezelle und eine zugeordnete steuerbare Koppeleinheit aufweist, welche es erlaubt, in Abhängigkeit von Steuersignalen den jeweiligen Energiespeichermodulstrang zu unterbrechen oder die jeweils zugeordnete mindestens eine Batteriezelle zu überbrücken oder die jeweils zugeordnete mindestens eine Batteriezelle in den jeweiligen Energiespeichermodulstrang zu schalten. Durch geeignete Ansteuerung der Koppeleinheiten, z.B. mit Hilfe von Pulsweitenmodulation, können auch geeignete Phasensignale zur Steuerung der Phasenausgangsspannung bereitgestellt werden, so dass auf einen separaten Pulswechselrichter verzichtet werden kann. Der zur Steuerung der Phasenausgangsspannung erforderliche Pulswechselrichter ist damit sozusagen in den BDI integriert.
  • BDIs weisen üblicherweise einen höheren Wirkungsgrad und eine höhere Ausfallsicherheit gegenüber herkömmlichen Systemen, wie in 1 gezeigt, auf. Die Ausfallsicherheit wird unter anderem dadurch gewährleistet, dass defekte, ausgefallene oder nicht voll leistungsfähige Batteriezellen durch geeignete Überbrückungsansteuerung der Koppeleinheiten aus den Energieversorgungssträngen herausgeschaltet werden können.
  • Die Energie für die Steuerung der Koppeleinheiten wird üblicherweise durch die Batteriezellen innerhalb des Energiespeichermoduls selbst bereitgestellt. Bei spannungslosen Batteriezellen, beispielsweise bei defekten oder vollständig entladenen Batteriezellen, kann daher unter Umständen der Fall auftreten, dass die Koppeleinheiten aufgrund fehlender Betriebsspannung nicht mehr angesteuert werden können. In diesen Fällen ist eine geeignete Überbrückungsansteuerung der Koppeleinheiten nicht mehr möglich und der gesamte Energieversorgungsstrang fällt aus.
  • Offenbarung der Erfindung
  • Die vorliegende Erfindung schafft gemäß einer Ausführungsform ein System mit einer Energieversorgungseinrichtung, welche dazu ausgelegt ist, eine Betriebswechselspannung bereitzustellen, und einer Energiespeichereinrichtung zum Erzeugen einer n-phasigen Versorgungsspannung für eine elektrische Maschine, wobei n ≥ 1, mit n parallel geschalteten Energieversorgungszweigen, welche jeweils mit einem von n Phasenanschlüssen verbunden sind, wobei jeder der Energieversorgungszweige eine Vielzahl von in Serie geschalteten Energiespeichermodulen aufweist, welche jeweils umfassen:
    ein Energiespeicherzellenmodul, welches mindestens eine Energiespeicherzelle aufweist, eine Koppeleinrichtung mit Koppelelementen, welche dazu ausgelegt sind, das Energiespeicherzellenmodul selektiv in den jeweiligen Energieversorgungszweig zu schalten oder zu überbrücken, einen Übertrager, der die Betriebswechselspannung der Energieversorgungseinrichtung in eine Modulwechselspannung umsetzt, eine Gleichrichterschaltung, die die Modulwechselspannung in eine Modulgleichspannung gleichrichtet, und eine Modulversorgungseinrichtung, die mit der Modulgleichspannung betrieben wird, und die dazu ausgelegt ist, die Koppelelemente der Koppeleinrichtungen mit Energie zu versorgen.
  • Vorteile der Erfindung
  • Eine Idee der vorliegenden Erfindung ist es, die Ausfallssicherheit von Batteriedirektumrichtern noch weiter zu erhöhen, indem eine externe Energieversorgungseinrichtung für die Koppeleinrichtungen von Energiespeichermodulen einer Energiespeichereinrichtung bereitgestellt wird. Die Energieversorgungseinrichtung stellt für jedes der Energiespeichermodule eine Betriebswechselspannung bereit, die in jedem der Energiespeichermodule intern in eine Modulgleichspannung umgesetzt werden kann. Die Modulgleichspannung dient dann zur Energieversorgung der aktiven Schaltelemente der Koppeleinrichtungen. Dadurch sind die Koppeleinrichtungen von einer Spannungsversorgung durch die zugehörigen Energiespeicherzellen autark, so dass die Koppeleinrichtungen auch bei einem Defekt oder einer vollständigen Entladung der Energiespeicherzellen angesteuert werden können, um einen sicheren Schaltzustand, beispielsweise einen Überbrückungszustand der defekten oder entladenen Energiespeicherzellen zu gewährleisten. Damit kann die Energiespeichereinrichtung auch bei einem Ausfall einzelner Energiespeicherzellenmodule in jedem Fall weiter betrieben werden.
  • Weitere Merkmale und Vorteile von Ausführungsformen der Erfindung ergeben sich aus der nachfolgenden Beschreibung mit Bezug auf die beigefügten Zeichnungen.
  • Kurze Beschreibung der Zeichnungen
  • Es zeigen:
  • 1 eine schematische Darstellung eines Spannungsversorgungssystems für eine dreiphasige elektrische Maschine,
  • 2 eine schematische Darstellung eines Systems mit einer Energiespeichereinrichtung und einer Energieversorgungseinrichtung gemäß einer Ausführungsform der vorliegenden Erfindung,
  • 3 eine schematische Darstellung des Aufbaus eines Energiespeichermoduls einer Energiespeichereinrichtung gemäß einer weiteren Ausführungsform der vorliegenden Erfindung, und
  • 4 eine schematische Darstellung des Aufbaus eines Energiespeichermoduls einer Energiespeichereinrichtung gemäß noch einer weiteren Ausführungsform der vorliegenden Erfindung.
  • 2 zeigt ein System 20 zur Spannungswandlung von durch Energiespeichermodule 3 bereitgestellter Gleichspannung in eine n-phasige Wechselspannung. Das System 20 umfasst eine Energiespeichereinrichtung 1 mit Energiespeichermodulen 3, welche in Energieversorgungszweigen in Serie geschaltet sind. Beispielhaft sind in 2 drei Energieversorgungszweige gezeigt, welche zur Erzeugung einer dreiphasigen Wechselspannung, beispielsweise für eine Drehstrommaschine 2, geeignet sind. Prinzipiell ist aber jede andere Anzahl an Phasen ebenso möglich. Die Energiespeichereinrichtung 1 verfügt an jedem Energieversorgungszweig über einen Ausgangsanschluss, welche jeweils an Phasenleitungen 2a, 2b, 2c angeschlossen sind. Beispielhaft dient das System 20 in 2 zur Speisung einer elektrischen Maschine 2, insbesondere als Traktionsbatterie für den elektrischen Antrieb eines elektrisch betriebenen Fahrzeugs, wie eines Elektrofahrzeugs oder eines Hybridfahrzeugs.
  • Das System 20 kann weiterhin eine Steuereinrichtung 6 umfassen, welche mit der Energiespeichereinrichtung 1 verbunden ist, und mithilfe derer die Energiespeichereinrichtung 1 gesteuert werden kann, um die gewünschten Ausgangsspannungen an den jeweiligen Phasenanschlüssen 2a, 2b, 2c bereitzustellen.
  • Die Energieversorgungszweige können an ihrem Ende mit einem Bezugspotential 4 (Bezugsschiene) verbunden werden, welches in der dargestellten Ausführungsform in Bezug auf die Phasenleitungen 2a, 2b, 2c der elektrischen Maschine 2 ein mittleres Potential führt. Das Bezugspotential 4 kann beispielsweise ein Massepotential sein. Jeder der Energieversorgungszweige weist mindestens zwei in Reihe geschaltete Energiespeichermodule 3 auf. Beispielhaft beträgt die Anzahl der Energiespeichermodule 3 pro Energieversorgungszweig in 2 drei, wobei jedoch jede andere Anzahl von Energiespeichermodulen 3 ebenso möglich ist. Vorzugsweise umfasst dabei jeder der Energieversorgungszweige die gleiche Anzahl an Energiespeichermodulen 3, wobei es jedoch auch möglich ist, für jeden Energieversorgungszweig eine unterschiedliche Anzahl an Energiespeichermodulen 3 vorzusehen.
  • Die Energiespeichermodule 3 weisen jeweils zwei Ausgangsanschlüsse 3a und 3b auf, über welche eine Ausgangsspannung der Energiespeichermodule 3 bereitgestellt werden kann.
  • Das System 20 weist weiterhin eine Energieversorgungseinrichtung 11 auf, welche dazu ausgelegt ist, eine Betriebswechselspannung bereitzustellen. Die Energieversorgungseinrichtung 11 kann dazu beispielsweise aus einer (nicht gezeigten) Gleichspannungsquelle mithilfe einer Zerhacker- oder Multivibratorschaltung eine Wechselspannung erzeugen, die über Zuleitungen 11a und 11b an die Energiespeichereinrichtung 1 abgegeben werden kann. Die Energieversorgungseinrichtung 11 kann beispielsweise in der Energiespeichereinrichtung 1 selbst angeordnet sein. Es kann auch sein, dass die Energieversorgungseinrichtung 11 in der Steuereinrichtung 6 oder einem externen Steuerungssystem, wie beispielsweise einem Battery Management System, angeordnet ist.
  • Über die Zuleitungen 11a und 11b wird die Betriebswechselspannung von der Energieversorgungseinrichtung 11 an die einzelnen Energiespeichermodule 3 abgegeben. Aus Gründen der Übersichtlichkeit sind nur die Energiespeichermodule 3 eines Energieversorgungszweigs als mit der Betriebswechselspannung versorgt dargestellt. Es versteht sich jedoch, dass auch die übrigen Energiespeichermodule 3 der anderen Energieversorgungszweige in ähnlicher Weise mit der Betriebswechselspannung versorgt werden können. Dabei kann vorgesehen sein, dass zwischen den Energiespeichermodulen 3 Leitungen 12 vorgesehen sind, die eine Reihenschaltung der Energiespeichermodule hinsichtlich der Betriebswechselspannungsversorgung ermöglichen. In ähnlicher Weise können die Energiespeichermodule 3 jedes Energieversorgungszweigs in Parallelschaltung mit der Betriebswechselspannung versorgt werden.
  • Ein beispielhafter Aufbau der Energiespeichermodule 3 ist in 3 in größerem Detail gezeigt. Die Energiespeichermodule 3 umfassen jeweils eine Koppeleinrichtung 9 mit mehreren Koppelelementen 7 und 8. Die Energiespeichermodule 3 umfassen weiterhin jeweils ein Energiespeicherzellenmodul 5 mit einem oder mehreren in Reihe geschalteten Energiespeicherzellen 5a, 5n.
  • Das Energiespeicherzellenmodul 5 kann dabei beispielsweise in Reihe geschaltete Batterien 5a, 5n, beispielsweise Lithium-Ionen-Batterien aufweisen. Dabei beträgt die Anzahl der Energiespeicherzellen 5a, 5n in dem in 2 gezeigten Energiespeichermodul beispielhaft zwei, wobei jedoch jede andere Zahl von Energiespeicherzellen 5a, 5n ebenso möglich ist.
  • Die Energiespeicherzellenmodule 5 sind über Verbindungsleitungen mit Eingangsanschlüssen der zugehörigen Koppeleinrichtung 9 verbunden. Die Koppeleinrichtung 9 ist in 3 beispielhaft als Vollbrückenschaltung mit je zwei Koppelelementen 7 und zwei Koppelelementen 8 ausgebildet. Die Koppelelemente 7 und 8 können dabei jeweils ein aktives Schaltelement, beispielsweise einen Halbleiterschalter, und eine dazu parallel geschaltete Freilaufdiode aufweisen. Die Halbleiterschalter können beispielsweise Feldeffekttransistoren (FETs) aufweisen. In diesem Fall können die Freilaufdioden auch jeweils in die Halbleiterschalter integriert sein. In den dargestellten Ausführungsvarianten können die aktiven Schaltelemente bzw. die Koppelelemente 7 und 8 als Leistungshalbleiterschalter, zum Beispiel in Form von IGBTs (Insulated Gate Bipolar Transistors), JFETs (Junction Field-Effect Transistors) oder als MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), ausgeführt sein.
  • Die Koppelelemente 7 und 8 in 3 können derart angesteuert werden, beispielsweise mithilfe der Steuereinrichtung 6 in 2, dass das Energiespeicherzellenmodul 5 selektiv zwischen die Ausgangsanschlüsse 3a und 3b geschaltet wird oder dass das Energiespeicherzellenmodul 5 überbrückt wird. Durch geeignetes Ansteuern der Koppeleinrichtungen 9 können daher einzelne Energiespeicherzellenmodule 5 der Energiespeichermodule 3 gezielt in die Reihenschaltung eines Energieversorgungszweigs integriert werden.
  • Die aktiven Schaltelemente erhalten ihre Betriebsspannung dabei von einer Modulversorgungseinrichtung 15, die in jedem Energiespeichermodul 3 angeordnet ist. Zu Bereitstellung der Betriebsspannung für die Koppeleinrichtung 9 ist in dem Energiespeichermodul 3 ein Übertrager 13 angeordnet, dessen Primärwicklung 13a mit den Zuleitungen 11a und 11b bzw. 12 verbunden ist. Über die Zuleitungen 11a und 11b bzw. 12 wird die von der Energieversorgungseinrichtung 11 bereitgestellte Betriebswechselspannung in das Energiespeichermodul 3 eingespeist. An der Sekundärwicklung 13b des Übertragers 13 kann eine Modulwechselspannung abgegriffen werden, die über Leitungen 14a und 14b an eine Gleichrichterschaltung 14 abgegeben wird. Die Gleichrichterschaltung 14 richtet die Modulwechselspannung in eine Modulgleichspannung um. Die Modulgleichspannung wird über Leitungen 15a und 15b an die Modulversorgungseinrichtung 15 abgegeben. Die Modulversorgungseinrichtung 15 kann weiterhin einen (nicht gezeigten) Spannungsstabilisierungskreis, beispielsweise mit einem Zwischenkreiskondensator zur Stabilisierung der Modulgleichspannung aufweisen.
  • 4 zeigt eine weitere beispielhafte Ausführungsform eines Energiespeichermoduls 3. Das in 4 gezeigte Energiespeichermodul 3 unterscheidet sich von dem in 3 gezeigten Energiespeichermodul 3 dadurch, dass die Koppeleinrichtung 9 zwei statt vier Koppelelemente 7, 8 aufweist, die in Halbbrückenschaltung statt in Vollbrückenschaltung verschaltet sind. Ferner unterscheidet sich das in 4 gezeigte Energiespeichermodul 3 von dem in 3 gezeigten Energiespeichermodul 3 dadurch, dass an der Sekundärseite 13b des Übertragers 13 ein Mittelabgriff 14c vorgesehen ist, über den beispielsweise weitere Sekundärspannungen wie zum Beispiel eine Sekundärspannung umgekehrter Polarität abgegriffen werden kann. Es ist selbstverständlich ebenso möglich, dass die in 3 gezeigte Sekundärseite 13b des Übertragers 13 einen ähnlichen Mittelabgriff 13c aufweist bzw. dass die Sekundärseite 13b des Übertragers 13 den Mittelabgriff 13c nicht aufweist. Weiterhin kann es möglich sein, auf der Sekundärseite 13b des Übertragers 13 zwei separate Sekundärwicklungen 13b anzuordnen, an denen jeweils zwei verschiedene Modulwechselspannungen zur Energieversorgung der Koppeleinrichtungen 9 abgegriffen werden können.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 5642275 A1 [0005]

Claims (5)

  1. System (20), mit: einer Energieversorgungseinrichtung (11), welche dazu ausgelegt ist, eine Betriebswechselspannung bereitzustellen; und einer Energiespeichereinrichtung (1) zum Erzeugen einer n-phasigen Versorgungsspannung für eine elektrische Maschine (2), wobei n ≥ 1, mit: n parallel geschalteten Energieversorgungszweigen, welche jeweils mit einem von n Phasenanschlüssen (2a, 2b, 2c) verbunden sind, wobei jeder der Energieversorgungszweige eine Vielzahl von in Serie geschalteten Energiespeichermodulen (3) aufweist, welche jeweils umfassen: ein Energiespeicherzellenmodul (5), welches mindestens eine Energiespeicherzelle (5a, 5n) aufweist; eine Koppeleinrichtung (9) mit Koppelelementen (7, 8), welche dazu ausgelegt sind, das Energiespeicherzellenmodul (5) selektiv in den jeweiligen Energieversorgungszweig zu schalten oder zu überbrücken; einen Übertrager (13), der die Betriebswechselspannung der Energieversorgungseinrichtung (11) in eine Modulwechselspannung umsetzt; eine Gleichrichterschaltung (14), die die Modulwechselspannung in eine Modulgleichspannung gleichrichtet; und eine Modulversorgungseinrichtung (15), die mit der Modulgleichspannung betrieben wird, und die dazu ausgelegt ist, die Koppelelemente (7, 8) der Koppeleinrichtungen (9) mit Energie zu versorgen.
  2. System (20) nach Anspruch 1, wobei die Energiespeichermodule (3) weiterhin einen Gleichspannungszwischenkreis zum Stabilisieren der Modulgleichspannung aufweisen.
  3. System (20) nach einem der Ansprüche 1 und 2, wobei die Koppeleinrichtungen (9) Koppelelemente (7, 8) in Vollbrückenschaltung umfassen.
  4. System (20) nach einem der Ansprüche 1 und 2, wobei die Koppeleinrichtungen (9) Koppelelemente (7, 8) in Halbbrückenschaltung umfassen.
  5. System (20) nach einem der vorangehenden Ansprüche, weiterhin mit: einer n-phasigen elektrischen Maschine (2), wobei n ≥ 1, deren Phasenleitungen mit den Phasenanschlüssen (2a, 2b, 2c) der Energiespeichereinrichtung (1) verbunden sind; und einer Steuereinrichtung (6), welche dazu ausgelegt ist, die Koppeleinrichtungen (9) der Energiespeichermodule (3) zum Erzeugen einer Versorgungsspannung für die elektrische Maschine (2) selektiv anzusteuern.
DE102011076571A 2011-05-27 2011-05-27 Energieversorgungseinrichtung für Wechselrichterschaltungen Withdrawn DE102011076571A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102011076571A DE102011076571A1 (de) 2011-05-27 2011-05-27 Energieversorgungseinrichtung für Wechselrichterschaltungen
PCT/EP2012/055945 WO2012163572A2 (de) 2011-05-27 2012-04-02 Energieversorgungseinrichtung für wechselrichterschaltungen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011076571A DE102011076571A1 (de) 2011-05-27 2011-05-27 Energieversorgungseinrichtung für Wechselrichterschaltungen

Publications (1)

Publication Number Publication Date
DE102011076571A1 true DE102011076571A1 (de) 2012-11-29

Family

ID=45977345

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011076571A Withdrawn DE102011076571A1 (de) 2011-05-27 2011-05-27 Energieversorgungseinrichtung für Wechselrichterschaltungen

Country Status (2)

Country Link
DE (1) DE102011076571A1 (de)
WO (1) WO2012163572A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013208338A1 (de) * 2013-05-07 2014-11-13 Robert Bosch Gmbh Antriebssystem mit Energiespeichereinrichtung und Transversalflussmaschine und Verfahren zum Betreiben einer Transversalflussmaschine
DE102013211094A1 (de) * 2013-06-14 2014-12-18 Robert Bosch Gmbh Energiespeichermodul für eine Energiespeichereinrichtung und Energiespeichereinrichtung mit solchem
CN105228853A (zh) * 2013-05-08 2016-01-06 罗伯特·博世有限公司 用于电动机的n相运行的驱动电池以及驱动系统和用于运行该驱动系统的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642275A (en) 1995-09-14 1997-06-24 Lockheed Martin Energy System, Inc. Multilevel cascade voltage source inverter with seperate DC sources

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010284029A (ja) * 2009-06-05 2010-12-16 Aisin Aw Co Ltd インバータ駆動用電源回路

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642275A (en) 1995-09-14 1997-06-24 Lockheed Martin Energy System, Inc. Multilevel cascade voltage source inverter with seperate DC sources

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013208338A1 (de) * 2013-05-07 2014-11-13 Robert Bosch Gmbh Antriebssystem mit Energiespeichereinrichtung und Transversalflussmaschine und Verfahren zum Betreiben einer Transversalflussmaschine
CN105228853A (zh) * 2013-05-08 2016-01-06 罗伯特·博世有限公司 用于电动机的n相运行的驱动电池以及驱动系统和用于运行该驱动系统的方法
DE102013211094A1 (de) * 2013-06-14 2014-12-18 Robert Bosch Gmbh Energiespeichermodul für eine Energiespeichereinrichtung und Energiespeichereinrichtung mit solchem

Also Published As

Publication number Publication date
WO2012163572A2 (de) 2012-12-06
WO2012163572A3 (de) 2013-07-25

Similar Documents

Publication Publication Date Title
DE102011089297B4 (de) Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Ansteuern einer Energiespeichereinrichtung
EP2795784B1 (de) Energiespeichereinrichtung, system mit energiespeichereinrichtung und verfahren zum ansteuern einer energiespeichereinrichtung
EP3014725B1 (de) Energiespeichereinrichtung mit gleichspannungsversorgungsschaltung und verfahren zum bereitstellen einer gleichspannung aus einer energiespeichereinrichtung
EP2619842B1 (de) Energieversorgungsnetz und verfahren zum laden mindestens einer als energiespeicher für einen gleichspannungszwischenkreis dienenden energiespeicherzelle in einem energieversorgungsnetz
DE102012205109B4 (de) Verfahren zum Betreiben einer Energiespeichereinrichtung, Energiespeichereinrichtung zum Erzeugen einer Versorgungsspannung für eine elektrische Maschine sowie Sytem mit einer Energiespeichereinrichtung
DE102011076515A1 (de) Energiespeichereinrichtung und System mit Energiespeichereinrichtung
DE102011077264B4 (de) Heizeinrichtung für Energiespeichereinrichtung und Verfahren zum Anwärmen von Energiespeicherzellen einer Energiespeichereinrichtung
EP2673860B1 (de) Laden eines energiespeichers
DE102013212682B4 (de) Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung und Verfahren zum Bereitstellen einer Gleichspannung aus einer Energiespeichereinrichtung
EP2842214B1 (de) Verfahren zum laden von energiespeicherzellen einer energiespeichereinrichtung und aufladbare energiespeichereinrichtung
DE102010064325A1 (de) System mit einer elektrischen Maschine
DE102010064317A1 (de) System zur Ankopplung mindestens einer Gleichstromquelle an einen steuerbaren Energiespeicher und zugehöriges Betriebsverfahren
DE102012202867A1 (de) Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
WO2014154495A1 (de) Energiespeichereinrichtung und system mit einer energiespeichereinrichtung
WO2014127871A2 (de) Interne energieversorgung von energiespeichermodulen für eine energiespeichereinrichtung und energiespeichereinrichtung mit solchem
DE102011003759A1 (de) Energiespeichereinrichtung für eine fremderregte elektrische Maschine
DE102011003940A1 (de) System mit einer elektrisch erregten Maschine
DE102011076571A1 (de) Energieversorgungseinrichtung für Wechselrichterschaltungen
DE102013212692A1 (de) Energiespeichereinrichtung mit Gleichspannungsversorgungsschaltung
DE102011086545A1 (de) Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Ansteuern einer Energiespeichereinrichtung
DE102012202855A1 (de) Gleichspannungsabgriffsanordnung für eine Energiespeichereinrichtung und Verfahren zum Erzeugen einer Gleichspannung aus einer Energiespeichereinrichtung
DE102014201711A1 (de) Energiespeichereinrichtung, System mit Energiespeichereinrichtung und Verfahren zum Ansteuern einer Energiespeichereinrichtung
DE102012202868A1 (de) Gleichspannungsabgriffsanordnung für eine Energiespeichereinrichtung und Verfahren zum Erzeugen einer Gleichspannung aus einer Energiespeichereinrichtung
DE102012222333A1 (de) Energiespeichereinrichtung und System mit Energiespeichereinrichtung zum Bereitstellen einer Versorgungsspannung
DE102011006755A1 (de) System und Verfahren zur Spannungswandlung für Photovoltaikmodule

Legal Events

Date Code Title Description
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20141202