USH1597H - Epoxidized diene elastomers for exterior block crosslinking - Google Patents
Epoxidized diene elastomers for exterior block crosslinking Download PDFInfo
- Publication number
- USH1597H USH1597H US08/423,431 US42343195A USH1597H US H1597 H USH1597 H US H1597H US 42343195 A US42343195 A US 42343195A US H1597 H USH1597 H US H1597H
- Authority
- US
- United States
- Prior art keywords
- block
- blocks
- polymer
- diene
- molecular weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/02—Polycondensates containing more than one epoxy group per molecule
- C08G59/027—Polycondensates containing more than one epoxy group per molecule obtained by epoxidation of unsaturated precursor, e.g. polymer or monomer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/06—Butadiene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/08—Isoprene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F297/00—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
- C08F297/02—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/04—Reduction, e.g. hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
- C08F8/08—Epoxidation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D153/00—Coating compositions based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J153/00—Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
- C09J163/08—Epoxidised polymerised polyenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/10—Copolymer characterised by the proportions of the comonomers expressed as molar percentages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2800/00—Copolymer characterised by the proportions of the comonomers expressed
- C08F2800/20—Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
Definitions
- This invention relates to epoxidized diene block elastomers suitable for endblock crosslinking and adhesive compositions made therefrom.
- Curing of adhesives based on conjugated diolefins and, optionally, vinyl aromatics has increased the range of service properties for such adhesives.
- Radiation curing and chemical curing of polymers to make such adhesives is known. This curing causes covalent crosslinking of the polymerized conjugated diolefins which is evidenced by a high gel content of the crosslinked polymer. Before crosslinking, the polymers are melt processable but after crosslinking, the gel cannot be processed as melts. Crosslinking therefore enhances solvent resistance and improves elevated temperature shear properties. Compositions can therefore be applied to a substrate in a melt and then crosslinked to form a superior adhesive. However, improvements in the adhesives could be made if the adhesives could be cured at lower dosages of radiation, provide longer term heat resistance, or provide improved weatherability.
- the known curable adhesives which are based on vinyl aromatics and conjugated diolefins do not have particularly good long term heat, weather and ultraviolet stability due to the need to utilize unhydrogenated polymers.
- the known-vinyl aromatic-conjugated diolefin based adhesives which are curable are unhydrogenated polymers. Hydrogenation is known to improve long term heat, weather and ultraviolet stability, but it removes the double bonds which are needed to effect the curing by radiation crosslinking. Such curing methods are not effective when the polymers are hydrogenated. The requirement for this unsaturation is particularly evident when typical tackifiers are present in the compositions because their presence generally inhibits crosslinking of the polymer.
- the present invention comprises elastomeric block copolymers, based on at least one conjugated diolefin monomer, that contain a greater concentration of di-, or tri-, or tetrasubstituted olefinic epoxides in the exterior blocks, and lesser concentration in the interior blocks of the polymer.
- the polymers of the invention may or may not be hydrogenated and if they are hydrogenated, the hydrogenation may take place either before or after epoxidation.
- the polymers may be crosslinked through at least some of the epoxy functionality, preferably by radiation, and can be used to make rapid curing and heat stable adhesives, sealants, coatings, used as additives to modify asphalt, flexible printing plates, fibers, and films, and also as modifiers for polyesters and polyamides.
- the A blocks contain such epoxides within the concentration range of 0.2 to 10 milliequivalents (Meq) per gram of block A, preferably within the range of 0.5 to 8 Meq/g, and most preferably within the range of 1 to 5 Meq/g.
- the ratio of the concentration (Meq/g) of such epoxide groups bonds in A to the concentration in B should be at least 3:1, more preferably, the ratio should be greater than 5:1.
- the molecular weight of the A blocks is above 3,000 and not higher than 50,000, preferably between 3,000 and 25,000, most preferably between 3,000 and 15,000.
- the molecular weight of the B blocks is above 15,000 and not greater than 200,000, preferably between 15,000 and 100,000, most preferably between 15,000 and 50,000.
- polymers made by sequential polymerization of a suitable diolefin monomer and a monomer having only one carbon-carbon double bond or by sequential polymerization of two different mixtures (ratios) of such monomers, using either a monofunctional initiator, a monofunctional initiator and a coupling agent, or a multifunctional initiator, may be epoxidized and would not have to be hydrogenated to produce an epoxidized polymer of this invention that is saturated.
- the polymers containing olefinic unsaturation or both aromatic and olefinic unsaturation may be prepared using anionic initiators or polymerization catalysts. Such polymers may be prepared using bulk, solution or emulsion techniques. Polymers prepared in solution are preferred for subsequent epoxidation and hydrogenation.
- a very useful embodiment of this invention may be conveniently prepared by anionic polymerization, preparing blocks A and B, (optionally M and C, discussed below), each consisting of homopolymers or copolymers of conjugated diene monomers or copolymers of conjugated diene monomers and alkyl aryl monomers wherein the monomers used for the A blocks are such that the A blocks have a greater average number of highly substituted residual olefinic double bonds per unit of block mass than do the B blocks. Since the desired final polymer is to be elastomeric, it is necessary that the amount of the alkyl aryl monomers in the interior B blocks does not exceed 50% by weight.
- the amount of alkyl aryl monomers copolymerized in the A blocks can be greater, up to 99%, provided that enough conjugated diene monomer is used to assure the presence of a sufficient level of higher substituted olefinic double bonds in A for epoxidation.
- the polymer is epoxidized under conditions that enhance the epoxidation of the more highly substituted olefinic double bonds, such as by the use of peracetic acid, wherein the rate of epoxidation is generally greater the greater the degree of substitution of the olefinic double bond (rate of epoxidation: tetrasubstituted>trisubstituted>disubstituted>monosubstituted olefinic double bond).
- rate of epoxidation is generally greater the greater the degree of substitution of the olefinic double bond (rate of epoxidation: tetrasubstituted>trisubstituted>disubstituted>monosubstituted olefinic double bond).
- Sufficient epoxidation is done to achieve the desired level of epoxidation in the A blocks (within the range of 0.2 to 10 Meq/g).
- 1 H NMR can be used to determine the loss of each
- the epoxidized polymer is hydrogenated to remove substantially all remaining olefinic double bonds (ODB) and normally leaving substantially all of the aromatic double bonds.
- ODB olefinic double bonds
- the epoxidized polymer may be partially hydrogenated in a selective manner with a suitable catalyst and conditions (like those in Re. 27,145, U.S. Pat. No. 4,001,199 or with a titanium catalyst such as is disclosed in U.S. Pat. No.
- selective partial hydrogenation of the polymer may be carried out before epoxidation such that between 0.2 and 11.6 Meq of olefinic double bonds are left intact, as required of an A block for subsequent epoxidation.
- Fully epoxidizing 11.6 Meq of ODB per gram of polymer gives 10.0 Meq of epoxide per gram of the final polymer because of a 16% weight gain due to the added oxygen.
- selective partial hydrogenation is done first, the epoxidation does not need to be selective with respect to the degree of substitution on the olefinic double bonds, since the objective is usually to epoxidize as many of the remaining ODB's as possible.
- the ratio of ODB's in the A blocks to that in the B blocks be at least 3:1.
- conjugated diolefin polymers and copolymers of conjugated diolefins and alkenyl aromatic hydrocarbons are prepared by contacting the monomer or monomers to be polymerized simultaneously or sequentially with an anionic polymerization initiator such as group IA metals, their alkyls, amides, silanolates, napthalides, biphenyls and anthracenyl derivatives. It is preferred to use an organo alkali metal (such as sodium or potassium) compound in a suitable solvent at a temperature within the range from about -150° C. to about 300° C., preferably at a temperature within the range from about 0° C. to about 100° C.
- Particularly effective anionic polymerization initiators are organo lithium compounds having the general formula:
- R is an aliphatic, cycloaliphatic, aromatic or alkyl-substituted aromatic hydrocarbon radical having from 1 to about 20 carbon atoms and n is an integer of 1 to 4.
- Conjugated diolefins which may be polymerized anionically include those conjugated diolefins containing from about 4 to about 24 carbon atoms such as 1,3-butadiene, isoprene, piperylene, methylpentadiene, phenylbutadiene, 3,4-dimethyl-1,3-hexadiene, 4,5-diethyl-1,3-octadiene and the like.
- Isoprene and butadiene are the preferred conjugated diene monomers for use in the present invention because of their low cost and ready availability.
- the conjugated diolefins which may be used in the present invention include isoprene (2-methyl-1,3-butadiene), 2-ethyl-1,3-butadiene, 2-propyl-1,3-butadiene, 2-butyl-1,3-butadiene, 2-pentyl-1,3-butadiene (2-amyl-1,3-butadiene), 2-hexyl-1,3-butadiene, 2-heptyl-1,3-butadiene, 2-octyl-1,3-butadiene, 2-nonyl-1,3-butadiene, 2-decyl-1,3-butadiene, 2-dodecyl-1,3-butadiene, 2-tetradecyl-1,3-butadiene, 2-hexadecyl-1,3-butadiene, 2-isoamyl-1,3-butadiene, 2-phenyl-1,3-butadiene, 2-methyl-1,
- Di-substituted conjugated diolefins which may be used include 2,3-dialkyl-substituted conjugated diolefins such as 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-pentadiene, 2,3-dimethyl-1,3-hexadiene, 2,3-diethyl-1,3-heoptadiene, 2,3-dimethyl-1,3-octadiene and the like and 2,3-fluoro-substituted conjugated diolefins such as 2,3-difluoro-1,3-butadiene, 2,3-difluoro-1,3-pentadiene, 2,3-difluoro-1,3-hexadiene, 2,3-difluoro-1,3-heptadiene
- Alkenyl aromatic hydrocarbons which may be copolymerized include vinyl aryl compounds such as styrene, various alkyl-substituted styrenes, alkoxy-substituted styrenes, vinyl napthalene, alkyl-substituted vinyl napthalenes and the like.
- Conjugated dienes can also be copolymerized with methacrylates, such as t-butyl methacrylate, as described in U.S. Pat. No. 5,002,676, which is incorporated herein by reference, and such copolymers can be epoxidized and hydrogenated as described herein.
- methacrylates such as t-butyl methacrylate
- any polyfunctional coupling agent which contains at least two reactive sites can be employed.
- Examples of the types of compounds which can be used include the polyepoxides, polyisocyanates, polyimines, polyaldehydes, polyketones, polyanhydrides, polyesters, polyhalides, and the like. These compounds can contain two or more types of functional groups such as the combination of epoxy and aldehyde groups, isocyanate and halide groups, and the like. Many suitable types of these polyfunctional compounds have been described in U.S. Pat. Nos.
- any of the solvents known in the prior art to be useful in the preparation of such polymers may be used.
- Suitable solvents including straight- and branched chain hydrocarbons such as pentane, hexane, heptane, octane and the like, as well as, alkyl-substituted derivatives thereof; cycloaliphatic hydrocarbons such as cyclopentane, cyclohexane, cycloheptane and the like, as well as alkyl-substituted derivatives thereof; aromatic and alkyl-substituted derivatives thereof; aromatic and alkyl-substituted aromatic hydrocarbons such as benzene, napthalene, toluene, xylene and the like; hydrogenated aromatic hydrocarbons such as tetraline, decalin and the like; linear and cyclic ethers such as methyl ether, methylethyl ether, diethyl ether, te
- the polymers of the present invention are made by the anionic polymerization of conjugated diene monomers and alkenyl aromatic hydrocarbon monomers in a hydrocarbon solvent at a temperature between 0° and 100° C. using an alkyt lithium initiator.
- the living polymer chains are usually coupled by addition of divinyl monomer to form a star polymer.
- Addition monomers may or may not be added to grow more arms, C arms, or to terminally functionalize, such as with ethylene oxide or carbon dioxide to give hydroxyl or carboxyl groups, respectively, and the polymer and the living chain ends are quenched with a proton source such as methanol or hydrogen.
- Polymerization may also be initiated from monomers such as m-divinylbenzene and m-diisopropenylbenzene treated with butyl lithium.
- the block copolymers can be either linear polymers of the basic formula, A-B-A, and its simple variations, (A-B) k and A-(B-A) j , or symmetric and asymmetric star (centrally branched) polymers of the basic formula (A-B-M p ) n -X-C r , and its simple variations, ((A-B) j -M p ) n -X-C r and (A-(B-A) j -M p ) n -X-C r , wherein A is the exterior block, B is the interior block, M is an optional miniblock, and C is an optional arm (branch) consisting of one or more blocks.
- the A-B-M p arms (branches) and their simple variations are referred to as D arms when it is convenient to do so.
- the blocks themselves may be homopolymer or copolymer blocks including tapered blocks.
- the star structures are preferred over the linear structures. Also preferred are nonrepetitive A-B diblock segments (where there is no subscript j in the formula).
- M is a miniblock of monomer that can be used to affect the number or stability of the arms coupled or originating at X.
- the molecular weight of M is greater than 50 and less than 3000, preferably less than 1000.
- M is a vinyl aromatic hydrocarbon or a diene, typically oligostyrene or oligoisoprene. For instance, when coupling anionically prepared A-B -- living arms, where A is polyisoprene and B is polybutadiene, with commercial DVB-55 the degree of coupling to make the star is often less than 80%, with greater than 20% of the arms remaining unattached to the main star mode in the final product.
- the exact amount left unattached is very dependent upon the exact conditions of the coupling reaction, such as the amount of ether cosolvent used, the time elapsed after polymerization of the A-B arms and the temperature of the polymer solution during the DVB-55 addition.
- the coupling reaction is less sensitive to reaction conditions and degrees of coupling above 80 or 90% are typically achieved.
- presence of the miniblock can be additionally beneficial when the polymer is being used under harsh service conditions, such as high temperature use, because a completely saturated block like oligostyrene or an epoxidized oligoisoprene can prevent scission of the arm from the star at the core of the star.
- X sits at the junction point or region in the polymer molecule at which the arms (branches) of the polymer connect and represents the agent or agents that function as the connector.
- X either represents coupling agents or monomers that cause the majority of the arms to join together after polymerization of the arms, or represents an initiator with an active functionality of 3 or greater from which polymerization of the arms takes place.
- Asymmetric star polymers require the use of the optional C arms, which are necessarily different than the D arms.
- C arms are block or multiblock segments that are usually prepared from one or more of the monomers used to prepare the D .arms.
- the molecular weight of a C arm is between about 50 and 100,000, preferably between about 500 and 50,000.
- the linear size of arms of greater length gives polymers with extremely high hot melt application viscosities. Care must be exercised that the combination C monomer selection, number of C arms or volume fraction of the C arms in the polymer does not change the overall nature of the polymer from one that is essentially elastomeric and primarily epoxidized (and curable) in exterior blocks to one that is not elastomeric.
- a methacrylate monomer such as t-butyl methacrylate
- t-butyl methacrylate can be added to a DVB-coupled star prior to termination and the arms C can be grown out from the living DVB core of the star.
- the subscripts are integers that indicate how many times a particular block or arm is present on a particular polymer.
- the subscript p is 0 or 1
- n and r are integers where n ⁇ 2, r ⁇ 0, and n+r is the total number of arms and ranges from 3 to 100, preferably from 5 to 50, and most preferably from 10 to 40.
- p is 0 or r equals 0 there is no miniblock M or no C arms.
- n ⁇ r, and most preferably r 0.
- the subscript k is 2 to 6 and j is an integer from 1 to 6. Larger values of j produce polymers that have very large linear size which yields polymers with extremely high hot melt application viscosities. Even when the subscript j is only in the range of 2 to 6, it is important that the molecular weights of the A and especially the B blocks are near the lower end of permissible values.
- A is a polyisoprene block polymerized under conditions that yields primarily 1,4-polyisoprene, for which the residual double bonds are trisubstituted
- B is a polybutadiene block for which all of the residual double bonds are mono- or disubstituted.
- a block is a random polyisoprene/polystyrene copolymer in which a majority of the polyisoprene is 1,4-polyisoprene and the B block is polybutadiene. Either epoxidation alone, epoxidation first followed by hydrogenation, or partial hydrogenation of these polymers first followed by epoxidation, works extremely well.
- B is polybutadiene
- M is oligoisoprene or oligostyrene
- the polymer can be epoxidized to provide a level of epoxidation between 0.2 to 10 milliequivalents of epoxy per gram of A, while the B blocks will contain a lesser amount of epoxidation than A.
- Another special case is the sequential polymerization of a single conjugated diene monomer under two sets of reaction conditions.
- An example is the anionic polymerization of 1,3-butadiene in cyclohexane to produce primarily 1,4-polybutadiene followed by addition of a microstructure modifier, such as an ether cosolvent, and polymerization of high 1,2-polybutadiene, followed by coupling and selective epoxidation to give an A-B-A or an (A-B-M o ) n -X-C o polymer of this invention.
- A is 1,4-polybutadiene with disubstituted double bonds and B is 1,2-polybutadiene which has only monosubstituted double bonds.
- the polymer can be subsequently hydrogenated to remove substantially all of the remaining olefinic double bonds if a saturated polymer with maximum long term heat resistance is desired.
- partial hydrogenation can be practiced first.
- it is better to epoxidize first since it is easier to very selectively epoxidize the 1,2-disubstituted double bonds of the 1,4-butadiene over the monosubstituted double bonds of the 1,2-polybutadiene than it is to selectively hydrogenate the 1,2-polybutadiene over the 1,4-polybutadiene.
- this principle can be applied to the polymerization of other conjugated diene monomers, such as 1,3-isoprene, that can be polymerized to different microstructures which differ in the level of substitution about the double bonds by a deliberate change in reaction conditions.
- a linear triblock copolymer made by sequential polymerization of the A block monomer(s), the B block monomer(s), and then the A block monomer(s) again is described as an A-B-A polymer.
- the polymer made using a diinitiator in which the B block monomer is polymerized in two directions, followed by the A block monomer, is also simply described by the nomenclature A-B-A.
- the polymer made by coupling two A-B - arms with a difunctional coupling agent to form the linear molecule is an A-B-A polymer. Normally, no A-B-A polymer is an entirely pure triblock polymer.
- a (A-B-M o ) 15 -X-C o is a symmetric star polymer having 15 arms all of which are A-B diblock arms. The zero subscripts on M and C mean that these are not present.
- the present (A-B-M o ) 15 -X-C o nomenclature is equivalent to (A-B) 15 -X, a nomenclature commonly used for a symmetric star polymer.
- Star polymers are normally made by a coupling reaction using divinyl monomer such as divinylbenzene. Like any coupling reaction, it does not go to 100% completion and some diblock polymer (unattached arms) will be present.
- n which in the present example is 15, is determined after the polymer is made.
- the best way to assign the n values is to measure the weight average molecular weight of the polymer by light scattering as described below, including pure star and diblock components, subtract from it the portion of the mass due to the coupling monomer and then divide this corrected weight average molecular weight by the molecular weight of the arm which is usually the peak molecular weight determined by GPC as described below.
- (A-B-M o ) 15 -X-C 5 where C is identical to a B block is an asymmetrical star block copolymer.
- Such a polymer can be conveniently made by initiating with alkyl lithium .and polymerizing the A blocks and then adding 33% more lithium to the reactor prior to adding the B block monomer. Living A-B and B blocks will result that can be coupled with the appropriate agent such as DVB-55 (a divinyl benzene product from Dow). A statistical distribution of species will be made by this process and will have the average (A-B) 15 -X-B 5 composition.
- (A-B-M 1 ) 20 -X-C 20 polymer is an asymmetrical star block copolymer prepared by coupling 20 A-B-M triblocks with a small number of coupling monomers, such as DVB, and then adding the polymerizing C block monomer onto the active sites on X before quenching the living system with a proton source.
- the molecular weight of A is above 3,000 and no greater than 50,000, preferably between about 3,000 and about 25,000, and most preferably between 3,000 and 15,000.
- the molecular weight of B is above about 15,000 and no greater than 200,000, preferably between about 15,000 and about 100,000, and most preferably between 15,000 and 50,000.
- the reason for these ranges and preferred ranges are that lower molecular weight blocks make the polymers more difficult to crosslink at low dose of radiation, while higher molecular weight blocks make the polymers very difficult to apply to a substrate by melt or other means.
- the most preferred ranges balance the crosslinking and application requirements the best for a hot melt system.
- Molecular weights of linear polymers or unassembled linear segments of polymers such as mono-, di-, triblock, and etc., arms of star polymers before coupling are conveniently measured by Gel Permeation Chromatography (GPC), where the GPC system has been appropriately calibrated.
- GPC Gel Permeation Chromatography
- Polymers of known molecular weight are used to calibrate and these must be of the same molecular structure and chemical composition as the unknown linear polymers or segments that are to be measured.
- the polymer is essentially monodisperse and it is both convenient and adequately descriptive to report the "peak" molecular weight of the narrow molecular weight distribution observed. Measurement of the true molecular weight of the final coupled star polymer is not as straightforward or as easy to make using GPC.
- a good method to use for a star polymer is to measure the weight average molecular weight by light scattering techniques.
- the sample is dissolved in a suitable solvent at a concentration less than 1.0 gram of sample per 100 milliliters of solvent and filtered using a syringe and porous membrane filters of less than 0.5 microns pore size directly into the light scattering cell.
- the light scattering measurements are performed as a function of scattering angle and of polymer concentration using standard procedures.
- the differential refractive index (DRI) of the sample is measured at the same wavelength and in the same solvent used for the light scattering.
- the exterior A blocks have a greater concentration of such di-, tri-, and tetrasubstituted olefinic epoxide than the interior B blocks.
- the Meq of such epoxide per gram of the A blocks will be from 0.2 Meq/g to 10 Meq/g, preferably from 0.5 to 8 Meq/g and most preferably 1 to 5 Meq/g.
- the ratio of the concentration of such epoxide in the A blocks to that of the B blocks will be at least 3:1 and preferably greater than 5:1. If there were greater epoxidation in the A or B blocks, the polymers would over crosslink, have little elasticity and be unsuitable for the applications intended.
- the polymer may then be crosslinked through at least some of the epoxy functionality, preferably by radiation.
- the manufacturing cost is lower because less epoxidizing agent is used
- the polymer will be more hydrophobic so water will be less of a problem
- the polymer can be formulated in conventional equipment
- the polymer is less subject to undesirable post curing.
- the epoxidized copolymers of this invention can be prepared by the epoxidation procedures as generally described or reviewed in the Encyclopedia of Chemical Technology 19, 3rd ed., 251-266 (1980), D. N. Schulz, S. R. Turner, and M. A. Golub, Rubber Chemistry and Technoloqy, 5, 809 (1982), W-K. Huang, G-H. Hsuie, and W-H. Hou, Journal of Polymer Science, Part A: Polymer Chemistry, 26, 1867 (1988), and K. A. Jorgensen, Chemical Reviews, 89, 431 (1989), and Hermann, Fischer, and Marz, Angew. Chem. Int. Ed. Engl. 30 (No. 12), 1638 (1991), all of which are incorporated by reference.
- epoxidation of the base polymer can be effected by reaction with organic peracids which can be preformed or formed in situ.
- Suitable preformed peracids include peracetic and perbenzoic acids.
- In situ formation may be accomplished by using hydrogen peroxide and a low molecular weight fatty acid such as formic acid.
- hydrogen peroxide in the presence of acetic acid or acetic anhydride and a cationic exchange resin will form a peracid.
- the cationic exchange resin can optionally be replaced by a strong acid such as sulfuric acid or p-toluenesulfonic acid.
- the epoxidation reaction can be conducted directly in the polymerization cement (polymer solution in which the polymer was polymerized) or, alternatively, the polymer can be redissolved in an inert solvent such as toluene, benzene, hexane, cyclohexane, methylenechloride and the like and epoxidation conducted in this new solution or can be epoxidized neat.
- Epoxidation temperatures on the order of 0° to 130° C. and reaction times from 0.1 to 72 hours may be utilized.
- hydrogen peroxide and acetic acid together with a catalyst such as sulfuric acid the product can be a mixture of epoxide and hydroxy ester.
- Epoxidation may also be accomplished by treatment of the polymer with hydroperoxides or oxygen in the presence of transition metals such as Mo, W, Cr, V and Ag, or with methyltrioxorhenium/hydrogen peroxide with and without amines present.
- 1 H NMR is an effective tool to determine which and how much of each type of ODB is epoxidized. Further, the amount of epoxy can also be measured by the direct titration with perchloric acid (0.1N) and quarternary ammonium halogenide (tetraethyl-ammonium bromide) where the sample is dissolved in methylene chloride. Epoxy titration is described in Epoxy Resins Chemistry and Technoloqy, edited by Clayton A. May and published in 1988 (p. 1065) which is herein incorporated by reference.
- An epoxidized polymer of the present invention can be further derivatized by a subsequent reaction either separately or in-situ to provide useful reactive elastomeric binders that have reactive functionality other than the epoxy group.
- Epoxy groups can be converted to hydroxyl functionality, capable of crosslinking with amino-formaldehyde resins or isocyanates, by reduction or reaction with water. Reaction with azide ion, reaction with cyanotrimethylsilane followed by reduction or reaction with dialkylaminosilanes, ammonia, or amines will give polymers containing both amino and hydroxyl functionality that can be used to enhance adhesion to cellulosic substrates or provide reactive sites for isocyanate cure.
- Reaction with amino or mercapto acids can be used to prepare polymers containing hydroxyl and carboxylic acid functionality, providing greater adhesion to metals or to basic polymers such as nylon.
- Reaction with mercaptosilanes can be used to prepare polymers containing the elements of coupling agents, providing excellent adhesion to glass.
- These functional groups may also be introduced in the form of protected functional groups by reaction of the epoxy with the appropriately functionalized organometallic reagent (lithium organocuprates, Grignard reagents). Hydroxyl and aldehyde functionality may also be introduced by hydroformulation. Reactions with acrylamides and acrylic acids will introduce sites for free radical grafting. Further neutralization of the carboxylic acid or amine-containing polymer with base or acid will give varying amounts of water dispersability, depending on the level of functionality and neutralization.
- a partially hydrogenated, but not epoxidized, polymer of the present invention can be further derivatized as well.
- a polymer can be halogenated, for example, by reacting it with a solution of HBr in acetic acid, or with chlorine (Cl 2 ) or bromine (Br 2 ), either gaseous, or in solution.
- Cl 2 chlorine
- Br 2 bromine
- a wide variety of species, including alcohols, carboxylic acids and nitriles, can be added across the double bond in the presence of protic acids to form the corresponding ethers, esters and amides. Acid chlorides and anhydrides can be added across the double bond in the presence of Lewis acids.
- a wide variety of species containing active protons including thiols, primary alcohols and amines, aldehydes and species of the structure ZCH 2 Z', where Z and Z' are electron withdrawing groups, such as NO 2 , CN, or CO 2 H, can be added across the double bond in the presence of radical generators, such as organic peroxides.
- Hydroboration can be used to prepare the alkylborane, as described in S. Ramakrishnan, E. Berluche, and T. C. Chung, Macromolecules, 23, 378 (1990), and subsequent papers by T. C. Chung.
- the alkylborane derivative may then be transformed to the alcohol, or amine, or other functional groups.
- Diazo compounds may be added to the double bonds, either under the influence of heat, or metal catalysts, such as Cu and Rh salts.
- Reactive dienophiles such as maleic anhydride and di-t-butyl azodicarboxylate can be added to the double bond to form the anhydride or the hydrazide (which can be thermally converted to the hydrazine), respectively.
- Reactive dipoles such as nitrile oxides and nittones can be added to the double bond.
- Hydrogenation of the above mentioned derivatives can be used t0 introduce amino--alcohol functionality.
- a variety of oxidative reactions including oxidation with potassium permanganate and sodium perborate, may be used to introduce hydroxyl groups.
- the polymers of this invention are preferably cured (crosslinked ⁇ by ultraviolet or electron beam radiation, but radiation curing utilizing a wide variety of electromagnetic wavelengths is feasible. Either ionizing radiation such as alpha, beta, gamma, X-rays and high energy electrons or non-ionizing radiation such as ultraviolet, visible, infrared, microwave and radio frequency may be used.
- ionizing radiation such as alpha, beta, gamma, X-rays and high energy electrons
- non-ionizing radiation such as ultraviolet, visible, infrared, microwave and radio frequency
- the details of radiation curing are given in commonly assigned copending applications Ser. No. 692,839, filed Apr. 28, 1991, “Viscous Conjugated Diene Block Copolymers” and Ser. No. 772,172, filed Oct. 7, 1991, "Crosslinked Epoxy Functionalized Block Polymers and Adhesives,” both of which are herein incorporated by reference.
- Reactive (curable) diluents that can be added to the polymer include epoxy, vinyl ether, alcohol, acrylate and methacrylate monomers and oligomers. Such polymers and other diene-based polymers may also be added or blended.
- epoxy reactive diluents include bis(2,3-epoxycyclopentyl)ether (Union Carbide EP-205), vinyl cyclohexene dioxide, limonene oxide, limonene dioxide, pinene oxide, epoxidized fatty acids and oils like epoxidized soy and linseed oils.
- the polymers may also be cured without the use of radiation by addition of a cationic initiator.
- Suitable initiators include the halides of tin, aluminum, zinc, boron, silicon, iron, titanium, magnesium and antimony, and the fluoroborates of many of these metals.
- BF complexes such as BF-ether and BF-amine are included.
- strong Bronsted acids such as trifluoromethanesulfonic (triflic acid) and the salts of triflic acid such as FC-520 (3M Company).
- the cationic initiator is chosen to be compatible with the polymer being crosslinked, the method of application and cure temperature.
- the epoxy-containing polymers may also be crosslinked by the addition of multifunctional carboxylic acids, acid anhydrides, and alcohols, and in general by the curing methods described in U.S. Pat. No. 3,970,608, which is incorporated by reference.
- Volatile amines can be used to inhibit or retard unwanted cure, such as to maintain fluidity in one pack formulations until they are applied and reach the appropriate bake temperature for cure. Radiation crosslinking is preferred because reactive ingredients do not come in contact with warm adhesives.
- the crosslinked materials of the present invention are useful in adhesives (including pressure sensitive adhesives, contact adhesives, laminating adhesives and assembly adhesives), sealants, coatings, films (such as those requiring heat and solvent resistance), printing plates, fibers, and as modifiers for polyesters, polyethers and polyamides.
- the polymers are also useful in asphalt modification.
- products formulated to meet performance requirements for particular applications may include various combinations of ingredients including adhesion promoting or tackifying resins, plasticizers, fillers, solvents, stabilizers, etc. as descrivbed in detail in the aforementioned commonly assigned applications which are incorporated by reference.
- compositions of the present invention are typically prepared by blending the components at an elevated temperature, preferably between 50° C. and 200° C., until a homogeneous blend is obtained, usually less than three (3) hours.
- elevated temperature preferably between 50° C. and 200° C.
- Various methods of blending are known to the art and any method that produces a homogeneous blend is satisfactory.
- the resultant compositions may then preferably be used in a wide variety of applications.
- the ingredients may be blended into a solvent.
- Adhesive compositions of the present invention may be utilized as many different kinds of adhesives' for example, laminating adhesives, flexible packaging laminating adhesives, pressure sensitive adhesives, tie layers, hot melt adhesives, solvent borne adhesives and waterborne adhesives in which the water has been removed before curing.
- the adhesive can consist of simply the epoxidized polymer or, more commonly, a formulated composition containing a significant portion of the epoxidized polymer along with other known adhesive composition components.
- a preferred method of application will be hot melt application at a temperature around or above 100° C. because hot melt application above 100° C. minimizes the presence of water and other low molecular weight inhibitors of cationic polymerization.
- the adhesive can be heated before and after cure to further promote cure or post cure. Radiation .cUr.e of hot adhesive is believed to promote faster cure than radiation cure at room temperature.
- the pressure-sensitive adhesive tape comprises a flexible backing sheet and a layer of the adhesive composition of the instant invention coated on one major surface of the backing sheet.
- the backing sheet may be a plastic film, paper or any other suitable material and the tape may include various other layers or coatings, such as primers, release coatings and the like, which are used in the manufacture of pressure-sensitive adhesive tapes.
- the compositions of the present invention may be used for adhesives that do not tear paper and molded goods and the like.
- Polymer 1 was a symmetric star polymer (A-B-M o ) 17 -X-C o having polyisoprene A blocks and polybutadiene B blocks. It was prepared by anionic polymerization using two reactors. The polyisoprene block was completely polymerized in cyclohexane using sec-butyl lithium initiator in the first reactor, then the polyisoprene solution was transferred to the second reactor which contained additional cyclohexane and diethyl ether cosolvent and part of the butadiene monomer; additional butadiene monomer was added until the complete diblock polymer arm polymerization was complete.
- DVB-55 was added to couple the arms and after about an hour reaction time, methanol was added to terminate the living polymer.
- the diethyl ether cosolvent was incorporated to cause increased 1,2-polymerization of the butadiene.
- the amounts of monomer used were 29.82 pounds of 1,3-isoprene, 170.18 pounds of 1,3-butadiene and 17.19 pounds of commercial divinylbenzene mixture (DVB-55 from Dow). According to GPC analysis on the final polymer, about 83% of the arms were coupled by the DVB with 17% left unattached.
- the peak molecular weight of the polyisoprene-polybutadiene arms (A-B arms) prior to coupling with the DVB was about 5780.
- the molecular weights of the A and B blocks were about 910 and 4870, respectively, and the molecular weight of that portion of the polyDVB associated with each of these arms was about 490, for a total of about 6270.
- the weight average molecular weight, M w of the polymer was measured by static light scattering. Dry polymer was dissolved in tetrahydrofuran and filtered through a 0.5 and a 0.2 micron filter. The analysis wavelength was 632.8 mn, the temperature was 25.0° C. and the DRI was 0.146. The M w determined was 105,000. Dividing this M w by 6270 indicates that the star polymer had an average of about 17 diblock arms.
- Polymer 2 A portion of polymer 1 solution was epoxidized at 20° C. in a stirred reactor flask using a solution of peracetic acid according to the recipe below.
- Peracetic acid typically consists of 35% peracetic acid, 39% acetic acid, 5% hydrogen peroxide, 1% sulfuric acid and 20% water, all by weight.
- the peracetic acid addition time was 35 minutes; a 2 hour hold time followed.
- the 4.5 g of sodium carbonate was added in two steps, half before the peracetic acid addition and the other 2.25 g halfway into the peracetic acid addition.
- Sufficient sodium carbonate (122 g) to completely neutralize the peracetic acid solution was dissolved in distilled water to give 6000 g of wash solution. This sodium carbonate wash solution was added to another flask and the epoxidized polymer solution was added to it while stirring.
- the mixture was stirred for 30 minutes, agitation was stopped and the bottom water/sodium acetate layer was removed.
- the polymer solution was washed three additional times with distilled water (3500 g each time).
- the final wash water removed from the polymer solution had a pH of 5.9 and an electrical conductivity of 50 micromohs/cm.
- the polymer was recovered by drying.
- the last column, above, shows the net change in each particular type of olefinic double bond and its the basis for determining how much and what kind of epoxides are present in the A and B blocks of polymer 2.
- the Meq/g values in the last column indicate that 68% of the epoxidation occurred in the polyisoprene A blocks and that 32% occurred in the polybutadiene B blocks.
- the A blocks increased in molecular weight from 910 to 1030 and have 7.3 Meq of di- and trisubstituted epoxide per gram of block
- the B blocks increased in molecular weight from 4870 to 4920 and have 0.72 Meq of disubstituted epoxide per gram of block B.
- the A:B ratio of epoxide is 10:1.
- polymer 2 is not an example of the present invention because the molecular weights of the A and B blocks are small, the polymers and procedures of Examples 1 and 2 clearly show how polymers of the present invention can be prepared. All that would need be done is to reduce the amount sec-butyl lithium initiator used in the preparation of polymer 1 to about one-fourth or less of the level that was used, as this would cause the A and B molecular weights to fall above 3000 and 15,000 respectively.
- active initiator sec-butyl lithium
- a small amount of diethyl glyme was added to the polymer solution just before the addition of the butadiene monomer for the purpose of polymerizing the butadiene to a high 1,2-configuration.
- the polymer was terminated with methanol.
- the molar ratios correspond to the given % by weight composition for the polymer.
- the molecular weights of the A, B and M blocks were about 5,000, 28,000 and 700, respectively. About 84% of the arms were coupled.
- the A and the M blocks had about 14.7 Meq/g of residual ODB's most of which were trisubstituted, while the B blocks had 18.5 Meq/g of double bonds, none of which were trisubstituted.
- 1 H NMR analysis on the A-B and A-B-M segments prior to DVB coupling indicated that the external polyisoprene blocks, A, contained about 10% of their isoprene mers in the 3,4 configuration and about 90% in the 1,4 configuration, the internal polybutadiene blocks, B, contained about 81% of their butadiene mers in the 1,2 configuration and about 19% in the 1,4 configuration, and the polyisoprene miniblocks, M, had about 36% of their mers in the 3,4 configuration and about 64% in the 1,4 configuration.
- concentrations of tri-, di- and monosubstituted olefinic double bonds in each block are summarized below.
- Polymer 4 Polymer 3 was partially hydrogenated using a nickel-aluminum catalyst under conditions that do not hydrogenate aromatic double bonds and will preferentially hydrogenate olefinic double bonds that are not TU sites. The catalyst was washed out.
- the hydrogenation catalyst was made by the reaction of nickel 2-ethylhexanoate and triethylaluminum (AL/Ni ratio was about 2.3/1) and was used at 13 ppm nickel (18 ⁇ 10 -3 mmoles Ni/g polymer) on a solution basis, at a pressure of 500 psi and a temperature of about 70° C.
- the M w was 585,000 as determined by static light scattering.
- the DRI was 0.096.
- Polymer 5 Polymer 4 was epoxidized at 45° C. using a solution of peracetic acid from FMC Corp. according to the recipe below, using a stirred reactor flask, a 60 minute peracetic acid addition time and a 6 hour hold. The sodium carbonate was added in two steps. After the 6 hour hold, sufficient sodium carbonate was added to neutralize all the acetic and any residual peracetic acid in the reaction flask, the polymer solution was thoroughly washed with water and the solvent was separated from the polymer by drying.
- the effect of the epoxidation of Polymer 4 was to epoxidize about 94% of the total di- and trisubstituted ODB on the polyisoprene blocks, A and M, and about 97% of disubstituted ODB on the polybutadiene blocks, B, and create epoxidized Polymer 5.
- the A and M blocks each have about 4.0 Meq epoxide/g
- B blocks have about 0.75 Meq epoxide/g.
- the ratio of epoxide in the A:B blocks was about 5.3:1.
- Polymer 5 is an example of the invention.
- Polymer 5 was used to make formulations A, B, C, and D.
- Formulation A is just neat polymer with a small amount of antioxidant added while formulation B included 25% of the tackifying resin Escorez® 5380 (Exxon). These formulations were intended for EB curing.
- Formulations C and D are similar to A and B respectively, except that 1% UVI-6974 photoinitiator (Union Carbide) was added to facilitate UV cure. UVI-6974 absorbs UV light from 188 to about 350 nm.
- Formulations A and B were dissolved in toluene and cast onto sheets of 1 mil Mylar to give about 3 mil layers of dry formulation after solvent evaporation.
- Formulations C and D were dissolved in a 75/25 weight % mixture of toluene/n-butanol and similarly cast.
- the samples were preheated in an oven for 2 minutes at 149° C. to remove any moisture and simulate having just been hot melt coated.
- EB irradiation was done on an ESI CB-150 processor using 165 Kev electrons.
- UV irradiation was done on a Linde PS-2000 Laboratory Photocure unit having a single medium pressure Hg bulb delivering UV radiation from 188 nm to 365 nm, aluminum reflectors and a variable speed carrier belt. UV dose was controlled by varying the conveyor speed, which has a 60 fpm maximum and by inserting a filter. The filter prevents UV irradiation below about 300 nm from reaching the test product. This reduces the incidence of UV energy that overlaps the absorbance spectrum of the UVI-6974 photoinitiator by a factor of about 4. For both EB and UV curing, a nitrogen blanket was used to suppress ozone formation and its. consequent discharge into the working environment. Curing involves a cationic mechanism which is known not to be inhibited by oxygen. The formulations were tested for polymer gel content (solvent resistance) and other properties of a high performance PSA adhesive. The results are given in Table 1.
- formulation C the polymer
- formulation D the tackifying resin containing polymer
- PSA testing of the UV cured samples shows that formulation C (the polymer) or, better yet, formulation D (the tackifying resin containing polymer) are excellent adhesives having sufficient cohesive strength to allow good tack properties (rolling ball tack and Polyken probe tack), and clean peeling (180° C. peel from steel) and provide high temperature shear resistance (95° C. holding power to Mylar).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Epoxy Resins (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Paints Or Removers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Compounds (AREA)
- Graft Or Block Polymers (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/423,431 USH1597H (en) | 1992-04-03 | 1995-04-18 | Epoxidized diene elastomers for exterior block crosslinking |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US86357992A | 1992-04-03 | 1992-04-03 | |
US08/423,431 USH1597H (en) | 1992-04-03 | 1995-04-18 | Epoxidized diene elastomers for exterior block crosslinking |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US86357992A Division | 1992-04-03 | 1992-04-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
USH1597H true USH1597H (en) | 1996-09-03 |
Family
ID=25341334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/423,431 Abandoned USH1597H (en) | 1992-04-03 | 1995-04-18 | Epoxidized diene elastomers for exterior block crosslinking |
Country Status (14)
Country | Link |
---|---|
US (1) | USH1597H (fr) |
EP (1) | EP0564050B1 (fr) |
JP (1) | JP3442424B2 (fr) |
KR (1) | KR930021676A (fr) |
CN (1) | CN1076932A (fr) |
AT (1) | ATE183521T1 (fr) |
AU (1) | AU664736B2 (fr) |
BR (1) | BR9301404A (fr) |
CA (1) | CA2093181A1 (fr) |
DE (1) | DE69326032T2 (fr) |
ES (1) | ES2137221T3 (fr) |
FI (1) | FI931489A (fr) |
NO (1) | NO301545B1 (fr) |
TW (1) | TW226380B (fr) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5721316A (en) * | 1995-07-12 | 1998-02-24 | Shell Oil Company | Process for incorporation of expoxidized polydienes into epoxy resins |
US5840809A (en) * | 1995-07-03 | 1998-11-24 | Daicel Chemical Industries, Ltd. | Epoxidized block copolymer, its production, and its composition |
USH1902H (en) * | 1995-08-04 | 2000-10-03 | Shell Oil Company | Asymmetric radial polymers with acrylic monomer arms |
US6576692B1 (en) | 1994-10-06 | 2003-06-10 | Daicel Chemical Industries, Ltd. | Epoxidized block copolymer, its production, and its composition |
US20030134985A1 (en) * | 2000-01-12 | 2003-07-17 | Pierre Bredael | S-b-s compositions |
US20040092618A1 (en) * | 2002-11-07 | 2004-05-13 | Coykendall Kelsee L. | Low outgassing photo or electron beam curable rubbery polymer material, preparation thereof and device comprising same |
US20110152436A1 (en) * | 2009-12-17 | 2011-06-23 | Tsrc Corporation | Mixture of conjugated diene - vinyl aromatic hydrocarbon copolymers and adhesive composition having the same |
US20190002597A1 (en) * | 2015-12-17 | 2019-01-03 | Arlanxeo Singapore Pte. Ltd. | Process for epoxidation of unsaturated polymer |
US10822439B2 (en) | 2015-12-17 | 2020-11-03 | Arlanxeo Singapore Pte. Ltd. | Butyl rubber containing allylic alcohol |
US11001648B2 (en) | 2015-12-17 | 2021-05-11 | Arlanxeo Singapore Pte. Ltd. | Treatment of epoxidized unsaturated isoolefin copolymers |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH088919B2 (ja) * | 1993-03-18 | 1996-01-31 | スーガン株式会社 | 生体電気/生体物理現象の表示装置 |
US5247026A (en) * | 1992-06-19 | 1993-09-21 | Shell Oil Company | Randomly epoxidized small star polymers |
US5446104A (en) * | 1993-07-12 | 1995-08-29 | Shell Oil Company | Crosslinkable low viscosity star polymer blends |
US5356993A (en) * | 1993-07-12 | 1994-10-18 | Shell Oil Company | Coreactive conjugated diene polymer compositions which phase separate when cured |
ES2286840T3 (es) * | 1993-12-13 | 2007-12-01 | Daicel Chemical Industries, Ltd. | Una composicion de resina poli-alquileno, que contiene un copolimero-bloque de tipo eoxi-modificado. |
US5499409A (en) * | 1994-07-18 | 1996-03-19 | Shell Oil Company | Epoxidized polydiene block polymer with epoxy resins |
JP3469384B2 (ja) * | 1995-12-14 | 2003-11-25 | 株式会社クラレ | 接着剤組成物 |
CN1209829A (zh) * | 1996-11-22 | 1999-03-03 | 大瑟路化学工业株式会社 | 热熔性组合物及含有由此组合物而成的层之复层成型体 |
WO1998039366A1 (fr) * | 1997-03-05 | 1998-09-11 | Daicel Chemical Industries, Ltd. | Copolymeres blocs dont les chaines laterales contiennent des groupes (meth)acryloyle et compositions contenant de tels copolymeres blocs |
JPH11181020A (ja) * | 1997-12-22 | 1999-07-06 | Daicel Chem Ind Ltd | エポキシ化ブロック共重合体の製造方法 |
AU2001251594A1 (en) * | 2000-04-17 | 2001-10-30 | Kraton Polymers Research B.V. | A process for coupling styrenic block copolymers |
DE60229184D1 (de) * | 2001-02-15 | 2008-11-20 | Japan Elastomer Co Ltd | Modifizierter kautschuk, verfahren zu dessen herstellung und zusammensetzung |
EP1411066B1 (fr) * | 2001-07-18 | 2011-05-11 | Asahi Kasei Chemicals Corporation | Copolymere sequence modifie |
DE102005006282A1 (de) | 2005-02-10 | 2006-08-24 | Henkel Kgaa | Strahlungsvernetzbare Schmelzhaftklebstoffe |
US7745544B2 (en) * | 2006-11-30 | 2010-06-29 | Exxonmobil Chemical Patents Inc. | Catalytic epoxidation and hydroxylation of olefin/diene copolymers |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
CN108003328B (zh) * | 2017-11-11 | 2020-04-24 | 江苏泰特尔新材料科技有限公司 | 一种耐热型脂环族环氧树脂固化物及其制备方法 |
CN111356596B (zh) * | 2017-11-21 | 2022-06-21 | 米其林集团总公司 | 橡胶组合物 |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
CN109774065A (zh) * | 2018-12-05 | 2019-05-21 | 青岛再特模具有限公司 | 一种新型汽车水室的注塑工艺 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3607982A (en) * | 1970-06-17 | 1971-09-21 | Shell Oil Co | Hydroxylated block copolymers of butadiene and isoprene |
US4417029A (en) * | 1981-08-03 | 1983-11-22 | Atlantic Richfield Company | Derivatization of star-block copolymers |
US5002676A (en) * | 1989-12-06 | 1991-03-26 | Shell Oil Company | Block copolymers |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3699184A (en) * | 1968-09-12 | 1972-10-17 | Shell Oil Co | Blend of block copolymer, one of which is epoxidized |
US4051199A (en) * | 1976-03-04 | 1977-09-27 | Phillips Petroleum Company | Epoxidized copolymers of styrene, butadiene and isoprene |
US4237245A (en) * | 1979-08-20 | 1980-12-02 | The Firestone Tire & Rubber Company | Hydrogenated block copolymers of butadiene containing a block of 1,4 and a block of 1,2-microstructure |
US4879349A (en) * | 1987-11-05 | 1989-11-07 | Shell Oil Company | Selective hydrogenation process |
JP2692194B2 (ja) * | 1988-11-14 | 1997-12-17 | 日本合成ゴム株式会社 | 水素化ブロック共重合体及びその組成物 |
US5008338A (en) * | 1989-01-31 | 1991-04-16 | Amoco Corporation | Hydroxyethers of epoxidized polybutenes |
US5149895A (en) * | 1990-01-16 | 1992-09-22 | Mobil Oil Corporation | Vulcanizable liquid compositions |
US5210359A (en) * | 1990-01-16 | 1993-05-11 | Mobil Oil Corporation | Vulcanizable liquid compositions |
IT1246287B (it) * | 1990-07-25 | 1994-11-17 | Enichem Elastomers | Copolimero a blocchi ramificato e idrogenato e procedimenti per la sua preparazione |
-
1993
- 1993-03-10 TW TW082101781A patent/TW226380B/zh active
- 1993-04-01 CA CA002093181A patent/CA2093181A1/fr not_active Abandoned
- 1993-04-01 BR BR9301404A patent/BR9301404A/pt not_active Application Discontinuation
- 1993-04-01 AU AU35671/93A patent/AU664736B2/en not_active Ceased
- 1993-04-01 FI FI931489A patent/FI931489A/fi unknown
- 1993-04-01 JP JP07580693A patent/JP3442424B2/ja not_active Expired - Fee Related
- 1993-04-01 CN CN93103535A patent/CN1076932A/zh active Pending
- 1993-04-01 NO NO931261A patent/NO301545B1/no unknown
- 1993-04-01 KR KR1019930005548A patent/KR930021676A/ko not_active Application Discontinuation
- 1993-04-02 AT AT93200949T patent/ATE183521T1/de not_active IP Right Cessation
- 1993-04-02 ES ES93200949T patent/ES2137221T3/es not_active Expired - Lifetime
- 1993-04-02 EP EP93200949A patent/EP0564050B1/fr not_active Expired - Lifetime
- 1993-04-02 DE DE69326032T patent/DE69326032T2/de not_active Expired - Fee Related
-
1995
- 1995-04-18 US US08/423,431 patent/USH1597H/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3607982A (en) * | 1970-06-17 | 1971-09-21 | Shell Oil Co | Hydroxylated block copolymers of butadiene and isoprene |
US4417029A (en) * | 1981-08-03 | 1983-11-22 | Atlantic Richfield Company | Derivatization of star-block copolymers |
US5002676A (en) * | 1989-12-06 | 1991-03-26 | Shell Oil Company | Block copolymers |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6576692B1 (en) | 1994-10-06 | 2003-06-10 | Daicel Chemical Industries, Ltd. | Epoxidized block copolymer, its production, and its composition |
US20030207966A1 (en) * | 1994-10-06 | 2003-11-06 | Daicel Chemical Industries, Ltd. | Epoxidized block copolymer, its production, and its composition |
US5840809A (en) * | 1995-07-03 | 1998-11-24 | Daicel Chemical Industries, Ltd. | Epoxidized block copolymer, its production, and its composition |
US5721316A (en) * | 1995-07-12 | 1998-02-24 | Shell Oil Company | Process for incorporation of expoxidized polydienes into epoxy resins |
USH1902H (en) * | 1995-08-04 | 2000-10-03 | Shell Oil Company | Asymmetric radial polymers with acrylic monomer arms |
US6817114B2 (en) | 2000-01-12 | 2004-11-16 | Atofina Research S.A. | S-B-S compositions |
US20030134985A1 (en) * | 2000-01-12 | 2003-07-17 | Pierre Bredael | S-b-s compositions |
US7256221B2 (en) * | 2002-11-07 | 2007-08-14 | Corning Incorporated | Low outgassing photo or electron beam curable rubbery polymer material, preparation thereof and device comprising same |
US20040092618A1 (en) * | 2002-11-07 | 2004-05-13 | Coykendall Kelsee L. | Low outgassing photo or electron beam curable rubbery polymer material, preparation thereof and device comprising same |
US20110152436A1 (en) * | 2009-12-17 | 2011-06-23 | Tsrc Corporation | Mixture of conjugated diene - vinyl aromatic hydrocarbon copolymers and adhesive composition having the same |
US8461246B2 (en) * | 2009-12-17 | 2013-06-11 | Tsrc Corporation | Mixture of conjugated diene—vinyl aromatic hydrocarbon copolymers and adhesive composition having the same |
US20190002597A1 (en) * | 2015-12-17 | 2019-01-03 | Arlanxeo Singapore Pte. Ltd. | Process for epoxidation of unsaturated polymer |
US10774158B2 (en) * | 2015-12-17 | 2020-09-15 | Arlanxeo Singapore Pte. Ltd. | Process for epoxidation of unsaturated polymer |
US10822439B2 (en) | 2015-12-17 | 2020-11-03 | Arlanxeo Singapore Pte. Ltd. | Butyl rubber containing allylic alcohol |
US11001648B2 (en) | 2015-12-17 | 2021-05-11 | Arlanxeo Singapore Pte. Ltd. | Treatment of epoxidized unsaturated isoolefin copolymers |
US11421052B2 (en) | 2015-12-17 | 2022-08-23 | Arlanxeo Singapore Pte. Ltd. | Treatment of epoxidized unsaturated isoolefin copolymers |
Also Published As
Publication number | Publication date |
---|---|
CN1076932A (zh) | 1993-10-06 |
TW226380B (fr) | 1994-07-11 |
JP3442424B2 (ja) | 2003-09-02 |
EP0564050A3 (fr) | 1994-03-16 |
DE69326032T2 (de) | 2000-01-27 |
EP0564050A2 (fr) | 1993-10-06 |
NO931261L (no) | 1993-10-04 |
CA2093181A1 (fr) | 1993-10-04 |
ATE183521T1 (de) | 1999-09-15 |
BR9301404A (pt) | 1993-10-13 |
AU664736B2 (en) | 1995-11-30 |
JPH0616772A (ja) | 1994-01-25 |
FI931489A (fi) | 1993-10-04 |
NO301545B1 (no) | 1997-11-10 |
FI931489A0 (fi) | 1993-04-01 |
EP0564050B1 (fr) | 1999-08-18 |
ES2137221T3 (es) | 1999-12-16 |
AU3567193A (en) | 1993-10-07 |
NO931261D0 (no) | 1993-04-01 |
DE69326032D1 (de) | 1999-09-23 |
KR930021676A (ko) | 1993-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USH1597H (en) | Epoxidized diene elastomers for exterior block crosslinking | |
US5428114A (en) | Randomly epoxidized small star polymers | |
US5229464A (en) | Epoxidized viscous conjugated diene block copolymers | |
KR100227998B1 (ko) | 가교-결합 에폭시 관능화 폴리디엔 블럭 중합체, 그들의 제조 방법, 그들을 포함하는 조성물 및 출발 블럭 공중합체 | |
US5382604A (en) | Crosslinked epoxy functionalized polydiene block polymers and adhesives | |
US5449718A (en) | Epoxidized viscous conjugated diene block copolymers | |
US5393818A (en) | Solvent-free laminating adhesive composition from epoxidized block polymer | |
JPH0753630A (ja) | 末端に水酸基を有する液状スターポリマー | |
US5284901A (en) | Hydroxyl functional derivatives of epoxidized diene polymers and process for making them | |
US5686535A (en) | Viscous conjugated diene block copolymers | |
GB2280188A (en) | Coreactive conjugated diene polymer compositions which phase seperate when cured | |
US5356975A (en) | Hydroxyl functional derivatives of epoxidized diene block copolymers and process for making them (II) | |
EP0564048B1 (fr) | Procédé de réticulation chimique de polymères époxydés à empêchement stérique | |
JP2000506186A (ja) | 芳香族無水物硬化剤を用いるエポキシ化ジエンポリマーの改良された化学的硬化 | |
KR100366152B1 (ko) | 모노히드록실화디엔중합체및이의에폭시화유도체 | |
EP0634420A1 (fr) | Polymères en étoile | |
US5264480A (en) | Hydroxyl functional derivatives of epoxidized diene polymers and process for making them | |
USH1786H (en) | Process for radiation cured conjugated diene-vinyl aromatic hydrocarbon block copolymers | |
US5262496A (en) | Hydroxyl functional derivatives of epoxidized diene polymers and process for making them |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |