US9927453B2 - Dispensing device and dispensing method - Google Patents

Dispensing device and dispensing method Download PDF

Info

Publication number
US9927453B2
US9927453B2 US15/106,881 US201515106881A US9927453B2 US 9927453 B2 US9927453 B2 US 9927453B2 US 201515106881 A US201515106881 A US 201515106881A US 9927453 B2 US9927453 B2 US 9927453B2
Authority
US
United States
Prior art keywords
pressure
probe
dispensing
sample
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US15/106,881
Other languages
English (en)
Other versions
US20160341756A1 (en
Inventor
Masaaki Hirano
Takamichi Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Assigned to HITACHI HIGH-TECHNOLOGIES CORPORATION reassignment HITACHI HIGH-TECHNOLOGIES CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MORI, TAKAMICHI, HIRANO, MASAAKI
Publication of US20160341756A1 publication Critical patent/US20160341756A1/en
Application granted granted Critical
Publication of US9927453B2 publication Critical patent/US9927453B2/en
Assigned to HITACHI HIGH-TECH CORPORATION reassignment HITACHI HIGH-TECH CORPORATION CHANGE OF NAME AND ADDRESS Assignors: HITACHI HIGH-TECHNOLOGIES CORPORATION
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/02Burettes; Pipettes
    • B01L3/021Pipettes, i.e. with only one conduit for withdrawing and redistributing liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/52Containers specially adapted for storing or dispensing a reagent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • G01F22/02Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for involving measurement of pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1079Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices with means for piercing stoppers or septums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0673Handling of plugs of fluid surrounded by immiscible fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/14Process control and prevention of errors
    • B01L2200/143Quality control, feedback systems
    • B01L2200/146Employing pressure sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics

Definitions

  • the present invention relates to a liquid dispensing device, an automatic analysis device equipped with the same, and a liquid dispensing method, such as a dispensing method for collecting liquid from a liquid holding container, such as a sample container or a reagent container, and dispensing the liquid into a reaction container.
  • a liquid dispensing method such as a dispensing method for collecting liquid from a liquid holding container, such as a sample container or a reagent container, and dispensing the liquid into a reaction container.
  • the inside of a sealed liquid holding container typically has a negative pressure relative to the external atmospheric pressure.
  • the internal pressure may have become positive relative to the external atmospheric pressure.
  • the flow passageway of the dispensing device as a whole connected to the probe may contract or expand due to a pressure variation, causing a movement of the liquid or gas in the flow passageway.
  • a probe is provided with a thin tube for liquid sample suction and a thin tube for ventilation that are integrated (see Patent Literature 1).
  • the probe equipped with the two passageways is passed through the rubber plug, and ventilation is performed via the ventilation passageway while liquid is suctioned via the suction passageway, thus eliminating the pressure difference between the inside and outside of the liquid holding container.
  • an insertion hole for the sample collection probe is formed in the sample container plug using a perforating device equipped with a Z-shaped blade (see Patent Literature 2). According to this technology, as the sample collection probe is inserted, the opening or hole formed in the plug expands, whereby sufficient ventilation is provided, eliminating the pressure difference between the inside and outside of the liquid holding container.
  • Patent Literature 1 JP 9-304400 A
  • Patent Literature 2 JP 2004-523434 A
  • Patent Literature 1 the ventilation passageway is provided in addition to the suction passageway.
  • the probe outer shape is increased, with a resultant increase in the frictional force experienced when piercing the rubber plug. Accordingly, a large force is required for probe removal or insertion.
  • Patent Literature 2 because the perforating blade is used in addition to the sample collection probe, the device becomes more complex and the time and effort for maintenance, for example, increases. Further, in order to avoid cross contamination of samples, the perforating blade needs to be washed, resulting in an increase in the consumption of washing water.
  • the present invention was made in view of the above circumstances, and an object of the present invention is to provide a dispensing method that can increase the accuracy of dispensing liquid from a sealed liquid holding container without an increase in device complexity due to the provision of a ventilation opening.
  • a dispensing device includes a pump; a probe connected to the pump via a piping; a pressure sensor that measures a pressure in the piping; and a control unit that controls the pump and the probe and that reads a signal from the pressure sensor.
  • the control unit measures pressures outside and inside the container using the pressure sensor, and corrects the amount of operation of the pump in accordance with the measured pressures.
  • the control unit may correct the amount of operation of the pump for discharging the liquid, or the amount of operation of the pump for suctioning or discharging air into or out of the probe.
  • a dispensing method includes a step of suctioning a segmented air into a probe; a step of measuring a pressure outside a sealed container; a step of inserting the probe into the container; a step of measuring a pressure inside the container; a step of discharging or suctioning the segmented air, based on the measured external and internal pressures, so that the amount of the segmented air becomes a predetermined amount with the probe removed from the container; a step of suctioning into the probe a liquid held in the container; a step of suctioning air from the container into a tip of the probe so that the air has a predetermined amount with the probe removed from the container; a step of removing the probe from the container; and a step of discharging the suctioned liquid from the probe.
  • FIG. 1 is a schematic diagram illustrating an overall configuration example of an automatic analysis device.
  • FIG. 2 is a schematic diagram illustrating a configuration example of a dispensing mechanism.
  • FIG. 3 is a schematic diagram illustrating a conventional liquid sample dispensing sequence under an atmospheric pressure.
  • FIG. 4 is a schematic diagram illustrating a liquid sample dispensing sequence under a negative pressure.
  • FIG. 5 is a diagram illustrating a temporal change in dispensing route pressure.
  • FIG. 6 is a flowchart of a dispensing sequence in which the sample discharge amount is corrected in accordance with pressure.
  • FIG. 7 is a schematic diagram of the dispensing sequence in which the sample discharge amount is corrected in accordance with pressure.
  • FIG. 8 is a flowchart of a dispensing sequence in which the segmented air amount is corrected in accordance with pressure.
  • FIG. 9 is a schematic diagram of the dispensing sequence in which the segmented air amount is corrected in accordance with pressure.
  • An automatic analysis device is a device for automatically analyzing the components of a biological sample, such as blood or urine.
  • the device includes a dispensing device for collecting and dispensing liquid from a sample container or a reagent container into a reaction container.
  • FIG. 1 is a schematic diagram of an overall configuration example of the automatic analysis device.
  • the automatic analysis device is provided with a sample rack 101 in which a plurality of sample containers 100 containing samples is disposed; a reagent disc 103 on which a plurality of reagent bottles 102 containing reagents is disposed; a cell disc 105 on which a plurality of reaction cells 104 for mixing sample and reagent into a reaction liquid is disposed; a sample dispensing mechanism 106 capable of moving a certain quantity of sample from within the sample containers 100 into the reaction cells 104 ; and a reagent dispensing mechanism 107 capable of moving a certain quantity of reagent from within the reagent bottles 102 into the reaction cells 104 .
  • the automatic analysis device is also provided with a stirring unit 108 for stirring and mixing the sample and reagent in the reaction cells 104 ; a measurement unit 109 for irradiating the reaction liquid in the reaction cells 104 with light and receiving resultant light; a washing unit 110 for washing the reaction cells 104 ; a computer 111 for controlling the driving of various parts of the analysis device, reading measurement data, and storing and analyzing data; an input device 112 capable of inputting necessary data into the computer 111 from the outside; and an output device 113 capable of displaying and outputting data to the outside.
  • a stirring unit 108 for stirring and mixing the sample and reagent in the reaction cells 104
  • a measurement unit 109 for irradiating the reaction liquid in the reaction cells 104 with light and receiving resultant light
  • a washing unit 110 for washing the reaction cells 104
  • a computer 111 for controlling the driving of various parts of the analysis device, reading measurement data, and storing and analyzing data
  • an input device 112 capable of inputting necessary data into
  • An analysis of the amounts of components in a sample is performed by the following procedure. First, a certain quantity of a sample in the sample container 100 is dispensed into the reaction cell 104 by the sample dispensing mechanism 106 . Then, a certain quantity of a reagent in the reagent bottle 102 is dispensed into the reaction cell 104 by the reagent dispensing mechanism 107 . The sample and reagent in the reaction cell 104 are stirred by the stirring unit 108 , producing a reaction liquid. If necessary, a plurality of reagents may be additionally dispensed into the reaction cell 104 by the reagent dispensing mechanism 107 .
  • the sample container 100 , the reagent bottle 102 , and the reaction cell 104 are moved to predetermined positions by the transport of the sample rack 101 and rotation of the reagent disc 103 and the cell disc 105 .
  • the inside of the reaction cell 104 is washed by the washing mechanism 110 for the next analysis.
  • the absorbance of the reaction liquid is measured by the measurement unit 109 , and absorbance data are accumulated in the computer 111 . From the accumulated absorbance data, the computer 111 analyzes the component amounts on the basis of calibration curve data and the Lambert-Beer law.
  • the data necessary for controlling various units and analysis are input from the input device 112 into the computer 111 .
  • Various data and analysis results are displayed and output by the output device 113 .
  • FIG. 2 is a schematic diagram of a configuration example of the dispensing mechanism.
  • an arm 115 On a shaft 114 that can be driven up and down, an arm 115 that can be rotationally driven is installed.
  • a dispensing probe 116 is installed at the end of the arm 115 .
  • the dispensing probe 116 , a pressure sensor 117 , and a syringe pump 118 are connected via piping 119 .
  • the dispensing flow passageway has the distal side thereof opened via the dispensing probe 116 , with the proximal side thereof being configured to be opened and closed by an electromagnetic valve 120 .
  • the electromagnetic valve 120 is closed so as to suction or discharge the sample or reagent via the tip of the dispensing probe 116 by the movement of a plunger 121 installed in the syringe pump 118 . After completion of the dispensing operation, the electromagnetic valve is opened to supply washing water from the proximal side.
  • FIG. 3( a ) illustrates a sealed sample container 100 immediately prior to the insertion of the dispensing probe 116 therein.
  • the pressure inside the sample container 100 is the same as the pressure outside the sample container 100 , i.e., the atmospheric pressure.
  • the dispensing probe 116 is filled with water 122 for transmitting the pressure from the syringe pump 118 .
  • segmented air 123 is suctioned in advance, thus forming an air layer for preventing the sample 124 , as it is being suctioned, from being mixed with and diluted by the water 122 . Thereafter, as illustrated in FIG.
  • the dispensing probe 116 is inserted into the sample container 100 via a rubber plug 125 until reaching inside the liquid of the sample 124 . Then, as illustrated in FIG. 3( c ) , the sample 124 is suctioned into the dispensing probe 116 . As illustrated in FIG. 3( d ) , the dispensing probe 116 is then removed out of the sample container 100 . Finally, as illustrated in FIG. 3( e ) , the dispensing probe 116 is moved into the reaction cell 104 , and the suctioned sample 124 is discharged into the reaction cell 104 , as illustrated in FIG. 3( f ) .
  • FIG. 4 a schematic diagram shown in FIG. 4 .
  • FIG. 5 illustrating a temporal change in pressure in the dispensing flow passageway.
  • the solid line indicates the case where the sample container has negative pressure
  • the broken line indicates the case where the sample container has the atmospheric pressure.
  • FIG. 4( a ) illustrates the dispensing probe 116 filled with the water 122 , with the segmented air 123 suctioned therein.
  • the pressure in the dispensing flow passageway decreases during the suction operation, as illustrated in the pressure data of FIG. 5 between times t0 to t1.
  • the dispensing probe 116 is inserted into the sample container 100 as illustrated in FIG. 4( b ) , the dispensing flow passageway and the sample container 100 are hermetically connected.
  • no change is caused in the pressure in the dispensing flow passageway, as illustrated in the pressure data of FIG. 5 between times t2 and t3.
  • the pressure decreases from P0 to P1.
  • the dispensing flow passageway contracts as a whole, and the interface of the water 122 in the dispensing probe 116 moves toward the sample container 100 , whereby the volume of the segmented air 123 in the dispensing probe 116 decreases.
  • the dispensing probe 116 reaches the sample 124 in the sample container 100 , and the sample 124 is suctioned into the dispensing probe 116 , as illustrated in FIG. 4( d ) .
  • the pressure in the dispensing flow passageway decreases during the suction operation, as illustrated in FIG. 5 between time t4 to t5.
  • FIG. 4( e ) to ( f ) as the dispensing probe 116 is removed out of the sample container 100 , the hermetic connection of the dispensing flow passageway and the sample container 100 is released.
  • the dispensing probe 116 is moved into the reaction cell 104 , and the suctioned sample 124 is discharged into the reaction cell 105 as illustrated in FIG. 4( h ) .
  • the discharge amount relative to the amount of operation of the pump becomes insufficient because of the entry of air into the tip.
  • the amount of discharge operation is corrected in accordance with the pressure in the sealed sample container 100 .
  • a sequence of the present example will be described with reference to a flowchart shown in FIG. 6 and a schematic diagram shown in FIG. 7 .
  • step 11 the segmented air 123 is suctioned in step 11 ( FIG. 7( a ) ).
  • step 12 the atmospheric pressure is measured. This is performed at time t1 in FIG. 5 , whereby the atmospheric pressure P0 is obtained.
  • step 13 the dispensing probe 116 is inserted via the rubber plug 125 into the air layer in the sealed sample container 100 ( FIG. 7( b ) ).
  • step 14 the pressure inside the sample container 100 is measured. This step is performed at time t3 in FIG. 5 , whereby pressure P1 is obtained.
  • the atmospheric pressure P0 outside the sample container 100 and the internal pressure P1 having been acquired, a sample discharge correction amount is calculated in step 15 . A method for calculating the correction amount will be described later.
  • step 16 the dispensing probe 116 is lowered to the sample layer ( FIG. 7( c ) ), and the sample 124 is suctioned in step 17 ( FIG. 7( d ) ).
  • step 18 as the dispensing probe 116 is removed from the sample container 100 , the pressure in the dispensing flow passageway is opened to the atmospheric pressure, and air enters the tip of the dispensing probe 116 , as illustrated in FIG. 7( f ) .
  • the dispensing probe 116 is inserted into the reaction cell 104 ( FIG. 7( g ) ), and the sample 124 is discharged into the reaction cell 104 in step 19 by applying the sample discharge correction amount obtained in step 15 in consideration of the lack due to the entry of air ( FIG. 7( h ) ), and the sequence ends.
  • the measurement may be conducted at both timings to obtain an average so as to effectively increase the pressure measurement accuracy.
  • the pressure inside the sample container 100 may be measured between t5 and t6 rather than at time t3 in FIG. 5 , or at both timings.
  • the pressure measurement may be conducted during the lowering as long as the measurement is not affected by vibrations and the like during operation. Further, if there is sufficient time for a pressure variation to become stabilized after the dispensing probe 116 is inserted into the sample container 100 and before reaching the sample layer, the dispensing probe 116 may not be stopped at the air layer but may be continuously lowered. The pressure measurement is also possible with the dispensing probe 116 immersed in the sample layer.
  • the lack of discharge amount due to the pressure change corresponds to the amount of air V cor that has entered the tip of the dispensing probe 116 as illustrated in FIG. 7( f ) , and is caused by deformation of the dispensing flow passageway and a volume change in the segmented air 123 . Accordingly, the correction amount can be determined by calculating the relevant amounts of change.
  • the dispensing flow passageway includes the dispensing probe 116 , the pressure sensor 117 , the syringe pump 118 , and the piping 119 connecting them.
  • the piping 119 is cylindrical and has an inner diameter r in , an outer diameter r out , a length l, a Young's modulus E, and a Poisson's ratio v.
  • the amount of change in inner diameter ⁇ r in and the amount of change in length ⁇ l can be computed as follows:
  • ⁇ V tube ⁇ ( r in + ⁇ r in ) 2 ( l+ ⁇ l ) ⁇ r in 2 l ⁇
  • the amount of deformation ⁇ V fc of the flow passageway as a whole is determined. Then, a change in volume of the segmented air 123 is determined.
  • the suctioned amount of the segmented air 123 is V air
  • the amount of deformation ⁇ V fc of the piping when the dispensing probe 116 is inserted into the sample container 100 corresponds to the amount of leakage of the segmented air 123
  • the amount of volume change ⁇ V air due to pressure at the time of removal can be calculated as follows:
  • ⁇ ⁇ ⁇ V air P ⁇ ⁇ 1 - P ⁇ ⁇ 0 P ⁇ ⁇ 0 ⁇ ( V air + ⁇ ⁇ ⁇ V fc )
  • V cor ⁇ ( ⁇ V fc + ⁇ V air )
  • V dspc V dsp +V cor
  • the amount of the segmented air 123 varies depending on the pressure inside the sealed sample container 100 .
  • the segmented air 123 serves to prevent the sample from being diluted by the entry of the water 122 , which transmits the pressure from the syringe pump, into the suctioned sample.
  • dilution may not be completely avoided, and the way the sample is diluted may differ depending on the amount of the segmented air.
  • the segmented air 123 may expand or contract, and the time between the end of suctioning and pressure stabilization may be greatly influenced by the expansion or contraction, depending on the viscosity of the sample. For any of these problems, it is effective to perform correction so that the amount of the segmented air 123 becomes constant regardless of the pressure inside the sample container 100 .
  • the segmented air 123 is suctioned in step 21 ( FIG. 9( a ) ). At this time, a greater amount of segmented air 123 than will eventually be held in the dispensing probe 116 is suctioned to allow for the adjustment by the correction operation. Then, in step 22 , the atmospheric pressure is measured. This is performed at time t1 in FIG. 5 , whereby the atmospheric pressure P0 is obtained. In step 23 , the dispensing probe 116 is inserted via the rubber plug 125 into the air layer of the sealed sample container 100 ( FIG. 9( b ) ), and the pressure inside the sample container 100 is measured in step 24 . This step is performed at time t3 in FIG.
  • step 27 the dispensing probe 116 is lowered to the sample layer ( FIG. 9( d ) ), and the sample 124 is suctioned in step 28 ( FIG. 9( e ) ).
  • step 29 the dispensing probe 116 up to the air layer in step 29 ( FIG. 9( f )
  • an air suction operation is performed in step 30 by applying the result of the correction amount calculation in step 25 in consideration of the amount of air that enters the tip when the pressure in the dispensing flow passageway returns to the atmospheric pressure ( FIG. 9( g ) ).
  • the dispensing probe 116 is removed from the sample container 100 in step 31 ( FIG.
  • the internal pressure of the dispensing flow passageway is opened to the atmospheric pressure, allowing air to enter the tip of the dispensing probe 116 , as described above. If the inside of the sample container 100 is at positive pressure, as the positive pressure is opened to the atmospheric pressure, the dispensing flow passageway will contract and the sample 124 may leak from the dispensing probe 116 . However, when the air suction operation has been performed in consideration of the amount of deformation of the dispensing flow passageway in step 30 , the leakage of the sample 124 can also be avoided. Accordingly, at the end of step 31 , the sample 124 can be held at a constant position in the dispensing probe 116 regardless of the pressure inside the sample container 100 .
  • a method for calculating the air discharge/suction correction amount from the atmospheric pressure P0 outside the sample container 100 and the internal pressure P1 will be described.
  • the difference in the amount of the segmented air 123 or the position of the suctioned sample due to pressure is caused by the deformation of the dispensing flow passageway and a volume change in the segmented air 123 .
  • the amount of deformation ⁇ V fc of the dispensing flow passageway can be calculated from the physical property values and sizes of the flow passageway constituent elements and the pressure applied, as described with reference to Example 1.
  • V cor1 in step 26 of FIG. 8 A method for calculating the corrected discharge amount V cor1 in step 26 of FIG. 8 will be described.
  • the suctioned amount of the segmented air 123 in step 21 is V aira ( FIG. 9( a ) )
  • the target amount of the segmented air 123 being held after removal of the dispensing probe 116 from the sample container 100 is V airt ( FIG. 9( h ) )
  • the corrected discharge amount can be determined as follows:
  • V cor ⁇ ⁇ 1 V aira + ⁇ ⁇ ⁇ V fc - V airt ⁇ P ⁇ ⁇ 0 P ⁇ ⁇ 1
  • a method for calculating the corrected suctioned amount V cor2 in step 30 will be described.
  • the corrected suctioned amount V cor2 is set as follows:
  • V cor ⁇ ⁇ 2 V airc + ⁇ ⁇ ⁇ V fc + V airt ⁇ P ⁇ ⁇ 1 - P ⁇ ⁇ 0 P ⁇ ⁇ 1
  • the sum of the amount of air V airc being held in the tip of the dispensing probe 116 and the amount of sample to be discharged into the reaction cell 105 is set as the amount of operation of the pump.
  • the results of these calculations are also valid whether the pressure inside the sample container 100 is the atmospheric pressure, negative pressure, or positive pressure.
  • the present invention is not limited to the foregoing examples, and may include various modifications.
  • the examples have been described for facilitating an understanding of the present invention, and are not necessarily limited to be provided with all of the described features.
  • Some of the features of one example may be substituted by features of another example, or a feature of the other example may be added to the features of the one example.
  • addition of another feature, deletion, or substitution may be made.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Fluid Mechanics (AREA)
  • Medicinal Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)
US15/106,881 2014-03-10 2015-01-22 Dispensing device and dispensing method Active 2035-03-05 US9927453B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014046704A JP6230450B2 (ja) 2014-03-10 2014-03-10 分注装置及び分注方法
JP2014-046704 2014-03-10
PCT/JP2015/051597 WO2015136991A1 (ja) 2014-03-10 2015-01-22 分注装置及び分注方法

Publications (2)

Publication Number Publication Date
US20160341756A1 US20160341756A1 (en) 2016-11-24
US9927453B2 true US9927453B2 (en) 2018-03-27

Family

ID=54071445

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/106,881 Active 2035-03-05 US9927453B2 (en) 2014-03-10 2015-01-22 Dispensing device and dispensing method

Country Status (5)

Country Link
US (1) US9927453B2 (de)
EP (1) EP3118629B1 (de)
JP (1) JP6230450B2 (de)
CN (1) CN105899954B (de)
WO (1) WO2015136991A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10761000B2 (en) 2014-07-18 2020-09-01 Hitachi High-Tech Corporation Liquid stirring method
US11745185B2 (en) 2019-06-25 2023-09-05 Canon Medical Systems Corporation Reagent container and automatic analyzing system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6676300B2 (ja) * 2015-07-28 2020-04-08 ヤマハ発動機株式会社 対象物移動方法及び装置
JP6710850B1 (ja) * 2017-04-20 2020-06-17 バイオフルイディカ、インコーポレイテッド 液体サンプルからバイオマーカーを単離するための流体密封性フローシステム
WO2020235585A1 (ja) * 2019-05-22 2020-11-26 積水化学工業株式会社 送液システム、送液制御方法、及び送液装置
DE102020204687A1 (de) * 2020-04-14 2021-10-14 Bruker Biospin Gmbh Automatische Verifizierung und Re-Kalibrierung eines Pumpenfördervolumens
WO2021253014A1 (en) 2020-06-12 2021-12-16 Biofluidica, Inc. Dual-depth thermoplastic microfluidic device and related systems and methods
DE112021007926T5 (de) 2021-09-14 2024-04-18 Hitachi High-Tech Corporation Abgabevorrichtung und abgabeverfahren
JPWO2023042275A1 (de) 2021-09-14 2023-03-23
US20230139694A1 (en) * 2021-11-04 2023-05-04 Instrumentation Laboratory Company Preparing substances in a medical diagnostic system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075014A (ja) 1993-06-18 1995-01-10 Sony Corp 液体の吸引/排出装置及び方法
EP0747689A2 (de) 1995-06-07 1996-12-11 Medical Laboratory Automation, Inc. Absaugen einer Flüssigkeit aus einem geschlossenen Behälter
JPH09304400A (ja) 1996-03-14 1997-11-28 Toa Medical Electronics Co Ltd 試料吸引管及びその製造方法
US6322752B1 (en) 1999-09-08 2001-11-27 Coulter International Corp. Method and apparatus for aspirating and dispensing liquids
WO2002064492A2 (en) 2001-02-09 2002-08-22 Beckman Coulter, Inc. Latch system and modified blade design for thick stopper-closed container sampling piercing station
JP2004020320A (ja) 2002-06-14 2004-01-22 Aloka Co Ltd 分注装置
US20060263250A1 (en) 2005-05-06 2006-11-23 Matthew Blouin Telescoping closed-tube sampling assembly
JP2009156744A (ja) 2007-12-27 2009-07-16 Horiba Ltd ノズル装置及び液体試料分析装置
US20100273243A1 (en) 2007-12-27 2010-10-28 Soichi Oue Nozzle device and liquid sample analyzer
JP2011080964A (ja) 2009-10-09 2011-04-21 Beckman Coulter Inc 分注装置、分析装置、および分注方法
US20110171744A1 (en) * 2008-07-02 2011-07-14 Beckman Coulter Inc. Dispensing device
JP2013054014A (ja) 2011-09-06 2013-03-21 Hitachi High-Technologies Corp 自動分析装置
US20140106467A1 (en) * 2012-10-12 2014-04-17 Roche Diagnostics Operations, Inc. Pipetting unit and method of pipetting a test liquid

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH075014A (ja) 1993-06-18 1995-01-10 Sony Corp 液体の吸引/排出装置及び方法
US5499545A (en) 1993-06-18 1996-03-19 Sony Corporation Pipetting device and method therefore
EP0747689A2 (de) 1995-06-07 1996-12-11 Medical Laboratory Automation, Inc. Absaugen einer Flüssigkeit aus einem geschlossenen Behälter
JPH09304400A (ja) 1996-03-14 1997-11-28 Toa Medical Electronics Co Ltd 試料吸引管及びその製造方法
US5969272A (en) 1996-03-14 1999-10-19 Sysmex Corporation Sample sucking pipe and method for manufacturing same
US6322752B1 (en) 1999-09-08 2001-11-27 Coulter International Corp. Method and apparatus for aspirating and dispensing liquids
JP2004523434A (ja) 2001-02-09 2004-08-05 ベックマン コールター インコーポレイテッド 厚い栓で密閉された容器内試料用の試料採取用穿孔装置のためのラッチ機構および改良刃の設計
WO2002064492A2 (en) 2001-02-09 2002-08-22 Beckman Coulter, Inc. Latch system and modified blade design for thick stopper-closed container sampling piercing station
JP2004020320A (ja) 2002-06-14 2004-01-22 Aloka Co Ltd 分注装置
US20060263250A1 (en) 2005-05-06 2006-11-23 Matthew Blouin Telescoping closed-tube sampling assembly
JP2013064751A (ja) 2005-05-06 2013-04-11 Instrumentation Laboratory Co 入れ子式閉チューブサンプリングアセンブリ
JP2009156744A (ja) 2007-12-27 2009-07-16 Horiba Ltd ノズル装置及び液体試料分析装置
US20100273243A1 (en) 2007-12-27 2010-10-28 Soichi Oue Nozzle device and liquid sample analyzer
US20110171744A1 (en) * 2008-07-02 2011-07-14 Beckman Coulter Inc. Dispensing device
JP2011080964A (ja) 2009-10-09 2011-04-21 Beckman Coulter Inc 分注装置、分析装置、および分注方法
US20120196374A1 (en) 2009-10-09 2012-08-02 Beckman Coulter, Inc. Dispenser, analyzer and dispensing method
JP2013054014A (ja) 2011-09-06 2013-03-21 Hitachi High-Technologies Corp 自動分析装置
US20140193918A1 (en) 2011-09-06 2014-07-10 Hitachi High-Technologies Corporation Automatic analyzer
US20140106467A1 (en) * 2012-10-12 2014-04-17 Roche Diagnostics Operations, Inc. Pipetting unit and method of pipetting a test liquid

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Chinese Office Action received in corresponding Chinese Application No. 201580003441.X dated Nov. 7, 2016.
Extended European Search Report received in corresponding European Application No. 15761890.1 dated Oct. 30, 2017.
International Search Report of PCT/JP2015/051597 dated Feb. 17, 2015.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10761000B2 (en) 2014-07-18 2020-09-01 Hitachi High-Tech Corporation Liquid stirring method
US11745185B2 (en) 2019-06-25 2023-09-05 Canon Medical Systems Corporation Reagent container and automatic analyzing system

Also Published As

Publication number Publication date
WO2015136991A1 (ja) 2015-09-17
US20160341756A1 (en) 2016-11-24
EP3118629A1 (de) 2017-01-18
EP3118629B1 (de) 2018-11-07
EP3118629A4 (de) 2017-11-29
JP6230450B2 (ja) 2017-11-15
JP2015169623A (ja) 2015-09-28
CN105899954B (zh) 2017-07-07
CN105899954A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
US9927453B2 (en) Dispensing device and dispensing method
US10288637B2 (en) Automatic analyzer
US7477997B2 (en) Method for ascertaining interferants in small liquid samples in an automated clinical analyzer
US7634378B2 (en) Detection of insufficient sample during aspiration with a pipette
US5918291A (en) Method for liquid aspiration from a sealed container
US9857388B2 (en) Automatic analyzer
US10031152B2 (en) Automatic analyzer
EP2487491A1 (de) Ausgabevorrichtung, analysevorrichtung und ausgabeverfahren
JP6567890B2 (ja) 自動分析装置
CN111551757A (zh) 个性化临床检验质控方法和设备
JPS63109373A (ja) サンプリング方法及びその装置
US11320443B2 (en) Automatic analysis device
JP2011106828A (ja) 分注装置、自動分析装置及び分注方法
WO2010150502A1 (ja) 自動分析装置
JPS61260165A (ja) 自動化学分析装置
US20240201219A1 (en) Determining Physical Parameters of a Liquid
CN116930293A (zh) 电解质分析装置、样本分析仪及控制方法
JPS58205856A (ja) 自動化学分析装置における吸引吐出装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: HITACHI HIGH-TECHNOLOGIES CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HIRANO, MASAAKI;MORI, TAKAMICHI;SIGNING DATES FROM 20160421 TO 20160422;REEL/FRAME:038971/0100

STCF Information on status: patent grant

Free format text: PATENTED CASE

AS Assignment

Owner name: HITACHI HIGH-TECH CORPORATION, JAPAN

Free format text: CHANGE OF NAME AND ADDRESS;ASSIGNOR:HITACHI HIGH-TECHNOLOGIES CORPORATION;REEL/FRAME:052259/0227

Effective date: 20200212

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4