US9412933B2 - Method for producing an actuator unit and sleeve for receiving a piezoactuator - Google Patents
Method for producing an actuator unit and sleeve for receiving a piezoactuator Download PDFInfo
- Publication number
- US9412933B2 US9412933B2 US13/883,277 US201113883277A US9412933B2 US 9412933 B2 US9412933 B2 US 9412933B2 US 201113883277 A US201113883277 A US 201113883277A US 9412933 B2 US9412933 B2 US 9412933B2
- Authority
- US
- United States
- Prior art keywords
- sleeve
- face
- piezo actuator
- end side
- filling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 150000001875 compounds Chemical class 0.000 claims abstract description 52
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000005266 casting Methods 0.000 claims description 75
- 238000007789 sealing Methods 0.000 claims description 41
- 239000000945 filler Substances 0.000 claims description 8
- 238000005429 filling process Methods 0.000 claims description 4
- 238000004382 potting Methods 0.000 abstract 3
- 239000011796 hollow space material Substances 0.000 abstract 1
- QFLWZFQWSBQYPS-AWRAUJHKSA-N (3S)-3-[[(2S)-2-[[(2S)-2-[5-[(3aS,6aR)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]-3-methylbutanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-4-[1-bis(4-chlorophenoxy)phosphorylbutylamino]-4-oxobutanoic acid Chemical compound CCCC(NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](Cc1ccc(O)cc1)NC(=O)[C@@H](NC(=O)CCCCC1SC[C@@H]2NC(=O)N[C@H]12)C(C)C)P(=O)(Oc1ccc(Cl)cc1)Oc1ccc(Cl)cc1 QFLWZFQWSBQYPS-AWRAUJHKSA-N 0.000 description 25
- 239000000463 material Substances 0.000 description 9
- 229920001707 polybutylene terephthalate Polymers 0.000 description 5
- 238000001465 metallisation Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- -1 polybutylene terephthalate Polymers 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 229920002379 silicone rubber Polymers 0.000 description 2
- 239000006004 Quartz sand Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/88—Mounts; Supports; Enclosures; Casings
- H10N30/883—Additional insulation means preventing electrical, physical or chemical damage, e.g. protective coatings
-
- H01L41/23—
-
- H01L41/053—
-
- H01L41/0533—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/02—Forming enclosures or casings
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/88—Mounts; Supports; Enclosures; Casings
-
- H01L41/083—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/50—Piezoelectric or electrostrictive devices having a stacked or multilayer structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/42—Piezoelectric device making
Definitions
- a method for producing an actuator unit and a sleeve for receiving a piezo actuator are provided.
- Piezo actuators often comprise multiple layers of a piezoelectric material. Piezo actuators can be used, for example, to actuate an injection valve in a motor vehicle. A sleeve is important to protect a piezo actuator from environmental influences when it is desirable to extend the lifetime of the piezo actuator for as long as possible.
- Piezo actuators are known, for example, from DE 10 2004 031 404 and DE 10 2006 025 177 A1.
- One object is to provide a novel method for producing an actuator unit or a novel sleeve whereby in particular the reliability and the lifetime of a piezo actuator are increased.
- a method for producing an actuator unit has a piezo actuator.
- the actuator unit has a sleeve with a first end face or end side and a second end face or end side.
- the actuator unit has a casting compound.
- the piezo actuator is inserted into the sleeve.
- the piezo actuator is here inserted into the sleeve from the first end face or end side of the sleeve.
- a filling orifice of a filling element for example the orifice of a needle, is arranged in an axial position close to or in the region of the axial position of the second end face or end side of the sleeve.
- the filling orifice is arranged closer to the second end face or end side of the sleeve than to the first end face or end side of the sleeve.
- the axial position can refer to the main axis of the sleeve.
- the main axis or the main longitudinal axis extends between the first end face or end side and the second end face or end side of the sleeve.
- a cavity that is formed between an inner side of the sleeve and the piezo actuator is filled with the casting compound via the filling orifice of the filling element.
- the cavity is thus filled in such a way that the casting compound reaches no further than a first end face of the piezo actuator.
- the first end face of the piezo actuator is arranged closer to the first end face or end side of the sleeve than a second end face of the piezo actuator.
- Two connecting elements are, for example, provided on the piezo actuator.
- the connecting elements are used for external contacting of the actuator.
- the connecting elements can be arranged, for example, on the side faces of the piezo actuator.
- One connecting element is preferably attached in each case to two side faces of the piezo actuator.
- the connecting elements project, for example, beyond the first end face of the piezo actuator.
- the axial position of the filling orifice close to or in the region of the axial position of the second end face or end side of the sleeve is advantageously chosen such that turbulences in the casting compound, that may for example result in undesired air pockets in the casting compound when amplified, can be avoided during the filling process.
- the casting compound is inserted into the sleeve in such a way that the casting compound encloses the piezo actuator as completely as possible.
- the casting compound is preferably inserted into the sleeve in such a way that the casting compound finishes flush with the first end face of the piezo actuator.
- the filling is stopped at the latest when the casting compound finishes flush with the first end face of the piezo actuator. It is thereby prevented that any casting compound exceeds the level of the first end face of the piezo actuator. It is thereby prevented that the first end face of the piezo actuator and/or the connecting elements projecting from the first end face of the actuator in order to contact the piezo actuator are covered by the casting compound. This contributes to an increased lifetime and reliability of the actuator unit, in particular of the piezo actuator. Automation of the production of the actuator unit is additionally facilitated because there is no need for expensive cleaning processes on the first end face and/or the connecting elements that can sometimes not be performed automatically.
- the second end face or end side of the sleeve forms a bottom of the sleeve.
- the second end face or end side advantageously has an orifice.
- the piezo actuator is inserted into the sleeve such that the piezo actuator enters the orifice.
- the second end face of the piezo actuator is in particular inserted into or through the orifice.
- the orifice is, for example, an opening.
- the opening is in particular a rectangular opening.
- the opening has a dimension that corresponds approximately to the dimension of the second end face of the piezo actuator.
- the dimension of the second end face of the piezo actuator is preferably smaller than or no greater than the dimension of the opening so that the second end face of the piezo actuator can be inserted easily into the opening. Owing to manufacturing tolerances, a gap can be formed between the orifice on the second end side of the sleeve and the piezo actuator. Casting compound could escape from the sleeve via the orifice in the bottom of the sleeve when the actuator unit is sealed.
- the method also comprises the step of arranging a sealing element on the second end face or end side of the sleeve preferably removably.
- the sealing element serves to seal off the sleeve on the side of the second end face or end side.
- the sealing element is applied before the cavity is filled.
- the sealing element is preferably arranged on the second end face or end side of the sleeve in such a way that an escape of the casting compound via the orifice of the second end face or end side of the sleeve is prevented during the filling of the cavity.
- the sealing element can be applied, for example, after the piezo actuator has been inserted into the sleeve and before the filling orifice is arranged in the cavity.
- the method also comprises the step of curing the casting compound.
- the sealing element is removed from the second end face or end side of the sleeve after the curing process.
- the sealing element is expediently applied removably, it can be removed simply in an automatic production step.
- the filling element is inserted into the sleeve from the first end face or end side of the sleeve.
- the filling element is thus guided preferably from the side of the first end face or end side of the sleeve along the piezo actuator toward the second end face or end side of the sleeve.
- the filling element is moved away from the second end face or end side of the sleeve toward the first end face or end side of the sleeve and thus away from the second end face or end side of the sleeve.
- the filling orifice of the filling element is advantageously kept above or just below the level of the casting compound in the cavity during the filling of the cavity.
- “above or just below the level of the casting compound” advantageously means 1 to 2 mm above or below the level of the casting compound.
- the filling element is inserted into the sleeve from the second end face or end side of the sleeve.
- the second end face or end side of the sleeve advantageously has at least one filler orifice, for example a bore hole.
- the filling element in particular the filling orifice of the filling element, is inserted into the cavity via the filler orifice in the second end face or end side.
- the filling orifice of the filling element is inserted into a first side of the sealing element and emerges again on a second side of the sealing element.
- the second side of the sealing element advantageously corresponds to the side of the sealing element that adjoins the cavity of the sleeve.
- the filler orifice differs from the orifice that has already been described above and through which the piezo actuator is guided.
- the filler orifice has a dimension that differs from the dimension of the above described orifice.
- the filler orifice has a smaller dimension that the above described orifice through which the piezo actuator is guided.
- the at least one filler orifice is offset radially relative to the above described orifice in the second end face or end side of the sleeve, with respect to the main axis of the actuator unit or the sleeve. As a result, the filling element can be guided along the piezo actuator when it is inserted into the cavity.
- the casting compound is pressed from the side of the second end face or end side toward the first end face or end side of the sleeve.
- the filling element remains stationary, for example.
- turbulences and hence air pockets in the casting compound can be largely avoided. This contributes to increasing the lifetime of the actuator unit.
- the piezo actuator is inserted into the sleeve in such a way that the first end face of the piezo actuator and the first end face or end side of the sleeve have the same axial position with respect to the main axis.
- the height or length of the sleeve advantageously correspond approximately to the height of the piezo actuator.
- the stability and lifetime of the actuator unit are increased.
- Automatic manufacturing of the actuator unit can be facilitated because the casting compound is always filled up to a specified level, i.e. no higher than the first end face of the piezo actuator and thus of the sleeve, and there is no need for expensive work (that would need to be performed in additional steps) to clean casting compound on the first end face of the piezo actuator and on the connecting elements. Manufacturing costs can be reduced in this way.
- a sleeve is moreover provided for receiving a piezo actuator.
- the sleeve has a first end face or end side and a second end face or end side.
- a first orifice is provided in the second end face or end side.
- At least one further or second orifice is provided offset radially with respect to a main axis of the sleeve, relative to the first orifice.
- the first orifice differs from or is separate from the second orifice.
- the first orifice has a diameter that differs from the diameter of the second orifice.
- the first orifice has a larger diameter than the second orifice.
- the sleeve is designed to protect the piezo actuator from environmental influences such as, for example, high temperatures that can occur in the engine compartment of a motor vehicle.
- the sleeve can thus increase the lifetime of the piezo actuator.
- the sleeve preferably contains a material that has hydrophobic properties. At the same time, the material should have a sufficient mechanical rigidity or stability to ensure that the casting compound retains its shape. Moreover, said material should be resistant to temperatures.
- the sleeve preferably contains a material comprising a thermoplastic polyester, for example polybutylene terephthalate (PBT).
- PBT also has the advantage that, because of its chemical stability, the material does not separate from the piezo actuator and chemically contaminates the latter.
- the first orifice is provided for receiving an end face of a piezo actuator.
- the at least one further orifice is provided for the insertion of a filling element into an interior space of the sleeve in order to fill the sleeve with a casting compound.
- the radial offset between the first and the second orifice enables the filling orifice of the filling element to be inserted along the piezo actuator into the interior space of the sleeve.
- the second or further orifice is, for example, a bore hole.
- the sleeve is designed in a single piece.
- the actuator unit comprises a piezo actuator.
- the actuator unit moreover comprises the abovedescribed sleeve.
- the piezo actuator is arranged at least partially in the first orifice of the sleeve.
- the actuator unit has a casting compound enclosing the piezo actuator.
- the piezo actuator has a first end face and a second end face.
- the casting compound extends no further than the first end face of the piezo actuator.
- the piezo actuator is arranged at least partially in the first orifice.
- the second end face of the piezo actuator can project from the first orifice of the sleeve.
- the sleeve in a single piece By virtue of the design of the sleeve in a single piece, it can be avoided that the casting compound escapes at the joining points of different sleeve parts. Furthermore, by virtue of the design of the sleeve in a single piece, it can be avoided that the piezo actuator is tilted at the joining points of multiple sleeve parts when the piezo actuator is inserted.
- the main axis of the sleeve runs through the first orifice.
- the piezo actuator is arranged above the first orifice. Just the casting compound is arranged above the further orifice. In particular, there is no casting compound present over the region covered by the piezo actuator, in particular over the region of the first orifice.
- FIG. 1 shows a schematic view of a piezo actuator
- FIG. 2 shows a schematic view of an actuator unit
- FIG. 3 shows a schematic view of the actuator unit from FIG. 2 during the sealing
- FIG. 4 shows a schematic view of the actuator unit from FIG. 2 during the sealing in a further embodiment.
- FIG. 1 shows a multi-layer piezo actuator 1 .
- the piezo actuator 1 has a stack 2 of multiple piezoelectric layers 3 arranged one above the other.
- the piezo actuator 1 has a first end face 14 ′ and a second end face 13 ′.
- the stack 2 is divided, in the stack direction, into an active region 6 and two inactive regions 7 .
- the inactive regions 7 adjoin the active region 6 in the stack direction and form the end pieces of the stack 2 .
- the active region 6 of the stack 2 has electrode layers 4 arranged between the piezoelectric layers 3 .
- the piezo actuator 1 is designed such that only those electrode layers 4 associated respectively with the same electrical polarity extend as far as an edge region of the piezo actuator 1 . Those electrode layers 4 associated with the other electrical polarity do not extend right up to the edge of the piezo actuator 1 at this point. Accordingly, the electrode layers 4 are in each case designed in the form of combs pushed into each other. An electrical voltage can be applied to the electrode layers 4 via contact surfaces in the form of metallizations 5 on the outside of the stack 2 . When a voltage is applied to the electrode layers 4 , the piezoelectric material in the active region 6 is deformed.
- a connecting element 8 designed as a wire or pin is in each case attached to the metallizations 5 , and enables external electrical contacting of the piezo actuator 1 .
- FIG. 2 shows a schematic view of an actuator unit.
- FIG. 2 shows the actuator unit shortly before completion of its manufacture, which is described in detail in FIGS. 3 and 4 .
- the actuator unit has a sleeve 9 .
- the sleeve 9 has a cylindrical design.
- the sleeve 9 is made, for example, from polybutylene terephthalate (PBT).
- PBT polybutylene terephthalate
- the sleeve 9 is designed as a single piece.
- the sleeve 9 has a first end face or end side 14 and a second end face or end side 13 .
- the piezo actuator 1 from FIG. 1 is arranged in the sleeve 9 .
- the piezo actuator 1 is arranged in the sleeve 9 in such a way that the first end face 14 ′ of the piezo actuator 1 is arranged closer to the first end face or end side 14 of the sleeve 9 than the second end face 13 ′ of the piezo actuator 1 .
- the first end face or end side 14 of the sleeve 9 has an orifice 18 .
- the orifice 18 is designed to receive the piezo actuator 1 inside the interior space of the sleeve 9 .
- the height or length of the sleeve 9 corresponds approximately to the height of the piezo actuator 1 .
- the first end face 14 ′ of the piezo actuator 1 finishes flush with the first end face or end side 14 of the sleeve.
- the first end face 14 ′ of the piezo actuator 1 and the first end face or end side 14 of the sleeve consequently have the same axial position with respect to the main axis 16 of the actuator unit or the sleeve 9 , wherein the main axis 16 extends between the first end face or end side 14 and the second end face or end side 13 of the sleeve 9 .
- the connecting elements 8 of the piezo actuator 1 project from the first end face 14 ′ of the piezo actuator 1 and consequently also from the first end face or end side 14 of the sleeve 9 .
- the second end face or end side 13 of the sleeve 9 forms the bottom of the sleeve 9 .
- the second end face or end side 13 has an orifice 17 , in particular an opening.
- the opening is preferably a rectangular opening.
- the main axis 16 runs through the orifice 17 .
- the second end face 13 ′ of the piezo actuator 1 is inserted into the orifice 17 and guided through it. In particular, the second end face 13 ′ of the piezo actuator 1 projects from the orifice 17 and thus beyond the second end face or end side 13 of the sleeve 9 .
- a space or a gap may occur between the orifice 17 and the piezo actuator 1 . Sealing material 11 can escape through this space when the actuator unit is sealed.
- a sealing element 10 is attached to the second end face or end side 13 of the sleeve 9 .
- the sealing element 10 closes the side of the second end face or end side 13 of the sleeve 9 .
- the sealing element 10 is pressed onto the end face or end side 13 of the sleeve by a machine.
- the sealing element 10 is attached in a removable fashion.
- the sealing element 10 is preferably attached only during the sealing of the actuator unit and during a subsequent process of curing the casting compound 11 , as will be explained in detail in conjunction with FIGS. 3 and 4 .
- the sealing element 10 is a sealing disk.
- the sealing element 10 can be deformed.
- the sealing element 10 is made from foam.
- the sealing element 10 fits onto the second end face 13 ′ of the piezo actuator 1 , projecting from the side of the second end face or end side 13 of the sleeve 9 .
- the second end face or end side 13 has a further orifice 19 in this exemplary embodiment.
- the end face or end side 13 can have multiple further orifices 19 .
- the further orifice 19 is offset radially with respect to the orifice 17 , relative to the main axis 16 .
- the further orifice 19 is a bore hole, for example.
- the further orifice 19 serves, for example, to insert a filling element 15 (see FIG. 4 in particular) into the interior space of the sleeve in order to fill the sleeve 9 with the casting compound 11 .
- Casting compound 11 is arranged above the further orifice 19 , as can be seen in FIG. 2 .
- the casting compound 11 encases the piezo actuator 1 .
- the casting compound 11 preferably contains a silicone elastomer.
- the casting compound 11 can have a quartz sand and adhesion-promoting materials in addition to the silicone elastomer.
- the casting compound 11 is connected to the outside of the piezo actuator 1 , i.e. both to external surfaces of the piezoceramic layers 3 and also to the external surfaces of the metallizations 5 and the connecting elements 8 .
- the casting compound 11 is limited externally by the sleeve 9 . In this exemplary embodiment, the casting compound 11 is filled up to the top.
- the casting compound 1 finishes flush with the first end face 14 ′ of the piezo actuator 1 and consequently with the first end face or end side 14 of the sleeve 9 .
- the casting compound 11 can also extend as far as a point just below the first end face 14 ′ of the piezo actuator 1 . In each case, the casting compound 11 does not exceed the level of the first end face 14 ′ of the piezo actuator 1 .
- the region of the connecting elements 8 that projects from the first end face 14 ′ of the piezo actuator 1 is free of casting compound 11 . As a result, there is no need for expensive work to clean the connecting elements 8 after the actuator unit has been sealed. An automatic production process for the actuator unit is thus facilitated.
- FIGS. 3 and 4 show the described actuator unit whilst it is being produced, in particular whilst it is being sealed.
- the piezo actuator 1 is inserted into the sleeve 9 via the orifice 18 .
- the piezo actuator 1 is inserted in such a way that the second end face 13 ′ of the piezo actuator 1 is inserted into the opening 17 so that the second end face 13 ′ of the piezo actuator 1 projects from the second end face or end side 13 of the sleeve 9 (see FIG. 2 ).
- the first end face 14 ′ of the piezo actuator 1 finishes flush with the first end face or end side 14 of the sleeve 9 , as was described in conjunction with FIG. 2 .
- the above described sealing element 10 is attached removably to the second end face or end side 13 of the sleeve 9 , and is preferably pressed on by a machine.
- the sealing element 10 is attached in such a way that the second end face or end side 13 is sealed off to prevent the casting compound 11 escaping during the sealing, as described in conjunction with FIG. 2 .
- the gap between the circumferential wall of the orifice 17 and the piezo actuator 1 is sealed off by the sealing element 10 .
- the filling element 15 in particular a filling orifice of the filling element 15 , is inserted into the sleeve 9 , in particular into the cavity between the inner wall of the sleeve 9 and the piezo actuator 1 .
- the filling orifice is inserted in such a way that the filling orifice is arranged, before beginning to insert the casting compound 11 , in an axial position that lies close to the axial position of the second end face or end side 13 of the sleeve 9 with respect to a main axis 16 .
- the filling orifice is arranged directly above the second end face or end side 13 of the sleeve (not shown explicitly in FIGS. 3 and 4 ).
- the filling element 15 can be inserted into the cavity from the side of the first end face or end side 14 of the sleeve 9 , as can be seen in FIG. 4 .
- the filling orifice 15 is inserted into the cavity via the orifice 18 and advanced along the piezo actuator 1 as far as the first end face or end side 13 of the sleeve 9 (not shown explicitly).
- the actuator unit does not have a further orifice 19 on the side of the second end face or end side 13 of the sleeve 9 in order to insert the filling element 15 .
- the filling element 15 can also be inserted into the cavity from the side of the second end face or end side 13 of the sleeve 9 , as can be seen in FIG. 3 .
- the sleeve 9 in particular the second end face or end side 13 of the sleeve 9 , has the at least one further orifice 19 (see FIG. 2 ) via which the filling element 15 is inserted into the cavity from the side of the second end face or end side 13 .
- the filling element 15 in particular the filling orifice
- the sealing element 10 is pierced.
- the sealing element 10 is made from a flexible material, for example foam, the sealing element 10 clings to the filling element 15 in such a way that the casting compound 11 does not escape through the pierced hole.
- the pierced hole closes up again automatically after the filling element 15 is removed, as a result of which the casting compound 11 does not escape through the pierced hole during a subsequent curing process, for example.
- the filling orifice of the filling element 15 is arranged directly above the bottom that is formed by the second end face or end side 13 of the sleeve 9 .
- the cavity between the inside of the sleeve 9 and the piezo actuator 1 is filled with the casting compound 11 via the filling orifice of the filling element 15 .
- the filling element 15 is inserted via the side of the first end face or end side 14 ( FIG. 4 ), the filling element 15 is moved toward the first end face or end side 14 when the cavity is filled (not shown explicitly) so that the filling element 15 , in particular the filling orifice of the filling element 15 , is always kept close to the level of the casting compound.
- the filling orifice of the filling element 15 can also be kept just below the level of the casting compound. The respective arrangement of the filling orifice in close proximity to the level of the casting compound enables the cavity to be filled evenly. Turbulences in the casting compound 11 , which can cause air pockets in the cured casting compound 11 , are avoided.
- the filling element 15 is inserted via the side of the second end face or end side 13 ( FIG. 3 ), the filling element 15 always remains in the same position whilst the cavity is being filled.
- the casting compound 11 is pushed from the side of the second end face or end side 13 of the sleeve 9 toward the side of the first end face or end side 14 of the sleeve 9 by the filling pressure. Even filling of the cavity is thus ensured and turbulences, that can cause air pockets in the cured casting compound 11 , are avoided.
- the cavity is filled until the casting compound 11 extends as far as the first end face 14 ′ of the piezo actuator 1 . As soon as the casting compound 11 has reached the level of the first end face 14 ′ of the piezo actuator 1 , the filling process is stopped.
- the filling element 15 is removed.
- the filling element 15 is moved back toward the second end face or end side 13 of the sleeve 9 .
- the filling orifice is then guided out of the orifice 19 and subsequently retracted from the sealing element 10 .
- the filling element 15 is already situated in close proximity to the first end face or end side 14 of the sleeve 9 and is drawn toward the first end face or end side 14 and thus removed from the actuator unit.
- the casting compound 11 is cured. This can be carried out over several hours in an oven at high temperatures.
- the sealing element 10 is removed, preferably automatically, from the second end face or end side 13 of the sleeve 9 .
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Fuel-Injection Apparatus (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010050265.0 | 2010-11-02 | ||
DE102010050265 | 2010-11-02 | ||
DE102010050265A DE102010050265A1 (de) | 2010-11-02 | 2010-11-02 | Verfahren zur Herstellung einer Aktoreinheit sowie Hülse zur Aufnahme eines Piezoaktors |
PCT/EP2011/068756 WO2012059378A1 (fr) | 2010-11-02 | 2011-10-26 | Procédé de production d'une unité actionneur et douille destinée à recevoir un actionneur piézoélectrique |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130285509A1 US20130285509A1 (en) | 2013-10-31 |
US9412933B2 true US9412933B2 (en) | 2016-08-09 |
Family
ID=44903207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/883,277 Active 2032-10-09 US9412933B2 (en) | 2010-11-02 | 2011-10-26 | Method for producing an actuator unit and sleeve for receiving a piezoactuator |
Country Status (5)
Country | Link |
---|---|
US (1) | US9412933B2 (fr) |
EP (1) | EP2636082B1 (fr) |
JP (1) | JP5913342B2 (fr) |
DE (1) | DE102010050265A1 (fr) |
WO (1) | WO2012059378A1 (fr) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018113190B4 (de) | 2018-06-04 | 2020-03-12 | Epcos Ag | Vorrichtung mit einem elektrokeramischem Bauteil |
WO2023161078A1 (fr) * | 2022-02-25 | 2023-08-31 | Vermes Microdispensing GmbH | Module actionneur doté d'un boîtier isolé hermétiquement |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19715487A1 (de) | 1997-04-14 | 1998-10-22 | Siemens Ag | Piezoelektrischer Aktor mit einem Hohlprofil |
DE19910111A1 (de) | 1999-03-08 | 2000-10-05 | Siemens Ag | Verfahren zur Herstellung eines elektrotechnischen Bauteils mit einer kunststoffpassivierten Oberfläche und Vorrichtung zum Durchführen des Verfahrens |
DE10133151A1 (de) | 2001-07-07 | 2003-01-30 | Bosch Gmbh Robert | Bauteil mit einem Gehäuse umgebenen Bauelement und Vorrichtung und Verfahren, die bei seiner Herstellung einsetzbar sind |
US20040113525A1 (en) | 2001-02-01 | 2004-06-17 | Hardy Martin Paul | Method of assembling an actuator arrangement |
DE102004011696A1 (de) | 2004-03-10 | 2005-09-29 | Siemens Ag | Verfahren zum Vergießen einer zylindrischen Montagehülse, in der insbesondere ein piezoelektrischen Stapelaktor angeordnet ist, sowie Vorrichtung |
DE102004031404A1 (de) | 2004-06-29 | 2006-02-02 | Siemens Ag | Piezoelektrisches Bauteil mit Sollbruchstelle und elektrischem Anschlusselement, Verfahren zum Herstellen des Bauteils und Verwendung des Bauteils |
JP2006286797A (ja) | 2005-03-31 | 2006-10-19 | Texas Instr Japan Ltd | 実装方法 |
DE102005025137A1 (de) | 2005-06-01 | 2006-12-07 | Siemens Ag | Piezoelektrische Aktoreinheit mit verbesserter Wärmeableitung sowie Kraftstoffinjektor |
DE102006025177A1 (de) | 2006-05-30 | 2007-12-06 | Siemens Ag | Piezoaktor mit Verkapselung |
DE102007004552A1 (de) | 2007-01-30 | 2008-07-31 | Robert Bosch Gmbh | Verfahren zur Herstellung eines Piezoaktormoduls mit einem Schutzschichtsystem |
JP2008300466A (ja) | 2007-05-30 | 2008-12-11 | Denso Corp | 圧電アクチュエータ及びその製造方法 |
DE102007026137A1 (de) * | 2007-06-05 | 2008-12-11 | Scheugenpflug Ag | Verfahren zum Vergießen von Piezoaktoren |
DE102008003821A1 (de) | 2008-01-10 | 2009-07-16 | Epcos Ag | Piezoelektrische Aktoreinheit |
-
2010
- 2010-11-02 DE DE102010050265A patent/DE102010050265A1/de not_active Withdrawn
-
2011
- 2011-10-26 US US13/883,277 patent/US9412933B2/en active Active
- 2011-10-26 WO PCT/EP2011/068756 patent/WO2012059378A1/fr active Application Filing
- 2011-10-26 JP JP2013537067A patent/JP5913342B2/ja active Active
- 2011-10-26 EP EP11776750.9A patent/EP2636082B1/fr active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19715487A1 (de) | 1997-04-14 | 1998-10-22 | Siemens Ag | Piezoelektrischer Aktor mit einem Hohlprofil |
DE19910111A1 (de) | 1999-03-08 | 2000-10-05 | Siemens Ag | Verfahren zur Herstellung eines elektrotechnischen Bauteils mit einer kunststoffpassivierten Oberfläche und Vorrichtung zum Durchführen des Verfahrens |
US20040113525A1 (en) | 2001-02-01 | 2004-06-17 | Hardy Martin Paul | Method of assembling an actuator arrangement |
US20100052214A1 (en) | 2001-07-07 | 2010-03-04 | Kristian Leo | Assembly having a component enclosed by a housing, and device and method used in its manufacture |
DE10133151A1 (de) | 2001-07-07 | 2003-01-30 | Bosch Gmbh Robert | Bauteil mit einem Gehäuse umgebenen Bauelement und Vorrichtung und Verfahren, die bei seiner Herstellung einsetzbar sind |
US20060170310A1 (en) | 2001-07-07 | 2006-08-03 | Kristian Leo | Assembly having a component enclosed by a housing, and device and method used in its manufacture |
DE102004011696A1 (de) | 2004-03-10 | 2005-09-29 | Siemens Ag | Verfahren zum Vergießen einer zylindrischen Montagehülse, in der insbesondere ein piezoelektrischen Stapelaktor angeordnet ist, sowie Vorrichtung |
DE102004031404A1 (de) | 2004-06-29 | 2006-02-02 | Siemens Ag | Piezoelektrisches Bauteil mit Sollbruchstelle und elektrischem Anschlusselement, Verfahren zum Herstellen des Bauteils und Verwendung des Bauteils |
JP2006286797A (ja) | 2005-03-31 | 2006-10-19 | Texas Instr Japan Ltd | 実装方法 |
DE102005025137A1 (de) | 2005-06-01 | 2006-12-07 | Siemens Ag | Piezoelektrische Aktoreinheit mit verbesserter Wärmeableitung sowie Kraftstoffinjektor |
WO2006128842A1 (fr) | 2005-06-01 | 2006-12-07 | Siemens Vdo Automotive Ag | Unite d'actionnement piezoelectrique presentant une meilleure dissipation thermique et injecteur a carburant |
DE102006025177A1 (de) | 2006-05-30 | 2007-12-06 | Siemens Ag | Piezoaktor mit Verkapselung |
DE102007004552A1 (de) | 2007-01-30 | 2008-07-31 | Robert Bosch Gmbh | Verfahren zur Herstellung eines Piezoaktormoduls mit einem Schutzschichtsystem |
JP2008300466A (ja) | 2007-05-30 | 2008-12-11 | Denso Corp | 圧電アクチュエータ及びその製造方法 |
DE102007026137A1 (de) * | 2007-06-05 | 2008-12-11 | Scheugenpflug Ag | Verfahren zum Vergießen von Piezoaktoren |
DE102008003821A1 (de) | 2008-01-10 | 2009-07-16 | Epcos Ag | Piezoelektrische Aktoreinheit |
Also Published As
Publication number | Publication date |
---|---|
WO2012059378A1 (fr) | 2012-05-10 |
US20130285509A1 (en) | 2013-10-31 |
JP2014502133A (ja) | 2014-01-23 |
JP5913342B2 (ja) | 2016-04-27 |
DE102010050265A1 (de) | 2012-05-03 |
EP2636082B1 (fr) | 2015-01-28 |
EP2636082A1 (fr) | 2013-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10897185B2 (en) | Electric device and electric device manufacturing method | |
US20090196121A1 (en) | Ultrasound sensor, in particular, a motor vehicle ultrasound sensor | |
CN103095020B (zh) | 电动机及其制造方法 | |
EP2772626B1 (fr) | Composant de capteur pour papillon des gaz électronique et papillon électronique ayant celui-ci | |
JP6551031B2 (ja) | 内燃機関用の点火コイル | |
US9412933B2 (en) | Method for producing an actuator unit and sleeve for receiving a piezoactuator | |
JP2018507673A (ja) | 位置決めアクチュエータおよび製造方法 | |
CN109997420B (zh) | 电构件组 | |
US9466780B2 (en) | Actuator unit, method for producing an actuator unit, and sleeve for accommodating a piezoactuator | |
US20110021087A1 (en) | Plastic housing having integrated plug interface | |
US20150115069A1 (en) | Fuel Injection Valve | |
US10069389B2 (en) | Stator and method of sealing stator with resin | |
JP2007281256A (ja) | 圧電アクチュエータ及びその製造方法 | |
JP2017526917A (ja) | センサ素子のための保持体、部品集合体及び回転数センサ | |
US10907644B2 (en) | Pump impeller, method of producing pump impeller, and pump with the pump impeller | |
JP4983405B2 (ja) | 圧電アクチュエータ及びその製造方法 | |
US20130134833A1 (en) | Ultrasonic sensor and method for manufacturing the same | |
US10696544B2 (en) | Synthetic resin molded article and method for producing the same | |
US20120326563A1 (en) | Ultrasonic sensor and method of manufacturing the same | |
US20060040515A1 (en) | Device for the electrical connection of contact pins to connecting pins of a plug-in connector formed from the device | |
JP6478117B2 (ja) | 検出装置 | |
JP5522110B2 (ja) | ターミナル構造 | |
US20090298318A1 (en) | Fuel injection device having an improved electrical plug and socket connection | |
JP2018137264A (ja) | 電解コンデンサ用封口体、電解コンデンサ及びこれらの製造方法 | |
JP6491887B2 (ja) | 内燃機関用点火コイル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EPCOS AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KREITER, JOHANN;FELLNER, SIEGFRIED;KUGERL, GEORG, DR.;SIGNING DATES FROM 20130613 TO 20130628;REEL/FRAME:030811/0234 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
|
AS | Assignment |
Owner name: TDK ELECTRONICS AG, GERMANY Free format text: CHANGE OF NAME;ASSIGNOR:EPCOS AG;REEL/FRAME:063117/0209 Effective date: 20181001 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |