US7729632B2 - High voltage power supply and a high voltage power control method thereof - Google Patents

High voltage power supply and a high voltage power control method thereof Download PDF

Info

Publication number
US7729632B2
US7729632B2 US11/278,731 US27873106A US7729632B2 US 7729632 B2 US7729632 B2 US 7729632B2 US 27873106 A US27873106 A US 27873106A US 7729632 B2 US7729632 B2 US 7729632B2
Authority
US
United States
Prior art keywords
high voltage
output
power supply
generation part
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US11/278,731
Other languages
English (en)
Other versions
US20070092284A1 (en
Inventor
Jong-Moon Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, JONG-MOON
Publication of US20070092284A1 publication Critical patent/US20070092284A1/en
Application granted granted Critical
Publication of US7729632B2 publication Critical patent/US7729632B2/en
Assigned to S-PRINTING SOLUTION CO., LTD. reassignment S-PRINTING SOLUTION CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAMSUNG ELECTRONICS CO., LTD
Assigned to HP PRINTING KOREA CO., LTD. reassignment HP PRINTING KOREA CO., LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: S-PRINTING SOLUTION CO., LTD.
Assigned to HP PRINTING KOREA CO., LTD. reassignment HP PRINTING KOREA CO., LTD. CORRECTIVE ASSIGNMENT TO CORRECT THE DOCUMENTATION EVIDENCING THE CHANGE OF NAME PREVIOUSLY RECORDED ON REEL 047370 FRAME 0405. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME. Assignors: S-PRINTING SOLUTION CO., LTD.
Assigned to HP PRINTING KOREA CO., LTD. reassignment HP PRINTING KOREA CO., LTD. CHANGE OF LEGAL ENTITY EFFECTIVE AUG. 31, 2018 Assignors: HP PRINTING KOREA CO., LTD.
Assigned to HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. reassignment HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P. CONFIRMATORY ASSIGNMENT EFFECTIVE NOVEMBER 1, 2018 Assignors: HP PRINTING KOREA CO., LTD.
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/80Details relating to power supplies, circuits boards, electrical connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters

Definitions

  • the present general inventive concept relates to a high voltage power supply and a high voltage power control method thereof. More particularly, the present general inventive concept relates to a high voltage power supply, which generates a high voltage power independent of an output load according to a high voltage output setting signal, and a high voltage control method thereof.
  • a high voltage power supply is used to power an electric device requiring a number of kilo volts (KV) of a high voltage direct current source such as a laser printer and/or a facsimile.
  • the high voltage power supply converts a direct current into a high voltage alternating current (AC), and rectifies the high voltage alternating current to convert the high voltage alternating current into a high voltage direct current (DC).
  • the high voltage power supply comprises a transformer for converting a direct current into an alternating current.
  • FIG. 1 is a block diagram illustrating an image forming apparatus including a conventional high voltage power supply 100 .
  • the image forming apparatus includes an engine controller 10 , a development device 50 , and the conventional high voltage power supply 100 .
  • the engine controller 10 controls the high voltage power supply 100 to generate a high voltage power for supplying to the development device 50 .
  • the engine controller 10 supplies a logic level high signal as a “High/Low” signal and a high voltage power supply (HVPS) control signal to the high voltage power supply 100 only if the high voltage power needs to be output.
  • the engine controller 10 outputs a pulse width modulation signal (PWM 1 , PWM 2 , . . . , PWM n) with a certain duty ratio according to a preset value to the high voltage power supply 100 .
  • a plurality of the pulse width modulation signals (PWM 1 , PWM 2 , . . . , PWM n) are used according to the high voltage power that the development device 50 requires, and a plurality of high voltage power supplies of the high voltage power supply 100 are also required according to the plurality of pulse width modulation signals (PWM 1 , PWM 2 , . . . , PWM n). Accordingly, a plurality of high voltage outputs (HV output 1 , HV output 2 , . . . , HV output n) are output from the plurality of high voltage power supplies of the high voltage power supply 100 .
  • the high voltage power supply 100 can generate a high voltage power of hundreds to thousands of volts by switching on/off due to the pulse width modulation signals (PWM 1 , PWM 2 , . . . , PWM n) applied from the engine controller 10 .
  • the high voltage power supply 100 outputs the generated high voltage outputs (HV output 1 , HV output 2 , . . . , HV output n) to the development device 50 .
  • the engine controller 10 To output the plurality of high voltage outputs (HV output 1 , HV output 2 , . . . , HV output n), the engine controller 10 generates the plurality of the pulse width modulation signals (PWM 1 , PWM 2 , . . . , PWM n). As a result of having to generate the plurality of pulse modulation signals (PWM 1 , PWM 2 , . . . , PWM n), the engine controller 10 is greatly burdened.
  • the high voltage output(s) is also changed. Therefore, a re-tuning of a high voltage outputs (HV output 1 , HV output 2 , . . . , HV output n) is required to output constant high voltage output(s).
  • the high voltage output(s) change according to the output load.
  • the high voltage output(s) of the conventional high voltage power supply 100 should be set by using a variable resistance in an offline setting, and then be mounted to the image forming apparatus so that it is determined whether the high voltage output(s) having the set value is output. Once this process is completed, the conventional high voltage power supply 100 can be manufactured. Therefore, time and complication for manufacturing the conventional high voltage power supply 100 are costly.
  • the present general inventive concept provides a high voltage power supply that reduces a burden on an engine controller and controls a constant high voltage without requiring a retuning when an output load is changed, and a high voltage power control method thereof.
  • a high voltage power supply including a high voltage generation part to generate a high voltage, and a pulse width modulation (PWM) generation part to generate a pulse width modulation signal according to an output control value and to control the high voltage generation part to generate the high voltage by using the generated pulse width modulation signal when a high voltage output setting signal having the output control value is received by the PWM generation part to indicate the high voltage to be generated.
  • PWM pulse width modulation
  • the high voltage output setting signal may be received in a serial communication.
  • the high voltage generation part may include a high voltage transformation part to boost an input direct current power to a high voltage alternating current power using the pulse width modulation signal, and a high voltage rectification smooth part to rectify the boosted high voltage alternating current power to output a high voltage direct current power.
  • a high voltage power supply to produce a high voltage output power, including a pulse control unit to receive one or more voltage indicator signals and to produce a voltage control signal having an adjustable predetermined duty ratio according to the received one or more voltage indicating signals, and a high voltage transformation part to receive the voltage control signal as a first input and a feedback portion of the high voltage output power as a second input and to produce the high voltage output power according to the predetermined duty ratio of the voltage control signal and a level of the feedback portion of the high voltage output power.
  • a high voltage power control method of a high voltage power supply including receiving a high voltage output setting signal including an output control value according to a high voltage to be generated to drive an output device, and generating a pulse width modulation signal according to the received output control value and generating the high voltage using the generated pulse width modulation signal.
  • the generating of the high voltage may include boosting an input direct current power to a high voltage alternating current power using the pulse width modulation signal, and rectifying the boosted high voltage alternating current power to output a high voltage direct current power.
  • an image forming apparatus including an engine controller to output a high voltage output setting signal including an output control value according to a high voltage to be generated, and a high voltage power supply to receive the high voltage output setting signal in a serial communication, to generate a pulse width modulation signal according to the output control value, and to generate the high voltage using the generated pulse width modulation signal.
  • an image forming apparatus including a high voltage power supply to produce a high voltage power output including a pulse control unit to receive one or more voltage indicator signals and to produce a voltage control signal having an adjustable predetermined duty ratio according to the received one or more voltage indicator signals, and a high voltage transformation part to receive the voltage control signal as a first input and a feedback portion of the high voltage power output as a second input and to produce the high voltage power output according to the predetermined duty ratio of the voltage control signal and a level of the feedback portion of the high voltage power output.
  • FIG. 1 is a block diagram illustrating an image forming apparatus including a conventional high voltage power supply
  • FIG. 2 is a block diagram illustrating an image forming apparatus including a high voltage power supply according to an embodiment of the present general inventive concept
  • FIG. 3 is a flowchart illustrating a high voltage power control method of a high voltage power supply according to an embodiment of the present general inventive concept.
  • FIG. 2 is a block diagram illustrating an image forming apparatus including a high voltage power supply 200 according to an embodiment of the present general inventive concept.
  • the high voltage power supply 200 includes a pulse width modulation (PWM) generation part 210 used to generate a high voltage power independent of an output load applied thereto.
  • the high voltage power supply 200 receives a high voltage output setting signal (“Setting Signal” illustrated in FIG. 2 ) in a serial communication from an engine controller 20 .
  • the high voltage output setting signal is received to indicate the high voltage power output to be used by a development device 50 (or other output load).
  • the high voltage power supply 200 switches on/off by the pulse width modulation signal generated according to the received high voltage output setting signal so as to generate the high voltage power.
  • the image forming apparatus includes the engine controller 20 , the development device 50 , and the high voltage power supply 200 .
  • the engine controller 20 controls the high voltage power supply 200 to supply the development device 50 with the high voltage power as a “High/Low” signal.
  • the engine controller 20 supplies a logic level high signal and a high voltage power supply (HVPS) control signal to the high voltage power supply 200 when the high voltage power needs to be output to the development device 50 .
  • HVPS high voltage power supply
  • the engine controller 20 may output a logic level low as the “High/Low” signal and/or may not output the HVPS control signal.
  • the engine controller 20 applies to the high voltage power supply 200 in the serial communication the high voltage output setting signal (“Setting Signal”) according to the high voltage power to be supplied to the development device 50 .
  • the high voltage output setting signal includes an output control value according to the high voltage power to be supplied to the development device 50 .
  • the serial communication may include RS232C, RS422, and I2C communication protocols.
  • the high voltage power supply 200 generates the high voltage power supplied to the development device 50 and includes the PWM generation part 210 and a high voltage generation part 220 .
  • the PWM generation part 210 generates pulse width modulation signals PWM 1 , PWM 2 , and PWM 3 according to the high voltage output setting signal(s) applied by the engine controller 20 in the serial communication.
  • the PWM generation part 210 controls the high voltage generation part 220 to generate the high voltage power according to one of the pulse width modulation signals PWM 1 , PWM 2 , and PWM 3 .
  • the high voltage generation part 220 includes an analog circuit to generate the high voltage power according to one of the pulse width modulation signals PWM 1 , PWM 2 , and PWM 3 .
  • the high voltage generation part 220 also includes an input direct current power (Vcc) terminal, a high voltage transformation part 230 , a high voltage rectification smooth part 240 , a comparator U 1 , a transistor Q 1 , and an output terminal (“Output” in FIG. 2 ).
  • the high voltage transformation part 230 boosts a direct current power of Vcc (e.g., 24V), applied from the input direct current power (Vcc) terminal, to an alternating current power of hundreds to thousands of volts.
  • Vcc direct current power
  • the high voltage transformation part 230 has coils Np and Nb of an input side of a transformer and a coil Ns of an output side of the transformer.
  • An input side of the coil Np is connected to the input direct current power (Vcc) terminal that applies the direct current power and an output side of the coil Np is connected to a collector of the transistor Q 1 .
  • a first end of the coil Nb is connected to a base of the transistor Q 1 and a second end thereof is connected to an output terminal of the comparator U 1 .
  • the high voltage transformation part 230 transforms the direct current power supplied to the transformer according to the switching of the transistor Q 1 into a high voltage so as to induce the high voltage to the output side of the transformer at the coil Ns.
  • the high voltage rectification smooth part 240 rectifies and smoothes the high voltage alternating current power output from the high voltage transformation part 230 into a high voltage direct current power.
  • the high voltage rectification smooth part 240 outputs the high voltage power output(s) HV output 1 , HV output 2 , and HV output 3 , which become constant by rectifying and smoothing through the output terminal.
  • the high voltage rectification smooth part 240 includes a back pressure rectification circuit having capacitors C 1 , C 2 , and C 3 , diodes D 1 and D 2 , and resistance R 1 .
  • the capacitor C 2 , the diode D 1 , the capacitor C 3 , and the resistance R 1 are connected in a forward direction and in parallel with a ground side of the coil Ns.
  • the comparator U 1 includes a calculation amplifier having a positive (+) input terminal and a negative ( ⁇ ) input terminal.
  • the comparator U 1 receives the pulse width modulation signal (i.e., one of the pulse width modulation signals PWM 1 , PWM 2 , and PWM 3 ) output from the PWM generation part 210 through the positive input terminal (+) and receives a feedback of a part of the high voltage power output from the high voltage rectification smooth part 240 through the negative input terminal ( ⁇ ) to compare the pulse width modulation signal with the part of the high voltage power output fed back thereto.
  • the output terminal of the comparator U 1 is connected to the second end of the coil Nb.
  • the comparator U 1 compares the pulse width modulation signal with the part of the high voltage power output fed back to generate a comparator output power.
  • the generated comparator output power drives the transistor Q 1 .
  • the feedback enables the comparator U 1 to drive the transistor Q 1 to regulate the direct current power flowing through the input side of the transformer according to the control output value received from the engine controller 20 such that a level of the high voltage direct current power is maintained constant.
  • the transistor Q 1 switches on and off according to the comparator output power of the comparator U 1 .
  • a high frequency switching power is generated in the collector of the transistor Q 1 by the switching.
  • the high voltage transformation part 230 boosts the power generated from the coil Np to generate a high voltage switching power of more than thousands of kilo volts.
  • pulse width modulation signals PWM 1 , PWM 2 , and PWM 3 are used as an example, however, it should be understood that other numbers and/or arrangements of pulse width modulation signals may also be used.
  • the number of pulse width modulation signals may be changed according to an output load such as the image forming apparatus or the development device 50 .
  • FIG. 3 is a flowchart illustrating a high voltage power control method of a high voltage power supply according to an embodiment of the present general inventive concept.
  • the control method of FIG. 3 may be applied to the high voltage power supply 200 of FIG. 2 . Accordingly, for illustration purposes, the control method of FIG. 3 is described below with reference to FIG. 2 .
  • the PWM generation part 210 determines whether the high voltage output setting signal is received from the engine controller 20 (operation S 300 ).
  • the high voltage output setting signal sets the high voltage power output to be generated by the high voltage generation part 220 .
  • the engine controller 20 applies the high voltage output setting signal to the PWM generation part 210 when the power is applied to the engine controller 20 or when the development device 50 or output load is replaced.
  • the PWM generation part 210 If it is determined that the high voltage output setting signal is received, the PWM generation part 210 generates the pulse width modulation signal (e.g., PWM 1 , PWM 2 , and PWM 3 ) according to the high voltage output setting signal (operation S 310 ).
  • the pulse width modulation signal e.g., PWM 1 , PWM 2 , and PWM 3
  • the high voltage transformation part 230 then boosts the direct current power supplied by the input direct current power (Vcc) terminal to the high voltage alternating current power (operation S 320 ).
  • the high voltage rectification smooth part 240 then rectifies the high voltage alternating current power boosted by the high voltage transformation part 230 to generate the high voltage direct current output power and to feed the generated high voltage direct current output power back to the comparator U 1 (operation S 330 ).
  • the comparator U 1 compares the fed back output power with the pulse width modulation signal generated by the PWM generation part 210 (operation S 340 ).
  • the feedback output power enables the comparator U 1 to adjust the driving of the transistor Q 1 such that the high voltage direct current power can be adjusted and/or maintained at a constant level. Accordingly, even when the output load is changed, the feed back enables constant high voltage output power using the comparator U 1 .
  • the high voltage generation part 220 generates and outputs the high voltage power (operation S 350 ).
  • the comparator U 1 compares the pulse width modulation signal with the fed back output power to generate the comparator output power, and the transistor Q 1 switches on and off according to the comparator output power of the comparator U 1 .
  • the high voltage transformation part 230 transforms the direct current power supplied by the input direct current power (Vcc) terminal according the switching of the transistor Q 1 into the high voltage alternating current power to be induced at the output side of the coil Ns.
  • the high voltage rectification smooth part 240 rectifies and smoothes the induced high voltage alternating current power into the high voltage direct current power so as to output the constant high voltage output through the output terminal.
  • a high voltage power supply according to various embodiments of the present general inventive concept is controlled to generate a high voltage power so that signals and values received from an engine controller can be smaller in number and dispersive controlling can be performed. Therefore, a burden on the engine controller can be reduced.
  • the high voltage power supply is controlled independently of an output load.
  • a high voltage output can be automatically output as desired without requiring an offline setting, and even when a voltage set and/or an output load are changed, the changed voltage set and/or the output load are automatically compensated to output a constant high voltage output using feedback. Therefore, a high voltage power supply according to the various embodiments of the present general inventive concept can be used with a variety of different devices having different loads and power requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dc-Dc Converters (AREA)
  • Control Or Security For Electrophotography (AREA)
US11/278,731 2005-10-20 2006-04-05 High voltage power supply and a high voltage power control method thereof Active 2028-01-20 US7729632B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020050099178A KR100708480B1 (ko) 2005-10-20 2005-10-20 고압전원장치 및 그 고압전원 제어방법
KR2005-99178 2005-10-20
KR10-2005-0099178 2005-10-20

Publications (2)

Publication Number Publication Date
US20070092284A1 US20070092284A1 (en) 2007-04-26
US7729632B2 true US7729632B2 (en) 2010-06-01

Family

ID=37985509

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/278,731 Active 2028-01-20 US7729632B2 (en) 2005-10-20 2006-04-05 High voltage power supply and a high voltage power control method thereof

Country Status (3)

Country Link
US (1) US7729632B2 (ko)
KR (1) KR100708480B1 (ko)
CN (1) CN1953309B (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274176B2 (en) * 2007-07-13 2012-09-25 Samsung Electronics Co., Ltd. Power supply apparatus
US8350407B2 (en) * 2007-07-13 2013-01-08 Samsung Electronics Co., Ltd. High voltage power supply apparatus
KR101238372B1 (ko) * 2008-07-24 2013-02-28 삼성전자주식회사 고압전원장치
KR101571336B1 (ko) * 2009-09-08 2015-11-25 삼성전자주식회사 화상형성장치용 고압 전원공급장치
JP5623175B2 (ja) * 2010-07-30 2014-11-12 キヤノン株式会社 高電圧発生装置並びに画像形成装置、高電圧発生装置の電圧制御方法
US8582637B1 (en) * 2012-06-20 2013-11-12 MagnaCom Ltd. Low-complexity, highly-spectrally-efficient communications
CN104459342A (zh) * 2014-12-26 2015-03-25 贵阳万江航空机电有限公司 停车位置脉冲宽度测量仪
CN106533149A (zh) * 2016-12-30 2017-03-22 广东美的制冷设备有限公司 高压电源及其的开启方法和装置、家用电器
CN106787666B (zh) * 2016-12-30 2019-07-30 广东美的制冷设备有限公司 高压电源及其的关断方法和装置、家用电器

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273617A (ja) 1991-02-28 1992-09-29 Toshiba Corp プログラマブルロジックデバイス
JPH08205534A (ja) 1995-01-26 1996-08-09 Tokimec Inc スイッチング電源回路
JPH1069396A (ja) 1996-05-16 1998-03-10 Nissan Motor Co Ltd チップ検査システム及び制御装置
US5999007A (en) 1996-05-17 1999-12-07 Nissan Motor Co., Ltd. Burn-in apparatus outputting a precise, stable burn-in voltage
KR20000058653A (ko) 2000-06-22 2000-10-05 정홍주 디지털 제어 시스템을 이용한 고주파 변환 스위칭모드전원공급기
KR20020061382A (ko) 2001-01-16 2002-07-24 주식회사 유니콘 프로그램이 가능한 직류전원 공급장치
KR20030050332A (ko) 2001-12-18 2003-06-25 서창연 디지탈 전원 공급 장치 및 그 제어방법
CN2559165Y (zh) 2002-04-22 2003-07-02 珑葳电子股份有限公司 数字式电源转换器
US20030219267A1 (en) * 2002-05-23 2003-11-27 Samsung Electronics Co., Ltd. Method of controlling charging potential of conductive roller in printer and apparatus therefor
KR20040020149A (ko) * 2002-08-29 2004-03-09 삼성전자주식회사 고압전원장치
KR20050050222A (ko) 2003-11-25 2005-05-31 삼성전자주식회사 전원관리 기능을 갖는 화상형성장치의 전원장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201229A (ja) 1996-12-27 1998-07-31 Nagano Aichi Denki Kk 直流高電圧電源の駆動回路
KR100222701B1 (ko) * 1997-07-23 1999-10-01 윤종용 고전압 전원회로
KR100554690B1 (ko) * 2002-03-05 2006-02-24 주식회사 시스하이텍 고전압 전원공급기의 시험장치 및 그 시험방법

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273617A (ja) 1991-02-28 1992-09-29 Toshiba Corp プログラマブルロジックデバイス
JPH08205534A (ja) 1995-01-26 1996-08-09 Tokimec Inc スイッチング電源回路
JPH1069396A (ja) 1996-05-16 1998-03-10 Nissan Motor Co Ltd チップ検査システム及び制御装置
US5999007A (en) 1996-05-17 1999-12-07 Nissan Motor Co., Ltd. Burn-in apparatus outputting a precise, stable burn-in voltage
KR20000058653A (ko) 2000-06-22 2000-10-05 정홍주 디지털 제어 시스템을 이용한 고주파 변환 스위칭모드전원공급기
KR20020061382A (ko) 2001-01-16 2002-07-24 주식회사 유니콘 프로그램이 가능한 직류전원 공급장치
KR20030050332A (ko) 2001-12-18 2003-06-25 서창연 디지탈 전원 공급 장치 및 그 제어방법
CN2559165Y (zh) 2002-04-22 2003-07-02 珑葳电子股份有限公司 数字式电源转换器
US20030219267A1 (en) * 2002-05-23 2003-11-27 Samsung Electronics Co., Ltd. Method of controlling charging potential of conductive roller in printer and apparatus therefor
KR20040020149A (ko) * 2002-08-29 2004-03-09 삼성전자주식회사 고압전원장치
KR20050050222A (ko) 2003-11-25 2005-05-31 삼성전자주식회사 전원관리 기능을 갖는 화상형성장치의 전원장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Chinese Office Action issued Aug. 1, 2008 in CN2006101360777.

Also Published As

Publication number Publication date
CN1953309B (zh) 2011-08-10
US20070092284A1 (en) 2007-04-26
CN1953309A (zh) 2007-04-25
KR100708480B1 (ko) 2007-04-18

Similar Documents

Publication Publication Date Title
US7729632B2 (en) High voltage power supply and a high voltage power control method thereof
US8593834B2 (en) DC converter with independently controlled outputs
US9941799B1 (en) Cascade power system with isolated Class-E resonant circuit
US10368410B2 (en) PWM control for LEDs with reduced flicker when using spread spectrum switching frequencies
US20110025225A1 (en) Light-Emitting Diode Driver Circuit and Lighting Apparatus
US7511972B2 (en) DC-DC converter recycling leakage inductor losses via auxiliary DC regulator
US6977830B2 (en) Power supply apparatus
JP2008507950A (ja) 複数の出力電圧を供給する変換器
US6741436B2 (en) Microprocessor-controlled DC to DC converter with fault protection
KR101422960B1 (ko) 전원 모듈 및 이를 갖는 분산 전원 공급 장치
US8630101B2 (en) Power converters
EP3711154A1 (en) Switched mode power converter and conversion method
CN111052580B (zh) 开关电源装置
JP5696692B2 (ja) スイッチング電源装置
US7907864B2 (en) High voltage power controlling apparatus of image forming apparatus including multiple DC power supplies
JP2006129630A (ja) 電源装置、および携帯機器
US20150271883A1 (en) Power supply device
EP1916881A2 (en) Circuit and method for driving light source
KR20070109096A (ko) 다중 출력 전원 장치
KR100884404B1 (ko) 전원공급장치
KR100581880B1 (ko) 전원회로와 이를 구비하는 플라즈마 디스플레이 패널의전원공급장치
KR20150143184A (ko) 플라이백 컨버터 방식의 플리커 프리 led 디밍 장치
KR19980030043U (ko) 모니터의 고압 안정화 회로
KR19980024474U (ko) 모니터의 고압 피드백 안정화 회로
IL136450A (en) Provides switching power, with improved regulation efficiency

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD.,KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHOI, JONG-MOON;REEL/FRAME:017424/0595

Effective date: 20060321

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHOI, JONG-MOON;REEL/FRAME:017424/0595

Effective date: 20060321

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: S-PRINTING SOLUTION CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAMSUNG ELECTRONICS CO., LTD;REEL/FRAME:041852/0125

Effective date: 20161104

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552)

Year of fee payment: 8

AS Assignment

Owner name: HP PRINTING KOREA CO., LTD., KOREA, REPUBLIC OF

Free format text: CHANGE OF NAME;ASSIGNOR:S-PRINTING SOLUTION CO., LTD.;REEL/FRAME:047370/0405

Effective date: 20180316

AS Assignment

Owner name: HP PRINTING KOREA CO., LTD., KOREA, REPUBLIC OF

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE DOCUMENTATION EVIDENCING THE CHANGE OF NAME PREVIOUSLY RECORDED ON REEL 047370 FRAME 0405. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:S-PRINTING SOLUTION CO., LTD.;REEL/FRAME:047769/0001

Effective date: 20180316

AS Assignment

Owner name: HP PRINTING KOREA CO., LTD., KOREA, REPUBLIC OF

Free format text: CHANGE OF LEGAL ENTITY EFFECTIVE AUG. 31, 2018;ASSIGNOR:HP PRINTING KOREA CO., LTD.;REEL/FRAME:050938/0139

Effective date: 20190611

AS Assignment

Owner name: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., TEXAS

Free format text: CONFIRMATORY ASSIGNMENT EFFECTIVE NOVEMBER 1, 2018;ASSIGNOR:HP PRINTING KOREA CO., LTD.;REEL/FRAME:050747/0080

Effective date: 20190826

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12