US6374821B1 - Liquid heating apparatus - Google Patents

Liquid heating apparatus Download PDF

Info

Publication number
US6374821B1
US6374821B1 US09/198,768 US19876898A US6374821B1 US 6374821 B1 US6374821 B1 US 6374821B1 US 19876898 A US19876898 A US 19876898A US 6374821 B1 US6374821 B1 US 6374821B1
Authority
US
United States
Prior art keywords
liquid tank
fins
liquid
inclination plane
heating apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/198,768
Other languages
English (en)
Inventor
Toshio Furuhashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIKEN INDUSTRIES Co Ltd
Eiken Ind Co Ltd
Original Assignee
Eiken Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eiken Ind Co Ltd filed Critical Eiken Ind Co Ltd
Assigned to EIKEN INDUSTRIES CO. LTD. reassignment EIKEN INDUSTRIES CO. LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FURUHASHI, TOSHIO
Application granted granted Critical
Publication of US6374821B1 publication Critical patent/US6374821B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J37/00Baking; Roasting; Grilling; Frying
    • A47J37/12Deep fat fryers, e.g. for frying fish or chips
    • A47J37/1242Deep fat fryers, e.g. for frying fish or chips heated with burners
    • A47J37/1247Details of the burners; Details of the channels for guiding the combustion gases
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • A47J2027/006Cooking-vessels especially adapted for preparing pasta

Definitions

  • the present invention relates to a liquid heating apparatus of, for example, a food frying machine, noodle boiling equipment, etc., and in particular a liquid heating apparatus which is able to efficiently heat liquid in a liquid tank.
  • a food frying machine acting as a liquid heating apparatus for frying foods with edible oil stored in an oil reservoir is disclosed by, for example, Japanese Laid-open Utility Model No. 64837 of 1986.
  • the food frying machine 51 is, as shown in FIG. 11 (PRIOR ART), such that a reservoir portion 54 which accumulates sediment remaining in an oil tank 52 is formed so as to protrude downward from one end side of the bottom 53 of the oil tank 52 , a concave heat leading passage 56 which leads heat from a burner 55 is formed so as protrude upward along the lengthwise direction of the rear side of the bottom 53 of the oil tank 52 , and a fin 57 having a cross-shaped section is fixed in the heat leading passage 56 .
  • the food frying machine 151 is, as shown in FIG. 12 (PRIOR ART), composed of a burner 154 disposed downward of a roughing flat bottom 153 a of an oil tank 153 accommodated and disposed in the casing 152 , and a combustion chamber 156 which heats oil 155 in the oil tank 153 by the burner 154 , wherein a reservoir portion 157 which accumulates sediment in the oil tank 153 is formed so as to protrude downward in the direction from the bottom portion 153 a of the oil tank 153 toward the combustion chamber 156 , a heat insulating member 158 is provided at the surrounding of the reservoir portion 157 , and a fin 159 , which protrudes toward the combustion chamber 157 , is provided at the bottom portion 153 a.
  • the food frying machine 51 since a fin 57 can not be fixed close to the bottom portion 53 , there is a problem in that sufficient heat efficiency can not be obtained. That is, since the food frying machine 51 has such a structure that the fin 57 is formed by uniting two long plate members so that the cross section thereof is cross-shaped, and the fin 57 is disposed in a concave heat leading passage 56 on the bottom portion 53 , it is difficult for the fin 57 to be directly fixed inside the heat leading passage 56 .
  • the contact area between the fin and the interior of the heat leading passage 56 is only equivalent to the plate thickness of the two plate members, and in a case where the fin 57 is directly fixed, there is a possibility that the fin 57 is warped in the lengthwise direction due to heat expansion to cause the bottom portion 53 of the oil tank 52 to be deformed. Therefore, the fin 57 must be fixed with appointed space remaining between the outer circumferential end of the fin 57 and the interior of the heat leading passage 56 , wherein the heat transmission area made effective by the fin 57 can not be made large, and it becomes difficult to obtain sufficient heat efficiency.
  • the fin 57 itself is complicated and is cross-shaped in its cross section, the production cost thereof is increased, and since it is necessary to form a concave heat leading passage 56 at the bottom portion 53 of the oil tank 52 , the production cost of the oil tank 52 is also increased, and therefore causes a problem in that the structure of the food frying machine 51 itself is complicated and the production cost thereof is accordingly increased.
  • the fin 57 having a cross-shaped section is disposed in the heat leading passage 56 in a fixed state, it becomes difficult to eliminate soot or the like which is adhered to the deep side (upward side) of the heat leading passage 56 of the fin 57 , wherein cleaning work of the burner portion 55 is made cumbersome, and since the bottom portion 53 of the oil tank 52 is made roughly horizontal, the sediment is deposited on the bottom portion 53 , and become cumbersome to eliminate the sediment. That is, there is a problem in that the maintenance of a food frying machine 51 itself is not easily carried out.
  • a combustion gas passage 160 communicating with the combustion chamber 156 is merely installed downward of the bottom portion 153 a of the oil tank 153 and rearward of the rear portion 153 b , it is difficult to cool down the outside plate member 160 a of the combustion gas passage 160 , wherein the outside plate of the casing 152 is apt to be highly heated.
  • the rear surface plate 152 a of the casing 152 is disposed roughly close to the outside plate member 160 a of the combustion gas passage 160 formed outside the rear portion 153 b of the oil tank 153 . Therefore, the temperature of the outside plate member 160 a is directly transmitted to the rear surface plate 152 a , wherein the temperature thereof is apt to be highly increased.
  • Another object of the invention is to provide a liquid heating apparatus in which a temperature rise of the outside plate of the casing is efficiently suppressed by effectively cooling the plate members which form a combustion gas passage, and the installation space efficiency can be improved.
  • one aspect of the invention is characterized in that, in a liquid heating apparatus which raises the temperature of liquid in a liquid tank by heating the bottom of the liquid tank with a burner disposed downward of the bottom of the liquid tank, an inclination plane is inclined at an appointed predetermined degree of angle and is formed on the bottom of the liquid tank, long fins are fixed on the rear side of the inclination plane along the inclination direction thereof, and the fins are provided with thermal expansion absorbing means, which are able to absorb thermal expansion, along the lengthwise direction thereof.
  • the temperature of liquid is raised in line with the inclination plane of the bottom portion of the liquid tank being heated by combustion of a burner while the combustion gas of the burner is caused to flow through the fins fixed at the rear side of the heating surface along the inclination plane. Since the fins are fixed by a thermal expansion absorbing means in a state where the fins are closely adhered to the rear side of the inclination plane, at least the fixed portion thereof becomes a heat transmission portion to increase the transmission area, whereby heat efficient fins are provided so as to protrude from the rear side of the inclination plane. Therefore, the shape of the fins is simplified to make maintenance easy.
  • the fins can be formed to be roughly channel-like in their cross section, and the bottom wall portion can be adhered to and fixed at the rear side of the inclination plane of a liquid tank.
  • the bottom wall portion of the fins having a channel-like section is adhered to and fixed at the rear side of the inclination plane, a sufficient heat transmission area from the fins to the inclination plane can be obtained, and the side wall portions at both sides of the bottom wall portion also become heat transmission portions, thereby causing the heat receiving area to be increased, wherein heat efficiency is further increased.
  • the thermal expansion absorbing means can be slits formed at the side wall portions protruding from the rear side of the inclination plane of the fins.
  • the thermal expansion absorbing means can also be provided in the form of differences in the protrusion dimension of both end portions in the lengthwise direction of the side wall portions protruding from the rear side of the inclination plane of the fins.
  • the thermal expansion of the fins can be absorbed by the slits formed at an appointed interval along the lengthwise direction of the fins and differences in the protrusion dimension of both end portions in the lengthwise direction of the fins, whereby warping, etc., of the fins in the lengthwise direction can be prevented from occurring, wherein the fins are fixed close to the inclination plane, and the heat transmission area is increased to improve heat efficiency.
  • a low temperature portion protruding downward of the inclination plane can be provided on the bottom of the liquid tank.
  • combustion gas can be generated in line, with the combustion gas heating the bottom of the liquid tank with the heat flowing from the upstream side to the downstream side in the combustion gas passage.
  • the combustion gas passage is raised by flow of the combustion gas.
  • the plate member is cooled down by cooling air flowing in the cooling air passage formed outside thereof.
  • the cooling air in the cooling air passage is absorbed by a draft generated by the difference in temperature at the confluence.
  • the absorption force it is possible to increase the flow quantity of cooling air flowing in the cooling air passage while the burner is in combustion, the outside plate member of the combustion gas passage is effectively cooled, wherein the temperature rise of the outside plate of the casing, which is disposed outside the cooling air passage, is suppressed, and there is no need to provide wide vacant space rearward of the casing when installing the apparatus. Therefore, installation space efficiency can be improved.
  • the confluence of the combustion gas passage and the cooling air passage can be provided at the upper part of the rear side of the liquid tank.
  • the opening at the upstream side of the cooling air passage can be provided at the bottom portion of the casing which accommodates and arranges the liquid tank.
  • FIG. 1 is a plan view showing a preferred embodiment of a liquid heating apparatus according to the invention
  • FIG. 2 is a sectional view shown by the arrow A—A in FIG. 1,
  • FIG. 3 is a sectional view shown by the arrow B—B in FIG. 1,
  • FIG. 4 is a sectional view of the fins
  • FIG. 5 is a side view of the fins
  • FIG. 6 is a sectional view showing another example of the fins
  • FIG. 7 is a sectional view showing still another example of the fins
  • FIG. 8 is a sectional view showing further another example of the fins
  • FIG. 9 is a sectional view showing another example of a connection structure at the upstream side of a cooling air passage
  • FIG. 10 is a sectional view showing still another example of a connection structure at the upstream side of a cooling air passage
  • FIG. 11 is a rough side view of a conventional liquid heating apparatus
  • FIG. 12 is a rough sectional view of another conventional liquid heating apparatus.
  • FIG. 1 through FIG. 5 show a preferred embodiment of a liquid heating apparatus according to the invention, wherein FIG. 1 is a plan view thereof, FIG. 2 is a cross-sectional view taken by the arrow A—A of FIG. 1, FIG. 3 is a sectional view taken by the arrow B—B of FIG. 1, FIG. 4 is a sectional view of a fin, and FIG. 5 is a side view thereof.
  • a liquid heating apparatus 1 has a roughly rectangular parallelepiped casing 2 having four legs 3 at the lower part thereof.
  • a liquid tank 4 is disposed in the casing 2 , and a gas burner 5 is disposed at the lower part of the liquid tank 4 .
  • the liquid tank 4 is formed to be a roughly rectangular parallelepiped having an opening 4 a at the upper part thereof.
  • An inclination plane 6 and a low temperature portion 7 which is installed so as to protrude downward from the inclination plane 6 , he are formed on the bottom portion.
  • These fins 8 are, as shown in FIG. 4 and FIG. 5, formed to be like a channel which has a bottom wall portion 8 a and a pair of side wall portions 8 b . They are set so that the width W of the bottom portion 8 a and the height of the side wall portions 8 b are made roughly the same.
  • a number of slits 9 each having a width w and a depth h are formed at an appointed interval along the lengthwise direction of the fins 8 at the side wall portions 8 b of the fins 8 , and they are further formed so as to have different heights h 1 and h 2 (protrusion dimension) of both end portions 8 c and 8 d of the fins 8 .
  • the height dimensions h 1 and h 2 at both end portions 8 c and 8 d of the fins 8 may be set so that they become greater by turns like a curved line from the roughly middle portion in the lengthwise direction of the fins 8 , for example, as shown with a chain At double-dashed line a in FIG. 5 .
  • the height dimensions may be set so that they become linearly (or like a curved line) greater by turns from the end portion 8 c toward the end portion 8 d .
  • the fins 8 are constructed so that a portion c in FIG. 4 of the bottom wall portion 8 a is welded and fixed integral with the rear side 6 a of the inclination plane 6 by seam welding so as to roughly extend over the total length of the lengthwise direction X 1 (the same direction as the lengthwise direction X 1 of the liquid tank 4 ) on the rear side 6 a of the inclination plane 6 of the liquid tank 4 .
  • the low temperature portion 7 formed at the bottom portion of the liquid tank 4 is provided downward from the lower edge of the inclination plane 6 , that is, downward at one end in the lengthwise direction X 1 of the liquid tank 4 , and a liquid discharge portion 11 , to which a liquid drain valve 10 (See FIG. 3) is attached, is formed at one end side of the lengthwise direction (the direction orthogonal to the lengthwise direction X 1 of the liquid tank 4 ) of the bottom of the low temperature portion 7 .
  • the gas burner 5 disposed at the lower part of the liquid tank 4 is a Bunsen type gas burner, wherein the entire shape of the gas burner 5 is formed to be a slender rectangular parallelepiped, and is internally provided with a mixture tube, pressure regulators (not illustrated), a burner head 12 having a number of flame ports 12 a , and a gas valve 13 (See FIG. 3 ).
  • the gas burner 5 is disposed rearward of the low temperature portion 7 downward at the front side of the inclination plane 6 of the liquid tank 4 , and is arranged so that the flame portions 12 a of the burner head 12 are located downward of an appointed a the installation spacing between the gas burner 5 and the rear surface 6 a of the inclination plane 6 is determined so that, for example, the interval between the tip end of the flame of the flame portions 12 a at the extreme rear side of the burner head 12 and the rear surface 6 a of the inclination plane 6 thereabove roughly becomes 100 mm or so.
  • a combustion gas passage 15 and a cooling air passage 16 are formed at the upper part rearward of the gas burner 5 in the casing 2 .
  • the combustion gas passage 15 is formed along the inclination plane 6 and rear plane 17 (See FIG. 3) of the liquid tank 4 between these planes and a shielding plate 18 , which is provided opposite to these planes 6 and 17 , acting as the outside plate member of the combustion gas passage 15 .
  • the abovementioned fins 8 are positioned inside the inclined upstream side 15 a of the combustion gas passage 15 while long fins 19 (See FIG. 3) secured along the vertical direction of the rear plane 17 of the liquid tank 4 are positioned inside the vertical downstream side 15 b of the combustion gas passage 15 formed by the rear plane 17 of the liquid tank 4 and the shielding plate 18 .
  • the fins 19 are also formed to have a channel-like section, similar to the abovementioned fins 8 , and slits 20 are formed at the side wall portions 19 b while the bottom wall portion 19 a is welded and fixed on the rear plane 17 of the liquid tank 4 by seam welding. Furthermore, the fins 19 are provided in a state where they are continuous to the fins 8 (that is, in a state where the concave portions of both fins 8 and 19 are made linear in the plan view), and the tip end of the side wall portions 19 b of the fins 19 are brought into contact with the shielding plate 18 . Furthermore, it is designed so that the upper end of the shielding plate 18 which sets the position at the downstream side 15 b of the combustion gas passage 15 is positioned to be slightly lower than the upper end plane 4 b of the liquid tank 4 .
  • the cooling air passage 16 formed downward of and outside the combustion gas passage 15 has a passage plate 21 secured downward of the shielding plate 18 at an appointed interval, and the upper end portion of the passage plate 21 is connected to the rear plate 2 a of the casing 2 , whereby a gap is formed between the lower portion of the passage plate 21 and that of the shielding plate 18 and between the upper portion of the rear plate 2 a of the casing 2 and that of the shielding plate 18 .
  • the gap constitutes a cooling air passage 16 , and the end portion at the upstream side 16 a of the cooling air passage 16 is exposed to the bottom plate 2 b portion of the casing 2 .
  • the end portion at the downstream side 16 b of the cooling air passage 16 is joined to the combustion gas passage 15 at the upper end portion of the shielding plate 18 and is connected to an exhaust duct 22 fixed at the rear portion of the upper end portion 4 b of the liquid tank 4 .
  • the exhaust duct 22 is disposed so that the tip end thereof protrudes by an appointed dimension upward of the upper end portion 4 b of the liquid tank 4 , and is provided with a number of exhaust openings 23 formed on the upper surface thereof.
  • an operation panel 24 (See FIG. 1) which is provided with a power breaker, which controls operations of the gas burner 5 , and a temperature setter, etc., is disposed on the front panel 2 c of the casing 2 .
  • the respective face plates 2 a through 2 c of the liquid tank 4 , fins 8 and 19 , shielding plate 18 , passage plate 21 and casing 2 are made of stainless steel plates.
  • liquid 25 such as water or oil (edible oil), etc.
  • liquid 25 such as water or oil (edible oil), etc.
  • the temperature is set on the operation panel 24
  • gas and air are supplied into the mixture tube after opening the gas valve 13 to cause the burner to burn.
  • the combustion gas is discharged upward and flows through the combustion gas passage 15 from the upstream side 15 a to the downstream side 15 b.
  • the bottom wall portion 8 a of the fins 8 having a channel-like section is directly fixed on the rear side 6 a of the inclination plane 6 , and the side wall portions 8 b are provided adjacent and close thereto. Therefore, three sides of the bottom wall portion 8 a and side wall portions 8 b of the fins 8 directly receive heat of the combustion gas and form a heat transmission face by which the heat is transmitted to the inclination plane 6 .
  • the heat of the combustion gas flowing in the respective fins 8 is transmitted to the side wall portions 8 b of the adjacent fins via the corresponding side wall portions 8 b . That is, one fin 8 forms five transmission planes in appearance.
  • the heat of the fins 8 is raised by the heat of the combustion gas directly flowing in the fins 8 and the heat of the combustion gas flowing in the combustion gas passage 15 outside the fins 8 , the heat is transmitted to the inclination plane 6 on the bottom of the liquid tank 4 , thereby causing the temperature of the inclination plane 6 to be raised. Therefore, the liquid 25 in the liquid tank 4 is raised to an appointed temperature level while generating a convection as shown by the arrow X 8 in FIG. 3 .
  • the fins 8 (in particular, the tip end of the fins) are thermally expanded to cause a force, by which the fins 8 are made to warp in the lengthwise direction, and operate.
  • the force is absorbed by the slits 9 secured at the side wall portions 8 b of the fins 8 , stress resulting from warping can be prevented from operating on the inclination plane 6 of the liquid tank 4 , on which the side wall portions 8 a of the fins 8 are secured and fixed.
  • slits 20 are also formed in the lengthwise direction at the fins 19 provided at the downstream side 15 b of the combustion gas passage 15 , action of the stress from warping of the fins 19 onto the rear side 4 b of the liquid tank 4 can be suppressed. Since combustion gas is caused to flow from the upstream side 15 b to the downstream side 15 b of the combustion gas passage 15 , the temperature of the shielding plate 18 which forms the combustion gas passage 15 is raised. However, the shielding plate 18 is cooled down by the cooling air passage 16 secured downward thereof.
  • the air in the cooling air passage 16 is absorbed in the direction of the exhaust duct 22 by the draft and the quantity of air flow from the upstream side 16 a toward the downstream side 16 b of the cooling air passage 16 as shown by the arrow X 5 is increased, whereby the shielding plate 18 can be efficiently cooled down by the air.
  • air (cool air) the temperature of which is lower, existing on the floor of an installation place of the liquid heating apparatus 1 , where water is used, is taken in, wherein the shielding plate 18 is efficiently cooled by the air.
  • the temperature of the rear plate 2 a of the casing 2 is raised to, for example, such a higher temperature that a user can not touch the machine with his hand.
  • the exhaust gas joined in the exhaust duct 22 at the downstream sides 15 b and 16 b of the combustion gas passage 15 and cooling air passage 16 is discharged from the exhaust opening 23 of the exhaust duct 22 to the outside as shown by the arrow X 6 .
  • the fins 8 are formed to be roughly channel-like in their cross section and slits 9 are formed at the side wall portions 8 b at an appointed interval, warping produced due to thermal expansion of the fins 8 can be absorbed by the slits 9 , wherein it is possible to prevent the inclination plane 6 of the liquid tank 4 from being deformed, and possible to fix the entire length of the bottom wall portions 8 b of the fins 8 close to the rear surface 6 a of the inclination plane 6 . Thereby, satisfactory heat effects can be obtained.
  • the side wall portions 8 b at both sides of the bottom wall portions 8 a of the fins 8 are adhered to each other, the appearance heat transmitting area effected by the fins 8 can be remarkably increased, the heat efficiency can be further increased. As a result, liquid 25 in the liquid tank 4 can be raised to an appointed temperature level in a remarkably short time. If the abovementioned liquid heating apparatus 1 is used as, for example, a noodle boiling machine, etc., it is possible to perform an efficient boiling work for noodles.
  • the fins 8 are channel-like in their cross section, and the bottom wall portions 8 a are secured and fixed on the rear side 6 a of the flat inclination plane 6 of the liquid tank 4 , the shape of the fins 8 themselves can be simplified, and no conventional concave heat leading passage is required on the inclination plane 6 . Therefore, the construction of the fins 8 and liquid tank 4 is simplified, thereby causing the production cost of the liquid heating apparatus 1 to be decreased, and it is possible to easily attach the fins 8 to the inclination plane 6 by seam welding, etc.
  • the sediment K produced in the liquid tank 4 can be automatically dropped and deposited in the low temperature portion 7 via the inclination plane 6 as shown by the arrow X 9 in FIG. 3 .
  • the fins 8 are open between their side wall portions 8 b , soot or the like which is adhered to the fins 8 can be easily removed by using a brush, etc., and make it possible to easily clean up the gas burner 5 portion.
  • the gas burner 5 is attached to the side of the low temperature portion 7 at the lower part of the inclination plane 6 of the liquid tank 4 , the front side of the fins 8 can be exposed to the outside by only removing the gas burner 5 , the cleaning thereof can be further simplified than that of the conventional examples. Judging from the abovementioned, the maintenance of the liquid heating apparatus 1 can be easily carried out.
  • the shielding plate 18 of the combustion gas passage 15 can be cooled down from the outside by air flowing in the cooling air passage 16 . Resultantly, the temperature of the rear side plate 2 a of the casing 2 , left and right side plates and top surface plate, which are connected thereto, can be prevented from rising, and it is possible to maintain the temperature of the outside plate of the casing 2 , for example, at such a degree that a cook may touch the machine.
  • a cooling air passage 15 can be formed between the rear side plate 2 a of the casing 2 , where in particular, the temperature thereof is apt to be raised, and the rear side 17 of the liquid tank 4 , and the temperature rise of the rear side plate 2 a can be suppressed without fail. Therefore, by utilizing a draft generated at the confluence of the cooling air passage 16 and combustion gas passage 15 , the cooling air is attracted into the cooling air passage 16 , wherein no attraction fan is required, and the construction is simplified. Therefore, it is possible that cooling air can be effectively taken in.
  • cooling air passage 15 since the downstream side of the cooling air passage 15 is exposed to the bottom plate 2 b of the casing 2 , cool air on the floor of a cooking place, the temperature of which is lowered due to use of water, etc., can be taken into the cooling air passage 16 , and more effective cooling of the shielding plate 18 of the combustion gas passage 15 can be carried out.
  • the inclination plane 6 and low temperature portion 7 are formed at the bottom portion of the liquid tank 4 , sediment K generated in the liquid tank 4 can be automatically dropped and deposited in the low temperature portion 7 via the inclination plane 6 as shown by the arrow X 9 in FIG. 3, and the liquid tank 4 can be easily cleaned up. Furthermore, since the sediment K is deposited in the low temperature portion 7 , the sediment K is not circulated as convection in the liquid tank 4 , and it is possible to prevent the liquid 25 from becoming dirty. Furthermore, since the fins 8 are open between the side wall portions 8 b thereof, soot or the like adhered to the fins 8 can be simply eliminated by a brush, etc., and the gas burner 5 portion can be easily cleaned up. Therefore, it is possible to easily carry out maintenance of the liquid heating apparatus 1 .
  • the fins 8 are formed to be channel-like in their cross section and are attached to the rear side 6 a of the inclination plane 6 of the liquid tank 4 with the side wall portions 8 b adhered to each other, this method of fixing fins 8 according to the invention is not limited to the abovementioned embodiment. For example, they may be secured and fixed as shown in FIG. 6 through FIG. 8 .
  • fins 8 having a channel-like cross section are fixed in a mutually juxtaposed state at an appointed interval W 1
  • FIG. 7 the outside of the side wall portions 8 a of comparatively large fins 8 having a channel-like cross-section are directly fixed on the rear side 6 a of the inclination plane 6
  • the bottom wall portions 28 a of the smaller fins 28 having a channel-like cross-section than that of the fins 8 are secured and fixed inside the bottom wall portions 8 a of the fins 8 .
  • the tip end sides of the side wall portions 8 b of the fins 8 are bent inward to an appointed degree of angle, and the bottom wall portions 8 a are directly fixed on the rear side 6 a of the inclination plane 6 .
  • combustion gas is caused to flow in the fins 8 and 28 as in the fins 8 in the abovementioned preferred embodiment, and combustion gas is further caused to flow in spacing (between the respective fins 8 ) formed between the side wall portions 8 b and 28 b of the respective fins 8 and 28 .
  • Actions and effects which are roughly the same as those in the abovementioned embodiment, can be obtained.
  • a liquid tank 4 according to the invention may be also applicable as, for example, a liquid tank 4 for which only the inclination plane 6 is formed without being provided with any low temperature portion 7 at the bottom portion of the liquid tank 4 , and the shape of the inclination plane 6 is not limited to such that an inclination plane is inclined from the rear side toward to the front side.
  • a so-called pan type liquid tank 4 in which, in a case where the liquid tank 4 is made circular in its plan view, the inclination plane is conically inclined from the outer circumferential portion toward the center.
  • the slits 9 and 20 of the fins 8 and 19 have the same width w and depth h and they are installed at a fixed interval
  • the shape of the slits 9 and 20 may be made different along the lengthwise direction of the fins 8 and 19 and they may be installed with their intervals made different from each other.
  • slits 9 are provided at the fins 8 as a thermal expansion absorbing means and a protruding dimension difference is given in the lengthwise direction
  • the protrusion dimension in the lengthwise direction of the fins 8 is made uniform with only the slits 9 provided, and that only the protrusion dimension difference is provided to absorb the thermal expansion by eliminating the slits 9 .
  • adequate variations and modifications are available in compliance with the thickness and shape of the fins 8 .
  • FIG. 9 and FIG. 10 are sectional views showing other embodiments of a connection structure of attaching the upstream side 16 a of the cooling air passage 16 onto the bottom plate 2 b of the casing 2 . Parts, which are similar to those in the abovementioned embodiment, are given the same reference numbers for description.
  • the end portion of the upstream side 16 a of the cooling air passage 16 is fixed on the rear side of the opening 38 portion of the bottom plate 2 b of the casing 2 , and a filter 29 which prevents dust and dirt from invading the cooling air passage 16 is disposed in the opening 38 , wherein a slidable opening and closing plate 30 is provided outside the opening 38 .
  • the opening and closing plate 30 is provided with an opening 30 a having, for example, the same shape as that of the opening 38 of the bottom plate 2 b .
  • an operation portion 31 fixed at the end part thereof it is constructed so as to be slidable along a rail 32 fixed at the bottom plate 2 b as shown by the arrow X 7 .
  • it is possible to regulate the quantity of air which is taken into the cooling air passage 16 by sliding operations of the opening and closing plate 30 whereby it will become possible to carry out cooling of the combustion gas passage 15 best suitable for the combustion level of the gas burner 5 and the conditions of an installation place of the liquid heating apparatus 1 .
  • a cover 33 which has an opening 33 a along the outside of the bottom plate 2 b is attached to the outside of the opening 38 portion of the bottom plate 2 b of the casing 2 .
  • the opening 33 a portion of the cover 33 may be set in any adequate direction, depending upon the conditions of the installation place, wherein by the cover 33 , it is possible to prevent cool air on the floor from being absorbed directly through the opening 38 . Therefore, for example, attraction of dust and dirt on the floor into the cooling air passage 16 can be suppressed.
  • a filter 29 may be installed at the opening 33 a portion of the cover 33 .
  • a liquid tank 4 according to the invention may be applicable as a liquid tank 4 having only the inclination plane 6 formed without forming any low temperature portion 7 at the bottom portion of the liquid tank 4 , or as a liquid tank 4 with a flat bottom.
  • the shape of the inclination plane 6 is not limited to an inclination plane, which is inclined from the rear side to the front side.
  • it is applicable to a so-called pan type liquid tank 4 in which, in a case where the liquid tank 4 is made circular in its plan view, the inclination plane is conically inclined from the outer circumferential portion toward the center.
  • the upstream side 16 a of the cooling air passage 16 is made exposed to the bottom plate 2 b of the casing 2 .
  • the upstream side 16 a may be made open at the lower part of the left or right side plate of the casing 2 .
  • the size of the combustion gas passage 15 and cooling air passage 16 , the position of the confluence thereof is one of the examples. It is needless to say that they may be subjected to various modifications and variations without departing from the spirit of the invention.
  • an inclination plane can be formed at the bottom portion of a liquid tank and long fins each having a thermal expansion absorbing means are secured and fixed at the rear side of the inclination plane along the inclination direction, the fins can be fixed in a state closely adhered to the inclination plane, and combustion gas of a burner is caused to flow between the fins, wherein the heat transmitting area is able to be increased, and sufficient heat efficiency can be obtained.
  • the fins and liquid tank can be simplified in shape, and the liquid heating apparatus is simplified to contribute to a lowering of the production cost. Furthermore, the burner portion can be easily cleaned up due to the protruding fins, or it becomes simple to eliminate sediment from the bottom portion of the liquid tank by virtue of the inclination plane. Therefore, such an effect can be obtained, by which the maintenance of the liquid heating apparatus can be easily carried out.
  • a cooling air passage can be formed outside the combustion gas passage, it is possible to position the chamber of the burner, from the outside by cooling air flowing in the cooling air passage. Therefore, the temperature rise of the outside plate of the casing, in which a liquid tank is accommodated, can be suppressed to a low level.
  • the outside temperature of the casing is kept at an appointed temperature level or less, it is possible to install the liquid heating apparatus at an installation place without forming any vacant spacing behind the casing. Therefore, such an effect can be obtained, by which installation space efficiency can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Commercial Cooking Devices (AREA)
  • Frying-Pans Or Fryers (AREA)
  • Noodles (AREA)
US09/198,768 1997-11-26 1998-11-24 Liquid heating apparatus Expired - Fee Related US6374821B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP33947997A JP3629129B2 (ja) 1997-11-26 1997-11-26 液体加熱装置
JP9-339479 1997-11-26

Publications (1)

Publication Number Publication Date
US6374821B1 true US6374821B1 (en) 2002-04-23

Family

ID=18327866

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/198,768 Expired - Fee Related US6374821B1 (en) 1997-11-26 1998-11-24 Liquid heating apparatus

Country Status (4)

Country Link
US (1) US6374821B1 (ja)
EP (1) EP0919173B1 (ja)
JP (1) JP3629129B2 (ja)
DE (1) DE69812546T2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050056270A1 (en) * 2003-08-11 2005-03-17 Babington Robert S. Tray ration heating system
US20050072418A1 (en) * 2003-02-24 2005-04-07 Mcgowan Michael J. Deep fat fryer with interior baffle and exhaust deflector
US20050139207A1 (en) * 2003-12-30 2005-06-30 Belshaw Bros., Inc. Deep fat fryers
US20080223359A1 (en) * 2006-12-11 2008-09-18 Lee Lisheng Huang Energy Efficient Cookware
US20090090352A1 (en) * 2007-10-05 2009-04-09 Paloma Industries, Limited Pulse burner and liquid heating cooker
US20100083949A1 (en) * 2008-10-06 2010-04-08 Huang Lee Lisheng Energy efficient griddle plate
US20100242282A1 (en) * 2009-03-27 2010-09-30 Lee Lisheng Huang Methods of making energy efficient cookware
US20170164785A1 (en) * 2013-11-25 2017-06-15 Meta Science Inc. Oil/water tank deep frying device
US20180289217A1 (en) * 2017-04-07 2018-10-11 Alto-Shaam, Inc. Flue Assembly and Splash Back Panel for a Cooking Appliance
TWI705781B (zh) * 2019-07-22 2020-10-01 萬竹庭 爐底吸熱裝置
US10966570B1 (en) * 2020-06-03 2021-04-06 Hyper Fryer, LLC High-efficiency heating apparatus
US11083336B1 (en) * 2020-06-03 2021-08-10 Hyper Fryer, LLC High-efficiency heating apparatus
US20220031115A1 (en) * 2020-07-30 2022-02-03 Todd Bard Tunstall Tunnel Tube - Aluminum channel / Bar or tubing welded to the bottom / Sides or both of an aluminum pot to increase thermal absorption of hot gases from a gas burner
US11382460B2 (en) * 2020-06-03 2022-07-12 Hyper Fryer, LLC High-efficiency heating apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT245334Y1 (it) * 1998-12-10 2002-03-20 Electrolux Zanussi Grandi Impi Friggitrice a gas con vasca di riscaldamento perfezionata
JP2002209762A (ja) * 2001-01-19 2002-07-30 Paloma Ind Ltd フライヤー
KR100407205B1 (ko) * 2001-04-06 2003-11-28 (주)케이.티.이 열효율을 개선한 가스 튀김기의 구조
ITMO20070401A1 (it) * 2007-12-20 2009-06-21 Angelo Grandi Cucine Societa P Apparato per la cottura di cibi con recupero di energia
JP5580698B2 (ja) * 2010-09-02 2014-08-27 タニコー株式会社 加熱調理装置
DE202011050594U1 (de) * 2011-06-30 2012-10-01 HCS Kochen + Kühlen GmbH Friteuse
JP6249475B2 (ja) * 2013-10-07 2017-12-20 株式会社富士工業所 ゆで麺装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2569112A (en) 1947-07-31 1951-09-25 Glen W Miller Heat exchange surface construction and device embodying the same
US3217633A (en) 1965-11-16 Semi-tube fryers
CH442655A (fr) 1966-02-11 1967-08-31 Rosieres Usines Friteuse
US3760793A (en) * 1972-02-14 1973-09-25 Anetsberger Bros Inc Deep fat fryer
US3990433A (en) 1975-07-30 1976-11-09 Keating Richard T Gas burner flame temperature amplifier
JPS5637496A (en) 1979-09-05 1981-04-11 Hitachi Ltd Heat exchanger
GB2098856A (en) * 1981-04-15 1982-12-01 Vulcan Hart Corp Deep fat fryer
EP0159750A1 (en) 1984-04-02 1985-10-30 ATAG Keukentechniek B.V. Deep-frying device
JPS6145046A (ja) 1984-08-10 1986-03-04 元旦ビューティ工業株式会社 建築構造物の防火外装構造
JPS6164837A (ja) 1984-09-06 1986-04-03 Kobe Steel Ltd フレキシブルプリント用銅合金
US4628903A (en) * 1985-05-15 1986-12-16 Gas Research Institute Pulse combustion deep fat fryer
US4825813A (en) * 1986-01-31 1989-05-02 Miura Co., Ltd. Multi-pipe once-through type boiler

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6145046U (ja) 1984-08-27 1986-03-25 谷口工業株式会社 揚げ物機
JPS6164837U (ja) 1984-10-05 1986-05-02

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3217633A (en) 1965-11-16 Semi-tube fryers
US2569112A (en) 1947-07-31 1951-09-25 Glen W Miller Heat exchange surface construction and device embodying the same
CH442655A (fr) 1966-02-11 1967-08-31 Rosieres Usines Friteuse
US3760793A (en) * 1972-02-14 1973-09-25 Anetsberger Bros Inc Deep fat fryer
US3990433A (en) 1975-07-30 1976-11-09 Keating Richard T Gas burner flame temperature amplifier
JPS5637496A (en) 1979-09-05 1981-04-11 Hitachi Ltd Heat exchanger
GB2098856A (en) * 1981-04-15 1982-12-01 Vulcan Hart Corp Deep fat fryer
EP0159750A1 (en) 1984-04-02 1985-10-30 ATAG Keukentechniek B.V. Deep-frying device
JPS6145046A (ja) 1984-08-10 1986-03-04 元旦ビューティ工業株式会社 建築構造物の防火外装構造
JPS6164837A (ja) 1984-09-06 1986-04-03 Kobe Steel Ltd フレキシブルプリント用銅合金
US4628903A (en) * 1985-05-15 1986-12-16 Gas Research Institute Pulse combustion deep fat fryer
US4825813A (en) * 1986-01-31 1989-05-02 Miura Co., Ltd. Multi-pipe once-through type boiler

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Copy of European Search Report dated Mar. 9, 1999.
U.S. Patent application 06/734,284 to Farnsworth et al. (cited in the U.S. Pat. No. 4,628,903) Dec. 1986.* *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050072418A1 (en) * 2003-02-24 2005-04-07 Mcgowan Michael J. Deep fat fryer with interior baffle and exhaust deflector
US20050056270A1 (en) * 2003-08-11 2005-03-17 Babington Robert S. Tray ration heating system
WO2005018391A3 (en) * 2003-08-11 2006-03-09 Robert S Babington Improved tray ration heating system
US7100599B2 (en) * 2003-08-11 2006-09-05 Babington Robert S Tray ration heating system
US20050139207A1 (en) * 2003-12-30 2005-06-30 Belshaw Bros., Inc. Deep fat fryers
US20080223359A1 (en) * 2006-12-11 2008-09-18 Lee Lisheng Huang Energy Efficient Cookware
US20090090352A1 (en) * 2007-10-05 2009-04-09 Paloma Industries, Limited Pulse burner and liquid heating cooker
US8905015B2 (en) * 2007-10-05 2014-12-09 Paloma Co., Ltd. Pulse burner and liquid heating cooker
US20100083949A1 (en) * 2008-10-06 2010-04-08 Huang Lee Lisheng Energy efficient griddle plate
US20100242282A1 (en) * 2009-03-27 2010-09-30 Lee Lisheng Huang Methods of making energy efficient cookware
US8037602B2 (en) 2009-03-27 2011-10-18 Eneron, Inc. Methods of making energy efficient cookware
US20170164785A1 (en) * 2013-11-25 2017-06-15 Meta Science Inc. Oil/water tank deep frying device
US10058215B2 (en) * 2013-11-25 2018-08-28 Meta Science Inc. Oil/water tank deep frying device
US20180289217A1 (en) * 2017-04-07 2018-10-11 Alto-Shaam, Inc. Flue Assembly and Splash Back Panel for a Cooking Appliance
US10842320B2 (en) * 2017-04-07 2020-11-24 Alto-Shaam, Inc. Flue assembly and splash back panel for a cooking appliance
TWI705781B (zh) * 2019-07-22 2020-10-01 萬竹庭 爐底吸熱裝置
US11382460B2 (en) * 2020-06-03 2022-07-12 Hyper Fryer, LLC High-efficiency heating apparatus
US10966570B1 (en) * 2020-06-03 2021-04-06 Hyper Fryer, LLC High-efficiency heating apparatus
US11083336B1 (en) * 2020-06-03 2021-08-10 Hyper Fryer, LLC High-efficiency heating apparatus
US20210378447A1 (en) * 2020-06-03 2021-12-09 Hyper Fryer, LLC High-Efficiency Heating Apparatus
US20210378448A1 (en) * 2020-06-03 2021-12-09 Hyper Fryer, LLC High-Efficiency Heating Apparatus
US12096885B2 (en) * 2020-06-03 2024-09-24 Hyper Fryer, LLC High-efficiency heating apparatus
US11083335B1 (en) * 2020-06-03 2021-08-10 Hyper Fryer, LLC High-efficiency heating apparatus
US20220338675A1 (en) * 2020-06-03 2022-10-27 Hyper Fryer, LLC High-Efficiency Heating Apparatus
US11786075B2 (en) * 2020-06-03 2023-10-17 Hyper Fryer, LLC High-efficiency heating apparatus
US11779155B2 (en) * 2020-06-03 2023-10-10 Hyper Fryer, LLC High-efficiency heating apparatus
US11712129B2 (en) * 2020-06-03 2023-08-01 Hyper Fryer, LLC High-efficiency heating apparatus
US20230404325A1 (en) * 2020-06-03 2023-12-21 Hyper Fryer, LLC High-Efficiency Heating Apparatus
US11844459B2 (en) * 2020-07-30 2023-12-19 High Performance Cookers Llc Aluminum pot with increased thermal absorption
US20220031115A1 (en) * 2020-07-30 2022-02-03 Todd Bard Tunstall Tunnel Tube - Aluminum channel / Bar or tubing welded to the bottom / Sides or both of an aluminum pot to increase thermal absorption of hot gases from a gas burner

Also Published As

Publication number Publication date
DE69812546D1 (de) 2003-04-30
DE69812546T2 (de) 2004-04-08
JPH11155743A (ja) 1999-06-15
JP3629129B2 (ja) 2005-03-16
EP0919173A1 (en) 1999-06-02
EP0919173B1 (en) 2003-03-26

Similar Documents

Publication Publication Date Title
US6374821B1 (en) Liquid heating apparatus
CA2814761C (en) Cooking grate and cooking apparatus
US20120266856A1 (en) Heat and Grease Deflector for a Barbecue Grill
US6736130B2 (en) Fryer
EP1325699B1 (en) Liquid heating cooker
EP1013206B1 (en) Liquid heating apparatus
US5445066A (en) Cooking appliance having a cooking plate provided with openings
KR100246983B1 (ko) 튀김 조리기
KR100878386B1 (ko) 액체 가열 조리기
US6502504B1 (en) Device for preparing food
JP6532251B2 (ja) フライヤー
JPH119472A (ja) 液体加熱装置
JPH11346933A (ja) 液体加熱装置
JP4262860B2 (ja) グリル庫の排気構造
JPH10161A (ja) 火気分散金枠焼き鍋
WO2023029376A1 (zh) 烧烤炉用环保安全接油装置
JP2023002076A (ja) 表面燃焼式ガスバーナ
JPH0513658B2 (ja)
JP2016077425A (ja) フライヤー
KR20230080250A (ko) 무연 직화구이기
JP2000157425A (ja) 液体加熱装置
KR200441266Y1 (ko) 그리들의 케이스 구조
JPH0734789B2 (ja) 調理用加熱装置
KR20190125901A (ko) 벽체 부착형 보조전열관을 구비한 고효율 가스식 튀김장치
JPH1047613A (ja) 調理用ガスグリル

Legal Events

Date Code Title Description
AS Assignment

Owner name: EIKEN INDUSTRIES CO. LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FURUHASHI, TOSHIO;REEL/FRAME:009834/0672

Effective date: 19990216

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100423