US6047756A - System for forming a braided hollow container with plugged ends - Google Patents

System for forming a braided hollow container with plugged ends Download PDF

Info

Publication number
US6047756A
US6047756A US09/095,122 US9512298A US6047756A US 6047756 A US6047756 A US 6047756A US 9512298 A US9512298 A US 9512298A US 6047756 A US6047756 A US 6047756A
Authority
US
United States
Prior art keywords
section
braided
hollow
continuous
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US09/095,122
Other languages
English (en)
Inventor
Hiroshi Uchida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Machinery Ltd
Original Assignee
Murata Machinery Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Machinery Ltd filed Critical Murata Machinery Ltd
Assigned to MURATA KIKAI KABUSHIKI KAISHA reassignment MURATA KIKAI KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UCHIDA, HIROSHI
Application granted granted Critical
Publication of US6047756A publication Critical patent/US6047756A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04CBRAIDING OR MANUFACTURE OF LACE, INCLUDING BOBBIN-NET OR CARBONISED LACE; BRAIDING MACHINES; BRAID; LACE
    • D04C3/00Braiding or lacing machines
    • D04C3/40Braiding or lacing machines for making tubular braids by circulating strand supplies around braiding centre at equal distances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D22/00Producing hollow articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0809Fabrics
    • B29K2105/0827Braided fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels

Definitions

  • the present invention relates to a system for forming hollow containers by means of braiding techniques wherein multiple yarns are continuously braided around the outside of a continuous hollow resin liner.
  • This technology combines braiding techniques with plastic molding techniques to propose a light, cost-effective pressure-resistant container for storing Liquefied Petroleum Gas (LPG) and the like.
  • LPG Liquefied Petroleum Gas
  • LPG containers used for housing gasses like LPG in compressed form are made of metal in order to ensure resistance to pressure.
  • metal pressure-resistant containers are very heavy, they require a great deal of effort to handle and transport, and they are also very costly.
  • FRP Fiberglass Reinforced Plastics
  • a project wherein the FRP pressure-resistant containers are manufactured using a braiding process and using a filament winding process where yarn is rotated and wound around the container is currently being undertaken.
  • the braiding process simultaneously assembles multiple yarns into braids, thereby increasing productivity, and improving mass-produceability.
  • a braiding machine has the drawback of using small bobbins that are quickly depleted and thus difficult to process continuously, but by employing automatic bobbin replacement techniques, high productivity can be achieved for continuous processing. Further, when environmental issues are taken into consideration, although thermosetting resin is difficult to recycle, by using thermoplastic resin, containers that are easily recycled and environment-friendly can be produced.
  • the filament winding process uses thermosetting resin, creating great environmental concern because it cannot be recycled. Conversely, the FRP process uses hardly any thermoplastic resin.
  • LPG Liquefied Petroleum Gas
  • This hollow container forming system is a braiding process that welds a plug in the area where an opening is cut.
  • a second object of the present invention is to propose the production of tough, light, recyclable, pressure-resistant containers.
  • the present invention in order to accomplish the aforementioned objects, is a hollow container forming system comprised of a continuous liner forming section which forms the continuous liner for the inside layer of the continuous hollow container by passing it in the axial direction through a hollow joint section, a braid forming section which employs a braiding machine to braid around the outside of the continuous liner and form a continuous braided body, a cutting section which cuts the braided body in the radial direction at the hollow joint section, and a plug welding section which welds a plug to the opening section formed by the cutting of the braided body.
  • the continuous liner forming section of the present invention is a hollow container formation system comprising a resin transport means which melts the resin and transports it in tubular form, a plurality of opposing molds arranged in the transport direction to shape the tubular resin received from the resin transport means, an air blowing means to inflate the tubular resin in the molding section, and a mold transfer means to continuously move the molds from the exit of the resin transport means to the braid forming section.
  • the braid forming section of the braided hollow container formation system of the present invention is provided with an automatic bobbin replacement means which automatically exchanges bobbins.
  • the cutting section of the braided hollow container formation system of the present invention includes a synchronous operating means which operates at the same time as the mold transfer means.
  • the plug welding section of the braided hollow container formation system of the present invention is comprised of a first welding section which welds a first plug to one of the openings cut in the continuous braided body at the cutting section, and a second plug welding section which welds a second plug to the opening that has been cut in the braided hollow container.
  • the present invention is a pressure-resistant container comprised of an inner-layer hollow container formed by means of thermoplastic resin molding, and an outer layer formed by braiding the outside of the inner layer hollow container.
  • FIG. 1 is a front view outline drawing showing an example of the basic structure of a braiding machine used in the braided hollow container formation system of the present invention.
  • FIG. 2 is a side view cross section outline drawing of the braiding machine of FIG. 1.
  • FIG. 3 shows a detailed example of the structure of the continuous liner molding section of the braided hollow container formation system.
  • FIG. 3A is an outline side view cross section drawing of the continuous liner molding section
  • FIG. 3B is a side view cross section outline drawing showing an example of the mold transport means for continuously moving the mold formed in the continuous liner molding section.
  • FIG. 4 is a side view cross section outline drawing showing a detailed example of the braid molding section, cutting section, and the closed plug welding means in the plug welding section of the braided hollow container formation system of the present invention.
  • FIG. 5 shows the structure of a detailed example of the metal plug welding means of the plug welding section of the braided hollow container formation system of the present invention.
  • FIG. 5A is a side view cross section outline drawing showing the preparatory stage of the welding
  • FIG. 5B is a side view cross section outline drawing during the welding stage
  • FIG. 5C a side view cross section drawing of an example of the metal plug.
  • FIG. 6 is a side view cross section outline drawing showing a detailed embodiment of a pressure-resistant container of the present invention.
  • the braiding machine BR is comprised of a machine body Bb, and a continuous liner guide G which guides a moveable continuous liner formed and delivered from a continuous liner forming section.
  • the machine body Bb of the braiding machine BR is provided with a curved outer frame U which curves in a semi-circle around radius R and is arranged inside mostly tubular machine frame Fb which is provided with an opening e at one end in the lateral axial direction, a bobbin carrier C which runs along a carrier track curved around the inside of the outer frame U, a driving device D which drives the bobbin carrier C around in its track, and a yarn guide device g.
  • Yarns Y which are drawn out in the axial direction of the bobbins from the bobbin holders arranged in the bobbin carrier C are gathered at about the center of the outer frame U. Further, a liner 70 is positioned at just about the center of the outer frame U at the braiding position P where the yarns Y are braided around the outside of the liner 70.
  • the liner 70 is transported in the axial direction at a fixed speed as the braiding occurs.
  • the speed of the movement of the liner 70 determines the angle of the braiding of the yarn Y around the liner 70, and by changing the speed of the movement of the liner 70 according to the liner's diameter, the predetermined braiding angle can be set.
  • the braided hollow container formation system of the present invention is essentially comprised of a continuous liner forming section 1 which continuously forms the continuous liner 70 for an inner layer 72A of a hollow container section 72 in the axial direction through a hollow joining section 71, a braid forming section 2 which forms a continuous braided body 73 including a braided layer 72B by braiding around the outside of the continuous liner 70 by means of the braiding machine BR, a cutting section 3 which cuts the continuous braided body 73 in the radial direction at a hollow joining portion 71, and a plug welding section 4 which welds a plug 75 to an opening 74 cut in the braided body 73.
  • the plug welding section 4 of the present invention is comprised of a first plug welding section 4A which welds a first plug 75A to an opening 74 cut in the continuous braided body 73, and a second plug welding section 4B which welds a second plug 75B in an opening 77 cut in the braided hollow container 76 after the braided body 73 has been cut in the radial direction at the hollow joining section 71, and after the hollow braided container 76 has been formed.
  • the continuous liner forming section 1 is comprised of a resin transport means 5 which melts the resin and transports it in tubular form, a plurality of pairs of molds 6 comprised of an upper mold group 7 and a lower mold group 8 arranged in the transport direction in which the tubular resin is received from the resin transport means 5, an air injection means 9 which inflates the tubular resin inside the molds 6, and a mold transport means 10 which continuously transports the upper and lower molds 7, 8 from the exit of the resin transport means 5 to the braid forming section 2.
  • the resin transport means 5 is provided with a hopper 11, a cylinder 12, heaters 13, 14, a screw 15, and a transport path 16 for transporting the tubular mold.
  • the air injection means 9 is provided with a compressed air supply 17, a regulator 18, and an air passage 19.
  • the plurality of pairs of the molds 6 are arranged such that the upper molds 7 and the lower molds 8 face each other, and on the surface of one side of each mold, mold surfaces 7a, 8a for the inner layer 72A of the hollow container section 72 in the continuous liner 70, and mold surfaces 7b, 8b for the hollow joining section 71, are provided. On the surface of the other side, joining sections 7c, 8c which face the mold transport means 10, are provided.
  • the upper and lower mold groups 7, 8 of each of the plurality of pairs of the molds 6 are provided with a plurality of through-holes 7d, 8d which run from the surface of one side of the mold surfaces 7a, 8a to the surface of the other.
  • Suction means 20, 21 arranged at the back surface of the upper and lower mold groups 7, 8, enable the inside of the mold 6 to create a negative pressure state.
  • FIG. 3B shows an example of the lower mold group 8 transport means, which has the same structure as the upper mold group 7 transport means.
  • the mold transport means 10 of this example is a continuous loop system comprised of a driving gear 22, a drive-receiving gear 23 opposite the driving gear 22, and a chain 24 which is connected between the drive gear 22 and the drive-receiving gear 23.
  • the lower mold group 8 is connected to the mold transport means 10 by the chain 24, and the driving of the lower mold group 8 is controlled through the control of a driving source 25 which is engaged with the driving gear 22.
  • thermoplastic resin substance like PP or PE, for example, is melted, and turned soft and doughy. It is then transported in tubular form, and expanded by the injection of air into the hollow of the tube. The outside of the tubular plastic joins perfectly into the molding surface of the molds with the aid of suction provided by the suction means, and thus the container is molded into shape. It is then cooled, and after it cools down completely, it is separated from the molds, and molds are transported to the resin transport means 5 in preparation for the next step.
  • the primary structures of the braid forming section 2 also comprise the basic structures of the braiding machine BR.
  • a mandrel device Bm is composed of a continuous liner supporting means Sm which is supported so that it can move the continuous liner 70 formed and delivered from the continuous liner forming section 1, and thereby the braiding is performed around the outside of the continuous liner 70 by using the braiding machine, and a continuous liner braiding body 73 is formed.
  • the braid forming section 2 is provided with an automatic bobbin replacement means 26 which automatically replaces the bobbins, enabling the braiding process to be carried out continuously.
  • the braid forming section 2 can be comprised of two braiding machines, first braider BR1 and second braider BR2, as shown in FIG. 4, so that multi-layer braiding can be carried out.
  • the braid forming section 2 is arranged just after the continuous liner forming section 1.
  • the yarn used in the braiding machine BR is pre-pregged yarn, and this yarn may be glass fiber to which thermoplastic resin is added, glass fiber already compounded with thermoplastic resin, or glass fiber combined with yarn.
  • the yarn adapted for use with the braiding machine BR of the present invention can be any thermoplastic-resin containing glass fiber, as desired.
  • a resin layer is formed around the surface of the container by the melting of the resin by the shaping heaters 27, 28. To ensure the strength of the container and increase the number of braided layers, the number of braiding layers can be increased from the structure described above. After the resin has hardened, it is cut by the cutter in the cutting section in the next stage. It should be noted, however, that since the formation of the container occurs continuously, cutting should be timed to the delivery of the container.
  • the cutting section 3 which is arranged after the braid forming section 2 is comprised of a simultaneous operating means 29 which synchronously operates the mold transport means 10 in the braid forming section 2, a machine frame 30 which operates synchronously by means of the synchronous operating means 29, an elevating means 31 which is attached to the machine frame 30, and a cutting mechanism 32 which is raised and lowered by means of the elevating means 31.
  • the elevating means 31 can be comprised of, for example, an elevating hydraulic cylinder attached to the machine frame 30 and the cutting mechanism 32 can be comprised of a rotating cutter 34 which rotates by means of a rotation driving source 33.
  • the continuous braided body 73 braided at the braid forming section 2 is cut in the radial direction in the hollow joining section 71, forming opening portion 74 at the tip of the continuous braided body 73.
  • the continuous braided body 73 is then cut again in the hollow joining section 71 at the next stage, forming opening 77.
  • the braided hollow container 76 provided with the two openings is thus cut and separated.
  • the plug welding section 4 is comprised of a first plug welding section 4A which welds a first plug 75A at the opening section 74 of the continuous braided body 73, and a second plug welding section 4B which yields a second plug 75B at the opening section 77 of the braided hollow container 76 after the braided hollow container 76 has been formed by cutting the continuous braided body 73 in the radial direction at the hollow joining section 71.
  • the first plug welding section 4A is comprised of an elevating means 35 attached to the machine frame 30 (this machine frame 30 operates synchronously by means of the synchronous operating means 29 which synchronously operates with the mold transport means 10 of the braid forming section 2), an inner heating mechanism 37 and a plug heater 38 that are attached to an output shaft 36 of the elevating means 35 at distance D apart such that it can be raised and lowered by the elevating means 35.
  • the elevating means 35 may be, for example, a hydraulic cylinder for performing raising and lowering operations, is attached to the machine frame 30, and operate at the distance D of its range of motion between the inner heating means 37 and the plug heating means 38.
  • the inner heater mechanism 37 in the first plug welding section 4A is comprised of an inner heater 39 for heating and melting the inner surface of the opening 74 cut in the continuous braided body 73, and a front/rear moving member 40 for moving the inner heater 39.
  • the inner surface of the opening 74 is heated while in the front position of the front/rear moving member 40.
  • the plug heater mechanism 38 in the first plug welding section 4A is comprised of a plug heater 41 and a front/rear moving means 42 for holding and moving the first plug 75A.
  • the first plug 75A is positioned inside the plug heater 41 in the front position of the front/rear moving means 42, and the outer surface of the first plug 75A is heated.
  • the first plug 75A may, for example, be provided with a hexagonal groove at the tip which engages with the tip of a hexagonal shaft 43a provided in the output shaft 43 of the front/rear moving means 42.
  • the plug heater mechanism 38 is provided with a rotation means 44 for rotating the first plug 75A which is supported by the output shaft 43 of the front/rear moving means 42.
  • the second plug welding section 4B welds the second plug 75B to the opening 77 of the braided hollow container 76 cut in the cutting section 2. Its structure is the same as the first plug welding section 4A.
  • the second plug welding section 4B is comprised of an elevating means 45, an inner heating mechanism 47 and a plug heating mechanism 48 which are attached in the axial direction of an output shaft 46 of the elevating means 45 at a distance D apart such that they may be raised and lowered by the elevating means 45.
  • the elevating means 45 may be, for example, a hydraulic cylinder for performing raising and lowering operations, and the elevating means 45 operate at the distance of their range of motion between the inner heating means 47 and the plug heating means 48 in the axial direction.
  • the inner heater mechanism 47 in the second plug welding section 4B is comprised of an inner heater 49 for heating and melting the inner surface of the opening 77 cut in the braided hollow container 76, and a front/rear moving member 50 for moving the inner heater 49. In the welding preparation stage, the inner surface of the opening 77 is heated while in the front position of the front/rear moving member 50.
  • the plug heater mechanism 48 in the second plug welding section 4B is comprised of a plug heater 51, and a front/rear moving means 52 for holding and moving the second plug 75B.
  • the second plug 75B is positioned inside a plug heater 51 in the front position of the front/rear moving means 52, and the outer surface of the second plug 75B is heated.
  • the second plug 75B may, for example, be provided with a metal plug for filling and removing the contents of the container, a metal member 56 provided with a screw hole opening 55, and a resin layer 57 formed around the surface of the metal member 56.
  • the screw opening 53a in the output shaft 53 of the front/rear moving means 52 is attached with a screw to the screw hole opening 55, and is supported in the output shaft 53 of the front/rear moving means 52.
  • the plug heater mechanism 48 is provided with a rotation means 54 for rotating the second plug 75B which is supported by the output shaft 53 of the front/rear moving means 52.
  • FIG. 5A shows the preparatory state for plug welding.
  • the elevating means 45 is operated, and upper welding position P1 is set.
  • the inner heating mechanism 47 and the plug heating mechanism 48 are extended.
  • the inner heater 49 of the inner heating mechanism 47 is inserted into the cut opening section 77 of the braided hollow container 76, applying heat to and melting the inner surface of the opening section 77.
  • the second plug 75B is inserted into the plug heater 51 by means of the plug heating mechanism 48, and the outer surface of the plug 75B is heated and melted. After the plug 75B and opening have been appropriately heated, the inner heating mechanism 47 and the plug heating mechanism 48 are withdrawn to their original positions.
  • FIG. 5B illustrates the plug welding stage.
  • the elevating means 45 is operated, and lower welding position P2 is set.
  • the inner heating mechanism 47 and the plug heating mechanism 48 are extended, and the second plug 75B is inserted into the cut opening section 77 of the hollow braided container 76 by means of the plug heating mechanism 48.
  • the inner surface of the cut opening section 77 of the hollow braided container 76 and the outer surface of second plug 75B are melted from processing at the preparatory stage, so the inner surface of the cut opening section 77 of the hollow braided container 76 and the outer surface of the second plug 75B bond firmly to each other.
  • the hollow braided container 76 cut out from the braided body 73 is held by a chuck 58.
  • the chuck 58 is provided with an appropriate transfer means 59 which is capable of transporting the hollow braided container 76 from the first plug welding section 4A to the second plug welding section 4B.
  • the pressure-resistant container 80 of the present invention is comprised of a hollow container inner layer 81 formed by the molding of the thermo-plastic resin, and a braided outer layer 82 formed by braiding the outer surface of the hollow container inner layer 81.
  • This pressure-resistant container 80 is formed by braiding the hollow container inner layer formed of thermo-plastic resin with thermo-plastic resin-blended yarn which is then heat processed by the shaping heaters 27, 28 in the final stage of braiding, thereby melting the two layers into a single body, creating an extremely powerful container wall.
  • a bottom end 83 of one of the axial sides 80a of the pressure-resistant container 80 is firmly sealed with a sealant plug 84.
  • a metal capsule plug 86 is attached to the end 85 of the other axial side 80b of pressure-resistant container 80. This metal plug 86 is formed as a screw 87 engaged with metal member 88 inserted between resin 89 that has been cut off.
  • the braided hollow container forming system of the present inventions is extremely effective in that it enables production of braided pressure-resistant containers which are lighter than conventional metal pressure-resistant containers, and thereby resolve the biggest problem of these conventional metal containers.
  • the braided hollow container forming system of the present invention enables continuous processing of continuous liner formation, braiding, cutting, and plug welding, thereby increasing the mass-produceability and the cost-effectiveness of the hollow containers, achieving great economic advantages over conventional systems.
  • the braided hollow container forming system of the present invention enables the hollow container to be made out of thermo-plastic resin materials, thus making the container degradable, easily recyclable, and thus environmentally friendly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Textile Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Moulding By Coating Moulds (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)
US09/095,122 1997-08-20 1998-06-10 System for forming a braided hollow container with plugged ends Expired - Fee Related US6047756A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9-240383 1997-08-20
JP24038397A JP3296262B2 (ja) 1997-08-20 1997-08-20 ブレイダーによる中空容器作成システム

Publications (1)

Publication Number Publication Date
US6047756A true US6047756A (en) 2000-04-11

Family

ID=17058678

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/095,122 Expired - Fee Related US6047756A (en) 1997-08-20 1998-06-10 System for forming a braided hollow container with plugged ends

Country Status (4)

Country Link
US (1) US6047756A (fr)
EP (1) EP0897791B1 (fr)
JP (1) JP3296262B2 (fr)
DE (1) DE69810212T2 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002044067A1 (fr) * 2000-11-30 2002-06-06 Adc Acquistion Company Procede destine au renforcement de recipients de stockage thermoplastiques a parois minces
US6434812B1 (en) * 1997-01-29 2002-08-20 Tetra Laval Holdings & Finance S.A. Method of manufacturing and handling parts for a packaging container
US20040026013A1 (en) * 1998-03-28 2004-02-12 Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V. Energy absorbing systems and processes, and processes for the production of energy absorbing structural elements
US20050077643A1 (en) * 2003-10-01 2005-04-14 Seiichi Matsuoka Pressure container manufacturing method
US20050076995A1 (en) * 2003-10-03 2005-04-14 Shugo Yasui Pressure container manufacturing method
US20090166316A1 (en) * 2007-12-28 2009-07-02 Hei Jun An Individually detachable container pack
US20120146440A1 (en) * 2009-09-05 2012-06-14 Grundfos Management A/S Rotor can
US20130240129A1 (en) * 2010-06-08 2013-09-19 Airborne International B.V. Method and Device for Manufacturing Composite Products Comprising a Planar Portion
US20160076178A1 (en) * 2014-03-26 2016-03-17 A&P Technology, Inc. Apparatus and method for manufacture of braided preforms
US10144171B2 (en) 2011-03-03 2018-12-04 AO & G Hollding B.V. Method for manufacturing continuous composite tube, apparatus for manufacturing continuous composite tube
US11584117B2 (en) 2018-01-31 2023-02-21 Airborne Intemational B.V. Manufacturing layered products

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579401B1 (en) * 2000-11-01 2003-06-17 Mallinckrodt, Inc. Method for forming a polymeric container system for pressurized fluids
JP4085780B2 (ja) * 2002-11-01 2008-05-14 株式会社豊田自動織機 圧力容器の製造方法及び繊維束配列装置
PL2030769T3 (pl) 2007-08-30 2014-05-30 Roth Werke Gmbh Sposób wytwarzania akumulatora ciepła
JP5339022B2 (ja) * 2007-09-13 2013-11-13 村田機械株式会社 フィラメントワインディング装置
DE102013111746B4 (de) * 2013-10-24 2017-06-14 Rehau Ag + Co. Verfahren zur Herstellung eines schlauchförmigen Halbzeuges aus einem Verbund-Schlauch aus thermoplastischen Matrixfasern und temperaturstabilen Endlos-Verstärkungsfasern sowie ein schlauchförmiges Halbzeug
WO2024014241A1 (fr) * 2022-07-14 2024-01-18 村田機械株式会社 Procédé de reproduction d'un produit contenant un faisceau de fibres, et appareil d'enroulement de filament

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3310620A (en) * 1963-06-13 1967-03-21 Solvay Process for the manufacture of hollow articles
US3699199A (en) * 1970-12-30 1972-10-17 Hercules Inc Continuous blow molding process with reduction of length compensation
US4846908A (en) * 1987-04-03 1989-07-11 E. I. Du Pont De Nemours And Company Process for preparing a fiber reinforced resin matrix preform
US5150812A (en) * 1990-07-05 1992-09-29 Hoechst Celanese Corporation Pressurized and/or cryogenic gas containers and conduits made with a gas impermeable polymer
JPH0740449A (ja) * 1993-08-02 1995-02-10 Murata Mach Ltd 管状体連続成型方法
JPH08105595A (ja) * 1994-10-04 1996-04-23 Murata Mach Ltd ボンベ及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3631975A1 (de) * 1986-09-19 1988-04-07 Eugen Ehs Trocknerbehaelter fuer eine klimaanlage
NL8802016A (nl) * 1988-08-13 1990-03-01 Stamicarbon Werkwijze voor het vervaardigen van een kokervormige eenheid.
DE4107882C2 (de) * 1991-03-12 1994-08-18 Eugen Ehs Verfahren und Vorrichtung zum Herstellen von Druckbehältern sowie Druckbehälter
JPH07144372A (ja) * 1993-11-25 1995-06-06 Sekisui Chem Co Ltd 繊維強化熱可塑性樹脂複合管の製造方法
JPH08219393A (ja) * 1995-02-15 1996-08-30 Toray Ind Inc ガスボンベ
JPH09112796A (ja) * 1995-10-12 1997-05-02 Toyoda Gosei Co Ltd 圧力容器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3310620A (en) * 1963-06-13 1967-03-21 Solvay Process for the manufacture of hollow articles
US3699199A (en) * 1970-12-30 1972-10-17 Hercules Inc Continuous blow molding process with reduction of length compensation
US4846908A (en) * 1987-04-03 1989-07-11 E. I. Du Pont De Nemours And Company Process for preparing a fiber reinforced resin matrix preform
US5150812A (en) * 1990-07-05 1992-09-29 Hoechst Celanese Corporation Pressurized and/or cryogenic gas containers and conduits made with a gas impermeable polymer
JPH0740449A (ja) * 1993-08-02 1995-02-10 Murata Mach Ltd 管状体連続成型方法
JPH08105595A (ja) * 1994-10-04 1996-04-23 Murata Mach Ltd ボンベ及びその製造方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6434812B1 (en) * 1997-01-29 2002-08-20 Tetra Laval Holdings & Finance S.A. Method of manufacturing and handling parts for a packaging container
US7238250B2 (en) * 1998-03-28 2007-07-03 Duetsches Zentrum Fuer Luft-Und Raumfahrt E.V. Energy absorbing systems and processes, and processes for the production of energy absorbing structural elements
US20040026013A1 (en) * 1998-03-28 2004-02-12 Deutsches Zentrum Fuer Luft- Und Raumfahrt E.V. Energy absorbing systems and processes, and processes for the production of energy absorbing structural elements
WO2002044067A1 (fr) * 2000-11-30 2002-06-06 Adc Acquistion Company Procede destine au renforcement de recipients de stockage thermoplastiques a parois minces
US20050077643A1 (en) * 2003-10-01 2005-04-14 Seiichi Matsuoka Pressure container manufacturing method
US7566376B2 (en) * 2003-10-01 2009-07-28 Fuji Jukogyo Kabushiki Kaisha Pressure container manufacturing method
US20050076995A1 (en) * 2003-10-03 2005-04-14 Shugo Yasui Pressure container manufacturing method
US7204903B2 (en) * 2003-10-03 2007-04-17 Fuji Jukogyo Kabushiki Kaisha Pressure container manufacturing method
US20090166316A1 (en) * 2007-12-28 2009-07-02 Hei Jun An Individually detachable container pack
US7980405B2 (en) * 2007-12-28 2011-07-19 Hei Jun An Individually detachable container pack
US20120146440A1 (en) * 2009-09-05 2012-06-14 Grundfos Management A/S Rotor can
US9071091B2 (en) * 2009-09-05 2015-06-30 Grundfos Management A/S Rotor can
US20130240129A1 (en) * 2010-06-08 2013-09-19 Airborne International B.V. Method and Device for Manufacturing Composite Products Comprising a Planar Portion
US9862135B2 (en) * 2010-06-08 2018-01-09 Airborne International B.V. Method and device for manufacturing composite products comprising a planar portion
US10144171B2 (en) 2011-03-03 2018-12-04 AO & G Hollding B.V. Method for manufacturing continuous composite tube, apparatus for manufacturing continuous composite tube
US10226892B2 (en) 2011-03-03 2019-03-12 Ao&G Holding B.V. Method for manufacturing continuous composite tube, apparatus for manufacturing continuous composite tube
US20160076178A1 (en) * 2014-03-26 2016-03-17 A&P Technology, Inc. Apparatus and method for manufacture of braided preforms
US11584117B2 (en) 2018-01-31 2023-02-21 Airborne Intemational B.V. Manufacturing layered products

Also Published As

Publication number Publication date
JPH1158540A (ja) 1999-03-02
DE69810212D1 (de) 2003-01-30
JP3296262B2 (ja) 2002-06-24
DE69810212T2 (de) 2003-11-13
EP0897791A2 (fr) 1999-02-24
EP0897791A3 (fr) 2000-12-20
EP0897791B1 (fr) 2002-12-18

Similar Documents

Publication Publication Date Title
US6047756A (en) System for forming a braided hollow container with plugged ends
EP2743054B1 (fr) Procédé de fabrication d'un article
US4010054A (en) Thermoplastic filament winding process
US4659531A (en) Method and apparatus for manufacturing a hollow plastic product
KR101812523B1 (ko) 용기 제조
JP4708725B2 (ja) 補強用予形成体を製造するためのプロセスとシステム
US20080260978A1 (en) Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in-container, and bag-in-container thus produced
EP2141000B1 (fr) Procédé et dispositif pour la fabrication d'un article
US3046178A (en) Filamentous decoration and fabrication process
US7455807B2 (en) Continuous production of molded plastic containers
CZ289041B6 (cs) Vícevrstvý předlisek, způsob tváření předlisku a vícevrstvá nádoba, zhotovená z předlisku
CN1668452A (zh) 从半壳体中生产空心塑料制品的多阶段工艺
JPH0716915A (ja) 二重壁ボトルとその成形方法及び装置
EP1495856B1 (fr) Renfort comprenant un noyau en materiau expansible
KR100615923B1 (ko) 중공 복합물 제품 및 그 제조 방법
CN1196629C (zh) 用于生产双腔室容器的设备
JP6012062B2 (ja) 熱可塑性材料からの容器作成方法
JP4083575B2 (ja) 加圧流体のための高分子コンテナシステムを形成するための方法および装置
KR102070824B1 (ko) 배향각도 조절이 가능한 복합재료용 일 방향 섬유시트 제조장치와 제조방법, 일 방향 배향 섬유시트 적층체의 제조장치 및 제조방법
JPH0628893B2 (ja) 例えば取っ手のような一体の外方突起物を備えた中空のポリエチレンテレフタレート製吹込み成形品を作る方法
NZ222816A (en) Manufacturing composite article by extruding plastic material into outer cover
KR930008401B1 (ko) 포대 제조용 플라스틱제 반제품의 제조 방법
CN219903371U (zh) 基于纤维复合材料的3d打印装置
CN115771262A (zh) 基于纤维复合材料的3d打印方法及装置
JPH11179791A (ja) 耐圧容器用の内側殻の製造方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: MURATA KIKAI KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UCHIDA, HIROSHI;REEL/FRAME:009246/0749

Effective date: 19980519

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20120411