US20080260978A1 - Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in-container, and bag-in-container thus produced - Google Patents

Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in-container, and bag-in-container thus produced Download PDF

Info

Publication number
US20080260978A1
US20080260978A1 US11785750 US78575007A US2008260978A1 US 20080260978 A1 US20080260978 A1 US 20080260978A1 US 11785750 US11785750 US 11785750 US 78575007 A US78575007 A US 78575007A US 2008260978 A1 US2008260978 A1 US 2008260978A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
preform
layer
inner
container
outer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11785750
Inventor
Sarah Van Hove
Daniel Peirsman
Rudi Verpoorten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InBev SA
Original Assignee
InBev SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/02Linings or internal coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/06Making preforms by moulding the material
    • B29B11/08Injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/03Injection moulding apparatus
    • B29C45/04Injection moulding apparatus using movable moulds or mould halves
    • B29C45/0408Injection moulding apparatus using movable moulds or mould halves involving at least a linear movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/03Injection moulding apparatus
    • B29C45/04Injection moulding apparatus using movable moulds or mould halves
    • B29C45/0441Injection moulding apparatus using movable moulds or mould halves involving a rotational movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C45/1615The materials being injected at different moulding stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/34Moulds having venting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • B29C49/221Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons at least one layer being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/02Receptacles, i.e. rigid containers, e.g. tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form ; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form ; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form ; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers, i.e. products comprising layers having different physical properties and products characterised by the interconnection of layers
    • B32B7/02Layered products characterised by the relation between layers, i.e. products comprising layers having different physical properties and products characterised by the interconnection of layers in respect of physical properties, e.g. hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers, i.e. products comprising layers having different physical properties and products characterised by the interconnection of layers
    • B32B7/04Layered products characterised by the relation between layers, i.e. products comprising layers having different physical properties and products characterised by the interconnection of layers characterised by the connection of layers
    • B32B7/08Layered products characterised by the relation between layers, i.e. products comprising layers having different physical properties and products characterised by the interconnection of layers characterised by the connection of layers by mechanical connection, e.g. stitching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/0055Containers or packages provided with a flexible bag or a deformable membrane or diaphragm for expelling the contents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B2911/00Indexing scheme related to making preforms for blow-moulding bottles or the like
    • B29B2911/14Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like
    • B29B2911/14006Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration
    • B29B2911/14046Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration multilayered
    • B29B2911/14053Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration multilayered at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B2911/00Indexing scheme related to making preforms for blow-moulding bottles or the like
    • B29B2911/14Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like
    • B29B2911/14006Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration
    • B29B2911/14046Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration multilayered
    • B29B2911/14066Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration multilayered at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B2911/00Indexing scheme related to making preforms for blow-moulding bottles or the like
    • B29B2911/14Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like
    • B29B2911/14006Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration
    • B29B2911/14046Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration multilayered
    • B29B2911/1408Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration multilayered at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B2911/00Indexing scheme related to making preforms for blow-moulding bottles or the like
    • B29B2911/14Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like
    • B29B2911/14006Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration
    • B29B2911/14046Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration multilayered
    • B29B2911/14093Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration multilayered at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B2911/00Indexing scheme related to making preforms for blow-moulding bottles or the like
    • B29B2911/14Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like
    • B29B2911/14006Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration
    • B29B2911/14046Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration multilayered
    • B29B2911/14106Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration multilayered having at least one layer
    • B29B2911/14113Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration multilayered having at least one layer having at least two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B2911/00Indexing scheme related to making preforms for blow-moulding bottles or the like
    • B29B2911/14Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like
    • B29B2911/14006Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration
    • B29B2911/14046Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration multilayered
    • B29B2911/14133Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration multilayered having at least one layer being injected
    • B29B2911/1414Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like layer configuration multilayered having at least one layer being injected having at least two layers being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B2911/00Indexing scheme related to making preforms for blow-moulding bottles or the like
    • B29B2911/14Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like
    • B29B2911/1432Geometry
    • B29B2911/14326Variable wall thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B2911/00Indexing scheme related to making preforms for blow-moulding bottles or the like
    • B29B2911/14Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like
    • B29B2911/1432Geometry
    • B29B2911/14333Variable diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B2911/00Indexing scheme related to making preforms for blow-moulding bottles or the like
    • B29B2911/14Layer configuration, geometry, dimensions or physical properties of preforms for blow-moulding bottles or the like
    • B29B2911/1432Geometry
    • B29B2911/14353Special shape
    • B29B2911/14406Special shape of specific parts of preform
    • B29B2911/1442Special neck
    • B29B2911/14433Closure retaining means
    • B29B2911/1444Threads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/16Making multilayered or multicoloured articles
    • B29C2045/1601Making multilayered or multicoloured articles the injected materials not being adhered or bonded to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/065HDPE, i.e. high density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Use of copolymers of ethylene as moulding material
    • B29K2023/086EVOH, i.e. ethylene vinyl alcohol copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2067/00Use of polyesters or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2067/00Use of polyesters or derivatives thereof as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/244All polymers belonging to those covered by group B32B27/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Abstract

The invention is an integral two-layer preform for the production of integrally blow-moulded bag-in-containers. The preform has an inner layer and an outer layer, wherein the preform forms a two layer container upon blow-moulding, and wherein the thus obtained inner layer of the container releases from the thus obtained outer layer upon introduction of a gas at a point of interface of the two layers. The melting temperature of the inner layer is greater than or equal to the melting temperature of the outer layer.

Description

    FIELD OF THE INVENTION
  • The present invention relates in general to new developments in dispensing bag-in-containers and, in particular, to Integral two layer preforms particularly advantageous for the production of integrally blow-moulded bag-in-containers. It also relates to a method for producing said preforms and bag-in-containers.
  • BACKGROUND OF THE INVENTION
  • Bag-in-containers, also referred to as bag-in-bottles or bag-in-boxes depending on the geometry of the outer vessel, all terms considered herein as being comprised within the meaning of the term bag-in-container, are a family of liquid dispensing packaging consisting of an outer container comprising an opening to the atmosphere the mouth and which contains a collapsible inner bag joined to said container and opening to the atmosphere at the region of said mouth. The system must comprise at least one vent fluidly connecting the atmosphere to the region between the inner bag and the outer container in order to control the pressure in said region to squeeze the inner bag and thus dispense the liquid contained therein.
  • Traditionally, bag-in-containers were and still are produced by independently producing an inner bag provided with a specific neck closure assembly and a structural container (usually in the form of a bottle). The bag is inserted into the fully formed bottle opening and fixed thereto by means of the neck closure assembly, which comprises one opening to the interior of the bag and vents fluidly connecting the space between bag and bottle to the atmosphere; examples of such constructions can be found inter alia in U.S. Pat. No. 3,484,011, U.S. Pat. No. 3,450,254, U.S. Pat. No. 4,330,066, and U.S. Pat. No. 4,892,230. These types of bag-in-containers have the advantage of being reusable, but they are very expensive and labour-intensive to produce.
  • More recent developments focused on the production of “integrally blow-moulded bag-in-containers” thus avoiding the labour-intensive step of assembling the bag into the container, by blow-moulding a polymeric multilayer preform into a container comprising an inner layer and an outer layer, such that the adhesion between the inner and the outer layers of the thus produced container is sufficiently weak to readily delaminate upon introduction of a gas at the interface. The “inner layer” and “outer layer” may each consist of a single layer or a plurality of layers, but can in any case readily be identified, at least upon delamination. Said technology involves many challenges and many alternative solutions were proposed.
  • The multilayer preform may be extruded or injection moulded (cf. U.S. Pat. No. 6,238,201, JPA10128833, JPA11010719, JPA9208688, U.S. Pat. No. 6,649,121). When the former method is advantageous in terms of productivity, the latter is preferable when wall thickness accuracy is required, typically in containers for dispensing beverage.
  • Preforms for the production of integrally blow-moulded bag-in-containers clearly differ from preforms for the production of blow-moulded co-layered containers, wherein the various layers of the container are not meant to delaminate, in the thickness of the layers. A bag-in-container is comprised of an outer structural envelope containing a flexible, collapsible bag. It follows that the outer layer of the container is substantially thicker than the inner bag. This same relationship can of course be found in the preform as well, which are characterized by an inner layer being substantially thinner than the outer layer. Moreover, in some cases, the preform already comprised vents which are never present in preforms for the production of co-layered containers (cf. EPA1356915).
  • The formation of the vents fluidly connecting the space or interface between bag and bottle to the atmosphere remains a critical step in integrally blow-moulded bag-in-containers and several solutions were proposed in e.g., U.S. Pat. No. 5,301,838, U.S. Pat. No. 5,407,629, JPA5213373, JPA8001761, EPA1356915, U.S. Pat. No. 6,649,121, JPA10180853.
  • One redundant problem with integrally blow-moulded bag-in-containers is the choice of materials for the inner and outer layers which must be selected according to strict criteria of compatibility in terms of processing on the one hand and, on the other hand, of incompatibility in terms of adhesion. These criteria are sometimes difficult to fulfil in combination.
  • The preform usually consists of an assembly of two separate preforms and produced independently from one another and thereafter assembled such that the inner preform fits into the outer preform as illustrated in JPA10180853. This solution allows for greater freedom in the design of the neck and vents, as well as in the choice of materials for the inner and outer layers: the compatibility in terms of processing between the materials of the inner and outer layers concern the blow-moulding operation only. It is, however, expensive as it requires two separate production lines and an assembly line.
  • Replacing a preform assembly as discussed above by an integral preform obtained by injection moulding one layer on top of the other offers of course a number of potential advantages in terms of production costs. Other problems, however, arise and need be addressed. In particular, the choice of materials for the inner and outer layers is more complex since they must be compatible in terms of process in both the injection moulding and the blow-moulding operations. U.S. Pat. No. 5,301,838 discloses a complex injection moulded, five layer, integral preform comprising three PET layers interleaved by two thin layers of a material selected from the group of EVOH, PP, PE, PA6. This solution, however, is quite complex and requires that the materials of the thin layers have “little if any primary affinity for (i.e;, tendency to chemically bond or adhere to) the adjacent [PET] layers,” which unduly restricts the choice of materials to be used.
  • EPA1356915 and U.S. Pat. No. 6,649,121 proposes that the materials for the inner and outer layers of the preform should be selected such that the melting temperature of the outer layer is higher than the one of the inner layer, Tm,outer>Tm,inner, lest a strong bond would form between layers when the inner layer is injection moulded over the outer layer, which had been injected into the mould cavity first. Examples of materials for the outer layer given by the authors include PET and EVOH, whilst polyethylene is given as an example for the inner layer.
  • It follows from the foregoing that there remains room in the art for solutions for the production of integral preforms made of materials compatible in terms of processing, both for the injection moulding and blow-moulding operations, and yielding bag-in-containers with good delamination properties.
  • SUMMARY OF THE INVENTION
  • The present invention is defined in the appended independent claims. Preferred embodiments are defined in the dependent claims. In particular the present invention relates to an integral two-layer preform and a bag-in-container produced by blow-moulding the preform, the preform comprising an inner layer and an outer layer, wherein the preform forms a two layer container upon blow-moulding, and wherein the thus obtained inner layer of said container releases from the thus obtained outer layer upon introduction of a gas at a point of interface of the two layers. The melting temperature of the inner layer is greater or equal to the melting temperature of the outer layer.
  • Preferably, the preform comprises at least one interface vent running parallel to the interface between the inner and outer layer, and opening to the atmosphere at a location adjacent to, and oriented coaxially with the preform's mouth.
  • It also concerns a process for the production of a preform as defined above comprising the following sequential steps:
      • injection moulding the inner layer onto a core;
      • injection moulding the outer layer onto the inner layer;
      • extracting the thus formed preform from the core;
  • wherein the melting temperature of the inner layer is greater or
  • equal to the melting temperature of the outer layer.
  • The foregoing process is advantageously carried out for the production of said preform comprising at least one interface vent, by using a tool of the core-shell type, characterized in that it comprises a core mould provided at the base thereof with at least one pin, preferably wedge shaped, suitable for forming a vent at the interface between the first and second layers of said preform.
  • The invention further addresses an apparatus for producing a preform as defined above of comprising:
      • support means provided with at least two similar cores (male);
      • at least first and second shell moulds (female) each connected to an extruder, such that the first shell mould is dimensioned for producing in combination with a core the inner layer and the second shell mould for producing the outer layer on top of the inner one;
      • optionally at least one extraction station,
      • means for moving the support means so that each core can be positioned sequentially opposite the first shell mould, the second shell mould, and optionally the extraction station.
    BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic cross-sectional representation of a preform and the bag-in-container obtained after blow-moulding thereof.
  • FIG. 2 is a cutaway perspective view of the mouth and neck region of a preform or bag-in-container according to a preferred embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring now to appended FIGS. 1A and 1B, there is illustrated an integrally blow-moulded bag-in-container (2) and a preform (1)&(1′) for its manufacturing. The preform (1) comprises an inner layer (11) and an outer layer (12) joined at least at the level of the neck region (6) by an interface (shown on the right hand side). The region between inner and outer layers(11) and (12) may either consist of an interface (14) wherein the two layers are substantially contacting each other, or comprise a gap (14′) in fluid communication with at least one vent (3) opening to the atmosphere in (4).
  • Many vent geometries have been disclosed and it is not critical which geometry is selected. It is preferred, however, that the vent be located adjacent to, and oriented coaxially with said preform's mouth (5) as illustrated in FIG. 1. More preferably, the vents have the shape of a wedge with the broad side at the level of the opening (4) thereof and getting thinner as it penetrates deeper into the vessel, until the two layers meet to form an interface (14) at least at the level of the neck region as illustrated in FIG. 2. This geometry allows for a more efficient and reproducible delamination of the inner bag upon use of the bag-in-container. The container may comprise one or several vents evenly distributed around the lip of the bag-in-container's mouth. Several vents are advantageous as they permit the interface of the inner and outer layers(21) and (22) of the bag-in-container (2) to release more evenly upon blowing pressurized gas through said vents. Preferably, the preform comprises two vents opening at the vessel's mouth lip at diametrically opposed positions. More preferably, three, and most preferably, at least four vents open at regular intervals of the mouth lip.
  • The preform of the present invention consists of an integral preform obtained by injection moulding one layer on top of the other. This solution offers a number of advantages over preform assemblies, like for instance, that it requires no assembly step and one production station only is sufficient for the integral preform fabrication when at least two are required for a preform assembly.
  • Preferred materials for the layers of the preform and bag-in-container of the present invention are polyesters like PET, PEN, PTT, PTN; polyamides like PA6, PA66, PA11, PA12; polyolefins like PE, PP; EVOH; biodegradable polymers like polyglycol acetate (PGAc), Polylactic acid (PLA); and copolymers and blends thereof. The requirement according to the present invention for the materials of the inner and outer layers is that the melting temperature of the outer layer is lower than, or equal to the one of the inner layer, Tm,outer<Tm,inner. This condition is exactly the opposite to the one taught in EPA1356915 and U.S. Pat. No. 6,649,121. This departure from the teaching of said prior art is rendered possible by the discovery by the present inventors that the integral preform can advantageously be produced with the following sequential steps:
      • injection moulding the inner layer first onto a core;
      • followed by injection moulding the outer layer onto the inner layer; and
      • extracting the thus formed preform from the core;
  • This approach is more advantageous than the one proposed in EPA1356915 and U.S. Pat. No. 6,649,121 for the following reasons. As discussed in the review of the background art, a bag-in-container must comprise at least one interface vent fluidly connecting the interface between inner and outer layers to the atmosphere. In the field of beverage dispensing containers, the assembled (i.e., not integrally blow-moulded) bag-in-containers used to date, traditionally and for practical reasons, are provided with vents located adjacent to, and oriented coaxially with the bag-in-container's mouth. So as to progressively replace the traditional, assembled bag-in-containers by integrally blow-moulded ones, and so as to allow the consumer to keep the same appliance the bag-in-container is to be mounted into, the same vents location is preferably maintained. The present process allows to provide integral preforms with vents fluidly connecting the interface between inner and outer layers to the atmosphere, provided an appropriate tool is used.
  • The tool is of the core-shell type and comprises a core mould provided at the base thereof with at least one pin suitable for forming a vent at the interface between the first and second layers of the preform. The core may comprise a single pin, but it preferably comprises more than one pin in order to have several vents opening around the lip of the container's mouth. The pins preferably have the shape of a wedge as, on the one hand, a wedge shaped vent has the advantages discussed above and, on the other hand, it allows for easier extraction of the thus produced integral preform from the mould core. The dimensions of the pins depend on the size of the bag-in-container and, in particular, of the mouth and lip thereof. For a typical home beverage dispenser of a capacity of about 56 liters, the pins have a height of about 5 to 75 mm, preferably 5 to 50 mm, most preferably 10 to 20 mm and their base, forming the vents openings, preferably are in the shape of an arc section of length comprised between 3 and 15 mm, preferably 5 and 10 mm and of width comprised between 0.5 and 5 mm, preferably 0.5 and 2 mm.
  • Preferably, the integral preform of the present invention comprises mechanical interlocking means (8) for fixing the inner layer to the outer layer. This allows an easier and safer handling of the preform and facilitates the extraction of the preform from the injection moulding core.
  • The preform of the present invention can be produced semicontinuously with an apparatus comprising:
      • support means provided with at least two similar cores (male), preferably of the type described above;
      • at least first and second shell moulds (female) each connected to an extruder, such that the first shell mould is dimensioned for producing in combination with a core the inner layer and the second shell mould for producing the outer layer on top of the inner one;
      • optionally at least one extraction station,
      • means for moving the support means so that each core can be positioned sequentially opposite the first shell mould, the second shell mould, and optionally the extraction station.
  • The apparatus of the present invention may include a separate extraction station, for example to allow further cooling of the part prior to extraction or, if the preform is extracted upon opening the mould after the injection of the second layer, it may well do without one. The means for moving the support means from one shell mould to the other and, optionally, to the extraction station may be linear, using a “shuttle,” or rotational, using a “carrousel.”
  • The two layers (11) and (12) of the preform according to the present invention are connected by an interface (14) throughout substantially the whole inner surface of the outer layer. Although the inner and outer layers of the preform may adhere at said interface (14), the inner and outer layers (21) and (22) of the bag-in-container (2) produced by blow-moulding the preform (1) do delaminate upon injection of a pressurized gas at a point of the interface. It is generally believed that better results are obtained when at least one of the inner and outer layers comprises a semi-crystalline polymer.
  • It has surprisingly been observed that excellent delamination results between the inner and outer layers of bag-in-containers can be obtained also with integral preforms wherein both inner and outer layers consist of the same material. This discovery is in contradiction with the teaching of the prior art with respect to the choice of materials of the inner and outer layer which, as quoted from JPA2005047172, must consist of “mutually non-adhesive synthetic resins.” It has now been shown that excellent integrally blow-moulded bag-in-containers may be produced with the inner and outer layers made of the same material. Hence, according to the present invention, the melting temperature of the inner layer can be equal to the melting temperature of the outer layer.
  • The same polymer is considered in contact on either side of the interface between the inner and outer layers in the following cases:
      • inner and outer layers consist of the same material (e.g., PETinnerPETouter, regardless of the specific grade of each PET); or
      • the inner and outer layers consist of a blend or copolymer having at least one polymer in common, provided said polymer in common is at the interface, whilst the differing polymer is substantially absent of said interface (e.g., (0.85 PET+0.15 PA6)inner(0.8 PET+0.2 PE)outer.
  • The presence in a layer of low amounts of additives is not regarded as rendering the material different, so far as they do not alter the interface substantially.
  • The bag-in-container (2) of the present invention can be obtained by providing a preform as described above; bringing said preform to blow-moulding temperature; fixing the thus heated preform at the level of the neck region with fixing means in the blow-moulding tool; and blow-moulding the thus heated preform to form a bag-in-container. The inner and outer layers (21) and (22) of the thus obtained bag-in-container are connected to one another by an interface (24) over substantially the whole of the inner surface of the outer layer. Said interface (24) is in fluid communication with the atmosphere through the vents(3), which maintained their original geometry through the blow-moulding process since the neck region of the preform where the vents are located is held firm by the fixing means and is not stretched during blowing.
  • It is essential that the interface (24) between inner and outer layers (21) and (22) releases upon blowing pressurized gas through the vents in a consistent and reproducible manner. The success of said operation depends on a number of parameters, in particular, on the interfacial adhesive strength, the number, geometry, and distribution of the vents, and on the pressure of the gas injected. The interfacial strength is of course a key issue and can be modulated by the choice of the material for the inner and outer layers, and by the process parameters during blow-moulding; the pressure-time-temperature window used is of course of prime importance and greatly depends on the material selected for the inner and outer layers.
  • Example:
  • A preform according to the present invention was produced by injecting a melt into a first mould cavity cooled to form the preform's inner layer. The core comprising the inner layer was moved to a second cavity cooled at the same temperature as the first one, and a melt was injected over the inner layer present in the cavity and the preform was extracted. It comprised vents (3) and interlocking means (8) as illustrated in FIG. 2.
  • The preform produced as explained above was heated in an oven comprising an array of IR-lamps and then fixed into a blow-moulding mould which walls were maintained at a desired temperature. Air was blown into the preform under pressure. The thus produced bag-in-container was then filled with a liquid and connected to an appliance for dispensing beverage comprising a source of compressed air in order to determine the delamination pressure.
  • The delamination pressure was determined as follows. The interface vents of the bag-in-container were connected to the source of compressed air. Air was injected through the vents at a constant pressure and the interface between inner and outer layers was observed; the pressure was increased stepwise until delamination pressure was reached. Delamination pressure is defined as the pressure at which the inner bag separates from the outer layer over the whole of their interface and collapses. The surfaces of the thus separated layers were examined for traces of bonding.
  • The delamination pressure of the bag-in-container described above was of about 05±0.1 bar overpressure and showed little trace of cohesive fracture between the inner and outer layers. This example demonstrates that bag-in-containers of excellent quality can be produced with integral preforms according to the present invention.

Claims (18)

  1. 1. An integral two-layer preform for the production of integrally blow-moulded bag-in-containers, said preform comprising:
    an inner layer and an outer layer, wherein said preform forms a two layer container upon blow-moulding, and wherein the thus obtained inner layer of said container releases from the thus obtained outer layer upon introduction of a gas at a point of interface of said two layers; and
    the melting temperature of the inner layer is greater or equal to the melting temperature of the outer layer.
  2. 2. The preform according to claim 1 wherein at least one of the inner and outer layers comprises a semi-crystalline material.
  3. 3. The preform according to claim 1, wherein the inner and outer layer consist of different materials.
  4. 4. The preform according to claim 1, wherein the inner and outer layer consist of the same material.
  5. 5. The preform according to claim 1, wherein the inner and outer layers consist of a material selected from PET, PEN, PTT, PA, PP, PE, HDPE, EVOH, PGAc, PLA, and copolymers or blends thereof.
  6. 6. The preform according to claim 1, wherein the at least one point of interface is a vent in the shape of a wedge with the broad side at the level of the opening thereof and getting thinner as it penetrates deeper into the vessel, until the inner and outer layers meet to form an interface.
  7. 7. The preform according to claim 6, wherein more than one vent are distributed around the lip of the preform's mouth.
  8. 8. The preform according to claim 1, wherein the inner and outer layers of the preform are connected by an interface throughout substantially the whole inner surface of the outer layer.
  9. 9. The preform according to claim 1 wherein the inner and outer layers and are fixed to one another through mechanical interlocking means located in the preform's neck region.
  10. 10. A process for the production of a preform having
    an inner layer and an outer layer, wherein said preform forms a two layer container upon blow-moulding, and wherein the thus obtained inner layer of said container releases from the thus obtained outer layer upon introduction of a gas at a point of interface of said two layers; and
    the melting temperature of the inner layer is greater or equal to the melting temperature of the outer layer, comprising the following sequential steps:
    injection moulding the inner layer onto a core;
    injection moulding the outer layer onto the inner layer, and
    extracting the thus formed preform from the core.
  11. 11. The process according to claim 10, wherein said core is adapted for forming vents fluidly connecting the interface between the inner and outer layers to the atmosphere.
  12. 12. A tool of the core shell type suitable for the production of a preform having
    an inner layer and an outer layer, wherein said preform forms a two layer container upon blow-moulding, and wherein the thus obtained inner layer of said container releases from the thus obtained outer layer upon introduction of a gas at a point of interface of said two layers, and
    the melting temperature of the inner layer is greater or equal to the melting temperature of the outer layer,
    comprising a core mould provided at the base thereof with at least one pin suitable for forming a vent at the interface between the first and second layers of said preform.
  13. 13. The tool according to claim 12 comprising more than one pin disposed around the perimeter of the core base.
  14. 14. The tool according to claim 12, wherein the pins have the shape of a wedge.
  15. 15. An apparatus for producing a preform having
    an inner layer and an outer layer, wherein said preform forms a two layer container upon blow-moulding, and wherein the thus obtained inner layer of said container releases from the thus obtained outer layer upon introduction of a gas at a point of interface of said two layers, and
    the melting temperature of the inner layer is greater or equal to the melting temperature of the outer layer, comprising:
    support means provided with at least two similar male cores;
    at least first and second shell female moulds each connected to an extruder, such that the first shell mould is dimensioned for producing the inner layer and the second shell mould for producing the outer layer on top of the inner one;
    at least one optional extraction station, and
    means for moving the support means so that each core can be positioned sequentially opposite the first shell mould, the second shell mould and, optionally, the extraction station.
  16. 16. The apparatus according to claim 15, wherein said means for moving the support impart a linear movement to the support means.
  17. 17. The apparatus according to claim 15, wherein said means for moving the support impart a rotational movement to the support means.
  18. 18. Integrally blow-moulded bag-in-container produced by blow-moulding a preform comprising:
    an inner layer and an outer layer, wherein said preform forms a two layer container upon blow-moulding, and wherein the thus obtained inner layer of said container releases from the thus obtained outer layer upon introduction of a gas at a point of interface of said two layers, and
    the melting temperature of the inner layer is greater or equal to the melting temperature of the outer layer.
US11785750 2007-04-19 2007-04-19 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in-container, and bag-in-container thus produced Abandoned US20080260978A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11785750 US20080260978A1 (en) 2007-04-19 2007-04-19 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in-container, and bag-in-container thus produced

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
US11785750 US20080260978A1 (en) 2007-04-19 2007-04-19 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in-container, and bag-in-container thus produced
US12450892 US9162372B2 (en) 2007-04-19 2008-04-18 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in-container, and bag-in-container thus produced
KR20157018104A KR101901197B1 (en) 2007-04-19 2008-04-18 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in-container, and bag-in-container thus produced
BRPI0810428A2 BRPI0810428A2 (en) 2007-04-19 2008-04-18 integral preform from two layers, a process and apparatus for producing the same, a process for producing a bag in the blow molded container and bag thus produced container
UA2009010388A UA96624C2 (en) 2007-04-19 2008-04-18 Integral two-layer preform for production of integrally blow-molded bag-in-container, process for its manufacturing, tool of core cowling type designed for manufacturing preform, apparatus for manufacturing preform bag-in-container
AU2008240668A AU2008240668B2 (en) 2007-04-19 2008-04-18 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in container, and bag-in-container thus produced
PCT/EP2008/054772 WO2008129018A1 (en) 2007-04-19 2008-04-18 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in container, and bag-in-container thus produced
KR20097022513A KR101737357B1 (en) 2007-04-19 2008-04-18 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in-container, and bag-in-container thus produced
ES08749615T ES2687437T3 (en) 2007-04-19 2008-04-18 integral two layer preform, process, tool and apparatus for the production of the bag and container produced in this way
NZ58002208A NZ580022A (en) 2007-04-19 2008-04-18 Integral two layer preform for bag in container with layers releasable from each other by introduction of gas and melting temperature of inner layer not less than outer layer
CN 200880012621 CN101663141B (en) 2007-04-19 2008-04-18 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in container, and bag-in-container thus produced
DK08749615T DK2146832T3 (en) 2007-04-19 2008-04-18 Integrated tolagspræform, method, tool and apparatus for producing the same, and thus produced bag-in-container
RU2009142613A RU2470778C2 (en) 2007-04-19 2008-04-18 Composite two-layer preform, method and device of its fabrication, method of making bad-in-container package by blow moulding and bag-in-container package thus made
ME00940B ME00940B (en) 2007-04-19 2008-04-18 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in container, and bag-in-container thus produced
CA 2681777 CA2681777C (en) 2007-04-19 2008-04-18 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in container, and bag-in-container thus produced
EP20080749615 EP2146832B1 (en) 2007-04-19 2008-04-18 Integral two layer preform, process, tool and apparatus for the production thereof, and bag-in-container thus produced
AR063001A1 AR063001A1 (en) 2007-04-19 2008-04-21 integral preform layer process and apparatus for producing the same, process for producing a container with inner bag blow molded container with inner bag thus produced
US14887189 US20160244205A1 (en) 2007-04-19 2015-10-19 Integral Two Layer Preform, Process and Apparatus for the Production Thereof, Process for Producing a Blow-Moulded Bag-in-Container, and Bag-in-Container Thus Produced

Related Child Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP2008/054772 Continuation-In-Part WO2008129018A1 (en) 2007-04-19 2008-04-18 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in container, and bag-in-container thus produced
US12450892 Continuation US9162372B2 (en) 2007-04-19 2008-04-18 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in-container, and bag-in-container thus produced
US45089210 Continuation-In-Part 2010-07-08 2010-07-08

Publications (1)

Publication Number Publication Date
US20080260978A1 true true US20080260978A1 (en) 2008-10-23

Family

ID=39629127

Family Applications (3)

Application Number Title Priority Date Filing Date
US11785750 Abandoned US20080260978A1 (en) 2007-04-19 2007-04-19 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in-container, and bag-in-container thus produced
US12450892 Active 2028-12-13 US9162372B2 (en) 2007-04-19 2008-04-18 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in-container, and bag-in-container thus produced
US14887189 Pending US20160244205A1 (en) 2007-04-19 2015-10-19 Integral Two Layer Preform, Process and Apparatus for the Production Thereof, Process for Producing a Blow-Moulded Bag-in-Container, and Bag-in-Container Thus Produced

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12450892 Active 2028-12-13 US9162372B2 (en) 2007-04-19 2008-04-18 Integral two layer preform, process and apparatus for the production thereof, process for producing a blow-moulded bag-in-container, and bag-in-container thus produced
US14887189 Pending US20160244205A1 (en) 2007-04-19 2015-10-19 Integral Two Layer Preform, Process and Apparatus for the Production Thereof, Process for Producing a Blow-Moulded Bag-in-Container, and Bag-in-Container Thus Produced

Country Status (9)

Country Link
US (3) US20080260978A1 (en)
EP (1) EP2146832B1 (en)
KR (2) KR101901197B1 (en)
CN (1) CN101663141B (en)
CA (1) CA2681777C (en)
DK (1) DK2146832T3 (en)
ES (1) ES2687437T3 (en)
RU (1) RU2470778C2 (en)
WO (1) WO2008129018A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080257883A1 (en) * 2007-04-19 2008-10-23 Inbev S.A. Integrally blow-moulded bag-in-container having an inner layer and the outer layer made of the same material and preform for making it
US20100239799A1 (en) * 2007-04-19 2010-09-23 Inbev S.A. Integrally blow-moulded bag-in-container having an inner layer and the outer layer made of the same material and preform for making it
US20100276447A1 (en) * 2009-04-30 2010-11-04 Ms. Orsola Patrini Container associable with airless pumps and method for its production
US20110024380A1 (en) * 2009-07-30 2011-02-03 Lumson S.P.A. container associable with airless pumps and method for its production
EP2508319A1 (en) * 2011-04-07 2012-10-10 Anheuser-Busch InBev NV Preform for blow-moulding a dispensing bag-in-container, process for producing a dispensing bag-in-container and bag-in-container
EP2508318A1 (en) * 2011-04-07 2012-10-10 Anheuser-Busch InBev NV Preform for blow-moulding a dispensing bag-in-container, process for producing a dispensing bag-in-container and bag-in-container.
US20130193164A1 (en) * 2010-10-11 2013-08-01 Advanced Technology Materials, Inc. Substantially rigid collapsible liner, container and/or liner for replacing glass bottles, and enhanced flexible liners
JP2014028627A (en) * 2012-07-31 2014-02-13 Yoshino Kogyosho Co Ltd Double container, preform for molding the double container, and method of manufacturing the double container
WO2014017910A3 (en) * 2012-07-26 2014-03-20 Heineken Supply Chain B.V. Container and set of preforms for forming a container
WO2014017907A3 (en) * 2012-07-26 2014-04-24 Heineken Supply Chain B.V. Tapping assembly and connecting device; container and method for beverage dispensing
US20150210523A1 (en) * 2012-07-26 2015-07-30 Heineken Supply Chain B.V. Container and set of preforms for forming a container
JP2016199328A (en) * 2013-11-27 2016-12-01 キョーラク株式会社 Delamination container
US9522773B2 (en) 2009-07-09 2016-12-20 Entegris, Inc. Substantially rigid collapsible liner and flexible gusseted or non-gusseted liners and methods of manufacturing the same and methods for limiting choke-off in liners
US9637300B2 (en) 2010-11-23 2017-05-02 Entegris, Inc. Liner-based dispenser
US9650169B2 (en) 2011-03-01 2017-05-16 Entegris, Inc. Nested blow molded liner and overpack and methods of making same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2447205A1 (en) 2010-10-29 2012-05-02 AB InBev NV Dispensing appliance provided with a removable dispensing cartridge
EP2447207A1 (en) 2010-10-29 2012-05-02 AB InBev NV Dispensing appliance provided with means for positionning a container
EP2447208A1 (en) 2010-10-29 2012-05-02 AB InBev NV Dispensing appliance provided with a hinged hood
EP2452914A1 (en) 2010-11-10 2012-05-16 AB InBev NV Liquid dispensing appliance provided with an anti-drip valve system
WO2012135266A3 (en) * 2011-03-28 2012-11-29 Advanced Technology Materials, Inc. Storage, transportation, and/or dispense packaging
EP2514711A1 (en) 2011-04-18 2012-10-24 Anheuser-Busch InBev S.A. Liquid dispensing appliance comprising a solid gas-adsorbent
EP2562129A1 (en) 2011-08-23 2013-02-27 Anheuser-Busch InBev S.A. Roving beverage dispensing unit
EP2660188A1 (en) 2012-05-02 2013-11-06 Anheuser-Busch InBev S.A. Beverage dispensing unit with openable pinch valve
EP2660185A1 (en) 2012-05-02 2013-11-06 Anheuser-Busch InBev S.A. Compact beverage dispensing unit
EP2719656A1 (en) 2012-10-11 2014-04-16 Anheuser-Busch InBev S.A. Keg connector
US9296550B2 (en) 2013-10-23 2016-03-29 The Procter & Gamble Company Recyclable plastic aerosol dispenser
EP2923997A1 (en) 2014-03-24 2015-09-30 Anheuser-Busch InBev S.A. Beverage dispensing appliance comprising a cooling unit
EP2923998A1 (en) 2014-03-24 2015-09-30 Anheuser-Busch InBev S.A. Integral KEG connector
EP2987767A1 (en) 2014-08-19 2016-02-24 Anheuser-Busch InBev S.A. Beverage dispensing appliance for multiple containers
EP3000780A1 (en) 2014-09-26 2016-03-30 Anheuser-Busch InBev S.A. Beverage dispensing assembly comprising an ingedient container receiving means and a gas pressure regulator
EP3028988A1 (en) 2014-12-01 2016-06-08 Anheuser-Busch InBev S.A. Pressurised liquid dispenser with three way valve for venting a container
EP3048345A1 (en) 2015-01-21 2016-07-27 Anheuser-Busch InBev S.A. Stopcock for beverage dispenser
EP3173373A1 (en) 2015-11-26 2017-05-31 Anheuser-Busch InBev S.A. Polymeric keg connector
US20180043604A1 (en) 2016-08-12 2018-02-15 The Procter & Gamble Company Plural nested preform assembly and method of manufacture
US20180043603A1 (en) 2016-08-12 2018-02-15 The Procter & Gamble Company Pressurized plural nested preform assembly and method of manufacture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3450254A (en) * 1967-04-05 1969-06-17 Colgate Palmolive Co Package and receptacle
US3484011A (en) * 1968-04-16 1969-12-16 William Greenhalgh Disposable container liner and advertising means
US4330066A (en) * 1980-11-21 1982-05-18 Robert Berliner Receptacle with collapsible internal container
US4892230A (en) * 1988-02-08 1990-01-09 Lynn Jr Arthur E Carbonated beverage bottle
US5301838A (en) * 1991-01-23 1994-04-12 Continental Pet Technologies, Inc. Multilayer bottle with separable inner layer and method for forming same
US6238201B1 (en) * 1997-02-28 2001-05-29 Owens-Brockway Plastic Products Inc. Multilayer container package molding apparatus
US6649121B1 (en) * 1999-10-08 2003-11-18 Taisei Kako Co., Ltd. Method of producing laminated bottles having peelable inner layer

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4013748A (en) * 1971-12-30 1977-03-22 Valyi Emery I Method for making composite plastic article
JP2735915B2 (en) * 1987-12-14 1998-04-02 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Improved nylon composition for blow molding
WO1991008099A1 (en) * 1989-11-23 1991-06-13 Lin Pac Plastics International Limited Blow moulded containers
JP2586294B2 (en) 1993-06-14 1997-02-26 東洋製罐株式会社 Delamination bottle, and a manufacturing method thereof
JPH081761A (en) * 1994-06-24 1996-01-09 Yoshino Kogyosho Co Ltd Air intake hole forming method for two-layer blow molded bottle
US5464106A (en) * 1994-07-06 1995-11-07 Plastipak Packaging, Inc. Multi-layer containers
DE69632354T2 (en) * 1995-03-10 2005-05-04 Yoshino Kogyosho Co., Ltd. Container of laminated material easily schälbarem
JP3489342B2 (en) 1995-11-29 2004-01-19 東レ株式会社 Laminated bottle and a method of manufacturing the same
JP3249054B2 (en) 1996-10-29 2002-01-21 株式会社日本製鋼所 Multilayer container manufacturing method and apparatus
JP3796595B2 (en) * 1996-12-20 2006-07-12 株式会社吉野工業所 Method of molding a bottle body
JPH1110719A (en) 1997-06-26 1999-01-19 Ube Ind Ltd Laminating blow molding method
US6352426B1 (en) * 1998-03-19 2002-03-05 Advanced Plastics Technologies, Ltd. Mold for injection molding multilayer preforms
JP2000062745A (en) * 1998-08-13 2000-02-29 Toppan Printing Co Ltd Separable multi-layer container
JP4749572B2 (en) * 2001-03-13 2011-08-17 大成化工株式会社 Mouth structure of the dispensing container
JP4357183B2 (en) * 2003-02-14 2009-11-04 大成化工株式会社 Delamination bottle, and a manufacturing method thereof
JP4239165B2 (en) 2003-07-30 2009-03-18 株式会社吉野工業所 Blow molding process and blow molding double container of double container.
US20050136201A1 (en) * 2003-12-22 2005-06-23 Pepsico, Inc. Method of improving the environmental stretch crack resistance of RPET without solid stating
US20090206524A1 (en) * 2005-07-22 2009-08-20 Keith Laidler Moulding Apparatus and Method
US9944453B2 (en) * 2007-04-19 2018-04-17 Anheuser-Busch Inbev S.A. Integrally blow-moulded bag-in-container having an inner layer and the outer layer made of the same material and preform for making it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3450254A (en) * 1967-04-05 1969-06-17 Colgate Palmolive Co Package and receptacle
US3484011A (en) * 1968-04-16 1969-12-16 William Greenhalgh Disposable container liner and advertising means
US4330066A (en) * 1980-11-21 1982-05-18 Robert Berliner Receptacle with collapsible internal container
US4892230A (en) * 1988-02-08 1990-01-09 Lynn Jr Arthur E Carbonated beverage bottle
US5301838A (en) * 1991-01-23 1994-04-12 Continental Pet Technologies, Inc. Multilayer bottle with separable inner layer and method for forming same
US5407629A (en) * 1991-01-23 1995-04-18 Continental Pet Technologies, Inc. Multilayer bottle with separable inner layer and method of forming same
US6238201B1 (en) * 1997-02-28 2001-05-29 Owens-Brockway Plastic Products Inc. Multilayer container package molding apparatus
US6649121B1 (en) * 1999-10-08 2003-11-18 Taisei Kako Co., Ltd. Method of producing laminated bottles having peelable inner layer

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9944453B2 (en) 2007-04-19 2018-04-17 Anheuser-Busch Inbev S.A. Integrally blow-moulded bag-in-container having an inner layer and the outer layer made of the same material and preform for making it
US20100239799A1 (en) * 2007-04-19 2010-09-23 Inbev S.A. Integrally blow-moulded bag-in-container having an inner layer and the outer layer made of the same material and preform for making it
US20080257883A1 (en) * 2007-04-19 2008-10-23 Inbev S.A. Integrally blow-moulded bag-in-container having an inner layer and the outer layer made of the same material and preform for making it
US9517876B2 (en) 2007-04-19 2016-12-13 Anheuser-Busch Inbev S.A. Integrally blow-moulded bag-in-container having an inner layer and the outer layer made of the same material and preform for making it
US8459500B2 (en) * 2009-04-30 2013-06-11 Orsola PATRINI Container associable with airless pumps and method for its production
US20100276447A1 (en) * 2009-04-30 2010-11-04 Ms. Orsola Patrini Container associable with airless pumps and method for its production
US9522773B2 (en) 2009-07-09 2016-12-20 Entegris, Inc. Substantially rigid collapsible liner and flexible gusseted or non-gusseted liners and methods of manufacturing the same and methods for limiting choke-off in liners
US8459501B2 (en) * 2009-07-30 2013-06-11 Lumson S.P.A. Container associable with airless pumps and method for its production
US20110024380A1 (en) * 2009-07-30 2011-02-03 Lumson S.P.A. container associable with airless pumps and method for its production
CN106915550A (en) * 2010-10-11 2017-07-04 恩特格里斯公司 Substantially Rigid Collapsible Liner, Container And/or Liner For Replacing Glass Bottles, And Enhanced Flexible Liners
US20130193164A1 (en) * 2010-10-11 2013-08-01 Advanced Technology Materials, Inc. Substantially rigid collapsible liner, container and/or liner for replacing glass bottles, and enhanced flexible liners
US9637300B2 (en) 2010-11-23 2017-05-02 Entegris, Inc. Liner-based dispenser
US9650169B2 (en) 2011-03-01 2017-05-16 Entegris, Inc. Nested blow molded liner and overpack and methods of making same
EP2508319A1 (en) * 2011-04-07 2012-10-10 Anheuser-Busch InBev NV Preform for blow-moulding a dispensing bag-in-container, process for producing a dispensing bag-in-container and bag-in-container
EP2508318A1 (en) * 2011-04-07 2012-10-10 Anheuser-Busch InBev NV Preform for blow-moulding a dispensing bag-in-container, process for producing a dispensing bag-in-container and bag-in-container.
US20150203342A1 (en) * 2012-07-26 2015-07-23 Heineken Supply Chain B.V. Tapping assembly and connecting device; container and method for beverage dispensing
US20150210523A1 (en) * 2012-07-26 2015-07-30 Heineken Supply Chain B.V. Container and set of preforms for forming a container
US20150210524A1 (en) * 2012-07-26 2015-07-30 Heineken Supply Chain B.V. Container and set of preforms for forming a container
WO2014017907A3 (en) * 2012-07-26 2014-04-24 Heineken Supply Chain B.V. Tapping assembly and connecting device; container and method for beverage dispensing
WO2014017910A3 (en) * 2012-07-26 2014-03-20 Heineken Supply Chain B.V. Container and set of preforms for forming a container
US10071900B2 (en) * 2012-07-26 2018-09-11 Heineken Supply Chain B.V. Tapping assembly and connecting device; container and method for beverage dispensing
US9815676B2 (en) * 2012-07-26 2017-11-14 Heineken Supply Chain B.V. Container and set of preforms for forming a container
US10087062B2 (en) * 2012-07-26 2018-10-02 Heineken Supply Chain B.V. Container and set of preforms for forming a container
JP2014028627A (en) * 2012-07-31 2014-02-13 Yoshino Kogyosho Co Ltd Double container, preform for molding the double container, and method of manufacturing the double container
JP2016199328A (en) * 2013-11-27 2016-12-01 キョーラク株式会社 Delamination container

Also Published As

Publication number Publication date Type
EP2146832B1 (en) 2018-07-04 grant
DK2146832T3 (en) 2018-10-01 grant
CN101663141A (en) 2010-03-03 application
CA2681777A1 (en) 2008-10-30 application
WO2008129018A1 (en) 2008-10-30 application
KR101737357B1 (en) 2017-05-29 grant
KR20100015985A (en) 2010-02-12 application
US20160244205A1 (en) 2016-08-25 application
KR101901197B1 (en) 2018-09-21 grant
CA2681777C (en) 2017-09-19 grant
ES2687437T3 (en) 2018-10-25 grant
EP2146832A1 (en) 2010-01-27 application
RU2470778C2 (en) 2012-12-27 grant
CN101663141B (en) 2013-05-08 grant
US20100330313A1 (en) 2010-12-30 application
RU2009142613A (en) 2011-05-27 application
US9162372B2 (en) 2015-10-20 grant
KR20150085129A (en) 2015-07-22 application

Similar Documents

Publication Publication Date Title
US4257525A (en) Bottle with attached handle
US2959812A (en) Multiwall containers
US4040233A (en) Method of obtaining a filled, fluid barrier resistant plastic container
US3955697A (en) Multilayered hollow plastic container
US6312641B1 (en) Method of making containers and preforms incorporating barrier materials
US4680208A (en) Biaxially oriented plastic container with excellent heat-resistance and gas barrier properties
US5472753A (en) Polyethylene terephthalate-containing laminate
US4372454A (en) Blow molded container with handle
US20030186006A1 (en) Multilayer container resistant to elevated temperatures and pressures, and method of making the same
US3940001A (en) Recyclable plastic containers
US4280859A (en) Method of manufacturing a blow-molded container with an integral handle
US5819978A (en) Two piece composite inlet
US4662528A (en) Blow molded plastic container having plastic label
US6209344B1 (en) Multi-walled container
US4092391A (en) Method of making multilayered containers
US5676267A (en) Multi-layer containers
US5804305A (en) Multi-layer preform used for plastic blow molding
US4715504A (en) Oriented plastic container
US6179142B1 (en) Wire-frame bottle and method of manufacturing same
US5553753A (en) Method of manufacturing a plastic aerosol container having plastic end closures
US4933135A (en) Method of making a blow-moulded container from a thermoplastic polyester, in particular pet
US5057266A (en) Method of making a hollow polyethylene terephthalate blow molded article with an integral external projection such as a handle
US5688570A (en) Method and apparatus for forming a multi-layer preform
US5301838A (en) Multilayer bottle with separable inner layer and method for forming same
US3717544A (en) Lined plastic articles