US4849164A - Method of producing iron powder article - Google Patents

Method of producing iron powder article Download PDF

Info

Publication number
US4849164A
US4849164A US07/161,518 US16151888A US4849164A US 4849164 A US4849164 A US 4849164A US 16151888 A US16151888 A US 16151888A US 4849164 A US4849164 A US 4849164A
Authority
US
United States
Prior art keywords
iron
sintering
boron
powder
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/161,518
Other languages
English (en)
Inventor
William F. Jandeska
Vadim Rezhets
Carlo Ligotti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Priority to US07/161,518 priority Critical patent/US4849164A/en
Assigned to GENERAL MOTORS CORPORATION, A CORP. OF DE reassignment GENERAL MOTORS CORPORATION, A CORP. OF DE ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: JANDESKA, WILLIAM F., LIGOTTI, CARLO, REZHETS, VADIM
Priority to CA000588747A priority patent/CA1334346C/en
Priority to GB8901386A priority patent/GB2216141B/en
Priority to JP1043398A priority patent/JPH07110980B2/ja
Priority to DE3906093A priority patent/DE3906093A1/de
Application granted granted Critical
Publication of US4849164A publication Critical patent/US4849164A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0207Using a mixture of prealloyed powders or a master alloy

Definitions

  • This invention relates to an iron alloy article formed by compacting and sintering a predominantly iron powder mixture that comprises carbon powder and a boron-containing additive. More particularly, this invention relates to a sintering aid added to the powder mixture to promote carbon diffusion, particularly within interior regions of a large compact, and thereby produce a more uniform matrix microstructure.
  • U.S. Pat. No. 4,618,473 issued to Jandeska in 1986, describes an iron alloy article produced by compacting and sintering a powder mixture composed predominantly of iron powder and containing a carbon powder and a nickel boron powder, preferably of intermetallic nickel boride compound. During sintering, the iron is diffusion bonded into an integral structure. Carbon diffuses into the iron to form a mainly pearlitic or martensitic product microstructure. Nickel and boron also diffuse into the iron, but nickel diffusion is localized in pore regions to form, upon cooling, retained austenite phase that enhances product toughness. Preferably, powdered copper is added for increased hardness and dimensional control.
  • sintering is preferably carried out in a vacuum to eliminate oxygen that would otherwise react with boron.
  • Boron oxide compound does not suitably relinquish boron to the iron in the desired manner.
  • the sintering aid also promotes boron diffusion and in one aspect of this invention enhances formation of hard borocementite particles dispersed throughout the product, including within both interior and exterior regions.
  • these and other objects are obtained by compacting and sintering a predominantly iron powder mixture comprising a carbon powder and a metal boron additive, and further comprises a sintering agent containing an oxygen getter.
  • preferred mixtures are composed mainly of low-carbon iron powder and comprise carbon powder and nickel boride powder, optionally in combination with iron boride powder.
  • the mixture may also contain copper powder.
  • the particular composition depends upon the desired product microstructure. For products comprising retained austenite and described in U.S. Pat. No.
  • a preferred powder mixture comprises between about 0.7 and 1.0 weight percent graphite powder, between about 2 and 3 weight percent metallic copper powder, and nickel boride powder in an amount sufficient to produce a nickel content between about 0.5 and 1.0 weight percent, and the balance iron powder.
  • a preferred composition comprises between about 1 and 2 weight percent carbon powder, between 2 and 3 weight percent copper powder, between about 0.8 and 3.1 weight percent nickel boride powder, iron boride powder in an amount sufficient to increase the total boron concentration to between 0.15 and 1.2 weight percent, and the balance iron powder.
  • the powder mixture further includes a sintering aid comprising an oxygen-reactive metallic constituent that acts as a getter.
  • Preferred oxygen getters include titanium, vanadium, magnesium and rare earth elements, such as neodymium.
  • the sintering aid is preferably formulated to form a transient liquid phase during sintering that increases reactivity of the getter. This is accomplished by a second constituent effective in combination with the getter to reduce the melting point to within the intended sintering range.
  • the second constituent is preferably iron, or another metal such as nickel or copper, desired in the product structure.
  • preferred aids of this invention include powders composed of alloys or compounds of iron and titanium, iron and vanadium, and nickel and magnesium.
  • the sintering aid may further comprise boron for diffusion into the iron structure during sintering.
  • the mixture including the sintering aid is compacted and sintered at a temperature and for a time sufficient to diffusion bond the iron powder into an integral structure.
  • carbon from the carbon particles diffuses into the iron matrix to form, upon cooling, a matrix microstructure composed predominantly of martensite or pearlite. Boron also diffuses into the iron.
  • Sintering is preferably carried out in a vacuum. Despite evacuation, trace amounts of oxygen may remain within interior regions of the compact. While the role of the sintering aid is not fully understood, it is believed that, in the absence of the sintering aid, such trace oxygen reacts with boron to form boron oxide, B 2 O 3 , that inhibits carbon diffusion.
  • An oxygen getter added in accordance with this invention is believed to react with the trace oxygen to inhibit boron oxidation and thereby prevent boron oxide interference with carbon diffusion.
  • an oxygen getter sintering aid in accordance with this invention promotes carbon diffusion within internal regions comparable to within external regions.
  • the sintered product exhibits a more uniform iron matrix microstructure composed predominantly of martensite or pearlite, with significantly reduced carbide-free ferrite grains, particularly within interior regions. This is accomplished without extending the sintering time required to produce the product article.
  • iron alloy articles comprising dispersed hard borocementite particles were formed by compacting and sintering a powder mixture that includes a base composition and a sintering aid containing an oxygen getter.
  • the base composition comprises, by weight, about 94.1 parts plain iron powder, about 1.4 parts graphite powder, about 2.0 parts copper powder, about 0.8 parts nickel boride powder, about 1.7 parts iron boride powder, and about 0.5 parts commercial die pressing lubricant.
  • the iron powder was a low-carbon commercial grade material having a maximum carbon content of 0.01 weight percent and sized to -60 mesh.
  • the graphite powder was a commercial synthetic powder available from Joseph Dixon Crucible Company, New Jersey, under the trade designation KS-2, and having particle sizes between about 2 and 5 microns.
  • the metallic copper powder was a commercial purity material sized to -140 mesh.
  • the nickel boride powder was an arc-melted material composed substantially of intermetallic compound NiB and containing about 14.8 weight percent boron, the balance nickel and impurities.
  • the iron boride consisted substantially of intermetallic compound FeB and contained about 16 weight percent boron, the balance iron and impurities.
  • commercially available nickel boride and iron boride were fragmented and sized to -400 mesh.
  • the die pressing lubricant was obtained from Glyco, Inc., Connecticut, under the trade designation Glycolube PM 100.
  • the mixture was compacted in a suitable die to produce a flat annular compact having an outer diameter of about 57.15 millimeters, an inner diameter of about 22.2 millimeters and a thickness of about 12.7 millimeters.
  • the green compact had a density of about 7.0 grams per cubic centimeter, corresponding to about 92 percent of the theoretical density.
  • the green compact was heated within a vacuum furnace in two steps. The furnace was initially evacuated to a pressure less than 10 -3 torr and heated to about 500° C. for a time, approximately one-half hour, sufficient to vaporize the lubricant. After the lubricant was vaporized, as indicated by stabilization of the pressure, the furnace temperature was increased to 1120° C. and held for about 60 minutes for sintering. The sintered compact was quenched to room temperature while exposed to convective dry nitrogen gas.
  • the sintered product exhibited a microstructure comprising borocementite particles dispersed within a fine pearlite matrix. More particularly, it was found that the microstructure within the case region adjacent the surface was essentially identical to the microstructure within the core region. Because of the superior wear resistance produced by the hard borocementite particles within the strong iron alloy matrix, the annular product was particularly well suited as a machinable gear blank.
  • Example 1 For comparison, a second compact was manufactured from the base composition, without the addition of an oxygen-getter sintering aid.
  • the base mixture was compacted and sintered following the procedure in Example 1. It was found that the case region of the sintered product consisted of borocementite particles dispersed in a fine pearlite matrix comparable to the product microstructure in Example 1. However, the core region was composed of mainly ferrite grains and contained undissolved carbon particles and large iron boride particles, with minor amounts of grain boundary cementite. Thus, the getter-free product did not exhibit the uniform microstructure found in the Example 1 product.
  • the product iron articles were transverse rupture test bars having a length of 30 millimeters and a square cross-section that is about 12.5 millimeters wide.
  • the bar thickness was approximately equal to the thickness of the annular product in Example 1.
  • a test bar was formed from a powder blend composed of the base composition plus the iron titanium powder described in Example 1, but the iron titanium addition was increased to three parts by weight.
  • the powdered constituents were blended following the procedure in Example 1 and loaded into a suitably shaped die cavity.
  • the powder was compacted under a load of approximately 620 MPa to form a green compact having a density of about 7.0 grams per cubic centimeter.
  • the green compact was sintered following the procedure of Example 1, except that the sintering time at 1120° C. was shortened to 20 minutes.
  • the product article exhibited a uniform microstructure comprising hard borocementite particles dispersed within a pearlite matrix and appeared comparable to the microstructure produced in Example 1.
  • the microstructure in the case regions was essentially indistinguishable from that in the core regions.
  • An iron alloy bar was produced following the procedure of Example 2 from a blend of the base composition plus three parts by weight of an iron titanium powder composed mainly of intermetallic Fe 2 Ti compound.
  • the Fe 2 Ti powder contained 32 weight percent titanium and was ground to -400 mesh.
  • the blend was prepared, compacted and sintered following the procedure of Example 2.
  • the product exhibited a uniform microstructure in both case and core regions that appeared substantially similar to the microstructure formed in Example 1.
  • An iron alloy bar was formed from a blend of the base composition plus one part by weight copper manganese powder.
  • the copper manganese powder was composed predominantly of intermetallic CuMn compound and contained about 42 percent manganese.
  • the compound was prepared by rapid solidification spin casting and ground to -400 mesh.
  • the blend was prepared, compacted and sintered following the procedure of Example 2.
  • the case microstructure appeared substantially identical to that formed in Example 1.
  • the core matrix was composed predominantly of martensite, but still contained about 30 percent carbide-free ferrite grains.
  • the core included dispersed, hard borocementite particles, but also exhibited discontinuous carbide ribbons and large, blocky iron boride particles.
  • the increased martensite and borocementite phases indicated an improvement in carbon diffusion.
  • the manganese additive was not considered as effective as the iron titanium additives. It is believed that an increased addition of the copper manganese powder may have further enhanced carbon diffusion to reduce the core ferrite grain content.
  • An iron alloy bar was produced from a blend of the base composition plus about four parts of magnesium nickel powder.
  • the magnesium nickel powder was composed mainly of intermetallic MgNi 2 compound and contained about 15 weight percent magnesium. Commercially available magnesium nickel was ground to -400 mesh to produce the powder.
  • the blend was prepared, compacted and sintered following the procedure in Example 2. In the case and core regions, the microstructure exhibited hard borocementite particles distributed in a predominantly pearlite matrix. However, the hard particles were segregated. The microstructure also evidenced a discontinuous carbide phase at grain boundaries.
  • the nickel-magnesium addition also increased the content of retained austenite phase to about 18 percent, as compared to less than 5 percent for products formed from the base alloy.
  • An iron alloy bar was produced from a blend of the base composition plus about 2.5 parts by weight iron vanadium powder.
  • the iron vanadium powder was composed mainly of intermetallic FeV compound and contained about 50 weight percent vanadium.
  • Commercially available iron vanadium compound was ground to -400 mesh to form the powder.
  • the blend was prepared, compacted and sintered as in Example 2.
  • the product exhibited a uniform microstructure in both case and core regions characterized by hard borocementite particles dispersed within a pearlite matrix.
  • the microstructure was comparable to that formed in Example 1 using the iron titanium addition, except that the average size of the dispersed hard particles appeared smaller.
  • An iron alloy bar was produced from a powder mixture composed of, by weight, 90.7 parts low carbon iron powder, 1.2 parts graphite powder, 2.0 parts copper powder, 2.8 parts nickel boride powder, 3.3 parts iron-neodymium-boron alloy powder and 0.5 parts die pressing lubricant.
  • the iron-neodymium-boron alloy powder was composed of, by weight, about 30 percent neodymium, 1 percent boron and the balance substantially iron.
  • Example 2 The powders were blended, compacted and sintered as in Example 2.
  • the product exhibited a uniform matrix microstructure in both case and core regions characterized by hard borocementite particles dispersed in a pearlite matrix, but exhibited increased retained austenite due to the increased nickel addition.
  • a sintered structure was formed from a powder mixture composed mainly of low-carbon iron powder and containing (1) carbon powder, (2) a liquating boron additive and (3) a liquating sintering aid to promote carbon diffusion into the iron despite the boron.
  • liquating is meant that the agent forms a liquid phase in contact with iron at sintering temperatures.
  • carbon does not liquefy at sintering temperatures, but rather dissolves into the iron, which is austenitic at the sintering temperature and thus has a high carbon solubility, by solid state diffusion.
  • the boron additive in the examples comprises nickel boride powder and iron boride powder.
  • the nickel boride compound melts to form a liquid phase that wets iron surfaces within the compact.
  • the iron boride dissolves into the liquid phase.
  • the liquid phase increases the activity, as well as increasing iron contact, of nickel and boron to enhance diffusion into the skeleton. As nickel and, more particularly, boron diffuse into the iron, the liquid phase becomes depleted and eventually dissipates.
  • sintering aids in accordance with this invention are selected to contain a constituent having an oxidation potential suitably low to react preferentially with oxygen and thereby inhibit formation of boron oxide.
  • boron oxide By inhibiting boron oxidation, not only is increased boron available for diffusion, but more significantly to this invention, carbon diffusion is enhanced.
  • standard free energy of oxide formation is reported per mole oxygen at 1400° K., approximately the preferred sintering temperature.
  • a standard free energy of oxide formation less than -130 kcal/mole is believed suitable to enhance carbon diffusion.
  • Preferred getters have a standard free energy less than -152 kcal/mole, which is the standard free energy of B 2 O 3 .
  • Vanadium exhibits a standard free energy of -145 kcal/mole for V 2 O 3 , but is believed, under oxygen-deficient conditions found within the evacuated compact during sintering, to form VO which has a standard free energy less than boron oxide.
  • the standard free energy for titanium dioxide, TiO 2 is about -157 kcal/mole, but is even less for the oxygen-deficient compound, TiO.
  • preferred getters include vanadium, titanium and magnesium.
  • Rare earth elements, such as neodymium also have preferred low standard free energies of oxide formation.
  • Manganese has a standard free energy of oxide formation of about -136 kcal/mole and enhanced carbon diffusion in the example, but was not as effective, although greater manganese additions may further promote carbon diffusion. In general, it is also desired that the getter have minimal adverse effect upon the product.
  • titanium produced a microstructure substantially similar in appearance to a microstructure formed in a case region of a sintered compact formed without the sintering aid, and is thus more preferred.
  • FeTi and Fe 2 Ti appear equally effective for comparable titanium additions.
  • the sintering aid also preferably includes one or more other constituents to form a low melting powder suitable to produce a liquid phase during early stages of sintering.
  • a liquid phase is desired to enhance the activity of the getter.
  • a preferred second constituent is iron.
  • Nickel is also suitable, but may increase the retained austenite phase, which may or may not be desirable, depending upon the intended use of the product.
  • Copper is also a suitable constituent, particularly in compacts comprising metallic copper additions. Also, all or part of the boron addition may be combined with the getter in a single additive powder.
  • the amount of gettering agent effective to enhance carbon diffusion is believed dependent upon the amount of oxygen trapped within the compact interior during sintering which, in turn, may be related to compact size, vacuum efficiency and oxygen impurity in the constituent metal powder. In general, it is desired to minimize the gettering agent to reduce cost and avoid effect upon the principal structure metallurgy.
  • the base composition contained nickel boride and iron boride and was formulated to produce an iron alloy product comprising dispersed hard borocementite particles distributed in a pearlite matrix, that is, a product such as described in U.S. Pat. No. 4,678,510.
  • this invention is believed to be equally applicable to other formulations that include additions of diffusable carbon and boron additives.
  • a sintering aid in accordance with this invention may be added to formulations prepared in accordance with U.S. Pat. No. 4,618,473 to avoid oxidation of boron and thereby enhance carbon diffusion.
  • the sintered product was slow cooled to produce a predominantly pearlite matrix. Alternately, the sintered product may be rapidly quenched, for example by oil immersion, to produce a predominantly martensite matrix.
  • Suitable iron powder for use in forming an article in accordance with this invention is composed of iron or an iron alloy that does not have significant carbon or boron content.
  • iron powder is composed of an iron alloy such as iron-base nickel-molybdenum alloy to improve mechanical properties of the product.
  • Carbon is blended into the powder mixture in an amount sufficient to produce a hypereutectoid matrix. A small portion of the carbon, on the order of 0.03 weight percent, is lost during vacuum sintering.
  • additional carbon is added for forming the particles. In general, a carbon addition between about 1 and 2 percent, preferably between about 1.2 and 1.8 weight percent, is desired to form the hard particles.
  • powder mixtures for use with this invention include a liquating boron-containing additive.
  • Powders formed of intermetallic metal boride compounds are preferred.
  • Suitable boron sources produce a transient liquid phase for a short time during the early stages of sintering, but rapidly dissipates upon diffusion of the boron into the iron matrix, and include nickel boride, cobalt boride and manganese boride.
  • nickel boride, cobalt boride and manganese boride In those embodiments wherein it is desired to form hard borocementite particles, boron is added in an amount suitable to produce a boron concentration in the sintered product between about 0.15 and 1.2 weight percent.
  • a combination of nickel boride with iron boride is preferred to avoid formation of excessive nickel-stabilized retained austenite phase in those embodiments involving borocementite particles.
  • a copper addition is preferred to increased matrix hardness and to compensate for iron shrinkage during sintering. Copper assists in driving carbon and boron from about pores to concentrate within interior regions in forming the hard particles where desired. This is attributed to a relatively low boron and carbon affinity for copper. Copper concentrations greater than about 4 weight percent tend to produce excessive liquid formation during sintering that causes unwanted product distortion. In general, a copper addition between about 2 and 3 weight percent is preferred.
  • the green compact is sintered within a vacuum furnace.
  • Sintering may be suitably carried out by other processes that minimize constituent oxidation, for example, using a reducing atmosphere, a cracked ammonia atmosphere, a hydrogen atmosphere or a dry inert gas atmosphere.
  • Atmospheres may be enriched by addition of a hydrocarbon source such as methanol or propane, if necessary, to reduce carbon loss.
  • sintering is suitably carried out at a temperature above 1083° C., the melting point of copper, so as to produce the desired copper liquid phase. In general, higher temperatures are desired to enhance diffusion bonding. However, practical problems are posed in handling compacts at temperatures above 1150° C.
  • a sintering temperature between 1110° C. and 1120° C. is preferred. It is desired that the time for sintering be sufficient for iron diffusion bonding and for diffusing the several elements into the iron lattice. For sintering temperatures within the preferred range, sintering times between about 15 and 35 minutes produce satisfactory structures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
US07/161,518 1988-02-09 1988-02-29 Method of producing iron powder article Expired - Fee Related US4849164A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US07/161,518 US4849164A (en) 1988-02-29 1988-02-29 Method of producing iron powder article
CA000588747A CA1334346C (en) 1988-02-09 1989-01-20 Iron powder article
GB8901386A GB2216141B (en) 1988-02-29 1989-01-23 Iron powder article
JP1043398A JPH07110980B2 (ja) 1988-02-29 1989-02-27 鉄合金物品の製造方法
DE3906093A DE3906093A1 (de) 1988-02-29 1989-02-27 Gegenstand aus eisenpulver und verfahren zu seiner herstellung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US07/161,518 US4849164A (en) 1988-02-29 1988-02-29 Method of producing iron powder article

Publications (1)

Publication Number Publication Date
US4849164A true US4849164A (en) 1989-07-18

Family

ID=22581497

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/161,518 Expired - Fee Related US4849164A (en) 1988-02-09 1988-02-29 Method of producing iron powder article

Country Status (5)

Country Link
US (1) US4849164A (ja)
JP (1) JPH07110980B2 (ja)
CA (1) CA1334346C (ja)
DE (1) DE3906093A1 (ja)
GB (1) GB2216141B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0808681A1 (en) * 1995-10-18 1997-11-26 Kawasaki Steel Corporation Iron powder for powder metallurgy, process for producing the same, and iron-base powder mixture for powder metallurgy
US5872322A (en) * 1997-02-03 1999-02-16 Ford Global Technologies, Inc. Liquid phase sintered powder metal articles
US6228138B1 (en) * 1998-11-17 2001-05-08 Hitachi Powdered Metals Co., Ltd. Good machinability Fe-based sintered alloy and process of manufacture therefor
WO2006122794A2 (en) * 2005-05-17 2006-11-23 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Materials purification by treatment with hydrogen-based plasma
US20090208361A1 (en) * 2007-05-17 2009-08-20 The Boeing Company Direct to metal sintering of 17-4ph steel
US8544597B1 (en) * 2012-05-31 2013-10-01 Aerojet Rocketdyne Of De, Inc. Tuned damper member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537323A (en) * 1984-01-09 1985-08-27 Gte Laboratories Incorporated Mo-Ti members with non-metallic sintering aids
US4618473A (en) * 1985-06-14 1986-10-21 General Motors Corporation Iron powder article having improved toughness
US4678510A (en) * 1985-12-24 1987-07-07 General Motors Corporation Wear resistant iron powder article
US4724000A (en) * 1986-10-29 1988-02-09 Eaton Corporation Powdered metal valve seat insert

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932895B2 (ja) * 1974-10-07 1984-08-11 日本電気株式会社 半導体装置およびその製造方法
GB1577185A (en) * 1977-08-01 1980-10-22 Stanadyne Inc Sintered powdered metal wear-resistant composition
JPS55145152A (en) * 1979-04-26 1980-11-12 Nippon Piston Ring Co Ltd Sintered alloy material for internal combustion engine
JPS58204101A (ja) * 1982-05-20 1983-11-28 Mitsubishi Metal Corp 複合焼結合金部材の製造法
JPS62124256A (ja) * 1985-11-21 1987-06-05 Kawasaki Steel Corp 黒鉛が析出した摺動部材用焼結鋼

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537323A (en) * 1984-01-09 1985-08-27 Gte Laboratories Incorporated Mo-Ti members with non-metallic sintering aids
US4618473A (en) * 1985-06-14 1986-10-21 General Motors Corporation Iron powder article having improved toughness
US4678510A (en) * 1985-12-24 1987-07-07 General Motors Corporation Wear resistant iron powder article
US4724000A (en) * 1986-10-29 1988-02-09 Eaton Corporation Powdered metal valve seat insert

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0808681A1 (en) * 1995-10-18 1997-11-26 Kawasaki Steel Corporation Iron powder for powder metallurgy, process for producing the same, and iron-base powder mixture for powder metallurgy
EP0808681A4 (en) * 1995-10-18 1999-12-29 Kawasaki Steel Co IRON POWDER FOR POWDER METALLURGY, METHOD FOR THE PRODUCTION THEREOF, AND IRON-BASED POWDER MIXTURE FOR POWDER METALLURGY
US5872322A (en) * 1997-02-03 1999-02-16 Ford Global Technologies, Inc. Liquid phase sintered powder metal articles
US6228138B1 (en) * 1998-11-17 2001-05-08 Hitachi Powdered Metals Co., Ltd. Good machinability Fe-based sintered alloy and process of manufacture therefor
CN101222968A (zh) * 2005-05-17 2008-07-16 马普科技促进协会 通过基于氢的等离子体进行处理的材料净化
WO2006122794A3 (en) * 2005-05-17 2007-02-01 Max Planck Gesellschaft Materials purification by treatment with hydrogen-based plasma
WO2006122794A2 (en) * 2005-05-17 2006-11-23 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Materials purification by treatment with hydrogen-based plasma
US20080311018A1 (en) * 2005-05-17 2008-12-18 Anastasia Alekseeva Materials Purification by Treatment with Hydrogen-Based Plasma
US7611686B2 (en) 2005-05-17 2009-11-03 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften E.V. Materials purification by treatment with hydrogen-based plasma
CN101222968B (zh) * 2005-05-17 2012-08-22 马普科技促进协会 通过基于氢的等离子体进行处理的材料净化
US20090208361A1 (en) * 2007-05-17 2009-08-20 The Boeing Company Direct to metal sintering of 17-4ph steel
US8017070B2 (en) * 2007-05-17 2011-09-13 The Boeing Company Direct to metal sintering of 17-4PH steel
US8544597B1 (en) * 2012-05-31 2013-10-01 Aerojet Rocketdyne Of De, Inc. Tuned damper member

Also Published As

Publication number Publication date
CA1334346C (en) 1995-02-14
GB2216141B (en) 1991-04-03
DE3906093A1 (de) 1989-09-07
DE3906093C2 (ja) 1992-12-03
JPH07110980B2 (ja) 1995-11-29
JPH01283339A (ja) 1989-11-14
GB2216141A (en) 1989-10-04
GB8901386D0 (en) 1989-03-15

Similar Documents

Publication Publication Date Title
US4913739A (en) Method for powder metallurgical production of structural parts of great strength and hardness from Si-Mn or Si-Mn-C alloyed steels
EP1370704B1 (en) Process of production of a sintered ferrous material containing copper
KR20170141269A (ko) 질소를 함유한, 저니켈 소결 스테인리스 스틸
US4849164A (en) Method of producing iron powder article
US3183127A (en) Heat treatable tool steel of high carbide content
JPH0261521B2 (ja)
JP3853362B2 (ja) 高引張り強度を有するマンガン含有材料
CA1294462C (en) Wear resistant iron powder article
US4886637A (en) Presinter treatment for iron powder article formed with boride additive
US3979209A (en) Ductile tungsten-nickel alloy and method for making same
US4618473A (en) Iron powder article having improved toughness
US6676894B2 (en) Copper-infiltrated iron powder article and method of forming same
US4430295A (en) Articles produced from iron powder compacts containing hypereutectic copper phosphide powder
US4098608A (en) Metal powder compositions
JPS6364483B2 (ja)
Youseffi et al. Enhanced sintering and mechanical properties of 316L stainless steel with silicon additions as sintering aid
RU2425166C1 (ru) Способ получения механически легированной азотсодержащей стали
JP3413628B2 (ja) 黒鉛分散鉄系焼結材料を得るための鉄系粉末混合物
RU2412271C2 (ru) Сплав для легирования стали
CA2154512C (en) Mixed iron powder for powder metallurgy
US6652618B1 (en) Iron based mixed power high strength sintered parts
JP3658465B2 (ja) 鉄系焼結摺動部材ならびにその製造方法
US2944893A (en) Method for producing tool steels containing titanium carbide
JPH01132701A (ja) 粉末冶金用合金鋼粉
JPS61104052A (ja) 高強度鉄系焼結合金

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL MOTORS CORPORATION, DETROIT, MI, A CORP. O

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:JANDESKA, WILLIAM F.;REZHETS, VADIM;LIGOTTI, CARLO;REEL/FRAME:004881/0075

Effective date: 19880226

Owner name: GENERAL MOTORS CORPORATION, A CORP. OF DE,MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JANDESKA, WILLIAM F.;REZHETS, VADIM;LIGOTTI, CARLO;REEL/FRAME:004881/0075

Effective date: 19880226

REMI Maintenance fee reminder mailed
FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 19970723

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362