US3863332A - Method of fabricating back panel for liquid crystal display - Google Patents
Method of fabricating back panel for liquid crystal display Download PDFInfo
- Publication number
- US3863332A US3863332A US374444A US37444473A US3863332A US 3863332 A US3863332 A US 3863332A US 374444 A US374444 A US 374444A US 37444473 A US37444473 A US 37444473A US 3863332 A US3863332 A US 3863332A
- Authority
- US
- United States
- Prior art keywords
- electrodes
- layer
- aluminum
- portions
- liquid crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 45
- 125000006850 spacer group Chemical group 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 14
- 238000005530 etching Methods 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 9
- 239000004988 Nematic liquid crystal Substances 0.000 claims description 4
- 238000007743 anodising Methods 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims 2
- 239000011810 insulating material Substances 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 57
- 239000004020 conductor Substances 0.000 description 8
- 229920002120 photoresistant polymer Polymers 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 210000002858 crystal cell Anatomy 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000002906 tartaric acid Nutrition 0.000 description 2
- 239000011975 tartaric acid Substances 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/13439—Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
- G02F1/13394—Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
- G02F1/13392—Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
Definitions
- ABSTRACT In forming the back panel of a liquid crystal display, layers of an insulating material and aluminum are suc- [52] 29/580 350/160 56/17 cessively deposited on the surface ofa semiconducting I 204/331 204/38 29/5921 5 substrate having an array of electrodes thereon. Open- ]IIL Cl alone
- i gs are then formed through the insulating material [58] Field of Search 29/578,580, 590, 591, the aluminum layer p086 the electrodes 592;:3550/160 204/33 A158; thereby defining a spacer lattice which is integral with v 156/17,, the substrate and whose walls are of a uniform height which corresponds to the desired spacing between the [56] Rderences Cited v "front and back panels of the liquid crystal display.
- the present invention relates generally to liquid crystal displays and more particularly to a method for fabricating the backplate for such displays having thereon spacers to maintain the thickness of the liquid crystal display uniform throughout.
- a further object of the present invention is to provide a method for fabricating liquid crystal display back panels with integral spacers thereon wherein the spacers are resistant to attack by the liquid crystal material, and may serve to shield electrically conductors that run to the electrodes.
- the above and other objects are accomplished by first forming an array of relective electrodes in spaced apart columns and rows on a surface of a substrate panel which is preferably a semiconducting wafer. This step may be preceded by several steps directed to the formation of a plurality of switching devices in the surface of the semiconducting substrate as described in the referenced patent application. Following the formation of the reflective electrodes there is deposited a layer of insulating material, preferably oxide, on top of the substrate surface and over the electrodes, after which an additional layer, preferably of aluminum, is deposited over the layer of insulating material.
- a layer of insulating material preferably oxide
- a two-layered spacer lattice is formed from the successively deposited layers by removing those portions of the layers which are over the central portions of the electrodes. Preferably, so much of the layers is removed as to expose all but the extreme perimeters of the array of electrodes, thereby providing a slight overlap of the two-layered lattice over the electrodes.
- the resulting structure .comprising the back panel having a plurality-of electrodes on its surface and a spacer lattice extending integrally from that surface, may then be used to complete the fabrication ofa liquid crystal display by adding a front transparent panel having a transparent electrode thereon and placing a nematic liquid crystal material between the front and back. panels.
- FIG. 1 is a perspective view of a liquid crystal display having a less desirable peripheral spacer between the front and back panels thereon;
- FIG. 2 is a cross section through the display illustrated in FIG. 1;
- FIG. 3 is a diagrammatic perspective view of a liquid crystal display incorporating the spacer lattice configurationproduced in accordance with the present invention
- FIG. 4 is a cross section through the display illustrated in FIG. 3'.
- FIGS. 5-13 are a series of plan views and cross sections therethrough illustrating a back panel fabricated in accordancewith the present invention at successive stages of such fabrication. 1
- FIGS. 1 and 2 a liquid crystal display of conventional construction is illustrated in FIGS. 1 and 2.
- a nematic liquid crystal material 11 is confined between back and front plates 13 and 15 by a peripherally extending spacer 17.
- An array of electrodes 19 is disposed on the surface of the backplate l3 and a transparent common electrode (not shown) is disposed on the inside surface of the transparent front plate 15. Desired images may be displayed by the selective actuation of desired ones of the array of electrodes 19 so as to establish an electric field between them and the front electrode across the liquid crystal material 11 lying between them.
- the particular theory of operation of liquid crystal displays is not of concern in this application but may be gleaned from the above referenced application which is hereby incorporated by reference.
- peripheral spacer 17 It is an inherent disadvantage of the peripheral spacer 17 that it permits the bowing of the front electrode carrying plate 15, thereby causing uneven electric fields to be applied across the width and length of the display. As a result, different field strengths will exist across the liquid crystal material'when various ones of the back electrodes 19 are energized, causing uneven changes in the appearance of the liquid crystal material across the display.
- FIGS. 3 and 4 The above shortcomings are minimized by the provision of a spacer lattice in the liquid crystal display illustrated schematically in FIGS. 3 and 4.
- the latter liquid crystal display is shown with the same components as those illustrated in FIGS. 1 and 2 except that in place of the peripherally extending spacer 17 there is provided a lattice whose walls crisscross the surface of the back panel 13 between the individual electrodes 19.
- the individual walls of the spacer lattice 21 include a base 23 which rises above the surfaces of the electrodes 19'and a top portion 25 whose heights are uniform relative to the surface of the backplate 13.
- the bases 23 are formed of an oxide layer which is particularly convenient to produce on top of the backplate 13 when that plate is made of silicon which is a preferable material for the backplate of the type disclosed in the above-referenced patent application. Because of the limitations which exist in the thickness to which such an oxide layer can be grown, it is preferable that the top portions of the walls of the lattice 21 be formed of a different material and aluminum which is already used in the process of fabricating Turning now to FIGS. -13, there will be next explained a method for fabricating the spacer lattice of FIGS. 3 and 4 in accordance with the present invention.
- the backplate I3 is preferably formed of a silicon substrate, typically in the form of a wafer about two inches in diameter. Alternatively, of course, the wafer may be square rather than circular in outline.
- the backplate 13 X and Y buslines or conductors 22 and 24 are also formed on the backplate 13 X and Y buslines or conductors 22 and 24. The purpose of the respective X bulines 22 is to conditionally enable all of the electrodes 19 in a row associated with a particular busline.
- each of the transistors 26 functions as an AND gate, it is represented by the conventional symbol for such a gate in FIG. 5.
- the switching transistors 26 may be formed in the manner described in detail in the referenced patent application in the body of the silicon backplate l3 and, since their fabrication is not a part of the present invention, it will not be described in detail herein.
- the transistors 26 are shown only schematically in FIG. 5 and are not shown physically either in that Figure or in FIG. 6, which is a cross section therethrough. It will be understood, however, that the switching transistors 26 are physically located in the surface of the backplate 13. Also disclosed in the referenced patent application is a technique for providing cross-under connections in the surface of the backplate 13 for either the X or the Y buslines 22 and 24. Thus, assuming that it is the X buslines 22 which are provided with such cross-under connections, a doped region is formed by conventional semiconductor doping techniques in the surface of the substrate 13 under those regions of the Y buslines 24 where they intersect 'the X buslines 22.
- Each of the X buslines 22 makes contact with the doped cross-under connection on both sides of the Y buslines to establish a continuous X bus conductor. Since the deposition of the aluminum conductors and electrodes 22, 24 and 19 are preceded by the formation of an oxide layer (not shown) in the process of forming the doped regions in the substrate which comprise the cross-under connectors, as well as the field effect transistors, the cross-under connections are prevented from directly connecting the X conductors 22 to the Y conductors 24.
- an insulating layer is deposited over the surface of the substrate 13 so as to cover both the surface and the electrodes 19.
- the insulating layer is a silicon dioxide film doped with phosphorus to effect a more uniform deposition.
- a thickness of 1.5 microns can be readily achieved in a horizontal resistance heated furnace at 450C, maintained for 30 minutes.
- the doped silicon dioxide layer is formed in the furnace by the decomposition of the SiH4 and doping of the oxide can be achieved by adding phosphine gas
- Other means of depositing the insulating layer, such as sputtering and evaporating, may also be employed.
- the usual thickness of the aluminum layer will be about four to eight microns, which with the L5 micron oxide layer 25 results in a total spacer height of5.5 to 9.5 microns.
- a typical spacing between adjacent walls of the spacer will be about 10 mils, or about 25 times the height of the spacer walls.
- Windows 29 are next opened to the reflective back electrodes 19.
- a photoresist layer is applied on top of the aluminum layer 27 and a suitable pattern in the photoresist layer is exposed after which the photoresist is developed, the exposed portions are removed, thereby exposing through openings 31 in the photoresist layer portions of the aluminum layer 27 corresponding to the windows 29 which are to be formed therethrough.
- the masked aluminum layer 27 is then exposed to an aluminum etchant which removes the exposed portions of the aluminum layer down to the bottom oxide-layer 25.
- the remainder of the photoresist mask is removed and the remaining aluminum pattern 33 is anodized so as to minimize any possible subsequent interaction between the aluminum pattern 33 and the liquid crystal material with which it will interface.
- Anodization is suitably performed electrolytically in a solution of tartaric acid (concentration 3% Ph adjusted to 5.5 Application of volts between the aluminum structure 33 and a negative electrode, both submerged in the tartaric acid solution, will result in an anodized layer of 2,100 angstroms.
- the exposed portions of the underlying oxide layer 25 are etched away in a solution of buffered hydrofluoric acid.
- This etchant will expose the central portion of each of the electrodes '19. In other words, the spacer lattice at its base overlaps the edges of the electrodes 19. v
- Liquid crystal material may now be placed on the backplate in the interstices of the spacer lattice, after which the top plate is secured in place.
- a method of fabricating a backplate with electrodes and integrated spacers for a liquid crystal display comprising the steps of:
- step of forming a lattice includes the steps of:
- a method of fabricating a backplate with electrodes and integrated spacers for a liquid crystal display comprising the steps of:
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Liquid Crystal (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US374444A US3863332A (en) | 1973-06-28 | 1973-06-28 | Method of fabricating back panel for liquid crystal display |
GB2614874A GB1434509A (en) | 1973-06-28 | 1974-06-12 | Method of fabricating a back panel for a liquid crystal display |
SE7408518A SE7408518L (enrdf_load_stackoverflow) | 1973-06-28 | 1974-06-27 | |
FR7422452A FR2235445A2 (enrdf_load_stackoverflow) | 1973-06-28 | 1974-06-27 | |
JP49073450A JPS5039095A (enrdf_load_stackoverflow) | 1973-06-28 | 1974-06-28 | |
US05/509,754 US3978580A (en) | 1973-06-28 | 1974-09-27 | Method of fabricating a liquid crystal display |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US374444A US3863332A (en) | 1973-06-28 | 1973-06-28 | Method of fabricating back panel for liquid crystal display |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/509,754 Division US3978580A (en) | 1973-06-28 | 1974-09-27 | Method of fabricating a liquid crystal display |
Publications (1)
Publication Number | Publication Date |
---|---|
US3863332A true US3863332A (en) | 1975-02-04 |
Family
ID=23476846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US374444A Expired - Lifetime US3863332A (en) | 1973-06-28 | 1973-06-28 | Method of fabricating back panel for liquid crystal display |
Country Status (5)
Country | Link |
---|---|
US (1) | US3863332A (enrdf_load_stackoverflow) |
JP (1) | JPS5039095A (enrdf_load_stackoverflow) |
FR (1) | FR2235445A2 (enrdf_load_stackoverflow) |
GB (1) | GB1434509A (enrdf_load_stackoverflow) |
SE (1) | SE7408518L (enrdf_load_stackoverflow) |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4097121A (en) * | 1975-09-22 | 1978-06-27 | Siemens Aktiengesellschaft | Liquid-crystal display with bistable cholesteric liquid-crystal layer and method of making the same |
US4148128A (en) * | 1971-08-31 | 1979-04-10 | Bernard Feldman | Liquid crystal display device and method of fabrication |
US4256382A (en) * | 1979-05-03 | 1981-03-17 | Hughes Aircraft Company | Liquid crystal devices having uniform thermal expansion coefficient components |
DE3113041A1 (de) * | 1980-04-01 | 1982-01-28 | Canon K.K., Tokyo | Verfahren und vorrichtung zur anzeige von informationen |
US4448491A (en) * | 1979-08-08 | 1984-05-15 | Canon Kabushiki Kaisha | Image display apparatus |
US4538884A (en) * | 1981-07-10 | 1985-09-03 | Canon Kabushiki Kaisha | Electro-optical device and method of operating same |
US4653858A (en) * | 1985-04-02 | 1987-03-31 | Thomson-Csf | Method of fabrication of diode-type control matrices for a flat electrooptical display screen and a flat screen constructed in accordance with said method |
US4763995A (en) * | 1983-04-28 | 1988-08-16 | Canon Kabushiki Kaisha | Spacers with alignment effect and substrates having a weak alignment effect |
US4834505A (en) * | 1986-02-21 | 1989-05-30 | The General Electric Company, P.L.C. | Matrix addressable displays |
US4838656A (en) * | 1980-10-06 | 1989-06-13 | Andus Corporation | Transparent electrode fabrication |
US4859623A (en) * | 1988-02-04 | 1989-08-22 | Amoco Corporation | Method of forming vertical gate thin film transistors in liquid crystal array |
US4874461A (en) * | 1986-08-20 | 1989-10-17 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing liquid crystal device with spacers formed by photolithography |
US5005951A (en) * | 1987-06-10 | 1991-04-09 | U.S. Philips Corporation | Liquid crystal display device |
US5238435A (en) * | 1987-06-10 | 1993-08-24 | U.S. Philips Corporation | Liquid crystal display device and method of manufacturing such a display device |
US5268782A (en) * | 1992-01-16 | 1993-12-07 | Minnesota Mining And Manufacturing Company | Micro-ridged, polymeric liquid crystal display substrate and display device |
US5504601A (en) * | 1992-07-15 | 1996-04-02 | Kabushiki Kaisha Toshiba | Liquid crystal dispaly apparatus with gap adjusting layers located between the display region and driver circuits |
US5515191A (en) * | 1994-05-31 | 1996-05-07 | Motorola, Inc. | Liquid crystal display having enhanced conductors and adhesive spacers |
US5556530A (en) * | 1995-06-05 | 1996-09-17 | Walter J. Finklestein | Flat panel display having improved electrode array |
US5729319A (en) * | 1995-04-04 | 1998-03-17 | Sharp Kabushiki Kaisha | Liquid crystal display device and method for fabricating the same |
US5751382A (en) * | 1993-04-27 | 1998-05-12 | Sharp Kabushiki Kaisha | Liquid crystal display input/output device |
US5766694A (en) * | 1997-05-29 | 1998-06-16 | Univ Kent State Ohio | Method for forming uniformly-spaced plastic substrate liquid crystal displays |
US5774107A (en) * | 1995-10-31 | 1998-06-30 | Sharp Kabushiki Kaisha | Display apparatus with input-functions |
US5929960A (en) * | 1997-10-17 | 1999-07-27 | Kent State University | Method for forming liquid crystal display cell walls using a patterned electric field |
US5952676A (en) * | 1986-08-20 | 1999-09-14 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal device and method for manufacturing same with spacers formed by photolithography |
US5978063A (en) * | 1997-04-15 | 1999-11-02 | Xerox Corporation | Smart spacers for active matrix liquid crystal projection light valves |
US6067134A (en) * | 1997-03-19 | 2000-05-23 | Kabushiki Kaisha Toshiba | Stacked cell liquid crystal display device with connectors piercing though upper cells |
US6154267A (en) * | 1996-04-05 | 2000-11-28 | Sharp Kabushiki Kaisha | Method of fabricating a liquid crystal display device including a liquid crystal region surrounded by a polymer material |
US6166797A (en) * | 1997-08-08 | 2000-12-26 | 3M Innovative Properties Company | Diffusion barrier layers with microstructured spacing members for liquid crystal display panel substrates |
US6351027B1 (en) * | 2000-02-29 | 2002-02-26 | Agilent Technologies, Inc. | Chip-mounted enclosure |
US6356248B1 (en) | 1993-03-04 | 2002-03-12 | Tektronix, Inc. | Spacers for use in an electro-optical addressing structure |
WO2002042833A3 (en) * | 2000-11-21 | 2002-08-22 | Sarnoff Corp | Electrode structure which supports self alignment of liquid deposition of materials |
US20030124931A1 (en) * | 2001-11-14 | 2003-07-03 | Polydisplay Asa | Display with micro pockets |
GB2396947A (en) * | 2002-12-31 | 2004-07-07 | Lg Philips Lcd Co Ltd | Reflective liquid crystal display device and fabrication method thereof |
US20060210704A1 (en) * | 1996-09-19 | 2006-09-21 | Seiko Epson Corporation | Method of manufacturing a display device |
GB2429822A (en) * | 2005-09-05 | 2007-03-07 | Chunghwa Picture Tubes Ltd | Spacers for a liquid crystal display panel |
US20070052910A1 (en) * | 2005-09-08 | 2007-03-08 | De-Jiun Li | Liquid crystal display panel |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2526598A1 (de) * | 1974-06-21 | 1976-01-08 | Paris Gray Charles W | Kunststeine und werkstoffgemische fuer ihre herstellung |
JPS5919997Y2 (ja) * | 1979-02-09 | 1984-06-09 | セイコーインスツルメンツ株式会社 | テ−プレコ−ダのテ−プ量表示装置 |
JPS5638008A (en) * | 1979-09-06 | 1981-04-13 | Canon Inc | Display cell |
FR2482344A1 (fr) | 1980-05-08 | 1981-11-13 | Tech Radioelect Electro Fs | Afficheur bidimensionnel a couche fluide commandee electriquement et son procede de fabrication |
JPS61261727A (ja) * | 1985-05-16 | 1986-11-19 | Canon Inc | レンズ鏡筒保持装置 |
FR2585162B1 (fr) * | 1985-07-19 | 1991-03-08 | Gen Electric | Structure de maintien d'ecartement d'une cellule et de blocage de lumiere pour affichages matriciels a cristaux liquides |
JP2669609B2 (ja) * | 1986-03-03 | 1997-10-29 | 旭化成工業株式会社 | 液晶表示素子 |
JPH0814666B2 (ja) * | 1987-03-16 | 1996-02-14 | 株式会社小糸製作所 | カラ−表示液晶表示装置 |
GB2315900B (en) * | 1996-07-26 | 2000-10-04 | Sharp Kk | Liquid crystal device |
US6266121B1 (en) * | 1996-11-28 | 2001-07-24 | Sharp Kabushiki Kaisha | Liquid crystal display element and method of manufacturing same |
GB2321718A (en) * | 1997-01-31 | 1998-08-05 | Nat Science Council | LIquid crystal display |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3481777A (en) * | 1967-02-17 | 1969-12-02 | Ibm | Electroless coating method for making printed circuits |
US3716290A (en) * | 1971-10-18 | 1973-02-13 | Commissariat Energie Atomique | Liquid-crystal display device |
US3756924A (en) * | 1971-04-01 | 1973-09-04 | Texas Instruments Inc | Method of fabricating a semiconductor device |
US3759798A (en) * | 1969-03-03 | 1973-09-18 | H Grafe | Method of producing electrically insulated aluminum contacts |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4966152A (enrdf_load_stackoverflow) * | 1972-10-26 | 1974-06-26 |
-
1973
- 1973-06-28 US US374444A patent/US3863332A/en not_active Expired - Lifetime
-
1974
- 1974-06-12 GB GB2614874A patent/GB1434509A/en not_active Expired
- 1974-06-27 SE SE7408518A patent/SE7408518L/xx unknown
- 1974-06-27 FR FR7422452A patent/FR2235445A2/fr active Pending
- 1974-06-28 JP JP49073450A patent/JPS5039095A/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3481777A (en) * | 1967-02-17 | 1969-12-02 | Ibm | Electroless coating method for making printed circuits |
US3759798A (en) * | 1969-03-03 | 1973-09-18 | H Grafe | Method of producing electrically insulated aluminum contacts |
US3756924A (en) * | 1971-04-01 | 1973-09-04 | Texas Instruments Inc | Method of fabricating a semiconductor device |
US3716290A (en) * | 1971-10-18 | 1973-02-13 | Commissariat Energie Atomique | Liquid-crystal display device |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4148128A (en) * | 1971-08-31 | 1979-04-10 | Bernard Feldman | Liquid crystal display device and method of fabrication |
US4097121A (en) * | 1975-09-22 | 1978-06-27 | Siemens Aktiengesellschaft | Liquid-crystal display with bistable cholesteric liquid-crystal layer and method of making the same |
US4256382A (en) * | 1979-05-03 | 1981-03-17 | Hughes Aircraft Company | Liquid crystal devices having uniform thermal expansion coefficient components |
US4448491A (en) * | 1979-08-08 | 1984-05-15 | Canon Kabushiki Kaisha | Image display apparatus |
DE3113041A1 (de) * | 1980-04-01 | 1982-01-28 | Canon K.K., Tokyo | Verfahren und vorrichtung zur anzeige von informationen |
US4470667A (en) * | 1980-04-01 | 1984-09-11 | Canon Kabushiki Kaisha | Display process and apparatus thereof incorporating overlapping of color filters |
USRE36161E (en) * | 1980-04-01 | 1999-03-23 | Canon Kabushiki Kaisha | Display process and apparatus thereof incorporating overlapping of color filters |
US4838656A (en) * | 1980-10-06 | 1989-06-13 | Andus Corporation | Transparent electrode fabrication |
US4538884A (en) * | 1981-07-10 | 1985-09-03 | Canon Kabushiki Kaisha | Electro-optical device and method of operating same |
US4763995A (en) * | 1983-04-28 | 1988-08-16 | Canon Kabushiki Kaisha | Spacers with alignment effect and substrates having a weak alignment effect |
US4653858A (en) * | 1985-04-02 | 1987-03-31 | Thomson-Csf | Method of fabrication of diode-type control matrices for a flat electrooptical display screen and a flat screen constructed in accordance with said method |
US4834505A (en) * | 1986-02-21 | 1989-05-30 | The General Electric Company, P.L.C. | Matrix addressable displays |
US6853431B2 (en) | 1986-08-20 | 2005-02-08 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal device and method for manufacturing same with spacers formed by photolithography |
US4874461A (en) * | 1986-08-20 | 1989-10-17 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing liquid crystal device with spacers formed by photolithography |
US20030071957A1 (en) * | 1986-08-20 | 2003-04-17 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal device and method for manufacturing same with spacers formed by photolithography |
US6493057B1 (en) | 1986-08-20 | 2002-12-10 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal device and method for manufacturing same with spacers formed by photolithography |
US5952676A (en) * | 1986-08-20 | 1999-09-14 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal device and method for manufacturing same with spacers formed by photolithography |
US5005951A (en) * | 1987-06-10 | 1991-04-09 | U.S. Philips Corporation | Liquid crystal display device |
US5238435A (en) * | 1987-06-10 | 1993-08-24 | U.S. Philips Corporation | Liquid crystal display device and method of manufacturing such a display device |
US5963288A (en) * | 1987-08-20 | 1999-10-05 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal device having sealant and spacers made from the same material |
US4859623A (en) * | 1988-02-04 | 1989-08-22 | Amoco Corporation | Method of forming vertical gate thin film transistors in liquid crystal array |
US5545280A (en) * | 1992-01-16 | 1996-08-13 | Minnesota Mining And Manufacturing Company | Method of selectively applying adhesive to protrusions on a substrate |
US5268782A (en) * | 1992-01-16 | 1993-12-07 | Minnesota Mining And Manufacturing Company | Micro-ridged, polymeric liquid crystal display substrate and display device |
US5504601A (en) * | 1992-07-15 | 1996-04-02 | Kabushiki Kaisha Toshiba | Liquid crystal dispaly apparatus with gap adjusting layers located between the display region and driver circuits |
US6356248B1 (en) | 1993-03-04 | 2002-03-12 | Tektronix, Inc. | Spacers for use in an electro-optical addressing structure |
US5751382A (en) * | 1993-04-27 | 1998-05-12 | Sharp Kabushiki Kaisha | Liquid crystal display input/output device |
US5515191A (en) * | 1994-05-31 | 1996-05-07 | Motorola, Inc. | Liquid crystal display having enhanced conductors and adhesive spacers |
US5729319A (en) * | 1995-04-04 | 1998-03-17 | Sharp Kabushiki Kaisha | Liquid crystal display device and method for fabricating the same |
US5556530A (en) * | 1995-06-05 | 1996-09-17 | Walter J. Finklestein | Flat panel display having improved electrode array |
US5774107A (en) * | 1995-10-31 | 1998-06-30 | Sharp Kabushiki Kaisha | Display apparatus with input-functions |
US6154267A (en) * | 1996-04-05 | 2000-11-28 | Sharp Kabushiki Kaisha | Method of fabricating a liquid crystal display device including a liquid crystal region surrounded by a polymer material |
US20060210704A1 (en) * | 1996-09-19 | 2006-09-21 | Seiko Epson Corporation | Method of manufacturing a display device |
US20090053396A1 (en) * | 1996-09-19 | 2009-02-26 | Seiko Epson Corporation | Matrix type display device and manufacturing method thereof |
US8431182B2 (en) | 1996-09-19 | 2013-04-30 | Seiko Epson Corporation | Matrix type display device and manufacturing method thereof |
US8580333B2 (en) | 1996-09-19 | 2013-11-12 | Seiko Epson Corporation | Matrix type display device with optical material at predetermined positions and manufacturing method thereof |
US6067134A (en) * | 1997-03-19 | 2000-05-23 | Kabushiki Kaisha Toshiba | Stacked cell liquid crystal display device with connectors piercing though upper cells |
US5978063A (en) * | 1997-04-15 | 1999-11-02 | Xerox Corporation | Smart spacers for active matrix liquid crystal projection light valves |
US5766694A (en) * | 1997-05-29 | 1998-06-16 | Univ Kent State Ohio | Method for forming uniformly-spaced plastic substrate liquid crystal displays |
US6166797A (en) * | 1997-08-08 | 2000-12-26 | 3M Innovative Properties Company | Diffusion barrier layers with microstructured spacing members for liquid crystal display panel substrates |
US5929960A (en) * | 1997-10-17 | 1999-07-27 | Kent State University | Method for forming liquid crystal display cell walls using a patterned electric field |
US6351027B1 (en) * | 2000-02-29 | 2002-02-26 | Agilent Technologies, Inc. | Chip-mounted enclosure |
US8593604B2 (en) | 2000-11-21 | 2013-11-26 | Transpacific Infinity, Llc | Electrode structure which supports self alignment of liquid deposition of materials |
WO2002042833A3 (en) * | 2000-11-21 | 2002-08-22 | Sarnoff Corp | Electrode structure which supports self alignment of liquid deposition of materials |
US6980272B1 (en) * | 2000-11-21 | 2005-12-27 | Sarnoff Corporation | Electrode structure which supports self alignment of liquid deposition of materials |
US20060077329A1 (en) * | 2000-11-21 | 2006-04-13 | Transpacific Ip, Ltd. | Electrode structure which supports self alignment of liquid deposition of materials |
US8339551B2 (en) | 2000-11-21 | 2012-12-25 | Transpacific Infinity, Llc | Electrode structure which supports self alignment of liquid deposition of materials |
US20030124931A1 (en) * | 2001-11-14 | 2003-07-03 | Polydisplay Asa | Display with micro pockets |
US6923701B2 (en) * | 2001-11-14 | 2005-08-02 | Polydisplay Asa | Display with micro pockets |
GB2396947B (en) * | 2002-12-31 | 2005-02-23 | Lg Philips Lcd Co Ltd | Reflective liquid crystal display device and fabricating method thereof |
GB2396947A (en) * | 2002-12-31 | 2004-07-07 | Lg Philips Lcd Co Ltd | Reflective liquid crystal display device and fabrication method thereof |
GB2429822B (en) * | 2005-09-05 | 2008-06-04 | Chunghwa Picture Tubes Ltd | Liquid crystal display panel |
GB2429822A (en) * | 2005-09-05 | 2007-03-07 | Chunghwa Picture Tubes Ltd | Spacers for a liquid crystal display panel |
US20070052910A1 (en) * | 2005-09-08 | 2007-03-08 | De-Jiun Li | Liquid crystal display panel |
Also Published As
Publication number | Publication date |
---|---|
GB1434509A (en) | 1976-05-05 |
SE7408518L (enrdf_load_stackoverflow) | 1974-12-30 |
FR2235445A2 (enrdf_load_stackoverflow) | 1975-01-24 |
JPS5039095A (enrdf_load_stackoverflow) | 1975-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3863332A (en) | Method of fabricating back panel for liquid crystal display | |
US3978580A (en) | Method of fabricating a liquid crystal display | |
US3861783A (en) | Liquid crystal display featuring self-adjusting mosaic panel | |
US4135959A (en) | Method of manufacture of flat panel display device | |
KR970003741B1 (ko) | 박막 트랜지스터 및 그 제조방법 | |
US4024626A (en) | Method of making integrated transistor matrix for flat panel liquid crystal display | |
US4409724A (en) | Method of fabricating display with semiconductor circuits on monolithic structure and flat panel display produced thereby | |
US5869351A (en) | Method of producing an electro-optical device | |
JPH0566013B2 (enrdf_load_stackoverflow) | ||
GB2077039A (en) | Method of making planar thin film transistors | |
US4816885A (en) | Thin-film transistor matrix for liquid crystal display | |
JPS59501562A (ja) | 薄膜トランジスタとコンデンサとを用いた表示スクリーンの製造方法 | |
JPH061314B2 (ja) | 薄膜トランジスタアレイ | |
US4944575A (en) | Electrooptical display screen and a method of fabrication of said screen | |
US4235001A (en) | Gas display panel fabrication method | |
JP3106566B2 (ja) | 液晶表示装置および製造方法 | |
US5453856A (en) | Liquid crystal display with gate lines connected with a doped semiconductor layer where they cross data lines | |
EP0020929A1 (en) | Improvements relating to field effect transistors | |
EP0314211B1 (en) | Display device including lateral schottky diodes | |
JPS61185724A (ja) | 薄膜トランジスタの製造方法 | |
EP0544069B1 (en) | Thin-film transistor panel and method of manufacturing the same | |
JPH02211429A (ja) | 液晶表示装置用の薄膜トランジスタとクロスオーバ構体およびその製造法 | |
JP3076483B2 (ja) | 金属配線基板の製造方法および薄膜ダイオードアレイの製造方法 | |
KR100267995B1 (ko) | 액정표시장치 및 그 제조방법 | |
JP2668935B2 (ja) | マトリクス型画像表示装置用半導体装置およびその製造方法 |