US3863332A - Method of fabricating back panel for liquid crystal display - Google Patents

Method of fabricating back panel for liquid crystal display Download PDF

Info

Publication number
US3863332A
US3863332A US374444A US37444473A US3863332A US 3863332 A US3863332 A US 3863332A US 374444 A US374444 A US 374444A US 37444473 A US37444473 A US 37444473A US 3863332 A US3863332 A US 3863332A
Authority
US
United States
Prior art keywords
electrodes
layer
aluminum
portions
liquid crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US374444A
Inventor
Alex M Leupp
Hans G Dill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Hughes Aircraft Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hughes Aircraft Co filed Critical Hughes Aircraft Co
Priority to US374444A priority Critical patent/US3863332A/en
Priority to GB2614874A priority patent/GB1434509A/en
Priority to SE7408518A priority patent/SE7408518L/xx
Priority to FR7422452A priority patent/FR2235445A2/fr
Priority to JP49073450A priority patent/JPS5039095A/ja
Priority to US05/509,754 priority patent/US3978580A/en
Application granted granted Critical
Publication of US3863332A publication Critical patent/US3863332A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13394Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Definitions

  • ABSTRACT In forming the back panel of a liquid crystal display, layers of an insulating material and aluminum are suc- [52] 29/580 350/160 56/17 cessively deposited on the surface ofa semiconducting I 204/331 204/38 29/5921 5 substrate having an array of electrodes thereon. Open- ]IIL Cl alone
  • i gs are then formed through the insulating material [58] Field of Search 29/578,580, 590, 591, the aluminum layer p086 the electrodes 592;:3550/160 204/33 A158; thereby defining a spacer lattice which is integral with v 156/17,, the substrate and whose walls are of a uniform height which corresponds to the desired spacing between the [56] Rderences Cited v "front and back panels of the liquid crystal display.
  • the present invention relates generally to liquid crystal displays and more particularly to a method for fabricating the backplate for such displays having thereon spacers to maintain the thickness of the liquid crystal display uniform throughout.
  • a further object of the present invention is to provide a method for fabricating liquid crystal display back panels with integral spacers thereon wherein the spacers are resistant to attack by the liquid crystal material, and may serve to shield electrically conductors that run to the electrodes.
  • the above and other objects are accomplished by first forming an array of relective electrodes in spaced apart columns and rows on a surface of a substrate panel which is preferably a semiconducting wafer. This step may be preceded by several steps directed to the formation of a plurality of switching devices in the surface of the semiconducting substrate as described in the referenced patent application. Following the formation of the reflective electrodes there is deposited a layer of insulating material, preferably oxide, on top of the substrate surface and over the electrodes, after which an additional layer, preferably of aluminum, is deposited over the layer of insulating material.
  • a layer of insulating material preferably oxide
  • a two-layered spacer lattice is formed from the successively deposited layers by removing those portions of the layers which are over the central portions of the electrodes. Preferably, so much of the layers is removed as to expose all but the extreme perimeters of the array of electrodes, thereby providing a slight overlap of the two-layered lattice over the electrodes.
  • the resulting structure .comprising the back panel having a plurality-of electrodes on its surface and a spacer lattice extending integrally from that surface, may then be used to complete the fabrication ofa liquid crystal display by adding a front transparent panel having a transparent electrode thereon and placing a nematic liquid crystal material between the front and back. panels.
  • FIG. 1 is a perspective view of a liquid crystal display having a less desirable peripheral spacer between the front and back panels thereon;
  • FIG. 2 is a cross section through the display illustrated in FIG. 1;
  • FIG. 3 is a diagrammatic perspective view of a liquid crystal display incorporating the spacer lattice configurationproduced in accordance with the present invention
  • FIG. 4 is a cross section through the display illustrated in FIG. 3'.
  • FIGS. 5-13 are a series of plan views and cross sections therethrough illustrating a back panel fabricated in accordancewith the present invention at successive stages of such fabrication. 1
  • FIGS. 1 and 2 a liquid crystal display of conventional construction is illustrated in FIGS. 1 and 2.
  • a nematic liquid crystal material 11 is confined between back and front plates 13 and 15 by a peripherally extending spacer 17.
  • An array of electrodes 19 is disposed on the surface of the backplate l3 and a transparent common electrode (not shown) is disposed on the inside surface of the transparent front plate 15. Desired images may be displayed by the selective actuation of desired ones of the array of electrodes 19 so as to establish an electric field between them and the front electrode across the liquid crystal material 11 lying between them.
  • the particular theory of operation of liquid crystal displays is not of concern in this application but may be gleaned from the above referenced application which is hereby incorporated by reference.
  • peripheral spacer 17 It is an inherent disadvantage of the peripheral spacer 17 that it permits the bowing of the front electrode carrying plate 15, thereby causing uneven electric fields to be applied across the width and length of the display. As a result, different field strengths will exist across the liquid crystal material'when various ones of the back electrodes 19 are energized, causing uneven changes in the appearance of the liquid crystal material across the display.
  • FIGS. 3 and 4 The above shortcomings are minimized by the provision of a spacer lattice in the liquid crystal display illustrated schematically in FIGS. 3 and 4.
  • the latter liquid crystal display is shown with the same components as those illustrated in FIGS. 1 and 2 except that in place of the peripherally extending spacer 17 there is provided a lattice whose walls crisscross the surface of the back panel 13 between the individual electrodes 19.
  • the individual walls of the spacer lattice 21 include a base 23 which rises above the surfaces of the electrodes 19'and a top portion 25 whose heights are uniform relative to the surface of the backplate 13.
  • the bases 23 are formed of an oxide layer which is particularly convenient to produce on top of the backplate 13 when that plate is made of silicon which is a preferable material for the backplate of the type disclosed in the above-referenced patent application. Because of the limitations which exist in the thickness to which such an oxide layer can be grown, it is preferable that the top portions of the walls of the lattice 21 be formed of a different material and aluminum which is already used in the process of fabricating Turning now to FIGS. -13, there will be next explained a method for fabricating the spacer lattice of FIGS. 3 and 4 in accordance with the present invention.
  • the backplate I3 is preferably formed of a silicon substrate, typically in the form of a wafer about two inches in diameter. Alternatively, of course, the wafer may be square rather than circular in outline.
  • the backplate 13 X and Y buslines or conductors 22 and 24 are also formed on the backplate 13 X and Y buslines or conductors 22 and 24. The purpose of the respective X bulines 22 is to conditionally enable all of the electrodes 19 in a row associated with a particular busline.
  • each of the transistors 26 functions as an AND gate, it is represented by the conventional symbol for such a gate in FIG. 5.
  • the switching transistors 26 may be formed in the manner described in detail in the referenced patent application in the body of the silicon backplate l3 and, since their fabrication is not a part of the present invention, it will not be described in detail herein.
  • the transistors 26 are shown only schematically in FIG. 5 and are not shown physically either in that Figure or in FIG. 6, which is a cross section therethrough. It will be understood, however, that the switching transistors 26 are physically located in the surface of the backplate 13. Also disclosed in the referenced patent application is a technique for providing cross-under connections in the surface of the backplate 13 for either the X or the Y buslines 22 and 24. Thus, assuming that it is the X buslines 22 which are provided with such cross-under connections, a doped region is formed by conventional semiconductor doping techniques in the surface of the substrate 13 under those regions of the Y buslines 24 where they intersect 'the X buslines 22.
  • Each of the X buslines 22 makes contact with the doped cross-under connection on both sides of the Y buslines to establish a continuous X bus conductor. Since the deposition of the aluminum conductors and electrodes 22, 24 and 19 are preceded by the formation of an oxide layer (not shown) in the process of forming the doped regions in the substrate which comprise the cross-under connectors, as well as the field effect transistors, the cross-under connections are prevented from directly connecting the X conductors 22 to the Y conductors 24.
  • an insulating layer is deposited over the surface of the substrate 13 so as to cover both the surface and the electrodes 19.
  • the insulating layer is a silicon dioxide film doped with phosphorus to effect a more uniform deposition.
  • a thickness of 1.5 microns can be readily achieved in a horizontal resistance heated furnace at 450C, maintained for 30 minutes.
  • the doped silicon dioxide layer is formed in the furnace by the decomposition of the SiH4 and doping of the oxide can be achieved by adding phosphine gas
  • Other means of depositing the insulating layer, such as sputtering and evaporating, may also be employed.
  • the usual thickness of the aluminum layer will be about four to eight microns, which with the L5 micron oxide layer 25 results in a total spacer height of5.5 to 9.5 microns.
  • a typical spacing between adjacent walls of the spacer will be about 10 mils, or about 25 times the height of the spacer walls.
  • Windows 29 are next opened to the reflective back electrodes 19.
  • a photoresist layer is applied on top of the aluminum layer 27 and a suitable pattern in the photoresist layer is exposed after which the photoresist is developed, the exposed portions are removed, thereby exposing through openings 31 in the photoresist layer portions of the aluminum layer 27 corresponding to the windows 29 which are to be formed therethrough.
  • the masked aluminum layer 27 is then exposed to an aluminum etchant which removes the exposed portions of the aluminum layer down to the bottom oxide-layer 25.
  • the remainder of the photoresist mask is removed and the remaining aluminum pattern 33 is anodized so as to minimize any possible subsequent interaction between the aluminum pattern 33 and the liquid crystal material with which it will interface.
  • Anodization is suitably performed electrolytically in a solution of tartaric acid (concentration 3% Ph adjusted to 5.5 Application of volts between the aluminum structure 33 and a negative electrode, both submerged in the tartaric acid solution, will result in an anodized layer of 2,100 angstroms.
  • the exposed portions of the underlying oxide layer 25 are etched away in a solution of buffered hydrofluoric acid.
  • This etchant will expose the central portion of each of the electrodes '19. In other words, the spacer lattice at its base overlaps the edges of the electrodes 19. v
  • Liquid crystal material may now be placed on the backplate in the interstices of the spacer lattice, after which the top plate is secured in place.
  • a method of fabricating a backplate with electrodes and integrated spacers for a liquid crystal display comprising the steps of:
  • step of forming a lattice includes the steps of:
  • a method of fabricating a backplate with electrodes and integrated spacers for a liquid crystal display comprising the steps of:

Abstract

In forming the back panel of a liquid crystal display, layers of an insulating material and aluminum are successively deposited on the surface of a semiconducting substrate having an array of electrodes thereon. Openings are then formed through the insulating material and the aluminum layer to expose the electrodes, thereby defining a spacer lattice which is integral with the substrate and whose walls are of a uniform height which corresponds to the desired spacing between the front and back panels of the liquid crystal display.

Description

XE? 3 a 863 9 332 f W V r Unlted states 11 3,863,332
Leupp et al.- I Feb.'4, 1975 I METHOItOF FABRICATING BACK PANEL 3,716,290 2/ 973 BOICI .Q 350/160 12c FOR LIQUID CRYSTAL DISpLAY 3,756,924 9/1973 Collins 204/38 A 1 3,759,798 9/1973 Graff....'.. 204/58 [75] Inventors: Alex'M. Leupp, Newport Beach;
. galn? G. DI, Costa Mesa, both of Primary Exammer Roy Lake a1 Assistant Examiner-W. C. Tupman [731- Assignee: Hughes Aircraft Company, Culver- Attorney, Agent, or Firm-W. l-I. MacAllister; E.
City, Calif.- 7 Szabo [22] Filed: June 28, 1973 1211 Appl. No.: 374,444- [57] ABSTRACT In forming the back panel of a liquid crystal display, layers of an insulating material and aluminum are suc- [52] 29/580 350/160 56/17 cessively deposited on the surface ofa semiconducting I 204/331 204/38 29/5921 5 substrate having an array of electrodes thereon. Open- ]IIL Cl..... B01] i gs are then formed through the insulating material [58] Field of Search 29/578,580, 590, 591, the aluminum layer p086 the electrodes 592;:3550/160 204/33 A158; thereby defining a spacer lattice which is integral with v 156/17,, the substrate and whose walls are of a uniform height which corresponds to the desired spacing between the [56] Rderences Cited v "front and back panels of the liquid crystal display.
UNITED STATES PATENTS i w I 3,481,777 12/1969" Spannhake 29/625 13 F'gures I5 25 l I l 1 I I I I *:1' v I a; 2| j \r 1 1 1 1 PATENTED FEB 4|975 SHEU 10F 4 Fig. 2. I PRIOR ART Fig. 1. PRIOR ART PATENTEDFEB 4.1915 3.863.332
SHEET 3!]? 4 PATENTEBFEB M975 3 86'3,332
SHEET UF 4 Fig. 12.
Fig. 13.
METHOD OF FABRICATING BACK PANEL FOR LIQUID CRYSTAL DISPLAY BACKGROUND OF THE INVENTION The present invention relates generally to liquid crystal displays and more particularly to a method for fabricating the backplate for such displays having thereon spacers to maintain the thickness of the liquid crystal display uniform throughout.
In copending application Ser. No. 352,397 filed by Hans G. Dill, et al, on Apr. 18, 1973, and entitled Liquid Crystal Display System with Integrated Signal Storage Circuitry, there is described a liquid crystal display panel having a plurality of spacers between the back and front panels of the liquid crystal display. The purpose of these spacers is to maintain auniform spacing between the front and back panels of the liquid crystal display. One of the features of the invention described in the referenced application is the provision of addressing circuitry which is fabricated in the back panel of the display, which for this purpose is a semiconducting wafer.
It is a principal object of the present invention to provide a method for the fabrication of spacers of the type disclosed in the referenced patent application which method is compatible with the steps required to fabricate liquid display panels of the type therein described.
It is a related object of the invention to provide a method for the fabrication of back panels for liquid crystal displays with spacers which are accurately located with respect to an array of electrodes, also on the back panel.
A further object of the present invention is to provide a method for fabricating liquid crystal display back panels with integral spacers thereon wherein the spacers are resistant to attack by the liquid crystal material, and may serve to shield electrically conductors that run to the electrodes.
In accordance with the invention the above and other objects are accomplished by first forming an array of relective electrodes in spaced apart columns and rows on a surface of a substrate panel which is preferably a semiconducting wafer. This step may be preceded by several steps directed to the formation of a plurality of switching devices in the surface of the semiconducting substrate as described in the referenced patent application. Following the formation of the reflective electrodes there is deposited a layer of insulating material, preferably oxide, on top of the substrate surface and over the electrodes, after which an additional layer, preferably of aluminum, is deposited over the layer of insulating material. A two-layered spacer lattice is formed from the successively deposited layers by removing those portions of the layers which are over the central portions of the electrodes. Preferably, so much of the layers is removed as to expose all but the extreme perimeters of the array of electrodes, thereby providing a slight overlap of the two-layered lattice over the electrodes. The resulting structure, .comprising the back panel having a plurality-of electrodes on its surface and a spacer lattice extending integrally from that surface, may then be used to complete the fabrication ofa liquid crystal display by adding a front transparent panel having a transparent electrode thereon and placing a nematic liquid crystal material between the front and back. panels. Further objects and features of the invention will become apparent from the following description and drawings in which:
FIG. 1 is a perspective view of a liquid crystal display having a less desirable peripheral spacer between the front and back panels thereon;
FIG. 2 is a cross section through the display illustrated in FIG. 1;
FIG. 3 is a diagrammatic perspective view of a liquid crystal display incorporating the spacer lattice configurationproduced in accordance with the present invention;
FIG. 4 is a cross section through the display illustrated in FIG. 3', and
FIGS. 5-13 are a series of plan views and cross sections therethrough illustrating a back panel fabricated in accordancewith the present invention at successive stages of such fabrication. 1
Referring now to the figures, a liquid crystal display of conventional construction is illustrated in FIGS. 1 and 2. A nematic liquid crystal material 11 is confined between back and front plates 13 and 15 by a peripherally extending spacer 17. An array of electrodes 19 is disposed on the surface of the backplate l3 and a transparent common electrode (not shown) is disposed on the inside surface of the transparent front plate 15. Desired images may be displayed by the selective actuation of desired ones of the array of electrodes 19 so as to establish an electric field between them and the front electrode across the liquid crystal material 11 lying between them. The particular theory of operation of liquid crystal displays is not of concern in this application but may be gleaned from the above referenced application which is hereby incorporated by reference.
It is an inherent disadvantage of the peripheral spacer 17 that it permits the bowing of the front electrode carrying plate 15, thereby causing uneven electric fields to be applied across the width and length of the display. As a result, different field strengths will exist across the liquid crystal material'when various ones of the back electrodes 19 are energized, causing uneven changes in the appearance of the liquid crystal material across the display.
The above shortcomings are minimized by the provision of a spacer lattice in the liquid crystal display illustrated schematically in FIGS. 3 and 4. The latter liquid crystal display is shown with the same components as those illustrated in FIGS. 1 and 2 except that in place of the peripherally extending spacer 17 there is provided a lattice whose walls crisscross the surface of the back panel 13 between the individual electrodes 19. As best seen in FIG. 4, the individual walls of the spacer lattice 21 include a base 23 which rises above the surfaces of the electrodes 19'and a top portion 25 whose heights are uniform relative to the surface of the backplate 13. Preferably, the bases 23 are formed of an oxide layer which is particularly convenient to produce on top of the backplate 13 when that plate is made of silicon which is a preferable material for the backplate of the type disclosed in the above-referenced patent application. Because of the limitations which exist in the thickness to which such an oxide layer can be grown, it is preferable that the top portions of the walls of the lattice 21 be formed of a different material and aluminum which is already used in the process of fabricating Turning now to FIGS. -13, there will be next explained a method for fabricating the spacer lattice of FIGS. 3 and 4 in accordance with the present invention.
Prior to the fabrication of the spacer lattice, there is first formed on a suitable backplate 13 an array of electrodes 19. As described in the above-referenced patent application, the backplate I3 is preferably formed of a silicon substrate, typically in the form of a wafer about two inches in diameter. Alternatively, of course, the wafer may be square rather than circular in outline. In addition to forming an array of electrodes 19, arranged in columns and rows as shown in FIGS. 5 and 6, there are also formed on the backplate 13 X and Y buslines or conductors 22 and 24. The purpose of the respective X bulines 22 is to conditionally enable all of the electrodes 19 in a row associated with a particular busline. Similarly, it is the purpose of the respective Y buslines 24 to conditionally enable all of the electrodes 19 in a particular column associated with a particular y busline. Thus, when a particular pair of X and Y buslines 22 and 24 is energized, this will cause a unique one of the electrodes 19 to be actuated. This is accomplished by providing a switching transistor 26 for each electrode 19. Since each of the transistors 26 functions as an AND gate, it is represented by the conventional symbol for such a gate in FIG. 5. The switching transistors 26 may be formed in the manner described in detail in the referenced patent application in the body of the silicon backplate l3 and, since their fabrication is not a part of the present invention, it will not be described in detail herein. Briefly, however, the process described in the referenced patent application produces field effect transistors in the surface of the backplate 13, each of these transistors having a source connected to its associated electrode 19, a drain connected to one of the X and Y buslines 22 and 24, and a gate connected to the other one of the buslines 22 and 24. Thus, by energizing a particular pair of buslines 22 and 24, the necessary connections are made to the gate and drain of a particular transistor 26 to complete a circuit through that transistor to the electrode 19 with which it is associated.
The transistors 26 are shown only schematically in FIG. 5 and are not shown physically either in that Figure or in FIG. 6, which is a cross section therethrough. It will be understood, however, that the switching transistors 26 are physically located in the surface of the backplate 13. Also disclosed in the referenced patent application is a technique for providing cross-under connections in the surface of the backplate 13 for either the X or the Y buslines 22 and 24. Thus, assuming that it is the X buslines 22 which are provided with such cross-under connections, a doped region is formed by conventional semiconductor doping techniques in the surface of the substrate 13 under those regions of the Y buslines 24 where they intersect 'the X buslines 22. Each of the X buslines 22 makes contact with the doped cross-under connection on both sides of the Y buslines to establish a continuous X bus conductor. Since the deposition of the aluminum conductors and electrodes 22, 24 and 19 are preceded by the formation of an oxide layer (not shown) in the process of forming the doped regions in the substrate which comprise the cross-under connectors, as well as the field effect transistors, the cross-under connections are prevented from directly connecting the X conductors 22 to the Y conductors 24. Contact between the X conductors 22 and their respective doped cross-under connections is established by etching through the oxide layer above these doped cross-under connections so that when the metal layers, including the bus conductors 22 are formed, they extend down to the cross-under connectors to establish contact with them.
Returning now to the description of the present invention, after the formation of the display electrodes 19 and their associated buslines 22 and 24, an insulating layer is deposited over the surface of the substrate 13 so as to cover both the surface and the electrodes 19. Preferably the insulating layer is a silicon dioxide film doped with phosphorus to effect a more uniform deposition. A thickness of 1.5 microns can be readily achieved in a horizontal resistance heated furnace at 450C, maintained for 30 minutes. The doped silicon dioxide layer is formed in the furnace by the decomposition of the SiH4 and doping of the oxide can be achieved by adding phosphine gas Other means of depositing the insulating layer, such as sputtering and evaporating, may also be employed.
There is next evaporated a layer of aluminum 27 on top of the doped oxide layer 25.-As will become apparent shortly, it is the total thickness of the two layers 25 and 27 which ultimately determines the total thickness of the liquid crystal display device in which the fabricated assembly will be incorporated. The optimum cell thickness and therefore the optimum spacing between the back electrodes 19 and the electrode carried by the front plate 15 depends on the particular application for which the display device is to be used. One of the advantages of the present invention is that whatever is the desired thickness it can be readily achieved by varying the thickness of the aluminum layer 27, since the evaporation process can be controlled within the required tolerances without difficulty. since front to back spacing of 6 to 10 microns is typical, the usual thickness of the aluminum layer will be about four to eight microns, which with the L5 micron oxide layer 25 results in a total spacer height of5.5 to 9.5 microns. In comparison a typical spacing between adjacent walls of the spacer will be about 10 mils, or about 25 times the height of the spacer walls.
Windows 29 are next opened to the reflective back electrodes 19. For this purpose, a photoresist layer is applied on top of the aluminum layer 27 and a suitable pattern in the photoresist layer is exposed after which the photoresist is developed, the exposed portions are removed, thereby exposing through openings 31 in the photoresist layer portions of the aluminum layer 27 corresponding to the windows 29 which are to be formed therethrough. The masked aluminum layer 27 is then exposed to an aluminum etchant which removes the exposed portions of the aluminum layer down to the bottom oxide-layer 25.
Next the remainder of the photoresist mask is removed and the remaining aluminum pattern 33 is anodized so as to minimize any possible subsequent interaction between the aluminum pattern 33 and the liquid crystal material with which it will interface. Anodization is suitably performed electrolytically in a solution of tartaric acid (concentration 3% Ph adjusted to 5.5 Application of volts between the aluminum structure 33 and a negative electrode, both submerged in the tartaric acid solution, will result in an anodized layer of 2,100 angstroms.
Finally, using the anodized aluminum layer 35 as a mask, the exposed portions of the underlying oxide layer 25 are etched away in a solution of buffered hydrofluoric acid. This etchant will expose the central portion of each of the electrodes '19. In other words, the spacer lattice at its base overlaps the edges of the electrodes 19. v
This completes the fabrication'of the backplate and its integrated spacer lattice. Liquid crystal material may now be placed on the backplate in the interstices of the spacer lattice, after which the top plate is secured in place.
What has been described in a-preferred method for fabricating an integrated spacer lattice for the backplate of a liquid crystal cell; Modifications of the invention will readily occur to those skilled in the art having the benefit of the above description. For example, other materials may be used in place of those given above for the two layers 25 and 27. Moreover, a single layer of an insulating material which can be grown to satisfy the heightrequirements for the spacer lattice can be used. -Such a material might, for example, be polycrystalline silicon. Moreover, whereas there have been shown an array of electrodes arranged on the backplate of a liquid crystal cell in columns and rows, it is apparent that the method of the presentinvention for fabricating a spacer lattice structure for such a backplate could be employed with-equal benefits with a different arrangement of such electrodes. Generally, it will be true that such a spacer lattice and method disclosed therefor'will be found useful wherever there are a plurality of electrodes spaced from one anotheron the backplate of the liquid crystal cell regardless of the geometrical configuration into which its distribution may fall.
We claim:
l. A method of fabricating a backplate with electrodes and integrated spacers for a liquid crystal display comprising the steps of:
a. forming an array of reflective electrodes in spaced apart columns and rows on a surface of a substrate,
b. depositing an oxide layer on said surface and over said electrodes,
c. depositing an aluminum layer over said oxide layer, and
d. forming a two-layered lattice extending from the spaces between said columnsand rows of electrodes by removing those portions of said layers which are over the central portions of said electrodes and anodizing the aluminum portions of said two-layered lattice prior to removing the portions of the oxide layer.
2. The method of claim 1 characterized further in that said step of forming a lattice includes the steps of:
a. forming a grid-shaped mask upon said aluminum layer, said mask covering the aluminum layer above thespaces between said columns and rows of electrodes and exposing the aluminum layer above at least the central portion of said electrodes,
b. etching away the exposed portions of said aluminum layer with an etchant which does not attack said oxide layer, thereby exposing those portions of said oxide layer which lie aboveat least the central portion of said electrodes,
c. anodizing the remaining portions of said aluminum layer, and
d. using said anodized aluminum portions as a mask, etching away the exposed portions of said oxide layer with an etchant which does not attack anodized aluminum.
3. A method of fabricating a backplate with electrodes and integrated spacers for a liquid crystal display comprising the steps of:
a. forming a plurality of electrodes on a surface of a substrate by depositing aluminum upon said substrate and etching away portions thereof,
b. forming a multi-layer on said substrate and over said electrodes by successively forming an oxide layer and an aluminum layer on said substrate, and
c. converting said multi-layer into a plurality of spaced apart walls of equal height by successively etching through said aluminum layer and said oxide layer so as to expose said central portions of said plurality of electrodes, said aluminum layer being anodized after it has been etched but prior to the etching of said oxide layer, so as to make said aluminum layer resistant to attack by nematic liquid crystal material.

Claims (3)

1. A METHOD OF FABRICATING A BACKPLATE WITH ELECTRODES AND INTEGRATED SPACERS FOR A LIQUID CRYSTAL DISPLAY COMPRISING THE STEPS OF: A. FORMING AN ARRAY OF REFLECTIVE ELECTRODES IN SAPCED APART COLUMNS AND ROWS ON A SURFACE OF A SUBSTRATE, B. DEPOSITION AN OXIDE LAYER ON SAID SURFACE AND OVER SAID ELECTRODES, C. DEPOSITING AN ALUMINIUM LAYER OVER SAID OXIDE LAYER, AND D. FORMING A TWO-LAYERED LATTICE EXTENDING FROM THE SPACES BETWEEN SAID COLUMNS AND ROWS OF ELECTRODES BY REMOVING THOSE PORTIONS OF SAID LAYERS WHICH ARE OVER THE CENTRAL PORTIONS OF SAID ELECTRODES AND ANODIZING THE ALUMINIUM PORTIONS OF SAID TWO-LAYERED LATTICE PRIOR TO REMOVING THE PORTIONS OF THE OXIDE LAYER.
2. The method of claim 1 characterized further in that said step of forming a lattice includes the steps of: a. forming a grid-shaped mask upon said aluminum layer, said mask covering the aluminum layer above the spaces between said columns and rows of electrodes and exposing the aluminum layer above at least the central portion of said electrodes, b. etching away the exposed portions of said aluminum layer with an etchant which does not attack said oxide layer, thereby exposing those portions of said oxide layer which lie above at least the central portion of said electrodes, c. anodizing the remaining portions of said aluminum layer, and d. using said anodized aluminum portions as a mask, etching away the exposed portions of said oxide layer with an etchant which does not attack anodized aluminum.
3. A method of fabricating a backplate with electrodes and integrated spacers for a liquid crystal display comprising the steps of: a. forming a plurality of electrodes on a surface of a substrate by depositing aluminum upon said substrate and etching away portions thereof, b. forming a multi-layer on said substrate and over said electrodes by successively forming an oxide layer and an aluminum layer on said substrate, and c. converting said multi-layer into a plurality of spaced apart walls of equal height by successively etching through said aluminum layer and said oxide layer so as to expose said central portions of said plurality of electrodes, said aluminum layer being anodized after it has been etched but prior to the etching of said oxide layer, so as to make said aluminum layer resistant to attack by nematic liquid crystal material.
US374444A 1973-06-28 1973-06-28 Method of fabricating back panel for liquid crystal display Expired - Lifetime US3863332A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US374444A US3863332A (en) 1973-06-28 1973-06-28 Method of fabricating back panel for liquid crystal display
GB2614874A GB1434509A (en) 1973-06-28 1974-06-12 Method of fabricating a back panel for a liquid crystal display
SE7408518A SE7408518L (en) 1973-06-28 1974-06-27
FR7422452A FR2235445A2 (en) 1973-06-28 1974-06-27
JP49073450A JPS5039095A (en) 1973-06-28 1974-06-28
US05/509,754 US3978580A (en) 1973-06-28 1974-09-27 Method of fabricating a liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US374444A US3863332A (en) 1973-06-28 1973-06-28 Method of fabricating back panel for liquid crystal display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/509,754 Division US3978580A (en) 1973-06-28 1974-09-27 Method of fabricating a liquid crystal display

Publications (1)

Publication Number Publication Date
US3863332A true US3863332A (en) 1975-02-04

Family

ID=23476846

Family Applications (1)

Application Number Title Priority Date Filing Date
US374444A Expired - Lifetime US3863332A (en) 1973-06-28 1973-06-28 Method of fabricating back panel for liquid crystal display

Country Status (5)

Country Link
US (1) US3863332A (en)
JP (1) JPS5039095A (en)
FR (1) FR2235445A2 (en)
GB (1) GB1434509A (en)
SE (1) SE7408518L (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4097121A (en) * 1975-09-22 1978-06-27 Siemens Aktiengesellschaft Liquid-crystal display with bistable cholesteric liquid-crystal layer and method of making the same
US4148128A (en) * 1971-08-31 1979-04-10 Bernard Feldman Liquid crystal display device and method of fabrication
US4256382A (en) * 1979-05-03 1981-03-17 Hughes Aircraft Company Liquid crystal devices having uniform thermal expansion coefficient components
DE3113041A1 (en) * 1980-04-01 1982-01-28 Canon K.K., Tokyo METHOD AND DEVICE FOR DISPLAYING INFORMATION
US4448491A (en) * 1979-08-08 1984-05-15 Canon Kabushiki Kaisha Image display apparatus
US4538884A (en) * 1981-07-10 1985-09-03 Canon Kabushiki Kaisha Electro-optical device and method of operating same
US4653858A (en) * 1985-04-02 1987-03-31 Thomson-Csf Method of fabrication of diode-type control matrices for a flat electrooptical display screen and a flat screen constructed in accordance with said method
US4763995A (en) * 1983-04-28 1988-08-16 Canon Kabushiki Kaisha Spacers with alignment effect and substrates having a weak alignment effect
US4834505A (en) * 1986-02-21 1989-05-30 The General Electric Company, P.L.C. Matrix addressable displays
US4838656A (en) * 1980-10-06 1989-06-13 Andus Corporation Transparent electrode fabrication
US4859623A (en) * 1988-02-04 1989-08-22 Amoco Corporation Method of forming vertical gate thin film transistors in liquid crystal array
US4874461A (en) * 1986-08-20 1989-10-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing liquid crystal device with spacers formed by photolithography
US5005951A (en) * 1987-06-10 1991-04-09 U.S. Philips Corporation Liquid crystal display device
US5238435A (en) * 1987-06-10 1993-08-24 U.S. Philips Corporation Liquid crystal display device and method of manufacturing such a display device
US5268782A (en) * 1992-01-16 1993-12-07 Minnesota Mining And Manufacturing Company Micro-ridged, polymeric liquid crystal display substrate and display device
US5504601A (en) * 1992-07-15 1996-04-02 Kabushiki Kaisha Toshiba Liquid crystal dispaly apparatus with gap adjusting layers located between the display region and driver circuits
US5515191A (en) * 1994-05-31 1996-05-07 Motorola, Inc. Liquid crystal display having enhanced conductors and adhesive spacers
US5556530A (en) * 1995-06-05 1996-09-17 Walter J. Finklestein Flat panel display having improved electrode array
US5729319A (en) * 1995-04-04 1998-03-17 Sharp Kabushiki Kaisha Liquid crystal display device and method for fabricating the same
US5751382A (en) * 1993-04-27 1998-05-12 Sharp Kabushiki Kaisha Liquid crystal display input/output device
US5766694A (en) * 1997-05-29 1998-06-16 Univ Kent State Ohio Method for forming uniformly-spaced plastic substrate liquid crystal displays
US5774107A (en) * 1995-10-31 1998-06-30 Sharp Kabushiki Kaisha Display apparatus with input-functions
US5929960A (en) * 1997-10-17 1999-07-27 Kent State University Method for forming liquid crystal display cell walls using a patterned electric field
US5952676A (en) * 1986-08-20 1999-09-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device and method for manufacturing same with spacers formed by photolithography
US5978063A (en) * 1997-04-15 1999-11-02 Xerox Corporation Smart spacers for active matrix liquid crystal projection light valves
US6067134A (en) * 1997-03-19 2000-05-23 Kabushiki Kaisha Toshiba Stacked cell liquid crystal display device with connectors piercing though upper cells
US6154267A (en) * 1996-04-05 2000-11-28 Sharp Kabushiki Kaisha Method of fabricating a liquid crystal display device including a liquid crystal region surrounded by a polymer material
US6166797A (en) * 1997-08-08 2000-12-26 3M Innovative Properties Company Diffusion barrier layers with microstructured spacing members for liquid crystal display panel substrates
US6351027B1 (en) * 2000-02-29 2002-02-26 Agilent Technologies, Inc. Chip-mounted enclosure
US6356248B1 (en) 1993-03-04 2002-03-12 Tektronix, Inc. Spacers for use in an electro-optical addressing structure
WO2002042833A3 (en) * 2000-11-21 2002-08-22 Sarnoff Corp Electrode structure which supports self alignment of liquid deposition of materials
US20030124931A1 (en) * 2001-11-14 2003-07-03 Polydisplay Asa Display with micro pockets
GB2396947A (en) * 2002-12-31 2004-07-07 Lg Philips Lcd Co Ltd Reflective liquid crystal display device and fabrication method thereof
US20060210704A1 (en) * 1996-09-19 2006-09-21 Seiko Epson Corporation Method of manufacturing a display device
GB2429822A (en) * 2005-09-05 2007-03-07 Chunghwa Picture Tubes Ltd Spacers for a liquid crystal display panel
US20070052910A1 (en) * 2005-09-08 2007-03-08 De-Jiun Li Liquid crystal display panel

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5191936A (en) * 1974-06-21 1976-08-12
JPS5919997Y2 (en) * 1979-02-09 1984-06-09 セイコーインスツルメンツ株式会社 Tape amount display device for tape recorder
JPS5638008A (en) * 1979-09-06 1981-04-13 Canon Inc Display cell
FR2482344A1 (en) * 1980-05-08 1981-11-13 Tech Radioelect Electro Fs TWO-DIMENSIONAL DISPLAY WITH ELECTRICALLY CONTROLLED FLUID LAYER AND METHOD OF MANUFACTURING THE SAME
JPS61261727A (en) * 1985-05-16 1986-11-19 Canon Inc Device for holding lens barrel
FR2585162B1 (en) * 1985-07-19 1991-03-08 Gen Electric CELL SPACER HOLDING AND LIGHT LOCKING STRUCTURE FOR LIQUID CRYSTAL MATRIX DISPLAYS
JP2669609B2 (en) * 1986-03-03 1997-10-29 旭化成工業株式会社 Liquid crystal display device
JPH0814666B2 (en) * 1987-03-16 1996-02-14 株式会社小糸製作所 Color display liquid crystal display device
GB2347006B (en) * 1996-07-26 2000-10-04 Sharp Kk Liquid crystal device
US6266121B1 (en) * 1996-11-28 2001-07-24 Sharp Kabushiki Kaisha Liquid crystal display element and method of manufacturing same
GB2321718A (en) * 1997-01-31 1998-08-05 Nat Science Council LIquid crystal display

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3481777A (en) * 1967-02-17 1969-12-02 Ibm Electroless coating method for making printed circuits
US3716290A (en) * 1971-10-18 1973-02-13 Commissariat Energie Atomique Liquid-crystal display device
US3756924A (en) * 1971-04-01 1973-09-04 Texas Instruments Inc Method of fabricating a semiconductor device
US3759798A (en) * 1969-03-03 1973-09-18 H Grafe Method of producing electrically insulated aluminum contacts

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4966152A (en) * 1972-10-26 1974-06-26

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3481777A (en) * 1967-02-17 1969-12-02 Ibm Electroless coating method for making printed circuits
US3759798A (en) * 1969-03-03 1973-09-18 H Grafe Method of producing electrically insulated aluminum contacts
US3756924A (en) * 1971-04-01 1973-09-04 Texas Instruments Inc Method of fabricating a semiconductor device
US3716290A (en) * 1971-10-18 1973-02-13 Commissariat Energie Atomique Liquid-crystal display device

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148128A (en) * 1971-08-31 1979-04-10 Bernard Feldman Liquid crystal display device and method of fabrication
US4097121A (en) * 1975-09-22 1978-06-27 Siemens Aktiengesellschaft Liquid-crystal display with bistable cholesteric liquid-crystal layer and method of making the same
US4256382A (en) * 1979-05-03 1981-03-17 Hughes Aircraft Company Liquid crystal devices having uniform thermal expansion coefficient components
US4448491A (en) * 1979-08-08 1984-05-15 Canon Kabushiki Kaisha Image display apparatus
DE3113041A1 (en) * 1980-04-01 1982-01-28 Canon K.K., Tokyo METHOD AND DEVICE FOR DISPLAYING INFORMATION
US4470667A (en) * 1980-04-01 1984-09-11 Canon Kabushiki Kaisha Display process and apparatus thereof incorporating overlapping of color filters
USRE36161E (en) * 1980-04-01 1999-03-23 Canon Kabushiki Kaisha Display process and apparatus thereof incorporating overlapping of color filters
US4838656A (en) * 1980-10-06 1989-06-13 Andus Corporation Transparent electrode fabrication
US4538884A (en) * 1981-07-10 1985-09-03 Canon Kabushiki Kaisha Electro-optical device and method of operating same
US4763995A (en) * 1983-04-28 1988-08-16 Canon Kabushiki Kaisha Spacers with alignment effect and substrates having a weak alignment effect
US4653858A (en) * 1985-04-02 1987-03-31 Thomson-Csf Method of fabrication of diode-type control matrices for a flat electrooptical display screen and a flat screen constructed in accordance with said method
US4834505A (en) * 1986-02-21 1989-05-30 The General Electric Company, P.L.C. Matrix addressable displays
US6853431B2 (en) 1986-08-20 2005-02-08 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device and method for manufacturing same with spacers formed by photolithography
US4874461A (en) * 1986-08-20 1989-10-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing liquid crystal device with spacers formed by photolithography
US20030071957A1 (en) * 1986-08-20 2003-04-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device and method for manufacturing same with spacers formed by photolithography
US6493057B1 (en) 1986-08-20 2002-12-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device and method for manufacturing same with spacers formed by photolithography
US5952676A (en) * 1986-08-20 1999-09-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device and method for manufacturing same with spacers formed by photolithography
US5005951A (en) * 1987-06-10 1991-04-09 U.S. Philips Corporation Liquid crystal display device
US5238435A (en) * 1987-06-10 1993-08-24 U.S. Philips Corporation Liquid crystal display device and method of manufacturing such a display device
US5963288A (en) * 1987-08-20 1999-10-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device having sealant and spacers made from the same material
US4859623A (en) * 1988-02-04 1989-08-22 Amoco Corporation Method of forming vertical gate thin film transistors in liquid crystal array
US5545280A (en) * 1992-01-16 1996-08-13 Minnesota Mining And Manufacturing Company Method of selectively applying adhesive to protrusions on a substrate
US5268782A (en) * 1992-01-16 1993-12-07 Minnesota Mining And Manufacturing Company Micro-ridged, polymeric liquid crystal display substrate and display device
US5504601A (en) * 1992-07-15 1996-04-02 Kabushiki Kaisha Toshiba Liquid crystal dispaly apparatus with gap adjusting layers located between the display region and driver circuits
US6356248B1 (en) 1993-03-04 2002-03-12 Tektronix, Inc. Spacers for use in an electro-optical addressing structure
US5751382A (en) * 1993-04-27 1998-05-12 Sharp Kabushiki Kaisha Liquid crystal display input/output device
US5515191A (en) * 1994-05-31 1996-05-07 Motorola, Inc. Liquid crystal display having enhanced conductors and adhesive spacers
US5729319A (en) * 1995-04-04 1998-03-17 Sharp Kabushiki Kaisha Liquid crystal display device and method for fabricating the same
US5556530A (en) * 1995-06-05 1996-09-17 Walter J. Finklestein Flat panel display having improved electrode array
US5774107A (en) * 1995-10-31 1998-06-30 Sharp Kabushiki Kaisha Display apparatus with input-functions
US6154267A (en) * 1996-04-05 2000-11-28 Sharp Kabushiki Kaisha Method of fabricating a liquid crystal display device including a liquid crystal region surrounded by a polymer material
US20060210704A1 (en) * 1996-09-19 2006-09-21 Seiko Epson Corporation Method of manufacturing a display device
US20090053396A1 (en) * 1996-09-19 2009-02-26 Seiko Epson Corporation Matrix type display device and manufacturing method thereof
US8431182B2 (en) 1996-09-19 2013-04-30 Seiko Epson Corporation Matrix type display device and manufacturing method thereof
US8580333B2 (en) 1996-09-19 2013-11-12 Seiko Epson Corporation Matrix type display device with optical material at predetermined positions and manufacturing method thereof
US6067134A (en) * 1997-03-19 2000-05-23 Kabushiki Kaisha Toshiba Stacked cell liquid crystal display device with connectors piercing though upper cells
US5978063A (en) * 1997-04-15 1999-11-02 Xerox Corporation Smart spacers for active matrix liquid crystal projection light valves
US5766694A (en) * 1997-05-29 1998-06-16 Univ Kent State Ohio Method for forming uniformly-spaced plastic substrate liquid crystal displays
US6166797A (en) * 1997-08-08 2000-12-26 3M Innovative Properties Company Diffusion barrier layers with microstructured spacing members for liquid crystal display panel substrates
US5929960A (en) * 1997-10-17 1999-07-27 Kent State University Method for forming liquid crystal display cell walls using a patterned electric field
US6351027B1 (en) * 2000-02-29 2002-02-26 Agilent Technologies, Inc. Chip-mounted enclosure
US8593604B2 (en) 2000-11-21 2013-11-26 Transpacific Infinity, Llc Electrode structure which supports self alignment of liquid deposition of materials
WO2002042833A3 (en) * 2000-11-21 2002-08-22 Sarnoff Corp Electrode structure which supports self alignment of liquid deposition of materials
US6980272B1 (en) * 2000-11-21 2005-12-27 Sarnoff Corporation Electrode structure which supports self alignment of liquid deposition of materials
US20060077329A1 (en) * 2000-11-21 2006-04-13 Transpacific Ip, Ltd. Electrode structure which supports self alignment of liquid deposition of materials
US8339551B2 (en) 2000-11-21 2012-12-25 Transpacific Infinity, Llc Electrode structure which supports self alignment of liquid deposition of materials
US20030124931A1 (en) * 2001-11-14 2003-07-03 Polydisplay Asa Display with micro pockets
US6923701B2 (en) * 2001-11-14 2005-08-02 Polydisplay Asa Display with micro pockets
GB2396947B (en) * 2002-12-31 2005-02-23 Lg Philips Lcd Co Ltd Reflective liquid crystal display device and fabricating method thereof
GB2396947A (en) * 2002-12-31 2004-07-07 Lg Philips Lcd Co Ltd Reflective liquid crystal display device and fabrication method thereof
GB2429822B (en) * 2005-09-05 2008-06-04 Chunghwa Picture Tubes Ltd Liquid crystal display panel
GB2429822A (en) * 2005-09-05 2007-03-07 Chunghwa Picture Tubes Ltd Spacers for a liquid crystal display panel
US20070052910A1 (en) * 2005-09-08 2007-03-08 De-Jiun Li Liquid crystal display panel

Also Published As

Publication number Publication date
FR2235445A2 (en) 1975-01-24
GB1434509A (en) 1976-05-05
SE7408518L (en) 1974-12-30
JPS5039095A (en) 1975-04-10

Similar Documents

Publication Publication Date Title
US3863332A (en) Method of fabricating back panel for liquid crystal display
US3978580A (en) Method of fabricating a liquid crystal display
US3861783A (en) Liquid crystal display featuring self-adjusting mosaic panel
US4135959A (en) Method of manufacture of flat panel display device
KR970003741B1 (en) Thin-film transistor and method of manufacturing the same
US4024626A (en) Method of making integrated transistor matrix for flat panel liquid crystal display
US4409724A (en) Method of fabricating display with semiconductor circuits on monolithic structure and flat panel display produced thereby
US5869351A (en) Method of producing an electro-optical device
GB2077039A (en) Method of making planar thin film transistors
US4816885A (en) Thin-film transistor matrix for liquid crystal display
JPS59501562A (en) Method for manufacturing a display screen using thin film transistors and capacitors
JPH061314B2 (en) Thin film transistor array
US4944575A (en) Electrooptical display screen and a method of fabrication of said screen
US4235001A (en) Gas display panel fabrication method
JP3106566B2 (en) Liquid crystal display device and manufacturing method
EP0314211B1 (en) Display device including lateral schottky diodes
US5453856A (en) Liquid crystal display with gate lines connected with a doped semiconductor layer where they cross data lines
EP0020929A1 (en) Improvements relating to field effect transistors
JPS61185724A (en) Production for thin film transistor
EP0544069B1 (en) Thin-film transistor panel and method of manufacturing the same
JPH02211429A (en) Thin film transistor for liquid crystal display device, crossover structural body and manufacture thereof
JP3076483B2 (en) Method for manufacturing metal wiring board and method for manufacturing thin film diode array
JP2862737B2 (en) Thin film transistor and method of manufacturing the same
KR100267995B1 (en) Lcd and its fabrication method
JPS6066471A (en) Manufacture of thin film transistor