US3795269A - Method of and apparatus for casting on moving surfaces - Google Patents

Method of and apparatus for casting on moving surfaces Download PDF

Info

Publication number
US3795269A
US3795269A US00238346A US3795269DA US3795269A US 3795269 A US3795269 A US 3795269A US 00238346 A US00238346 A US 00238346A US 3795269D A US3795269D A US 3795269DA US 3795269 A US3795269 A US 3795269A
Authority
US
United States
Prior art keywords
casting
coating
layer
metal
parting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00238346A
Other languages
English (en)
Inventor
G Leconte
J Wright
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcan Research and Development Ltd
Original Assignee
Alcan Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Research and Development Ltd filed Critical Alcan Research and Development Ltd
Application granted granted Critical
Publication of US3795269A publication Critical patent/US3795269A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0665Accessories therefor for treating the casting surfaces, e.g. calibrating, cleaning, dressing, preheating
    • B22D11/0668Accessories therefor for treating the casting surfaces, e.g. calibrating, cleaning, dressing, preheating for dressing, coating or lubricating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns

Definitions

  • ABSTRACT In the casting of metals on or between movable end- [2]] Appl' 238346 less surfaces, a twolayer dressing is applied to each casting surface.
  • the dressing includes a heat-insulating 52 US. Cl 164/73, 164/87, 164/158, coating fixedly adhered to the Casting Surface, 164/268 164/273 removable parting layer deposited on the coating for 511 1m.
  • Various metal casting operations involve deposit of molten metal to be cast upon a moving endless surface such as the surface of a drum, the metal being solidified as it is transported on the surface (which may, for ex ample, be cooled as with water) and the cast ingot being separated-from the moving casting surface at a point spaced from the locality of molten metal delivery to the surface.
  • molten aluminum or other metal to be cast is fed continuously between two synchronously rotating water-cooled metal drums which provide the casting surfaces. As the metal travels between the drums, it solidifies and emerges from the drums as a continuous thin ingot, ready to be rolled or otherwise worked.
  • a variety of more or less permanent casting surface dressings have heretofore been proposed for [use in movable-surface casting apparatus.
  • the dressing com positions employed have included, for instance, mixtures ofa resin with particulate refractory material and- /or finely divided carbon. While reasonably effective, these dressings are subject to gradual deterioration over extended periods of use. In particular, material of the dressing tends to be removed with or by the cast ingot. Thus, it is periodically necessary to remove and replace the worn dressing. Such interruption of the cast ing operation is economically undesirable as well as inconvenient.
  • An object of the present invention is to provide new and improved dressings for movable endless casting surfaces. Another object is to provide procedures for casting metals on or between movable endless surfaces,
  • a further object is to provide apparatus for casting metals on or between endless movable surfaces, wherein a surface dressing providing desired uniformity of heat extraction and separation of cast metal from the surfaces is maintained with little or no interruption of continuous casting.
  • the present invention broadly contemplates the provision of a two layer insulating dressing on an endless casting surface comprising a moving mold.
  • the inner layer of this dressing i.e. the layer applied directly to the casting surface, is durable, wear resistant, and selected primarily for its heatinsulating and mechanical properties.
  • the outer layer which constitutes a sacrificial or parting layer, is a layer of removable material such as talc that may be applied freshly during each cycle of the moving casting surface. The purpose of the outer layer is to prevent adherence of the solidifying metal to the'underlying coating, and to protect the coating from deterioration through direct contact with the metal.
  • the present invention separate dressing layers are provided to 'serve the separate (heat-insulating and parting) functions of a casting surface dressing.
  • the inner layer or heat-insulating coating of the dressing of the invention is first applied to the casting surface so as to be essentially permanently adhered thereto.
  • the outer or parting layer material e.g.
  • the parting layer protects the insulating layer against direct contact with the metal being cast, the insulating layer or coating exhibits greatly enhanced durability as compared with previously known single-layer casting surface dressings used for similar purposes. That is to say, the effectiveness and uniformity of heat insulation provided by the insulating coating of the present dressing remain essentially unimpaired over very extended periods of use.
  • the parting layer which is relatively inexpensive, is continuously removed and replenished, providing a maintained effectiveness of its parting and protective functions without interruption of the casting operation.
  • FIG. I is a schematic side elevational view of an illustrative type of continuous casting apparatus arranged for the practice of the present invention in one embodiment thereof;
  • FIG. 2 is an enlarged fragmentary sectional view taken along the line 2-2 of FIG. 1;
  • FIG. 3 is a schematic elevational view of a further example of casting apparatus arranged for the practice of the present invention.
  • FIG. 1 there is shown in schematic side elevational view.a casting machine comprising a pair of flat endless belts l and 11, e.g. fabricated of steel, mounted for continuous movement around guide and drive rollers l4, l5, and 17, 20, respectively.
  • the belts l0 and 11 and their respective rollers 14, 15 and 17, are mutually disposed and arranged so that in portions of their respective paths, the two belts move in parallel, closely spaced relation to each other, in the same direction and at a common velocity,.so as to define between them an extended casting region 22;
  • the facing surfaces of the .two belts advancing through this casting region constitute the casting surfaces of the apparatus.
  • Molten metal 23 supplied from a trough 24 is fed continuously to the inlet end of the casting region 22, i.e. between the parallel facing surfaces of the two moving belts l0 and 11, so as to be carried through the casting region by and between the synchronously moving belts. As the metal thus traverses the casting region, it
  • nozzles 28 may be provided for spraying a suitable coolant fluid such as water on the outwardly facing surfaces of the portions of the two belts l0 and 11 traversing the casting region.
  • the casting surface of each of the belts I0 and 11 is continuously coated with a fixedly adherent layer or coating of heat-insulating material having appropriate thermal and mechanical properties for use as a dressing in the casting operation.
  • This layer or coating (represented at 30 in FIG. 2) may be applied to the casting surface of the steel belt as a paint or paintlike substance and may be subsequently cured as with heat.
  • the insulating layer may, for example, incorporate a silicone resin as the insulating material. It must be sufficiently flexible to travel with the belt-around the rollers without cracking or spalling. However, its chemical properties (as regards reactivity with molten aluminum or other metal being cast) are not critical as is the case in a conventional belt dressing.
  • eachbelt there is applied to the casting surface of eachbelt (as by means schematically shown as hoppers 32 in FIG. 1) a second, parting layer which may (e.g. in the case of aluminum casting operations) conveniently be a powdered material such as talc.
  • the layer of talc (represented at 34 in FIG. 2) coats the insulating layer 30 and protects it from direct contact with the metal being cast. It will be noted that thisouter layer of the dressing is applied to the casting surfaces of the belts prior to contact of those surfaces with molten metal being cast, i.e. during each cycle of the belts.
  • the material of parting layer 34 should be chemically inert with respect to the metal being cast; more particularly, it should be able to withstand the temperature of the molten metal, should not be wettable by the molten metal, should be nonabrasive (since it will or may come into contact with mechanical parts of the casting apparatus) and nontoxic, and it should in addition be of such character as to adhere effectively to the insulating layer 30 as it is carried into contact with molten metal in the casting region 22. As explained, this material has as its primary function the protection of the inner, insu lating layer 30.
  • the parting layer 34 will be at least partially removed.
  • the casting surfaces of the belts (after separation from contact with thecast strip 26) are cleaned to remove the remnant of the parting layer from the belt so that upon reapplication of the parting layer material to the belt, a smooth and even surface will result.
  • the parting layer residue may be removed from the belts during each cycle by means of rotating stainless steel brushes 36 which brush the remaining talc off the belt surfaces, and with which may be associated suitable vacuum systems (not shown) for completely carrying away the brushed talc.
  • the insulating layer should accordingly be capable of withstanding the brushing operation.
  • the insulating layer In addition to this mechanical property and to the properties of thermal insulation, flexibility and freedom from spalling, the insulating layer must also be thermally stable through the range of temperatures to which it is exposed.
  • the removable parting layer serves to protect the underlying insulating layer against damage such as might otherwise result from contact with the ingot being cast.
  • the insulating layer has a very markedly enhanced useful lifetime as compared with the lifetime of conventional single layer belt dressings.
  • the belt casting surfaces after traversing the casting region 22 and transporting the solidifying metal through that region while removing heat from the metal), are brushed to remove residual talc so that their casting surfaces are clean and smooth at the end of each cycle, i.e. for reapplication ofa fresh parting layer from hoppers 32 prior to return of the casting surfaces to the casting region.
  • the insulating coating is formed by spraying on the casting surface of a steel belt a paint having the following composition:
  • talcum or Celite may be used in place of the mica, in the specified amount.
  • one suitable material is the tale commercially available under the designation fDesert Talc Micro 706," deposited evenly on the casting belts using a hopper distribution system.
  • the specified material has a particle distribution of 100% 12 microns, 90% 7.5 microns, 80% 5.5 microns, 70% 4.2 microns, 60% 3.4 microns, 50% 2.75 microns, 40% 2.2 microns, 30% 1.5 microns, 1 micron, 10% Mim vJ2 c,.
  • FIG. 3 shows another type of continuous casting appa'ratus in which the present invention may be used.
  • the structure of FIG. 3 includes a pair of drums 40, 41, e.g. fabricated of steel or the like, and having cylindrical surfaces which constitute the casting surfaces of the apparatus.
  • the two drums are mounted in axially parallel, closely adjacent relation, as illustrated, and are driven by suitable means (not shown) in the directions respectively indicated by arrows 42 and 43, such that molten metal 44 supplied above and between the drums (cg. by suitable conventional means, not shown) is advanced by the rotation of the drums through the nip or narrow space 45 defined between them, emerging as a thin flat continuous ingot 46.
  • All the foregoing features of the FIG. 3 apparatus are gen- 'erally conventional, and, further in accordance with conventional practice, the drums may be cooled internally as by circulation of water.
  • the cylindrical casting surfaces of the two drums in FIG. 3 are coated with an insulating layer having the properties of the insulating layer 30 of the apparatus of FIG. I.
  • Hoppers 47 supply parting layer material such as tale to the coated drum surfaces prior to contact of the surfaces with the molten metal 44 during each cycle of revolution of the drums.
  • rotary brushes 48 (corresponding to the brushes 36 in FIG. 1) remove the residue of parting layer material from the drum surfaces prior to supply to fresh parting layer material for the next cycle.
  • the functions of the respective layers of the dressing in the apparatus of FIG. 3 are essentially the same as the functionsof the corresponding layers inthe apparatus of FIG. 1.
  • a method of continuously casting ametal ingot in contact with a moving surface including the steps ofa. continuously advancing an endless metal casting surface along a closed path while b. continuously bringing molten metal into contact with said surface at a first locality in said path and while c. continuously separating freshly cast ingot from said surface at a second locality in said path, wherein the improvement comprises d. said casting surface bearing a continuous and fixedly adherent heat-insulating coating; and
  • the layer-applying step includes the steps of i. cleaning the coated casting surface to remove parting material therefrom as said surface advances beyond said second locality and thereafter ii. applying a fresh layer of parting material to the surface prior to return of the surface to the first locality.
  • said parting material is a dry particulate material and wherein said cleaning step comprises brushing the coated casting surface to effect substantially complete removal of residual particles of parting material therefrom.
  • Apparatus for casting metal including a. a movable endless casting surface and b. means for delivering molten metal thereto,
  • the improvement comprises c. a thermally insulating coating deposited on and fixedly adhered to said casting surface and g d. means for continuously applying to said casting surface, during movement thereof, a discrete layer of parting material for preventing metal from sticking to said coating, deposited on said coating so as to be interposed between said coating and the metal delivered to said casting surface.
  • said applying means being disposed ahead of said first locality for depositing a layer of said particulate material on the coated casting surface
  • g. means beyond said second locality for removing residual particulate material from the casting surface.
US00238346A 1972-03-27 1972-03-27 Method of and apparatus for casting on moving surfaces Expired - Lifetime US3795269A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US23834672A 1972-03-27 1972-03-27

Publications (1)

Publication Number Publication Date
US3795269A true US3795269A (en) 1974-03-05

Family

ID=22897485

Family Applications (1)

Application Number Title Priority Date Filing Date
US00238346A Expired - Lifetime US3795269A (en) 1972-03-27 1972-03-27 Method of and apparatus for casting on moving surfaces

Country Status (13)

Country Link
US (1) US3795269A (ja)
JP (1) JPS4914320A (ja)
BE (1) BE797306A (ja)
BR (1) BR7302196D0 (ja)
CA (1) CA990932A (ja)
CH (1) CH579958A5 (ja)
DE (1) DE2315036B2 (ja)
DK (1) DK129319B (ja)
ES (1) ES413006A1 (ja)
FR (1) FR2177970B1 (ja)
GB (1) GB1424205A (ja)
IT (1) IT982572B (ja)
NL (1) NL7304244A (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914084A (en) * 1973-11-06 1975-10-21 Kornylac Co Continuous molding machine
US3983889A (en) * 1974-05-20 1976-10-05 Leichtmetall-Gesellschaft Mbh Process for cleaning the surface of continuously cast strip
US4027716A (en) * 1974-03-11 1977-06-07 Metallgesellschaft Aktiengesellschaft Method for preparing a continuous casting belt
US4069860A (en) * 1975-11-24 1978-01-24 Southwire Company Ablative band for a casting machine
US4298053A (en) * 1974-03-18 1981-11-03 Metallurgie Hoboken-Overpelt Casting belts for machines for the continuous casting of metals
US4582114A (en) * 1983-04-28 1986-04-15 Kawasaki Steel Corporation Continuous casting apparatus for the production of cast sheets
US5437326A (en) * 1992-08-18 1995-08-01 Hazelett Strip-Casting Corporation Method and apparatus for continuous casting of metal
WO1996002339A1 (en) * 1994-07-19 1996-02-01 Alcan International Limited Process and apparatus for casting metal strip and injector used therefor
US5515908A (en) * 1992-06-23 1996-05-14 Kaiser Aluminum & Chemical Corporation Method and apparatus for twin belt casting of strip
US5638893A (en) * 1993-10-07 1997-06-17 Fata Hunter, Inc. Parting agent spray system
US5697423A (en) * 1994-03-30 1997-12-16 Lauener Engineering, Ltd. Apparatus for continuously casting
US5927377A (en) * 1997-01-06 1999-07-27 Continuus Properzi S.P.A Method of wiping and application of mold release solution to a rotary chill casting wheel
US6063215A (en) * 1995-10-16 2000-05-16 Kaiser Aluminum & Chemical Corporation Method of manufacturing casting belts for use in the casting of metals
US6125915A (en) * 1994-03-30 2000-10-03 Golden Aluminum Company Method of and apparatus for cleaning a continuous caster
US6354364B1 (en) 1994-03-30 2002-03-12 Nichols Aluminum-Golden, Inc. Apparatus for cooling and coating a mold in a continuous caster
US6581675B1 (en) 2000-04-11 2003-06-24 Alcoa Inc. Method and apparatus for continuous casting of metals
US20070289717A1 (en) * 2003-12-23 2007-12-20 Joachim Kroos Method for Making Hot Strips of Lightweight Construction Steel
US8672019B1 (en) * 2012-12-27 2014-03-18 Berndorf Band Gmbh Cleaning unit for a continuous metal strip as well as a strip casting installation with such a cleaning unit
US20140367066A1 (en) * 2011-02-02 2014-12-18 Salzgitter Flachstahl Gmbh Process and device for producing a cast strip with material properties which are adjustable over the strip cross section
CN104981302A (zh) * 2012-12-27 2015-10-14 百德福钢带有限公司 用于金属环形带的清洁设备和具有这种清洁设备的带浇铸设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4913700A (ja) * 1972-05-19 1974-02-06
US3871905A (en) * 1972-11-17 1975-03-18 Hazelett Strip Casting Corp Method of forming a protective, flexible, insulating coating for covering the metal casting surface of a flexible casting belt
DE2411448C2 (de) * 1974-03-11 1985-07-04 Schweizerische Aluminium Ag, Chippis Metallisches Gießband für Stranggießkokillen
DE2419452C2 (de) 1974-04-23 1982-12-02 Schweizerische Aluminium AG, 3965 Chippis Schutzüberzug für Gießbänder in Bandstranggießmaschinen für Aluminium
DE2660733C2 (de) * 1974-04-23 1986-01-30 Schweizerische Aluminium Ag, Chippis Beschichtung für metallische Gießbänder in einer Bandgießmaschine für Aluminium
JPS551964A (en) * 1978-06-21 1980-01-09 Yuasa Battery Co Ltd Method and apparatus for continuous casting of grating for lead storage battery
US4708194A (en) * 1981-07-27 1987-11-24 Allied Corporation Method and apparatus for rapidly solidifying metal employing a metallic conditioning brush
JPS5841657A (ja) * 1981-09-04 1983-03-10 Satoshi Yamaguchi 帯状鋼体製造装置
JPS60124446A (ja) * 1983-12-09 1985-07-03 Kawasaki Steel Corp ベルト式連続鋳造機での連続鋳造方法
JPS60136849U (ja) * 1984-02-20 1985-09-11 三菱重工業株式会社 連続鋳造装置
JPH0377748A (ja) * 1989-08-18 1991-04-03 Nippon Steel Corp 薄板連続鋳造機用のブラシ装置
FR2682052B3 (fr) * 1991-10-08 1993-09-17 Usinor Sacilor Procede et dispositif d'enduisage d'un cylindre d'une machine de coulee continue de bandes metalliques et machine de coulee continue comportant un dispositif d'enduisage.
SE9603837L (sv) * 1996-10-17 1998-04-18 Graenges Ab Metod för bandgjutning av aluminium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1248453A (en) * 1914-11-05 1917-12-04 John Carr Die-casting machine.
US3163896A (en) * 1961-06-23 1965-01-05 Aluminium Lab Ltd Coated belt and method of making same for continuous metal casting process
US3193888A (en) * 1961-08-29 1965-07-13 Aluminium Lab Ltd Continuous casting apparatus including endless steel belt with red iron oxide coating
US3695342A (en) * 1970-03-09 1972-10-03 Robert Petit Continuous casting machine with controlled extractor movement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4512816Y1 (ja) * 1967-06-05 1970-06-03

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1248453A (en) * 1914-11-05 1917-12-04 John Carr Die-casting machine.
US3163896A (en) * 1961-06-23 1965-01-05 Aluminium Lab Ltd Coated belt and method of making same for continuous metal casting process
US3193888A (en) * 1961-08-29 1965-07-13 Aluminium Lab Ltd Continuous casting apparatus including endless steel belt with red iron oxide coating
US3695342A (en) * 1970-03-09 1972-10-03 Robert Petit Continuous casting machine with controlled extractor movement

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914084A (en) * 1973-11-06 1975-10-21 Kornylac Co Continuous molding machine
US4027716A (en) * 1974-03-11 1977-06-07 Metallgesellschaft Aktiengesellschaft Method for preparing a continuous casting belt
US4298053A (en) * 1974-03-18 1981-11-03 Metallurgie Hoboken-Overpelt Casting belts for machines for the continuous casting of metals
US3983889A (en) * 1974-05-20 1976-10-05 Leichtmetall-Gesellschaft Mbh Process for cleaning the surface of continuously cast strip
US4069860A (en) * 1975-11-24 1978-01-24 Southwire Company Ablative band for a casting machine
US4582114A (en) * 1983-04-28 1986-04-15 Kawasaki Steel Corporation Continuous casting apparatus for the production of cast sheets
US5515908A (en) * 1992-06-23 1996-05-14 Kaiser Aluminum & Chemical Corporation Method and apparatus for twin belt casting of strip
US6102102A (en) * 1992-06-23 2000-08-15 Kaiser Aluminum & Chemical Corporation Method and apparatus for continuous casting of metals
US5437326A (en) * 1992-08-18 1995-08-01 Hazelett Strip-Casting Corporation Method and apparatus for continuous casting of metal
CN1054087C (zh) * 1992-08-18 2000-07-05 哈茨来特带钢公司 金属连铸的方法及装置
US5638893A (en) * 1993-10-07 1997-06-17 Fata Hunter, Inc. Parting agent spray system
US6019159A (en) * 1994-03-30 2000-02-01 Golen Aluminum Company Method for improving the quality of continuously cast metal
US6354364B1 (en) 1994-03-30 2002-03-12 Nichols Aluminum-Golden, Inc. Apparatus for cooling and coating a mold in a continuous caster
US6125915A (en) * 1994-03-30 2000-10-03 Golden Aluminum Company Method of and apparatus for cleaning a continuous caster
US5697423A (en) * 1994-03-30 1997-12-16 Lauener Engineering, Ltd. Apparatus for continuously casting
US5839500A (en) * 1994-03-30 1998-11-24 Lauener Engineering, Ltd. Apparatus for improving the quality of continously cast metal
US6089308A (en) * 1994-03-30 2000-07-18 Nichols Aluminum Method and apparatus for improving the quality of continuously cast metal
WO1996002339A1 (en) * 1994-07-19 1996-02-01 Alcan International Limited Process and apparatus for casting metal strip and injector used therefor
AU706227B2 (en) * 1994-07-19 1999-06-10 Novelis Inc. Process and apparatus for casting metal strip and injector used therefor
EP0908255A1 (en) * 1994-07-19 1999-04-14 Alcan International Limited Process and apparatus for casting metal strip and injector used therefor
US5671800A (en) * 1994-07-19 1997-09-30 Alcan International Ltd. Injector for casting metal strip
US5636681A (en) * 1994-07-19 1997-06-10 Alcan International Limited Process and apparatus for casting metal strip
US6063215A (en) * 1995-10-16 2000-05-16 Kaiser Aluminum & Chemical Corporation Method of manufacturing casting belts for use in the casting of metals
US5927377A (en) * 1997-01-06 1999-07-27 Continuus Properzi S.P.A Method of wiping and application of mold release solution to a rotary chill casting wheel
US6581675B1 (en) 2000-04-11 2003-06-24 Alcoa Inc. Method and apparatus for continuous casting of metals
US20070289717A1 (en) * 2003-12-23 2007-12-20 Joachim Kroos Method for Making Hot Strips of Lightweight Construction Steel
US7806165B2 (en) * 2003-12-23 2010-10-05 Salzgitter Flachstahl Gmbh Method for making hot strips of lightweight construction steel
US20140367066A1 (en) * 2011-02-02 2014-12-18 Salzgitter Flachstahl Gmbh Process and device for producing a cast strip with material properties which are adjustable over the strip cross section
US9393615B2 (en) * 2011-02-02 2016-07-19 Salzgitter Flachstahl Gmbh Process and device for producing a cast strip with material properties which are adjustable over the strip cross section
US8672019B1 (en) * 2012-12-27 2014-03-18 Berndorf Band Gmbh Cleaning unit for a continuous metal strip as well as a strip casting installation with such a cleaning unit
CN104981302A (zh) * 2012-12-27 2015-10-14 百德福钢带有限公司 用于金属环形带的清洁设备和具有这种清洁设备的带浇铸设备

Also Published As

Publication number Publication date
GB1424205A (en) 1976-02-11
BR7302196D0 (pt) 1974-06-27
CA990932A (en) 1976-06-15
FR2177970A1 (ja) 1973-11-09
ES413006A1 (es) 1976-06-01
DE2315036A1 (de) 1973-10-18
DE2315036B2 (de) 1974-08-01
FR2177970B1 (ja) 1979-10-05
JPS4914320A (ja) 1974-02-07
IT982572B (it) 1974-10-21
DK129319B (da) 1974-09-30
DK129319C (ja) 1975-03-24
BE797306A (fr) 1973-09-26
NL7304244A (ja) 1973-10-01
CH579958A5 (ja) 1976-09-30

Similar Documents

Publication Publication Date Title
US3795269A (en) Method of and apparatus for casting on moving surfaces
US4425411A (en) Mold with thermally insulating, protective coating
US6102102A (en) Method and apparatus for continuous casting of metals
US5651413A (en) In-situ conditioning of a strip casting roll
JPH0724924B2 (ja) ドラム式連鋳機
US3871905A (en) Method of forming a protective, flexible, insulating coating for covering the metal casting surface of a flexible casting belt
US4027716A (en) Method for preparing a continuous casting belt
US5651412A (en) Strip casting with fluxing agent applied to casting roll
CN101927324A (zh) 一种改善铸带表面质量的方法及装置
JPS583788B2 (ja) レンゾクウンテンスルチユウゾウキカイヨウオビジヨウカナガタ
JPS5852462B2 (ja) カナガタエンシンチユウゾウニオケル チルカボウシヨウバンド
JPH0441052A (ja) 薄肉鋳片の連続鋳造方法
CA1071944A (en) Sealing layer for protective ceramic coatings on strip moulds of continuous strip casting machines
CA1062877A (en) Process for coating moulds, in particular strip moulds for continuous casting machines
JPH0299243A (ja) 薄肉鋳片の連続鋳造方法及び装置
JPH05293630A (ja) スプレイ・デポジット法による長尺のチュ−ブ状プリ フォ−ムの製造方法
JPH01170553A (ja) 急冷金属薄帯の製造装置
GB1335961A (en) Method of making a strip
US5927377A (en) Method of wiping and application of mold release solution to a rotary chill casting wheel
JPH09504830A (ja) 連続鋳造鋼ストリップ
JPH0421628Y2 (ja)
JPS588941B2 (ja) レンゾクチユウゾウホウ
JP2558786B2 (ja) ベルト式連鋳機のベルトコーティング方法
JPH0433754A (ja) 連続鋳造装置及び連続鋳造方法
JPH02247308A (ja) Nd合金フレーク製造用冷却ドラムの外周面調整方法及び装置