US3791852A - High rate deposition of carbides by activated reactive evaporation - Google Patents
High rate deposition of carbides by activated reactive evaporation Download PDFInfo
- Publication number
- US3791852A US3791852A US00263708A US3791852DA US3791852A US 3791852 A US3791852 A US 3791852A US 00263708 A US00263708 A US 00263708A US 3791852D A US3791852D A US 3791852DA US 3791852 A US3791852 A US 3791852A
- Authority
- US
- United States
- Prior art keywords
- metal
- substrate
- gas
- atoms
- deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000008021 deposition Effects 0.000 title claims abstract description 29
- 238000001704 evaporation Methods 0.000 title description 33
- 230000008020 evaporation Effects 0.000 title description 31
- 150000001247 metal acetylides Chemical group 0.000 title description 6
- 229910052751 metal Inorganic materials 0.000 claims abstract description 52
- 239000002184 metal Substances 0.000 claims abstract description 52
- 239000000758 substrate Substances 0.000 claims abstract description 47
- 238000000034 method Methods 0.000 claims abstract description 45
- 230000008569 process Effects 0.000 claims abstract description 43
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 11
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 11
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 9
- 229910052719 titanium Inorganic materials 0.000 claims description 9
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims description 7
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims description 7
- 230000005684 electric field Effects 0.000 claims description 6
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 3
- 239000005977 Ethylene Substances 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 239000010955 niobium Substances 0.000 claims description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 35
- 238000000151 deposition Methods 0.000 abstract description 29
- 239000012808 vapor phase Substances 0.000 abstract description 13
- 238000010894 electron beam technology Methods 0.000 abstract description 12
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 238000005240 physical vapour deposition Methods 0.000 abstract description 4
- 239000007789 gas Substances 0.000 description 46
- 239000010408 film Substances 0.000 description 28
- 150000001875 compounds Chemical class 0.000 description 18
- 239000000376 reactant Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 229920006384 Airco Polymers 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000009790 rate-determining step (RDS) Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002601 GaN Inorganic materials 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 238000001883 metal evaporation Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0635—Carbides
Definitions
- Tinsley [5 7 ABSTRACT Process and apparatus for the production of carbide films at high rates by physical vapor deposition.
- the metal is evaporated in a vacuum chamber by an electron beam, the hydrocarbon gas is introduced into the chamber, and the metal vapor atoms and gas atoms are activated by electrons deflected from the electron beam to the reaction zone by a low voltage electrode at the reaction zone.
- the reaction takes place primarily in the vapor phase in the reaction zone, rather than on the substrate.
- a high reaction efficiency is obtained with the activated atoms and a deposition rate in the range of 1 to 12 micrometers per minute and higher is achieved.
- This invention relates to process and apparatus for the formation of carbide films on substrates, such as cutting tools and wear and abrasion resistant surfaces, and for use as superconductors and for the synthesis of carbide powders.
- the films are produced by physical vapor deposition of the carbide compound by reactive evaporation in a zone away from the substrate.
- Carbide films have been prepared by chemical vapor deposition in the production of tool bits and the like; however, the rate of deposition has been relatively slow.
- Oxide and nitride films have been produced by reactive evaporation, normally at a relatively low rate of deposition. It is an object of the present invention to provide process and apparatus for the production of carbide films by reactive evaporation, and in particular, to produce the carbide film at a high rate of deposition, typically in the range of l to 12 micrometers per minute.
- a number of processes are available for depositing compounds from the vapor phase onto a substrate: chemical vapor deposition; sputtering of the compound from a target of the same composition; direct evaporation of the compound from an evaporation source of the same composition; and reactive evaporation in which metal vapor atoms from an evaporation source containing the appropriate metal react with reactive gas atoms present in the vapor phase to form compounds.
- a typical example of reactive evaporation formation of compounds is 2Al (vapor) 3/2 (gas) Al O (solid).
- the choice of process depends on the ability to deposit compounds of desired composition and structure, and the rate of deposition.
- the sputtering process suffers from a low deposition rate, typically in the order of 0.1 micrometers per minute, and sometimes the breakup of the compound into fractions which may not recombine to yield the desired composition in the deposited film.
- Direct evaporation of compounds is often possible but some compounds of particular interest have very high melting points which require the use of a high intensity heat source to produce appreciable evaporation rate, and also the possible breakup of the compound into fractions during evaporation.
- the evaporant is a metal whose melting point is lower than the metal compound, and higher metal atom densities in the vapor phase are easier to produce and high deposition rates are possible.
- metal vapor atoms react with gas atoms to form compounds.
- gas atoms In the example set out above, vaporized aluminum metal atoms combine with oxygen to form aluminum oxide.
- vaporized titanium metal atoms should react with a hydrocarbon gas such as acetylene to form titanium carbide, but titanium carbide has not been produced by the prior art reactive evaporation process.
- the deposition rate in a reactive evaporation process depends upon the supply of metal vapor atoms, the supply of gas atoms, collision between metal and gas atoms, and the probability of a subsequent reaction to form a compound when such collisions occur.
- the overall yield of the reaction would be determined by all of the above mentioned factors, any one of which can be the rate limiting step.
- the mean free path exceeds the source to substrate distance and collision between the reactants can occur only on the substrate.
- the mean free path decreases, eventually becoming smaller than the source to substrate distance, so that collisions between the reactants now occur in the vapor phase.
- the supply of vaporized metal atoms and gas atoms, i.e., their partial pressures, must be large and hence collision between the reactants takes place primarily in the vapor phase.
- an adequate supply of metal atoms in the vapor phase can be obtained by using a high rate evaporation source and an adequate supply of gas atoms is provided by having a sufficiently high partial pressure of gas atoms in the gas phase, resulting in a high collision rate between the metal and gas atoms in the vapor phase.
- One of the rate limiting steps mentioned above affecting the overall yield of the reaction is the probability of a reaction when the two reacting species collide. This reaction probability can be increased by activating one or both of the reactants.
- the invention provides for physical vapor deposition of carbide films by reactive evaporation with activated metal vapor and hydrocarbon gas atoms in the vapor phase in a reaction zone, i.e., in the space between the substrate and the metal source.
- the source metal is heated and vaporized in a vacuum chamber by an electron beam to provide the metal vapor atoms in the reaction zone.
- the hydrocarbon gas is introduced into the reaction zone and the metal vapor and gas atoms are activated by some of the electrons of the metal heating electron beam which are deflected into the reaction zone by a low voltage field produced by a deflection electrode positioned at the reaction zone.
- the activation of the reactants increases the probability of a reaction between them, and the metal vaporhydrocarbon gas reaction is achieved with a high efficiency producing the desired metal carbide film on the substrate.
- deposition rates substantially higher than those previously obtained are achieved and substrate temperature is not a limiting factor as in chemical vapor deposition.
- the acts of compound synthesis and film growth are separated.
- the microstructure of the deposit and hence its physical and mechanical properties, are dependent on the substrate temperature which can be varied at will. Hence the properties of the deposit can be controlled, which is an important advantage.
- the stoichiometry of the compound i.e. the ratio of cations to anions
- Deposition rates of l to 12 micrometers per minute and higher are obtained.
- FIGURE of the drawing is a schematic vertical sectional view of a vacuum chamber and associated equipment suitable for performing the process of the invention and incorporating the presently preferred embodiment of the apparatus of the invention.
- the apparatus includes a vacuum chamber which may comprise a conventional cover or dome 10 resting on a base 11 with a sealing gasket 12 at the lower rim of the cover 10.
- a support and feed unit 13 for a source metal rod 14 may be mounted in the base 11.
- the unit 13 includes a mechanism (not shown) for moving the metal rod 14 upward at a controlled rate.
- Cooling coils 15 may be mounted in the unit 13 and supplied with cooling water from a cooling water source 16.
- An electron gun 20 is mounted in unit 13 and provides an electron beam along the path 21 to the upper surface of the metal rod 14, with the electron gun being energized from a power supply 22.
- a substrate 24 on which the carbide film is to be deposited is supported in a frame 25 on a rod 26 projecting upward from the base 11.
- the substrate 24 may be heated by an electric resistance heater 27 supported on a bracket 28.
- Energy for the heater 27 is provided from a power supply 29 via a cable 30.
- the temperature of the substrate 24 is maintained at a desired value by means of a thermocouple 32 in contact with the upper surface of the substrate 24, with the thermocouple connected to a controller 33 by line 34, with the controller output signal regulating the power from the supply 29 to the heater 27.
- the desired low pressure is maintained within the vacuum chamber by a vacuum pump 36 connected to the interior of the chamber via a line 37.
- Gas from a gas supply 39 is introduced into the zone between the metal rod 14 and substrate 24 via a line 40 and nozzle 41.
- a shutter 43 is mounted on a rod 44 which is manually rotatable to move the shutter into and out of position between the metal rod 14 and substrate 24.
- a deflection electrode typically a tungsten rod 46
- An electric potential is provided for the rod 46 from a voltage supply 47 via line 48.
- An electric insulating sleeve 49 typically of glass, is provided for the rod 46 within the vacuum chamber, with the metal surface of the rod exposed only in the zone between the source and substrate.
- the evaporation chamber may be a 24 inch diameter and 36 inch high water cooled stainless steel bell jar.
- the vacuum pump may be a 10 inch diameter fractionating diffusion pump, with an anti migration type liquid nitrogen trap.
- the source metal unit 13 may be a 1 inch diameter rod fed electron beam gun, self-accelerated 270 deflection type, such as Airco Temescal Model RlH-270.
- the power supply 22 may be an Airco Temescal Model CV30 30 kw unit which may be operated at a constant voltage such as 10 kilovolts, with a variable emission current.
- a typical substrate is a 6 inch by 6 inch metal sheet in the order of 5 mils thick.
- Various metals have been used including stainless steel, copper, titanium and zirconium.
- the substrate is based about eight inches above the surface of the metal source 14.
- the heater 27 may be a 4 kilowatt tungsten resistance heater providing for heating the substrate to 700 C. and higher.
- the reaction takes place primarily in the vapor phase in the reaction zone away from the substrate, and the reaction is independent of substrate temperature-As discussed below, the density of the deposit is a function of the substrate temperature and when a carbide powder is desired, the substrate may be left at ambient temperature or heated to a relatively low temperature, resulting in a powdery deposit.
- the source metal may be a solid rod or billet and for the feed unit mentioned above, the rod is 0.975 inches diameter and 6 inchesin length. Titanium, zirconium,
- hafnium, vanadium, niobium and tantalum have been utilized in making carbide films. Alloys and mixtures of metals may be used to produce mixed carbides and alloy carbides.
- a hydrocarbon gas which readily disassociates is desired for the process.
- the hydrocarbon gas for the reaction is introduced into the vacuum chamber through a series of needle valves and the preferred range for gas pressure is 2 X torr to 8 X 10" torr.
- Acetylene is the preferred gas for the synthesis of carbides and ethylene may also be utilized.
- the supply 47 provides a low voltage to the deflection electrode 46 and preferably is a DC. supply with a variable output voltage.
- the usual potential for the deflection electrode is in the range of about 50 to about 200 volts, and preferably in the range of 60 to 100 volts. Higher voltages may be used if desired.
- a Lambda Model 71 continuously variable voltage DC. power supply has been utilized.
- A.C. potential also has been used on the deflection electrode, with voltages in the same range.
- titanium carbide was formed by activated reactive evaporation deposition utilizing titanium metal and acetylene gas, with the following reaction:
- the vacuum chamber was initially pumped down to 10 torr pressure and was then purged with the gas to 10* torr for a few minutes. The chamber was again pumped down to 10' torr. This procedure was used to minimize the presence of extraneous gases.
- the electron gun When the pressure in the chamber was again down to 10' torr, the electron gun was turned on and a molten pool of metal was formed by the electron beam at the upper end of the rod 14.
- the shutter 43 was in position blocking the substrate 24.
- the reaction gas was then introduced into the vacuum chamber at a controlled rate to obtain the desired chamber pressure.
- the power supply for the deflection electrode 46 was turned on and the potential increased until the reaction began, as indicated by a substantial increase in current in the electrode 46.
- steady state conditions were ob tained the shutter 43 was moved to one side and the carbide film was deposited on the substrate. The process was continued until the desired thickness of film was obtained, after which the shutter was moved to the blocking position and the various supplies were turned off.
- the gas partial pressure within the chamber, the deflection electrode potential, and the electron beam current required to produce the carbide film are somewhat interrelated and may be varied over a substantial range. With higher electron beam currents, the deflection electrode potential required for initiating the reaction decreases. Similarly, with higher gas partial pressures, the required electrode potential decreases.
- successful formation of carbide films was achieved with electron gun power in the range of one kilowatt to three kilowatts, with gas partial pressure in the range of 1 X l0" to 3 X 10 torr, and electrode potential in the range of 60 to volts.
- Acetylene (C H is a preferred hydrocarbon gas for the process because it is a highly unsaturated hydrocarbon.
- Methane (CH is not a suitable gas due to the saturated carbon-hydrogen bond.
- Ethylene (C l-l is an unsaturated hydrocarbon gas which may be used in some instances.
- the acts of compound formation and deposit growth are separate steps in this process.
- the character of the deposit changes with substrate temperature. In the range from 0C to about 0.3 Tm (Tm being the melting point of the compound in degrees Kelvin) the deposit is of less than full density, the density increasing with deposition temperature.
- the morphology exhibited by the deposit is of tapered crystallites with porosity in between the crystallites. Such deposits show microhardness values of about 3,000 kg/mm at a 50 gram load for TiC and unit stoichiometry and these microhardness values are comparable to those reported for TiC synthesized by other methods.
- substrate temperatures greater than 0.3 Tm approximately the deposit becomes fully dense and its morphology now shows columnar grains across the thickness of the deposit.
- Such a structure contains fewer imperfections (i.e. porosity, cracks etc.) and hence exhibits much higher microhardness values, 4,000 to 5,000 kg/mm at 50 gram load. This is to be expected since the properties of brittle materials such as ceramics are primarily governed by the imperfection content.
- the stoichiometry of the carbide deposit can be controlled by changing the relative amounts of the reactants.
- the carbon to metal ratio is increased by increasing the partial pressure of the carbon containing gas at a constant evaporation rate of titanium.
- a titanium carbide deposit of unit stoichiometry TiC can be produced at a deposition rate of 4 micrometers per minute at a source-tosubstrate distance of 8 inches.
- Typical film thicknesses are in the range of 25 to micrometersDepo sition rates of 1 to 12 micrometers per minute have been achieved. Higher and lower rates may be had by varying the parameters of the system.
- the metal evaporation rate may be controlled by varying the output of the electron gun and the gas pressure may be controlled by adjusting a valve 41 in the gas line 40.
- evaporating a metal by an electron beam directed to the metal producing a metal vapor in a zone between the metal and the substrate; introducing a hydrocarbon gas into said zone; and generating. a low voltage electric field in said zone and deflecting electronsto said zone ionizing the metal vapor and gas atoms in said zone, so that the metal vapor atoms and gas atoms react in said zone to form a metal carbide which then deposits on said substrate.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Carbon And Carbon Compounds (AREA)
- Chemical Vapour Deposition (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US26370872A | 1972-06-16 | 1972-06-16 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3791852A true US3791852A (en) | 1974-02-12 |
Family
ID=23002928
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00263708A Expired - Lifetime US3791852A (en) | 1972-06-16 | 1972-06-16 | High rate deposition of carbides by activated reactive evaporation |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US3791852A (enrdf_load_stackoverflow) |
| JP (1) | JPS5148463B2 (enrdf_load_stackoverflow) |
| DE (1) | DE2330545B2 (enrdf_load_stackoverflow) |
| GB (1) | GB1392583A (enrdf_load_stackoverflow) |
Cited By (33)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3916052A (en) * | 1973-05-16 | 1975-10-28 | Airco Inc | Coating of carbon-containing substrates with titanium carbide |
| US4297387A (en) * | 1980-06-04 | 1981-10-27 | Battelle Development Corporation | Cubic boron nitride preparation |
| US4336277A (en) * | 1980-09-29 | 1982-06-22 | The Regents Of The University Of California | Transparent electrical conducting films by activated reactive evaporation |
| US4416912A (en) * | 1979-10-13 | 1983-11-22 | The Gillette Company | Formation of coatings on cutting edges |
| US4656052A (en) * | 1984-02-13 | 1987-04-07 | Kyocera Corporation | Process for production of high-hardness boron nitride film |
| US4698235A (en) * | 1982-09-29 | 1987-10-06 | National Research Development Corporation | Siting a film onto a substrate including electron-beam evaporation |
| DE3627151A1 (de) * | 1986-08-11 | 1988-02-18 | Leybold Heraeus Gmbh & Co Kg | Verfahren und vorrichtung zum reaktiven aufdampfen von metallverbindungen |
| US4748027A (en) * | 1984-02-29 | 1988-05-31 | Nexus Aps | Powder product and a method for its preparation |
| US4781989A (en) * | 1986-03-07 | 1988-11-01 | Mitsubishi Kinzoku Kabushiki Kaisha | Surface-coated cutting member |
| US4816291A (en) * | 1987-08-19 | 1989-03-28 | The Regents Of The University Of California | Process for making diamond, doped diamond, diamond-cubic boron nitride composite films |
| US4957773A (en) * | 1989-02-13 | 1990-09-18 | Syracuse University | Deposition of boron-containing films from decaborane |
| US4980021A (en) * | 1989-04-03 | 1990-12-25 | Shin-Etsu Chemical Co. Ltd. | Method for preparation of edged medical tool |
| DE4006457C1 (en) * | 1990-03-01 | 1991-02-07 | Balzers Ag, Balzers, Li | Appts. for vapour deposition of material under high vacuum - has incandescent cathode and electrode to maintain arc discharge |
| DE4336680A1 (de) * | 1993-10-27 | 1995-05-04 | Fraunhofer Ges Forschung | Verfahren und Einrichtung zum Elektronenstrahlverdampfen |
| US5434008A (en) * | 1990-08-07 | 1995-07-18 | The Boc Group, Inc. | Thin gas barrier films |
| US5436035A (en) * | 1991-12-05 | 1995-07-25 | Alusuisse-Lonza Services Ltd. | Coating a substrate surface with a permeation barrier |
| US5614273A (en) * | 1993-10-27 | 1997-03-25 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung, E.V. | Process and apparatus for plasma-activated electron beam vaporization |
| DE19724996C1 (de) * | 1997-06-13 | 1998-09-03 | Fraunhofer Ges Forschung | Verfahren zum plasmaaktivierten Elektronenstrahlverdampfen und Einrichtung zur Durchführung des Verfahrens |
| US5804258A (en) * | 1996-01-10 | 1998-09-08 | Alusuisse Technology & Management Ltd. | Process and device for coating a substrate surface with vaporized inorganic material |
| US20020139667A1 (en) * | 2001-03-29 | 2002-10-03 | Guangxin Wang | Methods for electrically forming materials; and mixed metal materials |
| WO2003080890A1 (en) * | 2002-03-26 | 2003-10-02 | Matsushita Electric Industrial Co., Ltd. | Production metod and production device for thin film |
| WO2003082482A1 (en) * | 2002-03-25 | 2003-10-09 | Penn State Research Foundation | Method for producing boride thin films |
| US20040172827A1 (en) * | 2003-03-03 | 2004-09-09 | Kinstler Monika D. | Fan and compressor blade dovetail restoration process |
| US20040207074A1 (en) * | 2003-04-16 | 2004-10-21 | The Regents Of The University Of California | Metal MEMS devices and methods of making same |
| US20040234785A1 (en) * | 2003-02-28 | 2004-11-25 | Zi-Kui Liu | Boride thin films on silicon |
| US20070028841A1 (en) * | 2003-04-03 | 2007-02-08 | Microemissive Displays Limited | Method and apparatus for depositing material on a substrate |
| US20090041935A1 (en) * | 2007-08-10 | 2009-02-12 | Mutsuki Yamazaki | Method for causing particulate base material to carry alloy particle |
| US8526137B2 (en) | 2010-04-16 | 2013-09-03 | International Business Machines Corporation | Head comprising a crystalline alumina layer |
| US9023422B1 (en) * | 2011-08-31 | 2015-05-05 | Maxim Integrated Products, Inc. | High rate deposition method of magnetic nanocomposites |
| CN106676480A (zh) * | 2017-03-10 | 2017-05-17 | 南京大学 | 一种蒸发速率可控的电子束蒸发源 |
| US10167555B2 (en) | 2014-08-18 | 2019-01-01 | Dynetics, Inc. | Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors |
| US11499230B2 (en) | 2014-08-18 | 2022-11-15 | Dynetics, Inc. | Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors |
| RU232765U1 (ru) * | 2024-12-23 | 2025-03-19 | Федеральное государственное автономное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" | Устройство реактивного электронно-лучевого осаждения нитридных покрытий |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5318184B2 (enrdf_load_stackoverflow) * | 1973-08-04 | 1978-06-13 | ||
| JPS51107287A (ja) * | 1975-03-18 | 1976-09-22 | Fujikoshi Kk | Koshitsuhimakukeiseisochi |
| JPS5841351B2 (ja) * | 1975-08-19 | 1983-09-12 | ニホンシンクウギジユツ カブシキガイシヤ | カツセイカハンノウジヨウチヤクソウチ |
| GB1579999A (en) * | 1977-09-12 | 1980-11-26 | Gen Electric | Annular metal cutting die of titanium carbide coating tool steel and method of shaving metal rods |
| ES8103780A1 (es) * | 1979-08-09 | 1981-03-16 | Mitsubishi Metal Corp | Procedimiento para la fabricacion de cuchillas dotadas de recubrimiento,para herramientas de corte |
| US4609564C2 (en) * | 1981-02-24 | 2001-10-09 | Masco Vt Inc | Method of and apparatus for the coating of a substrate with material electrically transformed into a vapor phase |
| US4537794A (en) * | 1981-02-24 | 1985-08-27 | Wedtech Corp. | Method of coating ceramics |
| US4596719A (en) * | 1981-02-24 | 1986-06-24 | Wedtech Corp. | Multilayer coating method and apparatus |
| JPS5928629B2 (ja) * | 1981-03-30 | 1984-07-14 | 工業技術院長 | 硬質被膜の製造方法 |
| JPS60234965A (ja) * | 1984-05-04 | 1985-11-21 | Diesel Kiki Co Ltd | 薄膜製造方法 |
| GB8508699D0 (en) * | 1985-04-03 | 1985-05-09 | Barr & Stroud Ltd | Chemical vapour deposition of products |
| JPS6222314A (ja) * | 1985-07-22 | 1987-01-30 | 株式会社ボッシュオートモーティブ システム | 薄膜製造方法 |
| US4816293A (en) * | 1986-03-27 | 1989-03-28 | Mitsubishi Denki Kabushiki Kaisha | Process for coating a workpiece with a ceramic material |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3230110A (en) * | 1962-01-22 | 1966-01-18 | Temescal Metallurgical Corp | Method of forming carbon vapor barrier |
| US3373050A (en) * | 1964-12-30 | 1968-03-12 | Sperry Rand Corp | Deflecting particles in vacuum coating process |
| US3419487A (en) * | 1966-01-24 | 1968-12-31 | Dow Corning | Method of growing thin film semiconductors using an electron beam |
| US3677795A (en) * | 1969-05-01 | 1972-07-18 | Gulf Oil Corp | Method of making a prosthetic device |
| US3695910A (en) * | 1969-01-21 | 1972-10-03 | Anthony W Louderback | Method of applying a multilayer antireflection coating to a substrate |
-
1972
- 1972-06-16 US US00263708A patent/US3791852A/en not_active Expired - Lifetime
-
1973
- 1973-06-05 GB GB2663873A patent/GB1392583A/en not_active Expired
- 1973-06-15 DE DE19732330545 patent/DE2330545B2/de not_active Ceased
- 1973-06-15 JP JP48067000A patent/JPS5148463B2/ja not_active Expired
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3230110A (en) * | 1962-01-22 | 1966-01-18 | Temescal Metallurgical Corp | Method of forming carbon vapor barrier |
| US3373050A (en) * | 1964-12-30 | 1968-03-12 | Sperry Rand Corp | Deflecting particles in vacuum coating process |
| US3419487A (en) * | 1966-01-24 | 1968-12-31 | Dow Corning | Method of growing thin film semiconductors using an electron beam |
| US3695910A (en) * | 1969-01-21 | 1972-10-03 | Anthony W Louderback | Method of applying a multilayer antireflection coating to a substrate |
| US3677795A (en) * | 1969-05-01 | 1972-07-18 | Gulf Oil Corp | Method of making a prosthetic device |
Cited By (51)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3916052A (en) * | 1973-05-16 | 1975-10-28 | Airco Inc | Coating of carbon-containing substrates with titanium carbide |
| US4416912A (en) * | 1979-10-13 | 1983-11-22 | The Gillette Company | Formation of coatings on cutting edges |
| US4297387A (en) * | 1980-06-04 | 1981-10-27 | Battelle Development Corporation | Cubic boron nitride preparation |
| US4336277A (en) * | 1980-09-29 | 1982-06-22 | The Regents Of The University Of California | Transparent electrical conducting films by activated reactive evaporation |
| US4698235A (en) * | 1982-09-29 | 1987-10-06 | National Research Development Corporation | Siting a film onto a substrate including electron-beam evaporation |
| US4656052A (en) * | 1984-02-13 | 1987-04-07 | Kyocera Corporation | Process for production of high-hardness boron nitride film |
| US4748027A (en) * | 1984-02-29 | 1988-05-31 | Nexus Aps | Powder product and a method for its preparation |
| US4781989A (en) * | 1986-03-07 | 1988-11-01 | Mitsubishi Kinzoku Kabushiki Kaisha | Surface-coated cutting member |
| DE3627151A1 (de) * | 1986-08-11 | 1988-02-18 | Leybold Heraeus Gmbh & Co Kg | Verfahren und vorrichtung zum reaktiven aufdampfen von metallverbindungen |
| US4816291A (en) * | 1987-08-19 | 1989-03-28 | The Regents Of The University Of California | Process for making diamond, doped diamond, diamond-cubic boron nitride composite films |
| US4957773A (en) * | 1989-02-13 | 1990-09-18 | Syracuse University | Deposition of boron-containing films from decaborane |
| US4980021A (en) * | 1989-04-03 | 1990-12-25 | Shin-Etsu Chemical Co. Ltd. | Method for preparation of edged medical tool |
| DE4006457C1 (en) * | 1990-03-01 | 1991-02-07 | Balzers Ag, Balzers, Li | Appts. for vapour deposition of material under high vacuum - has incandescent cathode and electrode to maintain arc discharge |
| US5434008A (en) * | 1990-08-07 | 1995-07-18 | The Boc Group, Inc. | Thin gas barrier films |
| US5516555A (en) * | 1990-08-07 | 1996-05-14 | The Boc Group, Inc. | Evaporation method for forming a gas barrier film having an organosilicon dispersed discontinuously in an inorganic matrix |
| US5436035A (en) * | 1991-12-05 | 1995-07-25 | Alusuisse-Lonza Services Ltd. | Coating a substrate surface with a permeation barrier |
| US5614273A (en) * | 1993-10-27 | 1997-03-25 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung, E.V. | Process and apparatus for plasma-activated electron beam vaporization |
| DE4336680C2 (de) * | 1993-10-27 | 1998-05-14 | Fraunhofer Ges Forschung | Verfahren zum Elektronenstrahlverdampfen |
| DE4336680A1 (de) * | 1993-10-27 | 1995-05-04 | Fraunhofer Ges Forschung | Verfahren und Einrichtung zum Elektronenstrahlverdampfen |
| US5804258A (en) * | 1996-01-10 | 1998-09-08 | Alusuisse Technology & Management Ltd. | Process and device for coating a substrate surface with vaporized inorganic material |
| DE19724996C1 (de) * | 1997-06-13 | 1998-09-03 | Fraunhofer Ges Forschung | Verfahren zum plasmaaktivierten Elektronenstrahlverdampfen und Einrichtung zur Durchführung des Verfahrens |
| US20020139667A1 (en) * | 2001-03-29 | 2002-10-03 | Guangxin Wang | Methods for electrically forming materials; and mixed metal materials |
| WO2002079546A1 (en) * | 2001-03-29 | 2002-10-10 | Honeywell International Inc. | Methods for electrolytically forming materials; and mixed metal materials |
| US7252751B2 (en) | 2001-03-29 | 2007-08-07 | Honeywell International Inc. | Methods for electrically forming materials |
| US6827828B2 (en) * | 2001-03-29 | 2004-12-07 | Honeywell International Inc. | Mixed metal materials |
| US20040168932A1 (en) * | 2001-03-29 | 2004-09-02 | Guangxin Wang | Methods for electrically forming materials |
| US20030219911A1 (en) * | 2002-03-25 | 2003-11-27 | Xianghui Zeng | Method for producing boride thin films |
| US6797341B2 (en) * | 2002-03-25 | 2004-09-28 | Penn State Research Foundation | Method for producing boride thin films |
| WO2003082482A1 (en) * | 2002-03-25 | 2003-10-09 | Penn State Research Foundation | Method for producing boride thin films |
| WO2003080890A1 (en) * | 2002-03-26 | 2003-10-02 | Matsushita Electric Industrial Co., Ltd. | Production metod and production device for thin film |
| US20050087141A1 (en) * | 2002-03-26 | 2005-04-28 | Kazuyoshi Honda | Production method and production device for thin film |
| US20040234785A1 (en) * | 2003-02-28 | 2004-11-25 | Zi-Kui Liu | Boride thin films on silicon |
| US7090889B2 (en) | 2003-02-28 | 2006-08-15 | The Penn State Research Foundation | Boride thin films on silicon |
| US8122600B2 (en) * | 2003-03-03 | 2012-02-28 | United Technologies Corporation | Fan and compressor blade dovetail restoration process |
| US20040172827A1 (en) * | 2003-03-03 | 2004-09-09 | Kinstler Monika D. | Fan and compressor blade dovetail restoration process |
| US7595098B2 (en) | 2003-04-03 | 2009-09-29 | Microemissive Displays Limited | Method and apparatus for depositing material on a substrate |
| US20070028841A1 (en) * | 2003-04-03 | 2007-02-08 | Microemissive Displays Limited | Method and apparatus for depositing material on a substrate |
| US7569411B2 (en) | 2003-04-16 | 2009-08-04 | The Regents Of The University Of California | Metal MEMS devices and methods of making same |
| US7166488B2 (en) * | 2003-04-16 | 2007-01-23 | The Regents Of The University Of California | Metal MEMS devices and methods of making same |
| US20040207074A1 (en) * | 2003-04-16 | 2004-10-21 | The Regents Of The University Of California | Metal MEMS devices and methods of making same |
| US20090041935A1 (en) * | 2007-08-10 | 2009-02-12 | Mutsuki Yamazaki | Method for causing particulate base material to carry alloy particle |
| CN101364647B (zh) * | 2007-08-10 | 2010-12-22 | 株式会社东芝 | 微粒负载方法和微粒负载装置 |
| US8526137B2 (en) | 2010-04-16 | 2013-09-03 | International Business Machines Corporation | Head comprising a crystalline alumina layer |
| US9023422B1 (en) * | 2011-08-31 | 2015-05-05 | Maxim Integrated Products, Inc. | High rate deposition method of magnetic nanocomposites |
| US10167555B2 (en) | 2014-08-18 | 2019-01-01 | Dynetics, Inc. | Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors |
| US10683574B2 (en) | 2014-08-18 | 2020-06-16 | Dynetics, Inc. | Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors |
| US10947622B2 (en) | 2014-08-18 | 2021-03-16 | Dynetics, Inc. | Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors |
| US11499230B2 (en) | 2014-08-18 | 2022-11-15 | Dynetics, Inc. | Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors |
| CN106676480A (zh) * | 2017-03-10 | 2017-05-17 | 南京大学 | 一种蒸发速率可控的电子束蒸发源 |
| CN106676480B (zh) * | 2017-03-10 | 2019-11-08 | 南京大学 | 一种蒸发速率可控的电子束蒸发源 |
| RU232765U1 (ru) * | 2024-12-23 | 2025-03-19 | Федеральное государственное автономное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" | Устройство реактивного электронно-лучевого осаждения нитридных покрытий |
Also Published As
| Publication number | Publication date |
|---|---|
| JPS5148463B2 (enrdf_load_stackoverflow) | 1976-12-21 |
| DE2330545A1 (de) | 1974-01-03 |
| JPS4952186A (enrdf_load_stackoverflow) | 1974-05-21 |
| DE2330545B2 (de) | 1977-06-08 |
| GB1392583A (en) | 1975-04-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3791852A (en) | High rate deposition of carbides by activated reactive evaporation | |
| US4297387A (en) | Cubic boron nitride preparation | |
| US4655893A (en) | Cubic boron nitride preparation utilizing a boron and nitrogen bearing gas | |
| US4816291A (en) | Process for making diamond, doped diamond, diamond-cubic boron nitride composite films | |
| US4961958A (en) | Process for making diamond, and doped diamond films at low temperature | |
| US4412899A (en) | Cubic boron nitride preparation utilizing nitrogen gas | |
| US4112137A (en) | Process for coating insulating substrates by reactive ion plating | |
| US6346301B2 (en) | Coating method for producing a heat-insulating layer on a substrate | |
| US6602390B1 (en) | Coating a workpiece and operating a cathodic arc discharge | |
| US4336277A (en) | Transparent electrical conducting films by activated reactive evaporation | |
| WO2008145459A1 (de) | Vakuumbehandlungsanlage und vakuumbehandlungsverfahren | |
| JPH02285072A (ja) | 加工物表面のコーティング方法及びその加工物 | |
| GB2055403A (en) | Method for depositing hard wear-resistant coatings on substrates | |
| US4714625A (en) | Deposition of films of cubic boron nitride and nitrides of other group III elements | |
| US4415420A (en) | Cubic boron nitride preparation | |
| Spalvins | Survey of ion plating sources | |
| US3630872A (en) | Process for the manufacture of an electrical contact point | |
| CN1028546C (zh) | 加弧辉光离子渗金属技术及设备 | |
| US4698235A (en) | Siting a film onto a substrate including electron-beam evaporation | |
| RU2676720C1 (ru) | Способ вакуумного ионно-плазменного низкотемпературного осаждения нанокристаллического покрытия из оксида алюминия | |
| JPH04103754A (ja) | セラミック被覆材料とその製造方法 | |
| JPH0233786B2 (ja) | Kagobutsumakunokeiseihoho | |
| Deshpandey et al. | The activated reactive evaporation (ARE) process | |
| FI66656B (fi) | Foerfarande foer tillverkning av titannitridbelaeggning vid lag temperatur med hjaelp av glimurladdning | |
| KR100193365B1 (ko) | 금속표면에 질화티탄막을 형성하는 방법 |