US3769302A - Aliphatic amino-substituted flourans - Google Patents
Aliphatic amino-substituted flourans Download PDFInfo
- Publication number
- US3769302A US3769302A US00792324A US3769302DA US3769302A US 3769302 A US3769302 A US 3769302A US 00792324 A US00792324 A US 00792324A US 3769302D A US3769302D A US 3769302DA US 3769302 A US3769302 A US 3769302A
- Authority
- US
- United States
- Prior art keywords
- chromogenic
- diethylaminofluoran
- sheet
- solution
- benzene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 abstract description 114
- -1 HYDROGEN RADICALS Chemical class 0.000 abstract description 23
- 239000001257 hydrogen Substances 0.000 abstract description 14
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 14
- 239000002841 Lewis acid Substances 0.000 abstract description 9
- 150000007517 lewis acids Chemical class 0.000 abstract description 9
- FWQHNLCNFPYBCA-UHFFFAOYSA-N fluoran Chemical compound C12=CC=CC=C2OC2=CC=CC=C2C11OC(=O)C2=CC=CC=C21 FWQHNLCNFPYBCA-UHFFFAOYSA-N 0.000 abstract description 4
- 150000002148 esters Chemical group 0.000 abstract description 2
- 150000003254 radicals Chemical class 0.000 abstract description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 93
- 239000000243 solution Substances 0.000 description 38
- 239000002904 solvent Substances 0.000 description 31
- 239000007795 chemical reaction product Substances 0.000 description 26
- 239000000203 mixture Substances 0.000 description 26
- 239000002775 capsule Substances 0.000 description 25
- 230000002378 acidificating effect Effects 0.000 description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 16
- 239000007788 liquid Substances 0.000 description 16
- 239000003593 chromogenic compound Substances 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 150000002431 hydrogen Chemical group 0.000 description 10
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- 229920001568 phenolic resin Polymers 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 239000005995 Aluminium silicate Substances 0.000 description 9
- 235000012211 aluminium silicate Nutrition 0.000 description 9
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000005011 phenolic resin Substances 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 8
- 239000011541 reaction mixture Substances 0.000 description 8
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 7
- 239000003094 microcapsule Substances 0.000 description 7
- 230000007935 neutral effect Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 229920000620 organic polymer Polymers 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 238000000921 elemental analysis Methods 0.000 description 4
- 239000006193 liquid solution Substances 0.000 description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 229920000084 Gum arabic Polymers 0.000 description 3
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000205 acacia gum Substances 0.000 description 3
- 235000010489 acacia gum Nutrition 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000002274 desiccant Substances 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- UFRKOOMLVWDICO-UHFFFAOYSA-N n-ethyl-n-fluoroethanamine Chemical compound CCN(F)CC UFRKOOMLVWDICO-UHFFFAOYSA-N 0.000 description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 description 3
- 235000011152 sodium sulphate Nutrition 0.000 description 3
- PYSRRFNXTXNWCD-UHFFFAOYSA-N 3-(2-phenylethenyl)furan-2,5-dione Chemical compound O=C1OC(=O)C(C=CC=2C=CC=CC=2)=C1 PYSRRFNXTXNWCD-UHFFFAOYSA-N 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 241000978776 Senegalia senegal Species 0.000 description 2
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000586 desensitisation Methods 0.000 description 2
- 125000000664 diazo group Chemical group [N-]=[N+]=[*] 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 description 1
- GPVQNRUOLHCLEQ-UHFFFAOYSA-N 2-(fluoroamino)-1-phenylethanone Chemical compound FNCC(=O)C1=CC=CC=C1 GPVQNRUOLHCLEQ-UHFFFAOYSA-N 0.000 description 1
- RGHQKFQZGLKBCF-UHFFFAOYSA-N 2-bromoethyl acetate Chemical compound CC(=O)OCCBr RGHQKFQZGLKBCF-UHFFFAOYSA-N 0.000 description 1
- XBPPLECAZBTMMK-UHFFFAOYSA-N 2-chloro-n,n-dimethylacetamide Chemical compound CN(C)C(=O)CCl XBPPLECAZBTMMK-UHFFFAOYSA-N 0.000 description 1
- ZVNPWFOVUDMGRP-UHFFFAOYSA-N 4-methylaminophenol sulfate Chemical compound OS(O)(=O)=O.CNC1=CC=C(O)C=C1.CNC1=CC=C(O)C=C1 ZVNPWFOVUDMGRP-UHFFFAOYSA-N 0.000 description 1
- ZQTFBWAUYUOZNA-UHFFFAOYSA-N 6-benzoyl-3-(diethylamino)-1-hydroxycyclohexa-2,4-diene-1-carboxylic acid Chemical compound C(=O)(O)C1(C(C(=O)C2=CC=CC=C2)C=CC(=C1)N(CC)CC)O ZQTFBWAUYUOZNA-UHFFFAOYSA-N 0.000 description 1
- 244000171897 Acacia nilotica subsp nilotica Species 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical group OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000001263 FEMA 3042 Substances 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 description 1
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- YIOQCYXPSWJYHB-UHFFFAOYSA-N acetylene;phenol Chemical group C#C.OC1=CC=CC=C1 YIOQCYXPSWJYHB-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SLUNEGLMXGHOLY-UHFFFAOYSA-N benzene;hexane Chemical compound CCCCCC.C1=CC=CC=C1 SLUNEGLMXGHOLY-UHFFFAOYSA-N 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- FNAQSUUGMSOBHW-UHFFFAOYSA-H calcium citrate Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FNAQSUUGMSOBHW-UHFFFAOYSA-H 0.000 description 1
- 239000001354 calcium citrate Substances 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229940096529 carboxypolymethylene Drugs 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- PQJJJMRNHATNKG-UHFFFAOYSA-N ethyl bromoacetate Chemical compound CCOC(=O)CBr PQJJJMRNHATNKG-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010433 feldspar Substances 0.000 description 1
- MDQRDWAGHRLBPA-UHFFFAOYSA-N fluoroamine Chemical compound FN MDQRDWAGHRLBPA-UHFFFAOYSA-N 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- 229910000286 fullers earth Inorganic materials 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 239000011872 intimate mixture Substances 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- PIIHPBHYDCOPKZ-UHFFFAOYSA-N n-fluoro-n-methylmethanamine Chemical compound CN(C)F PIIHPBHYDCOPKZ-UHFFFAOYSA-N 0.000 description 1
- GRHRIJYRDMAPNG-UHFFFAOYSA-N n-fluoromethanamine Chemical compound CNF GRHRIJYRDMAPNG-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- LIGACIXOYTUXAW-UHFFFAOYSA-N phenacyl bromide Chemical compound BrCC(=O)C1=CC=CC=C1 LIGACIXOYTUXAW-UHFFFAOYSA-N 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 description 1
- 229940033123 tannic acid Drugs 0.000 description 1
- 235000015523 tannic acid Nutrition 0.000 description 1
- 229920002258 tannic acid Polymers 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 235000013337 tricalcium citrate Nutrition 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B11/00—Diaryl- or thriarylmethane dyes
- C09B11/04—Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
- C09B11/10—Amino derivatives of triarylmethanes
- C09B11/24—Phthaleins containing amino groups ; Phthalanes; Fluoranes; Phthalides; Rhodamine dyes; Phthaleins having heterocyclic aryl rings; Lactone or lactame forms of triarylmethane dyes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M5/00—Duplicating or marking methods; Sheet materials for use therein
- B41M5/124—Duplicating or marking methods; Sheet materials for use therein using pressure to make a masked colour visible, e.g. to make a coloured support visible, to create an opaque or transparent pattern, or to form colour by uniting colour-forming components
- B41M5/132—Chemical colour-forming components; Additives or binders therefor
- B41M5/136—Organic colour formers, e.g. leuco dyes
- B41M5/145—Organic colour formers, e.g. leuco dyes with a lactone or lactam ring
- B41M5/1455—Organic colour formers, e.g. leuco dyes with a lactone or lactam ring characterised by fluoran compounds
Definitions
- R and R represent hydrogen radicals and alkyl radicals; and R represents ester, acyl, alkylene and phenyl radicals; said materials assuming a colored form upon reactive contact with a Lewis acid molecule.
- Examples include 2- carbo-tert-butoxy methylamino] -6'-diethylaminofiuoran;
- This invention pertains to chromogenic compounds for use in pressure sensitive record material and to an improved mark-forming manifold system incorporating these novel chromogenic compounds. More specifically, this invention pertains to aliphatic-amino-substituted dialkylamino fluorans which have the form of substantially colorless, i.e. white, or slightly colored solids, or approach being colorless when in liquid solution, but which may be converted to dark-colored forms upon reactive contact with appropriate acidic material.
- This invention further, and in the most preferred embodiment, relates to such chromogenic compounds which, when placed in reactive contact with a Lewis acid material, yield neutral colored, i.e., gray to black, reaction products.
- neutral-colored reaction products find particular use in pressure-sensitive, mark-forming recording systems by virtue of their having improved stability on exposure to light and improved reproduction capabilities when copied by Xerographic or diazo processes.
- the chromogenic compounds of the present invention are aliphaticamino-substituted fiuorans.
- marking in desired areas on support webs or sheets may be accomplished by effecting localized reactive contact between the chromogenic material and the acidic material on or in such a web or sheet, such material being brought thereto by transfer, or originally there, in situthe desired reactive contact forming dark-colored materials in the intended image areas.
- Pressure-sensitive, mark-forming systems of the prior art include that disclosed in application for Letters Patent No. 392,404, filed Aug. 27, 1964, in the names of Robert E. Miller and Paul S. Phillips, Jr., now abandoned.
- the above-mentioned patent application provides a marking system of disposing on and/or within sheet support material, mutually reactant but unreacted mark-forming components (at least one component of which is a polymeric material) and a liquid solvent in which each of the markforming components is solublesaid liquid solvent being present in such form that it is maintained isolated by a pressure-rupturable barrier from at least one of the markforrmng components until an application of pressure causes a breach or rupture of the barrier in the area delineated by the pressure pattern.
- the mark-forming components thereby are brought into reactive contact, producing a distinctive mark.
- It is a further object of this invention to provide a new and improved mark-forming system which comprises disposing, within a web or upon the surface of a web or sheetsupport-material, unreacted chromogenic material in a location suitable for subsequent reactive contact with an acidic material to produce dark-colored reaction products, thus providing means for making marks of desirable color intensity and hue.
- R and R represent hydrogen radicals and alkyl radicals having less than five carbon atoms
- R represents hydrogen, phenyl and alkyl radicals
- a new composition of matter which comprises a dark-colored product of chemical reaction having a resonant chemical structure and produced by contact of a color-activating material with one of the above-mentioned chromogenic compounds.
- the color-developing or activating material is an acidic substance useful for converting the chromogenic compounds to colored forms.
- the method of marking of this invention i.e., the method of developing a dark-colored material from substantially colorless or slightly colored chromogenic compounds, comprises providing a chromogenic compound selected from among the above-mentioned compounds and bringing such chromogenic compound into reactive contact with an acidic color-activating substance, in areas where marking is desired, to produce a dark-colored form of the chromogenic compound by the action thereon of said acidic substance.
- Acidic materials employed in this invention can be any compound within the definition of a Lewis acid, i.e., any electron acceptor.
- acidic organic polymers such as phenolic polymers are employed as the acidic material.
- the novel chromogenic materials exhibit the advantage of improved color stability when they are reacted with such phenolic polymers.
- Solution formation of solid particles of the polymeric material in a solvent system with the substantially colorless chromogenic compounds permits penetration of the dark-colored reaction product into a porous support sheet, e.g., paper, so that the colored form of the chromogenic material is absorbed into the body of the sheet and is not merely on the surface of the sheet.
- the absorption feature provides protection against erasure of recorded data by attrition of the surface of a record sheet made in accordance with the present invention.
- Preferred chromogenic materials of this invention are those which yield, as the dark-colored reaction product with above-described Lewis acids, a neutral, i.e., gray to black substance.
- a neutral i.e., gray to black substance.
- Such preferred chromogenic materials are eligible to be used in the preferred pressure sensitive record units and mark-forming units of this invention. It is understood that colors with respect to hue, saturation, and lightness are customarily identified in a largely subjective manner. Neutral colors, i.e., shades which range from gray to black and which are substantially lacking in hue and saturation are also customarily identified in a subjective manner. An observer of the products resulting from reaction between preferred ones of the novel chromogenic materials of this invention and specified Lewisacid reactive materials is immediately aware that such reaction products are substantially neutral in hue.
- FIG. 1 is a diagrammatic representation of a two-sheet unit manifold, in perspective.
- the bottom surface of the overlying sheet is supplied on the surface or near the surface with a multiplicity of minute pressure-rupturable microcapsules containing a solution of the novel, substantially colorless, chromogenic component.
- An acidic component such as an acid clay or a phenolic polymeric material lies within the lower web or undersheet or upon the upper surface of the lower web or undersheet.
- a colored mark is made by the use of a stylus, a type character, or other pressure-exerting means applied to the twosheet unit manifold.
- FIG. 2 is a sectional view of the two-sheet unit manifold of FIG. 1. The elements are not to scale and are so-shown in order to more effectively depict their interrelation.
- the released solution is transferred from the overlying or base-sheet to the receiving surface of the underlying sheet in conformance with the pressure pattern of the writing operation.
- the drawing shows that the top of the underlying sheet is coated or impregnated with a material reactant with the chromogenic material, e.g., an acid clay or an acidic phenolic polymer material; and that capsules are present on the overlying or base-sheet which capsules contain a liquid solution of chromogenic material.
- the record material e.g., an acid clay or an acidic phenolic polymer material
- the capsules can contain the polymeric phenolic material in liquid solution and the receiving surface of the underlying sheet can be supplied with the chromogenic material.
- the improvement in the system resides in the chromogenic material, which chromogenic material is the novel substance of the instant invention.
- the chromogenic material located within or upon the sheet; it is possible to incorporate the chromogenic material in a solid, crystalline state in a binder material so that the chromogenic material may be transferred from the overlying sheet, upon the application of pressure, to deposit some of the chromogenic material on the receiving surface of the undersheet, which receiving surface carries a color-activating polymeric material.
- the chromogenic substance is dissolved in an appropriate solvent and minute droplets of the solution of the chromogenic material are encapsulated in minute, rupturable, capsules.
- the polymeric mark-forming components should have a common solubility with the novel chromogenic material in at least one liquid solvent when the acid-reacting material is a phenolic or other acidic organic polymer. It is also noted that in a single system several chromogenic materials may be used with the same or different polymeric materials. Several polymeric materials can be reactively contacted with a single chromogenic compound or with a mixture of chromogenic compounds.
- the solvent can be maintained in physical isolation in minute droplets until such time as it is released by application of pressure. This may be accomplished by several known techniques, but, preferably, isolation is maintained by encapsulation of individual droplets of the solvent in a microcapsule according to the procedures described, for example, in US. Pats. Nos. 2,712,507, issued July 5, 1955, on the application of Barrett K. Green; 2,730,457 issued Jan. 10, 1956, on the application of Barrett K. Green and Lowell Schleicher; 2,800,457 issued July 23, 1957, on the application of Barrett K. Green and Lowell Schleicher; 2,800,458 issued July 23, 1957, on the application of Barrett K. Green, reissued as Re. Pat. No. 24,899 on Nov.
- the microscopic capsules when disposed within or upon a supporting web as a multiplicity in contiguous juxtaposition, are rupturable by pressure, such as normal marking pressure found, for example, in writing or typing operations.
- the material or materials chosen as the wall material for the droplet-containing microcapsules in addition to being pressure rupturable, must be inert or unreactive with respect to the intended contents of the capsules and the other mark-forming components so that the capsule wall material will remain intact under normal storage conditions until such time as it is released by an application of marking pressure.
- Preferred examples of eligible capsule wall materials include gelatin, gum arabic and many others thoroughly described in the aforementioned patents.
- the capsule size should not exceed about 50 microns in diameter.
- the capsules should be smaller than about microns in diameter.
- the acidic organic polymeric material useful for developing the color of novel chromogenic compounds in this invention include phenolic polymers, phenol acetylene polymers, maleic acid-rosin resins, partially or wholly hydrolyzed styrene-maleic anhydride copolymers and ethylene-maleic anhydride copolymers, carboxy polymethylene and wholly or partially hydrolyzed vinylmethylether-maleic anhydride copolymer and mixtures thereof.
- phenolic polymers found useful include alkyl-phenol acetylene resins, which are soluble in common organic solvents and possess permanent fusibility in the absence of being treated by cross-linking materials.
- Another specific group of useful phenolic polymers are members of the type commonly referred to as novolacs (a type of phenol-formaldehyde polymeric material) which are characterized by solubility in common organic solvents and which are, in the absence of cross-linking agents, permanently fusible.
- Resol resins if they are still soluble, may be used, though they are subject to change in properties upon aging.
- phenolic polymer material found useful in practicing this invention is characterized by the presence of hydroxyl groups and by the absence of groups such as methylol,
- a laboratory method useful in the selection of suitable phenolic resins is the determination of the infra red absorption pattern. It has been found that phenolic resins which undergo absorption in the 32003500 cmr region (which is indicative of hydroxyl groups) on the resin molecules and which do not absorb in the l6001700 cm. region are eligible. This latter absorption region is indicative of desensitization of hydroxyl groups which desensitization renders such groups unavailable for reaction with the chromogenic materials.
- the acidic material used as a mark-forming component in the present invention is one of the aforementioned organic polymers
- the liquid solvent chosen must be capable of dissolving it.
- the solvent may be volatile or nonvolatile, and a singleor multiple-component solvent may be used which is wholly or partially volatile.
- volatile solvents useful in practicing the present invention include toluene, petroleum distillate, perchloroethylene, and xylene.
- non-volatile solvents include high-boiling-point petroleum fractions and chlorinated biphenyls.
- the solvent chosen should be capable of dissolving at least about 0.3 percent, by weight, of the chromogenic material, and at least about 3 to 5 percent, by weight, of the acidic polymeric material to ield an effective reaction.
- the solvent should be capable of dissolving an excess of the polymeric material, so as to provide every opportunity for utilization of the chromogenic material and, thus, to assure maximum coloration at the reaction site.
- a further criterion for selection of the solvent is that the solvent must not interfere with the mark-forming reaction.
- the presence of the solvent may be found to interfere with the mark-forming reaction or diminish the intensity of the mark, in which instances the solvent chosen should be sufliciently volatile to assure its removal from the reaction site soon after having brought the mark-forming components into reactive contact so that the mark-forming reaction can proceed.
- mark-forming reaction requires that an intimate mixture of the components be brought about through solution of said components, one or more of the markforming components can be dissolved in solvent droplets isolated by encapsulation, the only requirement being that at least one of the components essential to the markforming reaction be maintained isolated until the markforming reaction is desired.
- the mark-forming components are so chosen as to produce a mark upon application of pressure to a coated system of sheets at room temperature (20 to 25 degrees centigrade).
- the present invention also includes a system wherein the solvent component is not liquid at temperatures near room temperature but is liquid and in condition for forming solutions only at elevated temperatures.
- the support sheet member on which components of the system are disposed may comprise a single or a dual sheet assembly.
- the record material is referred to as a self-contained or autogenous system.
- the record material is referred to as a transfer system.
- a transfer system may also be referred to as a two-fold system, in that at least two sheets are required and each sheet includes a component, or components, essential to the mark-forming reaction.
- microcapsules are employed, they can be present in the sheet support material either disposed therethroughout or as a coating thereon, or both.
- the capsules can be applied to the sheet material as a dispersion in the liquid vehicle in which they were manufactured, or, if desired, they can be separated from the vehicle and thereafter dispersed in a solution of the acidreacting polymeric component (for instance, 30 grams of water and 53 grams of a one percent, by weight aqueous solution of polyvinylmethylether-maleic anhydride) to form a sheet-coating composition in which, because of the inertness of the solution and the capsules, both components retain their identity and physical integrity.
- a solution of the acidreacting polymeric component for instance, 30 grams of water and 53 grams of a one percent, by weight aqueous solution of polyvinylmethylether-maleic anhydride
- a further alternative is to disperse one or more mark-forming components, and the chromogenic-material-containing microcapsules in a liquid medium not a solvent for either the mark-forming component or the microcapsules, with the result that all components of the mark-forming system may be disposed on or within the support sheet in the one operation.
- the several components may be applied individually.
- the capsules can also be coated onto a sheet as a dispersion in a solution of polymeric material which is not necessarily reactive with the capsule-contained solution of chromogenic materials.
- the respective amounts of the several components can be varied according to the nature of the materials and the architecture of the record material unit desired or re quired. Suitable lower amounts include, in the case of the chromogenic material, about 0.005 to 0.075 pound per ream (a ream in this application meaning five hundred (500) sheets of 25"): 38" paper, totalling 3,300 square feet); in the case of the solvent, about 1 to 3 pounds per ream; and in the case of the polymer, about 0.5 pound per ream. In all instances, the upper limit is primarily a matter of economic consideration.
- the slurry of capsules can be applied to a wet web of paper, for example, as it exists on the screen of a Fourdrinier paper machine, so as to penetrate the paper web a distance depending on the freeness of the pulp and the water content of the web at the point of application.
- the capsules can be placed directly in or on a paper or support sheet. Not only capsule structures, but continuous films which contain a multitude of microscopic, unencapsulated, droplets for local release in an area subjected to pressure can be utilized. (See, for example, US. Pat. No. 2,299,694, which issued Oct. 20, 1942, on the application of Barrett K. Green.)
- a solution thereof in an evaporable solvent can be introduced into an amount of water and the resulting mixture can be agitated while the evaporable solvent is blown off by an air blast.
- This operation leaves an aqueous colloidal dispersion slurry of the polymeric material, which may be applied to finished paper so as to leave a surface residue, or the slurry may be applied to a wet web of paper or at the size-press station of a paper making machine.
- the water-insoluble polymer can be ground to a desired or required particle size in a ball mill with water, preferably with a dispersing agent, such as a small quantity of sodium silicate.
- a binder material of hdyrophilic properties is ground with the polymeric material, the binder itself may act as a dispersant.
- an amount of binder material of up to 40 percent, by weight, of, the amount of polymeric material can be added to the ball-milled slurry of materials such binder materials being of the paper coating binder class, including, for example, gum arabic, casein, hydroxyethylcellulose, and latexes (such as styrenebutadiene copolymer).
- oil absorbents in the form of fullers earth may be combined with the polymeric material particles to assist in retaining, in situ, the liquid droplets of chromogenic material solution to be transferred to it in data-representing configuration, for the purpose of preventing bleeding of the print.
- Another method for applying the chromogenic or polymeric material individually to a single sheet of paper is by immersing a sheet of paper in 1-10 percent, by weight, solution of the material in an evaporable solvent.
- this operation must be conducted individually for each reactant, because if the other reactant material were present, contact of the reactants would result in a premature coloration over the sheet area.
- a dried sheet with one component can then be coated with a solution of another component, the solvent of which is a non-solvent to the already-supplied component.
- the polymeric material can also be dissolved in ink composition vehicles to form a printing ink of colorless character, and, thus, may be used to spot-print a proposed record-sheet-unit sensitized for recording, in a reaction produced color in those spot-printed areas, by application of a solution of the chromogenic material.
- a printing ink may be made of up to 75 percent, by weight, of the phenolic polymeric material in a petroleum-based solventthe ink being built to a viscosity suitable for printing purposes.
- the relative amounts of reactive, mark-forming, components to be used in practice of this invention are those most convenient and economical amounts consistent with adequate, desired or required visibility of the recorded data.
- the resolution of the recorded data is dependent on, among other things, particle or capsule size, distribution and amount of particles or capsules, liquid solvent migration, chemical reaction efliciency, and other factors, all of which can be optimized empirically by one skilled in the art. Such factors do not determine the principle of the present invention, which invention, in part, relates to means for enabling the bringing into solution contact by marking pressure, two normally solid, chemically reactive, components dissolved in a common liquid solvent component held isolated as liquid droplets.
- the isolated liquid droplets are preferably in marking-pressure-rupturable capsules having polymeric-film walls, or are isolated, as a discontinuous phase, in a continuous marking-pressure-rupturable film.
- the acidic markforming material reacts with the novel chromogenic material to effect distinctive color formation or color change.
- the novel chromogenic material may be desirable to include other materials to supplement the polymer reactants.
- kaolin can be added to improve the transfer of the liquid and/or the dissolved materials between the sheets.
- other materials such as bentom'te, attapulgite, talc, feldspar, halloysite, magnesium trisilieate, silica gel, pyrophyllite, zinc sulfate, calcium sulfate, calcium citrate, calcium phosphate, calcium fluoride, barium sulfate and tannic acid can be included.
- compositions useful for coating mark-forming materials into supporting sheets can be employed in compositions useful for coating mark-forming materials into supporting sheets.
- An example of the compositions which can be coated onto the receiving surface of an underlying sheet of a multi-sheet to react with a capsule coating on the underside of an overlying sheet is as follows.
- Coating composition Percent by weight Phenolic polymer mixture 17 Paper coating kaolin (white) 57 Calcium carbonate 12 Styrene butadiene latex 4 Ethylated starch 8 Gum arabic 2 Having disclosed, generally, the novel chromogenic materials of this invention and preferred methods for utilizing the novel chromogenic materials, in combination with other materials, as reactive components in markforming record material; examples will now be disclosed wherein preparation of several of the novel chromogenic materials is described.
- EXAMPLE A Preparation of 2 carboxy 4 diethylamino-Z-hydroxybenzophenone, an intermediate useful in preparing the novel compounds of this invention
- EXAMPLE B Preparation of 2-amino-6'-diethylaminofluoran, an intermediate useful in preparing the novel compounds of this invention
- An agitating mixture of 31.3 grams of 2'-carboxy- 10 4-diethylamino-Z-hydroxybenzophenone (the product of Example A, above), 16.7 grams of p-hydroxyacetanilide, and milliliters of concentrated sulfuric acid (1.84 specific gravity) is heated at a temperature of about 100 degrees centigrade for about 45 minutes under a nitrogen atmosphere.
- Therresulting red solution is heated at a temperature of about -135 degrees centigrade for an additional 3 hours and is then cooled by means of external cooling and addition, to the reaction mixture, of 200 grams of ice.
- the pH of the reaction mixture is adjusted to 9.5 by slow addition of about 200 milliliters of 50 percent, by weight, aqueous sodium hydroxide solution and then the solution is warmed to about 70 degrees centigrade and agitated for about 15 minutes with 700 milliliters of benzene.
- the benzene phase is removed and treated with sodium sulfate desiccant and an activated carbon adsorbent and the benzene phase is then concentrated to about 200 milliliters by evaporation.
- the concentrated benzene solution is chilled to about 10 degrees centigrade and cream-colored crystals are removed from the solution by filtration.
- the melting point of the material is about 212-213 degrees centigrade.
- a first portion of red-colored benzene eluant was discarded.
- Next-eluted, colorless, benzene solution was collected until the eluant no longer colored a paper coated with a mixture of kaolin and phenolic resin.
- the collected eluant was concentrated to about 50 milliliters by evaporation and about 50 milliliters of n-hexane was added to crystallize the reaction product as nearly colorless crystals having a melting point of 161-162 degrees centigrade.
- a benzene solution of the reaction product imparted a neutral or gray to black color to paper coated with a mixture of kaolin and phenolic resin.
- the pH of the reaction mixture was adjusted to 10.5 by slow addition of about 136 milliliters of 50 percent, by weight, aqueous sodium hydroxide solution.
- Solid reaction product which precipitated from solution with the raise in pH was separated by filtration and washed with 5-100 milliliter volumes of water. The remaining solid was washed with 4-100 milliliter volumes of hot benzene and the benzene and the benzene wash solution was treated with sodium sulfate desiccant and an activated carbon adsorbent before being concentrated, by evaporation, to about 125 milliliters. About milliliters of hexane was added to the concentrated solution and 12.5 grams of reaction product was crystallized (melting point, 144-148 degrees centigrade).
- the product was further purified by being recrystallized from benzene.
- the purified product had a melting point of 147- 149 degrees centigrade and a benzene solution of it imparted a green color to paper coated with a mixture of kaolin and phenolic resin. Results of elemental analysis of the product was as follows (in weight percent):
- EXAMPLE 3 Preparation of 2'- [N- (carbethoxymethyl) -N-methylamino]-6'-diethylaminofluoran An agitating mixture of 8.0 grams of 6-diethylamino- 2' methylaminofluoran (as prepared in Example C, above), 2.52 grams of sodium bicarbonate, 0.83 gram of potassium iodide, 5.01 grams of ethylbromoacetate and 100 milliliters of 95 percent, by volume, ethanol were refluxed together for about two hours. The reaction mixture was cooled and filtered and ethanol was removed from the filtrate by evaporation under reduced pressure.
- EXAMPLE 4 Preparation of -6'-diethylamino-2'-(N-phenacyl) aminofluoran
- the agitating mixture was maintained at 55 degrees centigrade for an additional one hour.
- reaction mixture was filtered and the insoluble material was washed with 30 milliliters of benzene to dissolve the reaction product.
- Benzene was evaporated from the resulting solution under reduced pressure and the residue exhibited a melting point of 192- 195 degrees centigrade.
- the residue was recrystallized from a mixture of 5 milliliters of benzene and 0.3 milliliter of hexane and the purified reaction product exhibited a melting point of 201-202 degrees centigrade.
- a benzene solution of the reaction product imparted a green color to paper coated with a mixture of kaolin and phenolic resin. Results of elemental analysis of the product was as follows (in weight percent):
- EXAMPLE 5 Preparation of 6-diethylamino-2'-[N(N',N-dimethylcarbamoylmethyl) amino] fluoran An agitating mixture of 10.90 grams of 2'-amino-6- diethylaminofluoran (Example B, above), 3.78 grams of N,N-dimethylchloroacetamide, 2.58 grams of sodium bicarbonate, 1.00 gram of potassium iodide and 100 milliliters of percent, by volume, ethanol was refluxed for about three hours. The reaction mixture was cooled to about 5 degrees centigrade and filtered to remove solid inorganic residues and the desired reaction product.
- the solid material was slurried with three-SO-milliliter-volumes of hot benzene to leach out the reaction product.
- the benzene from those volumes was evaporated to yield 2.27 grams of a crude reaction product having a melting point of 129-131 degrees centigrade. Recrystallization from 50 milliliters of benzene yielded 1.78 grams of purified reaction product having a melting point of 132-134 degrees centigrade.
- a benzene solution of the reaction product imparted a green color to paper coated with a mixture of kaolin and phenolic resin.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Color Printing (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Heat Sensitive Colour Forming Recording (AREA)
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US79243569A | 1969-01-21 | 1969-01-21 | |
US79240169A | 1969-01-21 | 1969-01-21 | |
US79232569A | 1969-01-21 | 1969-01-21 | |
US79227969A | 1969-01-21 | 1969-01-21 | |
US79232469A | 1969-01-21 | 1969-01-21 | |
US79227769A | 1969-01-21 | 1969-01-21 | |
US10560071A | 1971-01-11 | 1971-01-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3769302A true US3769302A (en) | 1973-10-30 |
Family
ID=27568646
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00792324A Expired - Lifetime US3769302A (en) | 1969-01-21 | 1969-01-21 | Aliphatic amino-substituted flourans |
US792325*A Expired - Lifetime US3637757A (en) | 1969-01-21 | 1969-01-21 | Diethylamino fluorans |
US792279*A Expired - Lifetime US3624107A (en) | 1969-01-21 | 1969-01-21 | Nitro- and amino-substituted fluorans |
US792435*A Expired - Lifetime US3627787A (en) | 1969-01-21 | 1969-01-21 | Amids- and sulfonamido-substituted fluorans |
US792277*A Expired - Lifetime US3641011A (en) | 1969-01-21 | 1969-01-21 | 5- and 6-dialkylaminobenzylidene-aminofluorans |
US00105600A Expired - Lifetime US3713863A (en) | 1969-01-21 | 1971-01-11 | Mark-forming record materials and process |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US792325*A Expired - Lifetime US3637757A (en) | 1969-01-21 | 1969-01-21 | Diethylamino fluorans |
US792279*A Expired - Lifetime US3624107A (en) | 1969-01-21 | 1969-01-21 | Nitro- and amino-substituted fluorans |
US792435*A Expired - Lifetime US3627787A (en) | 1969-01-21 | 1969-01-21 | Amids- and sulfonamido-substituted fluorans |
US792277*A Expired - Lifetime US3641011A (en) | 1969-01-21 | 1969-01-21 | 5- and 6-dialkylaminobenzylidene-aminofluorans |
US00105600A Expired - Lifetime US3713863A (en) | 1969-01-21 | 1971-01-11 | Mark-forming record materials and process |
Country Status (5)
Country | Link |
---|---|
US (6) | US3769302A (fr) |
BE (1) | BE744705A (fr) |
CH (1) | CH567077A5 (fr) |
FR (1) | FR2028785A1 (fr) |
GB (1) | GB1269601A (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3900215A (en) * | 1972-01-24 | 1975-08-19 | Fuji Photo Film Co Ltd | Record sheet |
US3919450A (en) * | 1972-06-24 | 1975-11-11 | Oji Paper Co | Color developing high impact polystyrene sheet and method of developing color images inside the same |
US4524373A (en) * | 1982-02-24 | 1985-06-18 | Kanzaki Paper Manufacturing Co., Ltd. | Fluoran derivatives as new compounds, process for preparing the same and recording system utilizing the same as colorless chromogenic material |
US5250708A (en) * | 1991-08-13 | 1993-10-05 | Milliken Research Corporation | Poly(oxyalkylene) substituted aminophenol intermediate and xanthene colorant |
US5331097A (en) * | 1991-08-13 | 1994-07-19 | Milliken Research Corporation | Poly(oxyalkylene) substituted xanthene colorant and method for making the same |
US5395948A (en) * | 1992-03-17 | 1995-03-07 | Ciba-Geigy Corporation | Fluoran color formers |
US20090099372A1 (en) * | 2007-02-06 | 2009-04-16 | Xerox Corporation | Colorant Compounds |
CN106349091A (zh) * | 2016-08-30 | 2017-01-25 | 沈阳化工大学 | 一种熔融态合成2‑(4‑二乙氨基‑2‑羟基苯甲酰基)苯甲酸的方法 |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1416867A (en) * | 1971-12-30 | 1975-12-10 | Wiggins Teape Ltd | Colour formers |
BE768244A (fr) * | 1970-06-08 | 1971-11-03 | Fuji Photo Film Co Ltd | Feuille revelant les couleurs, resistant a la lumiere, utilisable avec un papier a reproduire sensible a la pression |
US3998846A (en) * | 1970-07-08 | 1976-12-21 | Yamamoto Kagaku Gosei Kabushiki Kaisha | Process for preparing dibenzylamino fluoran compounds |
JPS4917490B1 (fr) * | 1970-07-23 | 1974-05-01 | ||
US3895168A (en) * | 1971-03-02 | 1975-07-15 | Ncr Co | Pressure-sensitive record sheets employing amido and sulfonamido-substituted fluorans |
JPS5348124B2 (fr) * | 1971-08-21 | 1978-12-27 | ||
US3940275A (en) * | 1973-01-24 | 1976-02-24 | Ncr Corporation | Record material and marking liquid |
US3821010A (en) * | 1973-02-05 | 1974-06-28 | Champion Int Corp | Bisfluoran chromogenic compounds,preparation thereof,and pressure-sensitive copy systems employing same |
JPS5138245B2 (fr) * | 1973-05-22 | 1976-10-20 | ||
US3929825A (en) * | 1974-04-18 | 1975-12-30 | Mead Corp | Pyrazoloxanthene compounds and process for producing same |
US3930108A (en) * | 1974-11-21 | 1975-12-30 | Moore Business Forms Inc | 9-(4-Aminophenyl polymethine)-9-xanthenol compounds and pressure sensitive system therewith |
US3928685A (en) * | 1974-11-21 | 1975-12-23 | Moore Business Forms Inc | 1-Hydroxy-1-(4-aminophenyl polymethine) naphthalan compounds and pressure-sensitive recording system therewith |
US4552830A (en) * | 1978-05-09 | 1985-11-12 | Dynachem Corporation | Carbonylic halides as activators for phototropic compositions |
CA1164710A (fr) * | 1978-05-09 | 1984-04-03 | Edward J. Reardon, Jr. | Compositions photosensibles phototropes contenant un agent colorant a base de fluoranne |
CA1153610A (fr) * | 1978-05-09 | 1983-09-13 | Edward J. Reardon, Jr. | Halogenures carbonyles; agents d'activation pour des compositions phototropiques |
US4343885A (en) | 1978-05-09 | 1982-08-10 | Dynachem Corporation | Phototropic photosensitive compositions containing fluoran colorformer |
US4515971A (en) * | 1980-03-31 | 1985-05-07 | Hilton-Davis Chemical Co. | 5'/6'-Carboxyfluorans and derivatives thereof |
DE3337387A1 (de) * | 1983-10-14 | 1985-04-25 | Basf Ag, 6700 Ludwigshafen | Neue fluorane und deren verwendung |
DE59307983D1 (de) * | 1992-09-30 | 1998-02-19 | Ciba Geigy Ag | Konzentrierte, wässrige Flüssigformulierungen von Farbbildnern |
US5693374A (en) | 1994-06-23 | 1997-12-02 | Fuji Photo Film Co., Ltd. | Alpha-resorcyclic acid ester derivatives and recording materials using the same |
GB9414637D0 (en) | 1994-07-20 | 1994-09-07 | Wiggins Teape Group The Limite | Presure-sensitive copying material |
JPH10129021A (ja) * | 1996-10-25 | 1998-05-19 | Fuji Photo Film Co Ltd | 感熱記録システム |
US5955398A (en) * | 1997-04-25 | 1999-09-21 | Appleton Papers Inc. | Thermally-responsive record material |
US6294502B1 (en) | 1998-05-22 | 2001-09-25 | Bayer Aktiengesellschaft | Thermally-responsive record material |
US6800588B2 (en) | 2000-12-04 | 2004-10-05 | Fuji Photo Film Co., Ltd. | Thermal recording material |
US7094731B2 (en) | 2001-06-26 | 2006-08-22 | Fuji Photo Film Co., Ltd. | Recording material |
JP2003094826A (ja) | 2001-09-27 | 2003-04-03 | Fuji Photo Film Co Ltd | 感熱記録材料およびその製造方法 |
JP2003094827A (ja) | 2001-09-27 | 2003-04-03 | Fuji Photo Film Co Ltd | 感熱記録材料 |
JP3776810B2 (ja) | 2002-01-25 | 2006-05-17 | 富士写真フイルム株式会社 | 感熱記録材料及び感熱記録方法 |
JP3822513B2 (ja) | 2002-03-26 | 2006-09-20 | 富士写真フイルム株式会社 | 感熱記録材料 |
US20040043314A1 (en) * | 2002-08-30 | 2004-03-04 | Nusrallah Jubran | Organophotoreceptors with a fluoran-based compound |
WO2004044852A2 (fr) | 2002-11-12 | 2004-05-27 | Appleton, Papers, Inc. | Substrat pouvant etre image sur un point de vente |
US7108190B2 (en) * | 2003-02-28 | 2006-09-19 | Appleton Papers Inc. | Token array and method employing authentication tokens bearing scent formulation information |
US6932602B2 (en) * | 2003-04-22 | 2005-08-23 | Appleton Papers Inc. | Dental articulation kit and method |
US20060063125A1 (en) * | 2003-04-22 | 2006-03-23 | Hamilton Timothy F | Method and device for enhanced dental articulation |
US20040251309A1 (en) * | 2003-06-10 | 2004-12-16 | Appleton Papers Inc. | Token bearing magnetc image information in registration with visible image information |
JP4442676B2 (ja) * | 2007-10-01 | 2010-03-31 | 富士ゼロックス株式会社 | 光定着用カラートナー及びその製造方法、並びに、静電荷像現像剤、プロセスカートリッジ及び画像形成装置 |
JP5247505B2 (ja) | 2009-02-04 | 2013-07-24 | 富士フイルム株式会社 | 熱分布表示体及び熱分布確認方法 |
KR20130061132A (ko) | 2010-04-16 | 2013-06-10 | 발스파 소싱 인코포레이티드 | 패키징 용품을 위한 코팅 조성물 및 코팅 방법 |
BR112013020026B1 (pt) | 2011-02-07 | 2021-03-02 | Swimc Llc | artigo, composição de revestimento, e, método |
EP2883113A4 (fr) | 2012-08-09 | 2016-03-30 | Valspar Sourcing Inc | Développeur pour des matières d'enregistrement thermosensibles |
WO2014025411A1 (fr) | 2012-08-09 | 2014-02-13 | Valspar Sourcing, Inc. | Système de revêtement de récipient |
EP2882401A4 (fr) | 2012-08-09 | 2016-03-30 | Valspar Sourcing Inc | Matériaux dentaires et procédé de fabrication associé |
US9944749B2 (en) | 2012-08-09 | 2018-04-17 | Swimc, Llc | Polycarbonates |
ES2849526T3 (es) | 2012-08-09 | 2021-08-19 | Swimc Llc | Composiciones para contenedores y otros artículos y métodos de utilización de los mismos |
CN104583347B (zh) | 2012-08-09 | 2016-11-16 | 威士伯采购公司 | 稳定剂和其涂料组合物 |
AU2014214937B2 (en) | 2013-02-06 | 2017-11-16 | Fujifilm Hunt Chemicals Us, Inc. | Chemical coating for a laser-markable material |
EP3131965B1 (fr) | 2014-04-14 | 2024-06-12 | Swimc Llc | Procédés de préparation de compositions pour contenants et autres articles et procédés d'utilisation desdites compositions |
TWI614275B (zh) | 2015-11-03 | 2018-02-11 | Valspar Sourcing Inc | 用於製備聚合物的液體環氧樹脂組合物 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1192938A (en) * | 1966-11-18 | 1970-05-28 | Fuji Photo Film Co Ltd | Improvements in or relating to Pressure-Sensitive Copying Paper |
FR1553291A (fr) * | 1967-01-27 | 1969-01-10 |
-
1969
- 1969-01-21 US US00792324A patent/US3769302A/en not_active Expired - Lifetime
- 1969-01-21 US US792325*A patent/US3637757A/en not_active Expired - Lifetime
- 1969-01-21 US US792279*A patent/US3624107A/en not_active Expired - Lifetime
- 1969-01-21 US US792435*A patent/US3627787A/en not_active Expired - Lifetime
- 1969-01-21 US US792277*A patent/US3641011A/en not_active Expired - Lifetime
-
1970
- 1970-01-07 GB GB790/70A patent/GB1269601A/en not_active Expired
- 1970-01-20 FR FR7001859A patent/FR2028785A1/fr active Pending
- 1970-01-20 CH CH67070A patent/CH567077A5/xx not_active IP Right Cessation
- 1970-01-21 BE BE744705D patent/BE744705A/fr not_active IP Right Cessation
-
1971
- 1971-01-11 US US00105600A patent/US3713863A/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3900215A (en) * | 1972-01-24 | 1975-08-19 | Fuji Photo Film Co Ltd | Record sheet |
US3919450A (en) * | 1972-06-24 | 1975-11-11 | Oji Paper Co | Color developing high impact polystyrene sheet and method of developing color images inside the same |
US4524373A (en) * | 1982-02-24 | 1985-06-18 | Kanzaki Paper Manufacturing Co., Ltd. | Fluoran derivatives as new compounds, process for preparing the same and recording system utilizing the same as colorless chromogenic material |
US5250708A (en) * | 1991-08-13 | 1993-10-05 | Milliken Research Corporation | Poly(oxyalkylene) substituted aminophenol intermediate and xanthene colorant |
US5331097A (en) * | 1991-08-13 | 1994-07-19 | Milliken Research Corporation | Poly(oxyalkylene) substituted xanthene colorant and method for making the same |
US5395948A (en) * | 1992-03-17 | 1995-03-07 | Ciba-Geigy Corporation | Fluoran color formers |
US20090099372A1 (en) * | 2007-02-06 | 2009-04-16 | Xerox Corporation | Colorant Compounds |
US7910754B2 (en) | 2007-02-06 | 2011-03-22 | Xerox Corporation | Colorant compounds |
CN106349091A (zh) * | 2016-08-30 | 2017-01-25 | 沈阳化工大学 | 一种熔融态合成2‑(4‑二乙氨基‑2‑羟基苯甲酰基)苯甲酸的方法 |
Also Published As
Publication number | Publication date |
---|---|
DE2001864B2 (de) | 1977-05-26 |
US3713863A (en) | 1973-01-30 |
US3637757A (en) | 1972-01-25 |
CH567077A5 (fr) | 1975-09-30 |
BE744705A (fr) | 1970-07-01 |
US3624107A (en) | 1971-11-30 |
US3641011A (en) | 1972-02-08 |
GB1269601A (en) | 1972-04-06 |
FR2028785A1 (fr) | 1970-10-16 |
US3627787A (en) | 1971-12-14 |
DE2065643B2 (de) | 1977-03-31 |
DE2065643A1 (de) | 1974-11-14 |
DE2001864A1 (de) | 1970-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3769302A (en) | Aliphatic amino-substituted flourans | |
US3681390A (en) | Dialkylamino fluoran chromogenic compounds | |
US3540909A (en) | Pressure sensitive recording sheets employing 3,3-bis(phenylindol - 3-yl) phthalide | |
US3491111A (en) | Indole- and carbazole-substituted phthalides | |
US3775424A (en) | Furo(3,4-b)pyridine-7(5h)-ones | |
US3736337A (en) | Tetrahalogenated chromogenic compounds and their use | |
US3642828A (en) | Alkyl or halo substituted tetrahalofluorans | |
US3491117A (en) | Indole substituted pyromellitides | |
US3703397A (en) | Mark-forming record materials and process for their use | |
US3769057A (en) | Pressure-sensitive record sheets employing amido- and sulfonamido-substituted fluorans | |
US3746562A (en) | Mark forming record materials | |
US3764369A (en) | Pressure sensitive recording unit | |
US3849164A (en) | Pressure-sensitive record unit comprising a mixture of two chromogenic compounds | |
US3654314A (en) | Tetrachlorinated chromogenic compounds | |
US3804855A (en) | Naphthalide compounds | |
US3787325A (en) | Alkylamino spiro {8 12-h{8 1{9 benzopyran {8 3,2f{9 {14 quinoline-12,1{40 phthalide | |
US3730755A (en) | Pressure-sensitive record materials | |
US3721576A (en) | Mark forming record materials and process for their use | |
US3715226A (en) | Mark-forming record materials | |
US3857675A (en) | Mixtures of two chromogenic compounds | |
US3730754A (en) | Pressure sensitive recording sheet | |
US3694461A (en) | Chromogenic compounds | |
US3642827A (en) | Tetrachlorinated chromogenic compounds | |
US3895168A (en) | Pressure-sensitive record sheets employing amido and sulfonamido-substituted fluorans | |
US3910956A (en) | Mark-forming record materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: APPLETON PAPERS INC. Free format text: MERGER;ASSIGNORS:TUVACHE, INC.;GERMAINE MONTEIL COSMETIQUES CORPORATION (CHANGED TO APPLETON PAPERS);REEL/FRAME:004108/0262 Effective date: 19811215 |