US3725749A - GaAS{11 {11 {11 P{11 {11 ELECTROLUMINESCENT DEVICE DOPED WITH ISOELECTRONIC IMPURITIES - Google Patents
GaAS{11 {11 {11 P{11 {11 ELECTROLUMINESCENT DEVICE DOPED WITH ISOELECTRONIC IMPURITIES Download PDFInfo
- Publication number
- US3725749A US3725749A US00158312A US3725749DA US3725749A US 3725749 A US3725749 A US 3725749A US 00158312 A US00158312 A US 00158312A US 3725749D A US3725749D A US 3725749DA US 3725749 A US3725749 A US 3725749A
- Authority
- US
- United States
- Prior art keywords
- nitrogen
- article according
- gaas
- doped
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012535 impurity Substances 0.000 title claims abstract description 31
- 239000000463 material Substances 0.000 claims abstract description 42
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 40
- 239000000758 substrate Substances 0.000 claims description 28
- 125000004429 atom Chemical group 0.000 claims description 15
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 74
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 41
- 238000000034 method Methods 0.000 abstract description 18
- 230000008569 process Effects 0.000 abstract description 16
- 239000012808 vapor phase Substances 0.000 abstract description 9
- 238000002360 preparation method Methods 0.000 abstract description 7
- 239000004065 semiconductor Substances 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 description 41
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 40
- 239000010410 layer Substances 0.000 description 37
- 229910045601 alloy Inorganic materials 0.000 description 23
- 239000000956 alloy Substances 0.000 description 23
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000001257 hydrogen Substances 0.000 description 10
- 239000013078 crystal Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical group [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 229910052785 arsenic Inorganic materials 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 239000003708 ampul Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- ILXWFJOFKUNZJA-UHFFFAOYSA-N ethyltellanylethane Chemical compound CC[Te]CC ILXWFJOFKUNZJA-UHFFFAOYSA-N 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- RHKSESDHCKYTHI-UHFFFAOYSA-N 12006-40-5 Chemical compound [Zn].[As]=[Zn].[As]=[Zn] RHKSESDHCKYTHI-UHFFFAOYSA-N 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 241001130755 Hymenodontopsis Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- -1 e.g. Substances 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008246 gaseous mixture Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/822—Materials of the light-emitting regions
- H10H20/824—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
- H10H20/8242—Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP characterised by the dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45144—Gold (Au) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/484—Connecting portions
- H01L2224/48463—Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/85—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
- H01L2224/852—Applying energy for connecting
- H01L2224/85201—Compression bonding
- H01L2224/85205—Ultrasonic bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/12—Passive devices, e.g. 2 terminal devices
- H01L2924/1203—Rectifying Diode
- H01L2924/12036—PN diode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/049—Equivalence and options
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/056—Gallium arsenide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/057—Gas flow control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/059—Germanium on silicon or Ge-Si on III-V
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/065—Gp III-V generic compounds-processing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/067—Graded energy gap
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/072—Heterojunctions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/099—LED, multicolor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/107—Melt
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/119—Phosphides of gallium or indium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/135—Removal of substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S438/00—Semiconductor device manufacturing: process
- Y10S438/914—Doping
- Y10S438/918—Special or nonstandard dopant
Definitions
- ABSTRACT [22] Filed: June 30, 1971 v
- the disclosure herein pertains to the preparation of [21] Appl l58312 semiconductor materials and solid-state devices fabricated therefrom. More particularly, the disclosure [52] U-S- C ----3 3 317/235 317/235 AN, pertains to a vapor phase process for the preparation 317/235 Q; 317/235 AP of electroluminescent materials, particularly GaAs P [51] Int. Cl. .H01l 15/00 1, doped h isoelectronic impurities, particularly [58] Fleld of Search ..317/235 N nitrogen, and to electroluminescent devices fabricated therefrom.
- FIG.5 U1 HR 3 1375 am 2 m 3 FIGiG WITHOUT NITROGEN WITH NITROGEN .WITHOUT NITROGEN 0 -WITH NITROGEN FIGZ NVENTORS D em M Z w R/ EC QHEfl. N M 2 E O ROE 7 AR 1 WAM% ATTORNEY PAIENIEUAPR3 I973 SHEET 3 BF 3 WITHOUT NITROGEN WITH NITROGEN EFFICIENCY RATIO(C,QAS P IN) C,:A5 F V5 ALLOY COMPOSITION O 5 O 2 I I EFFICIENCY VS PEAK EMISSION WAVELENGTH FOR GREEN *RED ORANGE v YELLOW WAVELENGTH (A) FIG.5
- troluminescent GaP devices are prepared by adding gallium nitride (GaN) and polycrystalline GaP containing a dopant of one conductivity type to a melt of elemental gallium (Ga) and heated to l,200C in a sealed quartz ampoule, followed by cooling to 800C over a period of about hours.
- the irregularly-shaped single crystals of nitrogen-doped GaP formed in the process is extracted from the gallium by washing in concentrated I-lCl, cut to size and shape and polished.
- the product thus formed is used as a substrate onto which an epitaxial layer of GaP of different conductivity type isgrown by the liquid phase technique known as tipping. Contacts are affixed to the P and N regions to fabricate a two-terminal P-N junction device.
- a nitrogen-doped GaP epitaxial film is grown by liquid phase epitaxial deposition, e.g., by tipping, onto a substrate of GaP of opposite conductivity type to that in the epitaxial film; the Ga? substrate may or may not be further doped'with nitrogen.
- a P-type dopant e.g., zinc or beryllium
- a P-type dopant e.g., zinc or beryllium
- the emission spectra for diodes fabricated from the epitaxial GaP/GaAs structure showed, inter alia, that isolated atoms of nitrogen were present as an unintentionally added impurity; no comment is offered as to either the possible source of nitrogen addition or its location within the device material, i.e., whether in the P or N regions of the GaP.
- the process referred to is described-in more detail by E. G. Dierschke et al. in the Journal of Applied Physics, Vol. 41, No. l,pages 32l-328,Jan., l970.
- the Dierschke et al. article does not indicate whether the isolated atoms of nitrogen shown to be present by emission spectra, were present in the N-type or P-type GaP; in any event, the nitrogen, like the arsenic, was unintentionally added.
- the isoelectronic impurity, nitrogen is usually distributed uniformly throughout the epitaxial film and/or substrate upon which the film is deposited. Since the electroluminescence from isoelectronic nitrogen sites occurs within the vicinity of the P-N junction-space charge region, nitrogen atoms in the remaining portions of the material absorb part of the emitted radialayer growth would have the desired higher nitrogen concentration.
- a layer of opposite conductivity type is grown by a second tipping operation from a melt containing the desired GaN level. After a desired growth period, the cooling cycle is interrupted and GaN evaporated from the Ga growth melt. Upon resuming the cooling cycle, the remaining layer is grown with a low nitrogen level.
- a further object of the invention is to provide a new composition of matter particularly suitable for use in the fabrication of electroluminescent devices.
- Another object of this invention is to provide improved electroluminescent devices fabricated from the nitrogen-doped GaAs ,P, produced herein.
- This invention pertains to a vapor phase process for the introduction of isoelectronic impurities into the junction region only of semiconductor materials and to semiconductor devices prepared therefrom.
- the invention pertains to the introduction of nitrogen into a specified region of GaAs ,BTx material which is subsequently fabricated into electroluminescent devices.
- GaAs ,P is prepared by reacting a hydrogen halide 3 5 in hydrogen with Ga and combining the reaction mixture with hydrogen carrying PI-l AsI-I and an impurity dopant of one conductivity type to form GaAs P, which is deposited from the vapor phase onto a suitable substrate as an epitaxial film.
- the composition of the the P-N junction is to be formed and radiation generated. Thereafter, the P-N junction is formed by either introducing into the reactant vapors an impurity of conductivity type opposite to that previously used or by diffusing an opposite-type impurity into the epitaxial layer after growth has been terminated.
- the nitrogen-doped GaAs P epitaxial structure is then fabricated into electroluminescent devices by conventional techniques.
- composition, lightemitting diodes may be fabricated to emit light of improved brightness and efficiency in colors ranging from red through green.
- a cleaned and polished substrate wafer of single crystal GaP oriented 5 off the crystallographic plane was placed in a fused silica reactor tube located in a furnace.
- the reactor tube was flushed with hydrogen to remove oxygen from the tube and surface of the substrate.
- the reactant vapor was produced by introducing a stream of HCl at 3.5 cc/min. into a stream of hydrogen at 50 cc/min. and passing this stream over elemental Ga at 770C.
- a second hydrogen stream at 450 cc/min. into which is introduced 0.29 cc/min. of AsH 0.88 cc/min. of PB and about 0.3 cc/min.
- a continuously graded composition layer 2 is grown about 8am thick to a final composition corresponding to the formula GaAs0 P0165 and epitaxial deposition of this composition is continued to grow a layer 3 about 330p.m thick.
- 300 cc/ min. of a 10% NH;; in hydrogen mixture was substituted for 300 cc/min. of H2 to grow a nitrogendoped epitaxial layer 4about 18am thick, after which growth was terminated and the system cooled to ambient.
- the structure at this stage is as shown in FIG. 1C.
- a sample of the material prepared as above was then diffused for 20 min. at 875C in an evacuated and sealed ampoule containing 3 mg. of Zn and 3 mg. of phosphorus, to produce a P-region 4b and P-N junction 5 about 6pm deep in the nitrogen doped layer as shown in FIG. 1D.
- the entire epitaxial layer, including regions 2, 3, 4a and 4b, was doped with tcllurium to a net donor concentration of about 3 X l0cm".
- the material produced in the above process was then fabricated intodevices.
- the finished wafer was lapped from the substrate side to a thickness of about 5 mils. Because of the thickness of layer 3 this resulted in the removal of substrate l,'layer Zand a portion of layer 3 up to a level represented by dashed line 6 in FIG. 1D to produce the wafer shown in FIG. 1E.
- the device For epitaxial structures having a total thickness for layers 2 through 4b (FIG. ID) of less than about 5 mils, the device would appear as in FIG. 1G.
- Ohmic contact was made to the N-type surface 6 (FIG. 1E) by vacuum evaporating a layer 7 (FIGS.
- Electroluminescent diodes fabricated with material of the composition produced in accordance with this embodiment of the invention produced an average brightness of about 830 foot-Lamberts at a current density of A/cm at a wavelength of 6,040 A as shown by reference to the upper curve in FIG. 6, which shows comparative curves for brightness vs. alloy com position for nitrogen-doped and nitrogen-free diodes measured at room temperature.
- EXAMPLE 2 This example exemplifies an embodiment of the invention wherein a GaAs substrate is used and the P-N junction is formed by using zinc arsenide (ZnAs as the diffusant.
- ZnAs zinc arsenide
- the process operation here follows that described in the preceding example, again having reference to the steps and structure shown in FIGS. lA-F.
- the reactant gas was produced by passing 5.4 cc/min. of HCl in 50 cc/min. of H over elemental Ga at 780C and combining the resultant mixture with 450 cc/min. of H containing 2.6 cc/min. of ASH, and 1.4 cc/rnin. of PH;, at a reaction temperature of about 925C. About 0.4 cc/min.
- nitrogendoped LED '5 fabricated from the alloy composition of this example produced an average brightness of 470 foot-Lamberts at a wavelength of 6,650 A, which is of the same order magnitude of brightness produced by the non-nitrogen-doped LEDs at 20 Alcm
- This performance is an order of magnitude better than that typ ically obtained for this alloy composition (which is in the indirect energy bandgap region) and is comparable in brightness to that of red-emitting LEDs from nonnitrogen-doped alloys of the composition GaAs P which is in the direct energy bandgap region.
- LEDs of generally equivalent brightness can be fabricated throughout the spectral range from 6,500 A to 5,600 A. This is particularly important in the yellow portion of the spectrum, because high brightness yellow-emitting LEDs have not been available heretofore.
- the improved efficiency performance of the nitrogen-doped electroluminescent devices of this invention, as compared with nitrogen-free devices is shown by reference to FIGS. 2-4.
- the external quantum efficiencies referred to herein were obtained using epoxy-encapsulated diodes (epoxy lens not shown in FIG. 1) which were mounted on TO-l8 headers using Au/Ge preforms.
- the addition of nitrogen causes a shift in the peak emission energy (eV) hence, wavelength, for a given GaAs P, composition.
- eV peak emission energy
- the wavelength value is divided into the conversion factor 1,2395, thus eV 12395/) ⁇ (A).
- the separation between emission peaks in nitrogen-doped and nitrogen-free LEDs changes as a function of alloy composition. It will be noted that the separation between the peak emission energies of the nitrogendoped and undoped LEDs increases with decreasing x, reaching a maximum separation of about 0.15 eV in the region of 0.5 X 0.6.
- the peak position and band width changes with current density and the nature and degree off the change is dependent upon the alloy composition and temperature.
- the peak emission energies plotted in FIG. 2 were obtained at a relatively low injection current density of 10 A/cm.
- the external quantum efficiency is plotted as a function of the GaAs, ,P composition.
- the efficiency of the LEDs increases with decreasing x. This increase in efficiency is believed to be due largely to two factors. First, the increasing depth of the nitrogen center results in increased thermal stability of the trapped exciton. Second, the fact that the separation between the (100) and (000) minima is decreasing with decreasing x is expected to give rise to an increase in the transition probability for the A-line emission.
- FIG. 4 are shown curves for nitrogen-doped and nitrogen-free LEDs with external efficiencies plotted against peak emission wavelengths for various alloy compositions. It will be seen that the efficiencies for the nitrogen-doped LEDs is greater than those of nitrogenfree LEDs throughout the spectrum shown on the graph. The greatest separation between the curves, representing the greatest improvement in external efficiencies of the nitrogen-doped over the nitrogen-free LEDs, is generally in the yellow region of the spectrum.
- the efficiency of the nitrogen-doped LEDs is more than 20 times greater than that for the nitrogen-free LEDs.
- FIG. 5 Another way to express this increased efficiency is shown in FIG. 5 wherein the efficiency ratio, GaAs ,,P:N/GaAs, of nitrogen-doped to nitrogen-free LEDs is plotted against alloy composition.
- the quantum efficiency of the nitrogendoped diodes is a strong function of alloy composition, the luminous efficiency and brightness are nearly independent of alloy composition in the region x 0.4. The reason for this is that the sensitivity of the human eye decreases sharply as x decreases and the color changes from green through yellow to red. Typical brightness performance obtained with and without nitrogen doping are shown in FIG. 6 wherein brightness is plotted as a function of alloy composition.
- the graded alloy composition, layer 2 can be from 1 to 300p.m or more, although best results to date are obtained with layers on the order of about 25am.
- the region 3 of constant alloy composition is preferably about lp.m thick, but can have thicknesses within the range 0-300p.m or more.
- the N- type region 4a of the nitrogen-doped surface layer preferably should be about 5pm, but more broadly, can have thicknesses within the range 0-300um or more.
- the P-type region 4b of the nitrogen-doped layer preferably should be about 5-l0p.m thick and, more broadly can be from 1 to 25 pm or slightly more.
- either one or both of the constant composition alloy layer 3 and/or nitrogen-doped layer 4a can be omitted from the epitaxial GaAs ,P, structures and LEDs of this invention.
- the epitaxial GaAs, ,,P structure is as shown in FIG. 1F, with layers 1 and 2 removed by lapping.
- the conductivity type determining impurity used in doping the epitaxial film may be introduced initially into the region 2 of graded composition and continuously added throughout the remainder of the growth period, or the impurity may be first introduced at the beginning of growth of the constant composition layer 3.
- the epitaxial film is doped with N-type impurities and diffused with P-type impurities to form the P-N junction.
- Suitable impurities include those conventionally used in the art, e.g., S, Se, Te or Si for N-type doping and Be, Zn or Cd for P-type doping.
- the N-type impurity concentration range is broadly, from about 2.0 X 10 2.0 X 10" cm and, preferably, about 7.0 X 10 cm'.
- the surface concentration of P-type impurities is typically on the order of 10 atoms/em
- the nitrogen is selectively introduced into the growing epitaxial film only in the region in which the P-N junction is to be formed, typically in the upper 5-20p.m surface region (layer 4 in FIG. 1C).
- the nitrogen concentration in this surface region is typically about 1 X 10 -1 X 10 atoms/cm
- the entire epitaxial film may be doped with nitrogen, but in much lower concentrations below layer 4a.
- the isoelectronic impurity may be in troduced from any suitable source, e.g., elemental nitrogen, gaseous or volatile compounds thereof.
- the graded composition alloy layer 2 may be either linearly or non-linearly graded, but in preferred embodiments is linearly graded from the composition of the GaAs or GaP substrate to the desired final composition.
- the electroluminescent devices of this invention may be fabricated as discrete LEDs or as arrays thereof by conventional photolithographic techniques.
- the nitrogen-doped GaAs ,P,,. alloy compositions of the present invention are particularly suitable for use in the fabrication of LEDs in the visible portion of the spectrum. Although visible light is generated in materials within the range x 0.2 to 1.0 a preferred range for the LEDs of the invention is where x is between about 0.3 and 0.9. For red light-emitting LEDs, x preferably is between 0.4 and 0.6, and for yellow LEDs x is between 0.6 and 0.9.
- the presence of initial layers (1 and 2 in FIG. 1) essential in producing the desired material is not essential to the operation of the final device and they may be removed in reducing the thickness of the semiconductor chip to a convenient value of to l50y.m.
- An article of manufacture comprising an electroluminescent material having the formula GaAs ,P,,, wherein x has a value within the range of 0.2 and 10, containing impurity atoms of a first conductivity type and a surface region thereof containing isoelectronic impurity atoms and impurity atoms of conductivity type opposite to that of said first type to define a P-N junction in said material.
- Article according to claim 4 having an additional region extending below and contiguous with the lower surface of said material, wherein the value of x continuously changes with distance from said lower surface.
- Article according to claim 4 further including ohmic contacts and leads to an external circuit attached to surfaces of opposite conductivity type of said material.
- Article according to claim 5 further including ohmic contacts and leads to an external circuit attached to surfaces of opposite conductivity type of said material.
- Article according to claim 8 further including ohmic contacts and leads to an external circuit attached to surfaces of opposite conductivity of said material.
- Article according to claim 9 further including ohmic contacts and leads to an external circuit attached to surfaces of opposite conductivity type of said material.
Landscapes
- Led Devices (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15831271A | 1971-06-30 | 1971-06-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3725749A true US3725749A (en) | 1973-04-03 |
Family
ID=22567541
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00158312A Expired - Lifetime US3725749A (en) | 1971-06-30 | 1971-06-30 | GaAS{11 {11 {11 P{11 {11 ELECTROLUMINESCENT DEVICE DOPED WITH ISOELECTRONIC IMPURITIES |
US05/775,070 Expired - Lifetime USRE29845E (en) | 1971-06-30 | 1977-03-07 | GaAs1-x Px electroluminescent device doped with isoelectronic impurities |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/775,070 Expired - Lifetime USRE29845E (en) | 1971-06-30 | 1977-03-07 | GaAs1-x Px electroluminescent device doped with isoelectronic impurities |
Country Status (4)
Country | Link |
---|---|
US (2) | US3725749A (enrdf_load_stackoverflow) |
JP (2) | JPS584471B1 (enrdf_load_stackoverflow) |
BE (1) | BE785633A (enrdf_load_stackoverflow) |
DE (1) | DE2231926B2 (enrdf_load_stackoverflow) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3790868A (en) * | 1972-10-27 | 1974-02-05 | Hewlett Packard Co | Efficient red emitting electroluminescent semiconductor |
US3852798A (en) * | 1972-03-14 | 1974-12-03 | Philips Corp | Electroluminescent device |
US3925119A (en) * | 1973-05-07 | 1975-12-09 | Ibm | Method for vapor deposition of gallium arsenide phosphide upon gallium arsenide substrates |
US3935039A (en) * | 1973-04-04 | 1976-01-27 | Tokyo Shibaura Electric Co., Ltd. | Method of manufacturing a green light-emitting gallium phosphide device |
FR2280205A1 (fr) * | 1974-06-06 | 1976-02-20 | Ibm | Diodes photo-emissives emettant la lumiere par leur face arriere |
US3964940A (en) * | 1971-09-10 | 1976-06-22 | Plessey Handel Und Investments A.G. | Methods of producing gallium phosphide yellow light emitting diodes |
US3979271A (en) * | 1973-07-23 | 1976-09-07 | Westinghouse Electric Corporation | Deposition of solid semiconductor compositions and novel semiconductor materials |
US3984263A (en) * | 1973-10-19 | 1976-10-05 | Matsushita Electric Industrial Co., Ltd. | Method of producing defectless epitaxial layer of gallium |
US3985590A (en) * | 1973-06-13 | 1976-10-12 | Harris Corporation | Process for forming heteroepitaxial structure |
FR2390017A1 (enrdf_load_stackoverflow) * | 1977-05-06 | 1978-12-01 | Mitsubishi Monsanto Chem | |
US4154630A (en) * | 1975-01-07 | 1979-05-15 | U.S. Philips Corporation | Method of manufacturing semiconductor devices having isoelectronically built-in nitrogen and having the p-n junction formed subsequent to the deposition process |
FR2430668A1 (fr) * | 1978-07-07 | 1980-02-01 | Mitsubishi Monsanto Chem | Plaquette epitaxique destinee a la fabrication d'une diode d'emission lumineuse |
US4198251A (en) * | 1975-09-18 | 1980-04-15 | U.S. Philips Corporation | Method of making polychromatic monolithic electroluminescent assembly utilizing epitaxial deposition of graded layers |
US4211586A (en) * | 1977-09-21 | 1980-07-08 | International Business Machines Corporation | Method of fabricating multicolor light emitting diode array utilizing stepped graded epitaxial layers |
US4214926A (en) * | 1976-07-02 | 1980-07-29 | Tdk Electronics Co., Ltd. | Method of doping IIb or VIb group elements into a boron phosphide semiconductor |
DE4011145A1 (de) * | 1990-04-06 | 1991-10-10 | Telefunken Electronic Gmbh | Lumineszenz-halbleiterelement |
US6303403B1 (en) * | 1998-12-28 | 2001-10-16 | Futaba Denshi Kogyo, K.K. | Method for preparing gallium nitride phosphor |
US20050144822A1 (en) * | 2003-12-29 | 2005-07-07 | Sargent Manufacturing Company | Exit device with lighted touchpad |
US20090095713A1 (en) * | 2004-10-26 | 2009-04-16 | Advanced Technology Materials, Inc. | Novel methods for cleaning ion implanter components |
US20110021011A1 (en) * | 2009-07-23 | 2011-01-27 | Advanced Technology Materials, Inc. | Carbon materials for carbon implantation |
US20130330917A1 (en) * | 2005-06-22 | 2013-12-12 | Advanced Technology Materials, Inc | Apparatus and process for integrated gas blending |
US9455147B2 (en) | 2005-08-30 | 2016-09-27 | Entegris, Inc. | Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation |
US9685304B2 (en) | 2009-10-27 | 2017-06-20 | Entegris, Inc. | Isotopically-enriched boron-containing compounds, and methods of making and using same |
US9960042B2 (en) | 2012-02-14 | 2018-05-01 | Entegris Inc. | Carbon dopant gas and co-flow for implant beam and source life performance improvement |
US9991095B2 (en) | 2008-02-11 | 2018-06-05 | Entegris, Inc. | Ion source cleaning in semiconductor processing systems |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61291491A (ja) * | 1985-06-19 | 1986-12-22 | Mitsubishi Monsanto Chem Co | りん化ひ化ガリウム混晶エピタキシヤルウエハ |
JPH02249400A (ja) * | 1989-03-23 | 1990-10-05 | Matsushita Electric Ind Co Ltd | 音質評価装置 |
DE3940853A1 (de) * | 1989-12-11 | 1991-06-13 | Balzers Hochvakuum | Anordnung zur niveauregelung verfluessigter gase |
JP3436379B2 (ja) * | 1992-07-28 | 2003-08-11 | 三菱化学株式会社 | りん化ひ化ガリウムエピタキシャルウエハ |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3462320A (en) * | 1966-11-21 | 1969-08-19 | Bell Telephone Labor Inc | Solution growth of nitrogen doped gallium phosphide |
US3560275A (en) * | 1968-11-08 | 1971-02-02 | Rca Corp | Fabricating semiconductor devices |
US3603833A (en) * | 1970-02-16 | 1971-09-07 | Bell Telephone Labor Inc | Electroluminescent junction semiconductor with controllable combination colors |
US3617820A (en) * | 1966-11-18 | 1971-11-02 | Monsanto Co | Injection-luminescent diodes |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4921991B1 (enrdf_load_stackoverflow) * | 1969-06-27 | 1974-06-05 | ||
NL153030B (nl) * | 1969-09-05 | 1977-04-15 | Hitachi Ltd | Licht-uitzendende halfgeleiderdiode. |
US3646406A (en) * | 1970-06-30 | 1972-02-29 | Bell Telephone Labor Inc | Electroluminescent pnjunction diodes with nonuniform distribution of isoelectronic traps |
US3873382A (en) * | 1971-06-30 | 1975-03-25 | Monsanto Co | Process for the preparation of semiconductor materials and devices |
-
1971
- 1971-06-30 US US00158312A patent/US3725749A/en not_active Expired - Lifetime
-
1972
- 1972-06-29 BE BE785633A patent/BE785633A/xx not_active IP Right Cessation
- 1972-06-29 JP JP6454572A patent/JPS584471B1/ja active Granted
- 1972-06-29 DE DE2231926A patent/DE2231926B2/de not_active Ceased
-
1977
- 1977-03-07 US US05/775,070 patent/USRE29845E/en not_active Expired - Lifetime
-
1982
- 1982-06-10 JP JP57098575A patent/JPS6057214B2/ja not_active Expired
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3617820A (en) * | 1966-11-18 | 1971-11-02 | Monsanto Co | Injection-luminescent diodes |
US3462320A (en) * | 1966-11-21 | 1969-08-19 | Bell Telephone Labor Inc | Solution growth of nitrogen doped gallium phosphide |
US3560275A (en) * | 1968-11-08 | 1971-02-02 | Rca Corp | Fabricating semiconductor devices |
US3603833A (en) * | 1970-02-16 | 1971-09-07 | Bell Telephone Labor Inc | Electroluminescent junction semiconductor with controllable combination colors |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3964940A (en) * | 1971-09-10 | 1976-06-22 | Plessey Handel Und Investments A.G. | Methods of producing gallium phosphide yellow light emitting diodes |
US3852798A (en) * | 1972-03-14 | 1974-12-03 | Philips Corp | Electroluminescent device |
US3790868A (en) * | 1972-10-27 | 1974-02-05 | Hewlett Packard Co | Efficient red emitting electroluminescent semiconductor |
US3935039A (en) * | 1973-04-04 | 1976-01-27 | Tokyo Shibaura Electric Co., Ltd. | Method of manufacturing a green light-emitting gallium phosphide device |
US3925119A (en) * | 1973-05-07 | 1975-12-09 | Ibm | Method for vapor deposition of gallium arsenide phosphide upon gallium arsenide substrates |
US3985590A (en) * | 1973-06-13 | 1976-10-12 | Harris Corporation | Process for forming heteroepitaxial structure |
US3979271A (en) * | 1973-07-23 | 1976-09-07 | Westinghouse Electric Corporation | Deposition of solid semiconductor compositions and novel semiconductor materials |
US3984263A (en) * | 1973-10-19 | 1976-10-05 | Matsushita Electric Industrial Co., Ltd. | Method of producing defectless epitaxial layer of gallium |
FR2280205A1 (fr) * | 1974-06-06 | 1976-02-20 | Ibm | Diodes photo-emissives emettant la lumiere par leur face arriere |
US4154630A (en) * | 1975-01-07 | 1979-05-15 | U.S. Philips Corporation | Method of manufacturing semiconductor devices having isoelectronically built-in nitrogen and having the p-n junction formed subsequent to the deposition process |
US4198251A (en) * | 1975-09-18 | 1980-04-15 | U.S. Philips Corporation | Method of making polychromatic monolithic electroluminescent assembly utilizing epitaxial deposition of graded layers |
US4214926A (en) * | 1976-07-02 | 1980-07-29 | Tdk Electronics Co., Ltd. | Method of doping IIb or VIb group elements into a boron phosphide semiconductor |
FR2390017A1 (enrdf_load_stackoverflow) * | 1977-05-06 | 1978-12-01 | Mitsubishi Monsanto Chem | |
US4211586A (en) * | 1977-09-21 | 1980-07-08 | International Business Machines Corporation | Method of fabricating multicolor light emitting diode array utilizing stepped graded epitaxial layers |
FR2430668A1 (fr) * | 1978-07-07 | 1980-02-01 | Mitsubishi Monsanto Chem | Plaquette epitaxique destinee a la fabrication d'une diode d'emission lumineuse |
DE4011145A1 (de) * | 1990-04-06 | 1991-10-10 | Telefunken Electronic Gmbh | Lumineszenz-halbleiterelement |
US5194922A (en) * | 1990-04-06 | 1993-03-16 | Telefunken Electronic Gmbh | Luminescent semiconductor element |
US6303403B1 (en) * | 1998-12-28 | 2001-10-16 | Futaba Denshi Kogyo, K.K. | Method for preparing gallium nitride phosphor |
US20050144822A1 (en) * | 2003-12-29 | 2005-07-07 | Sargent Manufacturing Company | Exit device with lighted touchpad |
US7204050B2 (en) * | 2003-12-29 | 2007-04-17 | Sargent Manufacturing Company | Exit device with lighted touchpad |
US20090095713A1 (en) * | 2004-10-26 | 2009-04-16 | Advanced Technology Materials, Inc. | Novel methods for cleaning ion implanter components |
US20130330917A1 (en) * | 2005-06-22 | 2013-12-12 | Advanced Technology Materials, Inc | Apparatus and process for integrated gas blending |
US9666435B2 (en) * | 2005-06-22 | 2017-05-30 | Entegris, Inc. | Apparatus and process for integrated gas blending |
US9455147B2 (en) | 2005-08-30 | 2016-09-27 | Entegris, Inc. | Boron ion implantation using alternative fluorinated boron precursors, and formation of large boron hydrides for implantation |
US9991095B2 (en) | 2008-02-11 | 2018-06-05 | Entegris, Inc. | Ion source cleaning in semiconductor processing systems |
US20110021011A1 (en) * | 2009-07-23 | 2011-01-27 | Advanced Technology Materials, Inc. | Carbon materials for carbon implantation |
US10497569B2 (en) | 2009-07-23 | 2019-12-03 | Entegris, Inc. | Carbon materials for carbon implantation |
US9685304B2 (en) | 2009-10-27 | 2017-06-20 | Entegris, Inc. | Isotopically-enriched boron-containing compounds, and methods of making and using same |
US9960042B2 (en) | 2012-02-14 | 2018-05-01 | Entegris Inc. | Carbon dopant gas and co-flow for implant beam and source life performance improvement |
US10354877B2 (en) | 2012-02-14 | 2019-07-16 | Entegris, Inc. | Carbon dopant gas and co-flow for implant beam and source life performance improvement |
Also Published As
Publication number | Publication date |
---|---|
DE2231926A1 (de) | 1973-01-18 |
USRE29845E (en) | 1978-11-21 |
JPS58105539A (ja) | 1983-06-23 |
JPS6057214B2 (ja) | 1985-12-13 |
JPS584471B1 (enrdf_load_stackoverflow) | 1983-01-26 |
DE2231926B2 (de) | 1981-06-04 |
BE785633A (fr) | 1972-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3725749A (en) | GaAS{11 {11 {11 P{11 {11 ELECTROLUMINESCENT DEVICE DOPED WITH ISOELECTRONIC IMPURITIES | |
Craford et al. | Vapor phase epitaxial materials for LED applications | |
US3931631A (en) | Gallium phosphide light-emitting diodes | |
US4001056A (en) | Epitaxial deposition of iii-v compounds containing isoelectronic impurities | |
US5273933A (en) | Vapor phase growth method of forming film in process of manufacturing semiconductor device | |
Münch et al. | Silicon carbide light-emitting diodes with epitaxial junctions | |
US7315050B2 (en) | Semiconductor device, semiconductor layer and production method thereof | |
US5319220A (en) | Silicon carbide semiconductor device | |
US3617820A (en) | Injection-luminescent diodes | |
US3985590A (en) | Process for forming heteroepitaxial structure | |
US3935040A (en) | Process for forming monolithic semiconductor display | |
Münch et al. | Silicon carbide blue-emitting diodes produced by liquid-phase epitaxy | |
US4216484A (en) | Method of manufacturing electroluminescent compound semiconductor wafer | |
US3745423A (en) | Optical semiconductor device and method of manufacturing the same | |
US3873382A (en) | Process for the preparation of semiconductor materials and devices | |
KR100433039B1 (ko) | 에피택셜웨이퍼및그제조방법 | |
US5445897A (en) | Epitaxial wafer and process for producing the same | |
JPS581539B2 (ja) | エピタキシヤルウエハ− | |
US3925119A (en) | Method for vapor deposition of gallium arsenide phosphide upon gallium arsenide substrates | |
US3629018A (en) | Process for the fabrication of light-emitting semiconductor diodes | |
US4606780A (en) | Method for the manufacture of A3 B5 light-emitting diodes | |
US3984857A (en) | Heteroepitaxial displays | |
JP3146874B2 (ja) | 発光ダイオード | |
USRE29648E (en) | Process for the preparation of electroluminescent III-V materials containing isoelectronic impurities | |
JPH0760903B2 (ja) | エピタキシャルウェハ及びその製造方法 |