US3703888A - Device for the fuel quantity control in response to operational variables of an internal combustion engine - Google Patents
Device for the fuel quantity control in response to operational variables of an internal combustion engine Download PDFInfo
- Publication number
- US3703888A US3703888A US92345A US3703888DA US3703888A US 3703888 A US3703888 A US 3703888A US 92345 A US92345 A US 92345A US 3703888D A US3703888D A US 3703888DA US 3703888 A US3703888 A US 3703888A
- Authority
- US
- United States
- Prior art keywords
- armature
- force
- movable element
- improvement
- resetting force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M69/00—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
- F02M69/30—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines
- F02M69/36—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines having an enrichment mechanism modifying fuel flow to injectors, e.g. by acting on the fuel metering device or on the valves throttling fuel passages to injection nozzles or overflow passages
- F02M69/38—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines having an enrichment mechanism modifying fuel flow to injectors, e.g. by acting on the fuel metering device or on the valves throttling fuel passages to injection nozzles or overflow passages using fuel pressure, e.g. by varying fuel pressure in the control chambers of the fuel metering device
- F02M69/386—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for facilitating the starting-up or idling of engines or by means for enriching fuel charge, e.g. below operational temperatures or upon high power demand of engines having an enrichment mechanism modifying fuel flow to injectors, e.g. by acting on the fuel metering device or on the valves throttling fuel passages to injection nozzles or overflow passages using fuel pressure, e.g. by varying fuel pressure in the control chambers of the fuel metering device variably controlling the pressure of the fuel by-passing the metering valves, e.g. by valves responsive to signals of temperature or oxygen sensors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1477—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
- F02D41/1484—Output circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/18—Circuit arrangements for generating control signals by measuring intake air flow
- F02D41/182—Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M69/00—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
- F02M69/16—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors
- F02M69/18—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air
- F02M69/22—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means being metering valves throttling fuel passages to injectors or by-pass valves throttling overflow passages, the metering valves being actuated by a device responsive to the engine working parameters, e.g. engine load, speed, temperature or quantity of air the device comprising a member movably mounted in the air intake conduit and displaced according to the quantity of air admitted to the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M69/00—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
- F02M69/16—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors
- F02M69/26—Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel characterised by means for metering continuous fuel flow to injectors or means for varying fuel pressure upstream of continuously or intermittently operated injectors the means varying fuel pressure in a fuel by-pass passage, the pressure acting on a throttle valve against the action of metered or throttled fuel pressure for variably throttling fuel flow to injection nozzles, e.g. to keep constant the pressure differential at the metering valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
- F02B1/02—Engines characterised by fuel-air mixture compression with positive ignition
- F02B1/04—Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2700/00—Mechanical control of speed or power of a single cylinder piston engine
- F02D2700/09—Other ways of controlling
Definitions
- the sensor is deflectable against a constant resetting force to an extent proportional to the flow rate of air passing through the suction tube.
- the resetting force is variable as a function of engine characteristics.
- the sensor by virtue of its displacement, actuates the movable member of a quantity divider valve disposed in the fuel line for metering a fuel quantity that is proportional to the flow rate of air.
- the purpose of fuel injection systems of the aforenoted type is to automatically ensure in an Ottoengine under all operating conditions a favorable airfuel mixture ratio for an as complete a fuel combustion as possible. In the manner, a best possible efficiency of the internal combustion engine is obtained and it is further ensured that the fuel consumption is at a minimum and the poisonous pollutants in the exhaust gases are either eliminated or very substantially reduced.
- the fuel quantities have to be very accurately metered according to the requirements of each operational condition of the internal combustion engine. This, in turn, necessitates that the ratio of the air quantities to the fuel quantities be variable as a function of engine characteristics such as load, rpm and temperature.
- the resetting force applied to the sensor is constituted by a spring, the bias of which is variable as a function of the temperature.
- a spring which is to exert a possibly constant resetting force at normal operation and which is also to be variable in its resetting force changing the air-fuel ratio, has, from a purely structural point of view, substantial disadvantages.
- the spring In order to obtain a reliably constant resetting force, the spring should be as soft and as long as possible, i.e., its characteristic curve should have a flat course.
- the spring in order to be able to effect a variation in the air-fuel ratio without necessitating a substantial spring travel, should have a characteristic curve that is as steep as possible. That is, a variation of spring force should occur upon relatively short displacements of the spring.
- the transmission of variable magnitudes of engine characteristics to a spring operating as a resetting spring also necessitates a bulky and expensive structure.
- the alteration of the resetting force is effected by an electromagnet, the magnetic flux of which is variable dependent upon engine characteristics and is oriented in the direction of the resetting force.
- the engine characteristics may be either sensed electronically or after converting them into electric signals, applied to an electric control apparatus, and, as current intensities, affect the resetting force through the electromagnet. It is an advantage of such an arrangement that the sensors responsive to the engine variables as well as the control apparatus may be disposed at a location remote from the sensor responsive to the flow rate of air. In addition, in electronic devices it is relatively simple to amplify a sensed force and to obtain very accurate measured values with small losses of efficiency.
- FIG. 1 is a sectional and partially schematic view of a fuel injection system incorporating a first embodiment of the invention.
- FIG. 2 is a sectional, partially schematic view of a second embodiment of the invention.
- FIG. 1 the internal combustion engine (not shown) draws air in the direction of the arrows through an air filter 2 held in a housing 1, through an intake tube portion 3 in which there is disposed a sensor 4, through a coupling hose 5 and through an intake tube portion 6 which contains an arbitrarily variable butterfly valve 7.
- the sensor 4 may be, as shown in the drawing, a plate oriented normal to the direction of air flow, or a piston displaceable normal to the air flow, or a gate pivotable about an eccentrically held shaft. Regardless of the structure used, the sensor 4 moves in the intake tube portion 3 according to an approximately linear function of the flow rate of air passing through the intake tube. Given a constant resetting force exerted on the sensor 4 and a constant air pressure upstream of the sensor, the pressure prevailing between the sensor 4 and the butterfly valve 7 is also at least approximately constant. 1
- the sensor 4 controls directly a quantity divider valve 8 through which the fuel is metered to the individual fuel injection nozzles (not shown) disposed in the suction tubes in the vicinity of the engine valves.
- a lever 9 which is integral with the sensor 4 and which is supported with very low friction on a shaft 10.
- the'lever with an integral nose l1, displaces the movable valve plunger 12 against a constant return force.
- the position of rest of the lever 9 is determined by a setting screw 14.
- the fuel is supplied to the fuel injection system by a fuel pump 16 which is driven by an electromotor 17.
- the pump 16 draws fuel from a tank 18 and, through a conduit 19, delivers it to the quantity divider valve 8. From the conduit 19 there extends a return conduit 20 which terminates in the tank 18 and contains a pressure limiting valve 21. From the conduit 19 the fuel is admitted into a channel 22 extending in the housing block of the fuel quantity divider valve 8. Channel 22 merges into a cylindrical bore 23 which is also formed in said housing block and in which there is disposed at reciprocable plunger 12 in a fluid-tight fit.
- the plunger 12 is provided with a circumferential annular groove 24 which is in continuous registry with the mouth of channel 22 in the cylinder 23. Dependent upon the axial position of the control plunger 12 in the bore 23, the groove 24 is to a greater or lesser extent in an overlapping position with the control slots 25 from which then the fuel is admitted through the channels 26 to the individual fuel injection nozzles (not shown).
- the plunger 12 is exposed to the force of a spring 28 which, in order to ensure a constant spring force, is relatively soft and thus has a flat spring characteristic. Between the plunger 12 and the spring 28 there is disposed an armature 29' surrounded by a solenoid 30 and a soft iron core 31. The last-named three components form an electromagnet.
- the armature 29 as well as the aligned bore in the soft iron core 31 at its side facing the plunger 12, have a conical configuration.
- the spring 28 engages with its end remote from the armature 29 an iron hood 32 which covers the magnetic system.
- the flux generated in the electromagnet is altered dependent upon operational variables such as load, rpm and temperature, by changing, in a manner known by itself, the intensity of the electric current flowing through the solenoid 30, in response to the changing value of said variables.
- such changes in the current intensity may be effected, for example, by the butterfly valve 7.
- an electric circuit which contains the solenoid 30, a potentiometer P and a current source S.
- the potentiometer P is adjusted as a function of the position of the butterfly valve 7 by virtue of, for example, a linkage means M.
- the energizing current of the solenoid 30 will be a function of the angular position of the butterfly valve 7.
- the potentiometer may be coupled to an rpm-responsive centrifugal regulator or an engine temperature-responsive heat expandable element.
- FIG. 2 illustrates a second embodiment of the invention and depicts only those components which difier from the first embodiment.
- a plunger coil-type electromagnet for generating the electromagnetic force which is superposed to the returning force, a plunger coil-type electromagnet is used.
- the constant returning force itself is supplied by a pressurized fluid which may be fuel and which is admitted into a chamber 35' of the magnet system 35 through a conduit 34 extending from the conduit 19.
- the armature 29' of the electromagnet has a pin 36 which transmits the magnetic force exerted on the armature 29 to the plunger 12.
- the cylindrical bore 23, in which the plunger 12' reciprocates, is connected with the chamber 35 by means of a port 37 through which the pin 36 of armature 29 extends.
- the diameters of pin 36 and bore 37 are so selected that the annular gap formed thereby serves as a hydraulic damping throttle for the setting motion of the plunger l2.
- the armature 29' which is formed as a sleeve having an open end, carries a coil 38 firmly wound thereon.
- the coil 38 is surrounded by an annular soft iron core 39 which is joined in an axial direction by a permanent magnet 40, also of annular shape.
- a soft iron plate 41 which has a pin 42 extending into the armature sleeve 29' through its open end.
- the entire magnetic system is covered by an iron hood 43 which also serves to secure the magnetic system to the fuel quantity divider valve 8.
- a fuel injection system associated with an internal combustion engine and being of the type that includes (A) an arbitrarily operable butterfly valve disposed in the suction tube of said engine for varying the flow rate of intake air, (B) a sensor disposed in said suction tube spaced from said butterfly valve and displaceable to an extent proportionalv to the flow rate of intake air, (C) means exerting a resetting force opposing the displacement of said sensor in response to the flow rate of air, said resetting force is changeable as a function of operational variables of said engine and (D) a quantity divider valve having a movable element actuated by said sensor for metering fuel in proportion to the flow rate of intake air, the improvement comprising A. means for applying hydraulic pressure to said movable element of said quantity divider valve, said hydraulic pressure forming at least one part of said resetting force,
- C. means varying said resetting force
- D. means for applying said magnetic force to said means varying said resetting force to change the latter in response to said operational variable.
- said electromagnet includes a movable armature which forms part of said means varying said resetting force, said armature is operatively connected to said movable element of said quantity divider valve.
- said electromagnet includes a stationary coil surrounding said movable armature and forming part of the means defined in (D); the path of travel of said armature is in alignment with that of said movable element.
- said electromagnet includes A. an electric coil firmly wound on said movable armature and forming part of the means defined in (D) and B. a stationary permanent magnet surrounding said armature.
- a movable armature constituting part of said elecf fate of air and tromagnet and forming part of said means varyi B. a plvotally secured lever afiixed to said plate and Said resetting force, said movable armature connected to said movable element to transmit eludes an integral part extending through said port 10 thereto the forces generated by the displacement and contacting said movable element of said quanof Said Platetity divider valve.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Fuel-Injection Apparatus (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Magnetically Actuated Valves (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19691960146 DE1960146C (de) | 1969-12-01 | Kraftstoffeinspritzanlage mit kontinuierlicher Einspritzung in das Saugrohr von gemischverdichtenden fremdge zündeten Brennkraftmaschinen | |
DE19712133434 DE2133434C3 (de) | 1969-12-01 | 1971-07-05 | Kraftstoffeinspritzanlage mit kontinuierlicher Einspritzung in das Saugrohr von gemischverdichtenden fremdgezündeten Brennkraftmaschinen |
DE19722203507 DE2203507A1 (de) | 1969-12-01 | 1972-01-26 | Kraftstoffeinspritzanlage |
Publications (1)
Publication Number | Publication Date |
---|---|
US3703888A true US3703888A (en) | 1972-11-28 |
Family
ID=42077836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US92345A Expired - Lifetime US3703888A (en) | 1969-12-01 | 1970-11-24 | Device for the fuel quantity control in response to operational variables of an internal combustion engine |
Country Status (10)
Country | Link |
---|---|
US (1) | US3703888A (de) |
JP (1) | JPS4946671B1 (de) |
AT (1) | AT307809B (de) |
BE (1) | BE759679A (de) |
DE (1) | DE2203507A1 (de) |
ES (1) | ES386028A1 (de) |
FR (1) | FR2072531A5 (de) |
GB (2) | GB1283860A (de) |
NL (1) | NL7017465A (de) |
SE (1) | SE362119B (de) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3765387A (en) * | 1971-07-05 | 1973-10-16 | Bosch Gmbh Robert | Fuel injection apparatus |
US3809036A (en) * | 1972-01-22 | 1974-05-07 | Bosch Gmbh Robert | Fuel injection apparatus |
US3817229A (en) * | 1971-05-18 | 1974-06-18 | Bosch Gmbh Robert | Fuel injection apparatus for externally ignited internal combustion engines operating on fuel continuously injected into the suction tube |
US3867917A (en) * | 1971-07-09 | 1975-02-25 | Johannes Zeyns | Combustion machines |
US3915138A (en) * | 1973-09-22 | 1975-10-28 | Bosch Gmbh Robert | Fuel injection system |
US3919992A (en) * | 1973-09-28 | 1975-11-18 | Bosch Gmbh Robert | Fuel injection system |
US3930479A (en) * | 1972-09-07 | 1976-01-06 | Robert Bosch G.M.B.H. | Fuel metering device for externally ignited internal combustion engines with compression of the air-fuel mixture |
US3930481A (en) * | 1972-09-22 | 1976-01-06 | Robert Bosch G.M.B.H. | Fuel injection system for internal combustion engines |
US3931802A (en) * | 1972-09-22 | 1976-01-13 | Robert Bosch G.M.B.H. | Fuel injection system for internal combustion engines |
US3942496A (en) * | 1973-10-03 | 1976-03-09 | Robert Bosch Gmbh | Fuel injection system |
US3942497A (en) * | 1973-11-16 | 1976-03-09 | Robert Bosch Gmbh | Fuel injection system |
US3993032A (en) * | 1974-05-13 | 1976-11-23 | Robert Bosch G.M.B.H. | Fuel injection systems |
US4008700A (en) * | 1973-08-01 | 1977-02-22 | Societe Industrielle De Brevets Et D'etudes S.I.B.E. | Fuel feed device for internal combustion engine |
US4175103A (en) * | 1978-04-17 | 1979-11-20 | General Motors Corporation | Carburetor |
US4174693A (en) * | 1976-12-14 | 1979-11-20 | Audi Nsu Auto Union Aktiengesellschaft | Fuel injection system having pressurized damping means |
US4178332A (en) * | 1978-01-11 | 1979-12-11 | General Motors Corporation | Carburetor and method of calibration |
US4208358A (en) * | 1977-05-27 | 1980-06-17 | General Motors Corporation | Carburetor and method of calibration |
US4217314A (en) * | 1978-06-26 | 1980-08-12 | General Motors Corporation | Carburetor and method of operation |
US4552114A (en) * | 1981-09-02 | 1985-11-12 | Hitachi, Ltd. | Apparatus for controlling the number of operative cylinders of a diesel engine |
US5341785A (en) * | 1992-07-20 | 1994-08-30 | Echlin, Inc. | Fuel delivery system for internal combustion engines |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2547645C3 (de) * | 1975-10-24 | 1978-11-23 | Robert Bosch Gmbh, 7000 Stuttgart | Kraftstoffeinspritz anlage |
DE2621555A1 (de) * | 1976-05-14 | 1977-12-01 | Bosch Gmbh Robert | Kraftstoffeinspritzanlage |
JPS5412464U (de) * | 1977-06-28 | 1979-01-26 | ||
CN102080581B (zh) * | 2010-08-10 | 2013-10-16 | 深圳市海利科科技开发有限公司 | 一种控制螺杆膨胀动力机的控制系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB515040A (en) * | 1938-02-23 | 1939-11-24 | Self Priming Pump And Engineer | Improvements in and relating to carburettors for internal combustion engines |
GB594494A (en) * | 1945-06-12 | 1947-11-12 | Richard Garratt Ellis | Improvements in variable jet carburettors for variable speed internal combustion engines |
US2600368A (en) * | 1945-06-02 | 1952-06-10 | Bendix Aviat Corp | Charge forming device |
-
1970
- 1970-11-24 US US92345A patent/US3703888A/en not_active Expired - Lifetime
- 1970-11-27 GB GB56431/70A patent/GB1283860A/en not_active Expired
- 1970-11-27 FR FR7042755A patent/FR2072531A5/fr not_active Expired
- 1970-11-30 SE SE16194/70A patent/SE362119B/xx unknown
- 1970-11-30 AT AT1077170A patent/AT307809B/de not_active IP Right Cessation
- 1970-11-30 BE BE759679A patent/BE759679A/fr unknown
- 1970-11-30 ES ES386028A patent/ES386028A1/es not_active Expired
- 1970-11-30 NL NL7017465A patent/NL7017465A/xx unknown
- 1970-12-01 JP JP45106247A patent/JPS4946671B1/ja active Pending
-
1972
- 1972-01-26 DE DE19722203507 patent/DE2203507A1/de active Pending
-
1973
- 1973-01-25 GB GB383173A patent/GB1411051A/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB515040A (en) * | 1938-02-23 | 1939-11-24 | Self Priming Pump And Engineer | Improvements in and relating to carburettors for internal combustion engines |
US2600368A (en) * | 1945-06-02 | 1952-06-10 | Bendix Aviat Corp | Charge forming device |
GB594494A (en) * | 1945-06-12 | 1947-11-12 | Richard Garratt Ellis | Improvements in variable jet carburettors for variable speed internal combustion engines |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3817229A (en) * | 1971-05-18 | 1974-06-18 | Bosch Gmbh Robert | Fuel injection apparatus for externally ignited internal combustion engines operating on fuel continuously injected into the suction tube |
US3765387A (en) * | 1971-07-05 | 1973-10-16 | Bosch Gmbh Robert | Fuel injection apparatus |
US3867917A (en) * | 1971-07-09 | 1975-02-25 | Johannes Zeyns | Combustion machines |
US3809036A (en) * | 1972-01-22 | 1974-05-07 | Bosch Gmbh Robert | Fuel injection apparatus |
US3930479A (en) * | 1972-09-07 | 1976-01-06 | Robert Bosch G.M.B.H. | Fuel metering device for externally ignited internal combustion engines with compression of the air-fuel mixture |
US3930481A (en) * | 1972-09-22 | 1976-01-06 | Robert Bosch G.M.B.H. | Fuel injection system for internal combustion engines |
US3931802A (en) * | 1972-09-22 | 1976-01-13 | Robert Bosch G.M.B.H. | Fuel injection system for internal combustion engines |
US4008700A (en) * | 1973-08-01 | 1977-02-22 | Societe Industrielle De Brevets Et D'etudes S.I.B.E. | Fuel feed device for internal combustion engine |
US3915138A (en) * | 1973-09-22 | 1975-10-28 | Bosch Gmbh Robert | Fuel injection system |
US3919992A (en) * | 1973-09-28 | 1975-11-18 | Bosch Gmbh Robert | Fuel injection system |
US3942496A (en) * | 1973-10-03 | 1976-03-09 | Robert Bosch Gmbh | Fuel injection system |
US3942497A (en) * | 1973-11-16 | 1976-03-09 | Robert Bosch Gmbh | Fuel injection system |
US3993032A (en) * | 1974-05-13 | 1976-11-23 | Robert Bosch G.M.B.H. | Fuel injection systems |
US4174693A (en) * | 1976-12-14 | 1979-11-20 | Audi Nsu Auto Union Aktiengesellschaft | Fuel injection system having pressurized damping means |
US4208358A (en) * | 1977-05-27 | 1980-06-17 | General Motors Corporation | Carburetor and method of calibration |
US4178332A (en) * | 1978-01-11 | 1979-12-11 | General Motors Corporation | Carburetor and method of calibration |
US4175103A (en) * | 1978-04-17 | 1979-11-20 | General Motors Corporation | Carburetor |
US4217314A (en) * | 1978-06-26 | 1980-08-12 | General Motors Corporation | Carburetor and method of operation |
US4552114A (en) * | 1981-09-02 | 1985-11-12 | Hitachi, Ltd. | Apparatus for controlling the number of operative cylinders of a diesel engine |
US5341785A (en) * | 1992-07-20 | 1994-08-30 | Echlin, Inc. | Fuel delivery system for internal combustion engines |
Also Published As
Publication number | Publication date |
---|---|
SE362119B (sv) | 1973-11-26 |
DE1960146A1 (de) | 1971-07-22 |
ES386028A1 (es) | 1973-02-16 |
GB1411051A (en) | 1975-10-22 |
DE2203507A1 (de) | 1973-08-02 |
AT307809B (de) | 1973-06-12 |
GB1283860A (en) | 1972-08-02 |
BE759679A (fr) | 1971-04-30 |
FR2072531A5 (fr) | 1971-09-24 |
NL7017465A (nl) | 1971-06-03 |
JPS4946671B1 (de) | 1974-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3703888A (en) | Device for the fuel quantity control in response to operational variables of an internal combustion engine | |
US3809036A (en) | Fuel injection apparatus | |
US3730155A (en) | Fuel injection apparatus for spark plug-ignited internal combustion engines | |
GB1399391A (en) | Fuel injection systems | |
US3791359A (en) | Fuel injection apparatus for externally ignited internal combustion engines operating on continuously injected fuel | |
US3983849A (en) | Fuel injection system | |
US3927649A (en) | Fuel-metering unit for internal combustion engines | |
GB1449856A (en) | Fuel injection systems for internal combustion engines | |
JPS6111469Y2 (de) | ||
US3728993A (en) | Fuel injection apparatus including an air sensor and means for the direction-dependent damping of its movement | |
US3613650A (en) | Fuel injection system for internal combustion engines | |
US3796200A (en) | Fuel injection apparatus | |
DE3855046D1 (de) | Flüssigkeitsservosystem für brennstoffeinspritzung und sonstige anwendungen | |
US3894523A (en) | Fuel supply system | |
JPS5984277U (ja) | 燃料噴射装置 | |
JPS5844865B2 (ja) | ネンリヨウフンシヤソウチ | |
US3999527A (en) | Fuel injection system | |
US3817229A (en) | Fuel injection apparatus for externally ignited internal combustion engines operating on fuel continuously injected into the suction tube | |
GB1424069A (en) | Apparatus for controlling fuel flow to an internal combustion engine | |
US3606872A (en) | Fuel injection system for externally ignited internal combustion engines | |
GB1473890A (en) | Fuel injection systems | |
US3993032A (en) | Fuel injection systems | |
US4090486A (en) | Fuel injection system | |
KR830006576A (ko) | 디젤/가스 엔진 | |
JPS60192246U (ja) | 燃料供給装置 |