US3668393A - Apparatus having evacuation spaces and a pumping assembly - Google Patents
Apparatus having evacuation spaces and a pumping assembly Download PDFInfo
- Publication number
- US3668393A US3668393A US75883A US3668393DA US3668393A US 3668393 A US3668393 A US 3668393A US 75883 A US75883 A US 75883A US 3668393D A US3668393D A US 3668393DA US 3668393 A US3668393 A US 3668393A
- Authority
- US
- United States
- Prior art keywords
- pump
- space
- turbomolecular pump
- turbomolecular
- high vacuum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005086 pumping Methods 0.000 title claims abstract description 21
- 238000000926 separation method Methods 0.000 claims description 6
- 238000010894 electron beam technology Methods 0.000 claims description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000002800 charge carrier Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/042—Turbomolecular vacuum pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/046—Combinations of two or more different types of pumps
Definitions
- An apparatus has a high vacuum seal and at least one additional evacuative space as well as a pumping assembly for evacuating the vessel and space.
- the pumping assembly has a backing pump and a turbomolecular pump having a main section communicating with the vessel and with the backing pump.
- the turbomolecular pump has an auxiliary section communicating with the additional evacuative space and has a housing enclosing the main and-auxiliary sections.
- the turbomolecular pump has first and second pump members disposed in the main and auxiliary sections respectively.
- the housing includes a wall intermediate the main and auxiliary sections for separating the sections in vacuum tight relation to each other.
- the turbomolecular pump has a rotor shaft which passes through the wall and connects the first pump member with the second pump member.
- pump stands which include high vacuum pumps, mercury vapor beam pumps or oil diffusion pumps. With this type of pump stands, a vacuum in the region of 10 Torr is obtained.
- turbo-molecular pumps which permit, producing, without a cooling trap, a hydrocarbon free high vacuum having a residual pressure in the region of to 10 Torr.
- These pumps include, in a housing, a rotor shaft having a slotted disc; this rotor disc cooperates with correspondingly formed stator discs in such a manner that they form discharge channels for the gases evacuated from the high vacuum vessel.
- turbomolecular pump arrangement having a main section that is connected between the high vacuum vessel and a backing pump arrangement.
- the turbomolecular pump arrangement also has an auxiliary section whose input side is hermetically sealed from that of the main section and connected to the additional compartment.
- the turbomolecular pump has first and second pump means that are included in the main and auxiliary sections respectively.
- the housing encloses the main and auxiliary sections and includes a wall intermediate the two sections for separating the sections in vacuum tight relation to each other.
- the turbomolecular pump arrangement has a rotor shaft which passes through the wall and connects the first pump means with the second pump means.
- the invention permits the introduction of a turbomolecular pump generating a good high vacuum in a short time with high suction power.
- the turbomolecular pump is useable also when several spaces have to be evacuated without the necessity of using additional pumps of this type. Oil vapors developed during rough pumping by the backing pump arrangement will not precipitate on the inner walls of the spaces being evacuated, even if cooling traps are omitted, because during the rough pumping of the high vacuum vessel or the other spaces, they are separated from the backing pump arrangement by the action of the turbomolecular pump arrangement.
- the apparatus according to the invention uses a turbomolecular pump constructed with a housing which forms separate chambers surrounding respective active pump parts. It is often advantageous to expand a single part pump of the turbomolecular type so that the required number of auxiliary pump sections are added.
- a corresponding variation of the invention is exemplified by expanding a one part turbomolecular pump so that the rotor shaft is extended on its end away from the drive motor and passes vacuum tight at this end through the end face of the housing of the one part pump and into an auxiliary section or chamber formed by a flange attached ancillary housing portion.
- thermomolecular pump Aside from the special construction of the thermomolecular pump, there are advantages afforded by the incorporation of this type of pump.
- a special advantage in the area of electron microscopes derives from the fact that turbomolecular pumps begin to develop appreciable suction when the pressure is in the region of 10" Torr, whereas conventional pumps have only a small suction power at these pressure values. Therefore, by using an auxiliary section of a turbomolecular pump, it is possible to effect a rough pumping of an airlock or other space of electron microscopes to a very low pressure.
- a difficulty that arises, when providing for the evacuation of several compartments or spaces in an apparatus is that, in order to effect a rough pumping of any additional compartments, the backing pump must normally be disconnected from the turbomolecular pump and be connected via a by-pass with the additional compartments if the use of additional backing pumps are to be avoided. Such switching of the backing pump requires that there be provided a sufficiently large rough vacuum receiver to which the turbomolecular pump can be connected during the rough pumping of the additional compartments or spaces.
- a two stage backing pump arrangement having a high vacuum stage and a rough vacuum stage.
- the high vacuum stage is connected with its input to the main section of the turbomolecular pump, while the rough vacuum stage is connected permanently to the output of the high vacuum stage, and is connectable via a valve to the output of the auxiliary section of the turbomolecular pump arrangement.
- the invention is applicable to any one of several apparatus, and without any limitations to the invention, the preferred application of the instant invention is to electron microscopes wherein the space containing the electron beam is the high vacuum vessel, while the additional spaces comprise the lock space and/or the desiccator.
- the instant invention is appplicable wherever an additional space is provided as well as to apparatus having additional spaces to be evacuated.
- FIG. 1 is a schematic diagram of the pertinent portions of an electron microscope equipped with a pumping apparatus according to the invention.
- FIG. 2 is a schematic diagram of a vacuum pump arrangement wherein the pumping apparatus of the invention is provided with a two stage rotating fore-vacuum pump.
- FIG. 1 shows simply the microscope column 1.
- the microscope column of an electron microscope contains all the electro-optical equipment as well as the specimen in its investigative position.
- the enclosed evacuative space defined by the microscope column is referred as the high vacuum vessel.
- specimen lock 2 extends into the column. There can also be locks for diaphragms, cathodes or the like.
- the specimen lock 2 with the lock space or compartment 3 contains an internal airlock'gate 4 and an external airlock gate 5 of which at least one airlock gate is always closed.
- a neighboring vessel 6 belongs to the microscope which can, for example, be a desiccator for photographic material.
- the vacuum line 7 communicates with the lock space 3 and the neighboring compartment or container 6.
- Lock valves 8 and 9 are arranged on the vacuum line 7. Air inlet valves 10 and 11 are arranged on compartments 3 and 6 respectively.
- the turbomolecular pump system of the invention is located at the lower portion of the high-vacuum column 1.
- the system comprises a main section 12, a housing 13, rotor shafl 14, slitted discs 15 arranged on shaft 14 and the corresponding discs 16 constituting the stator of the pump.
- this pump is arranged as a mu]- tipart pump in such a manner that an auxiliary section is provided by providing the rotor shaft 14 with an extension on the side away from its drive motor 17, that is, the rotor is extended toward the right in FIG. 1 as illustrated therein by the ancillary part 18.
- the housing 13 is put together from two housing parts 19 and 20.
- the main section of the pump system is included in housing part 19, the latter having an opening in the end face 21 for the rotor shaft 14.
- Housing part includes the auxiliary section of the pump arrangement and is flange connected to part 19 in the region of end face 21.
- the two housing parts 19 and 20 form chambers vacuum separated from each other of which the larger chamber communicates with the high vacuum vessel'l and the smaller chamber to the right communicates with the compartments 3 and 6 to be evacuated.
- the paths of flow during pump operation are indicated by arrows in FIG. 1.
- Output ports 22 and 23 serve for connection to a backing pump arrangement which is provided but not shown in FIG. 1.
- FIG. 2 illustrates the two-stage backing pump arrangement used in'a preferred embodiment.
- This pump arrangement has a high vacuum stage 30 and a rough vacuum stage 31. These two pump stages are connectable with the two sections 34 and 35 of a turbomolecular pump arrangement such as that shown in FIG. 1 via lines 32 and 33 respectively; these lines corresponding to the output ports 22 and 23 in FIG. I.
- valves 36 and 37 are provided in the connecting lines 32 and 33 respectively, and the output of the high vacuum stage 30 is permanently connected to the input of the rough vacuum stage 31.
- the input of the rough vacuum stage 31 is connectable at the input side either exclusively to the output of the high vacuum stage 30, or both to this output and to the auxiliary section 35 of the turbomolecular pump. This ensures that even during the rough pumping of airlocks and other auxiliary compartments, the main section 34 remains connected via the high vacuum stage 30 with the rough vacuum stage 31 of the backing pump arrangement.
- Additional connectinglines may be, provided for other I facilities. Additional compartments or spaces may be formed by sectionalizing of the column of an electron microscope, for example.
- turbomolecular pump having a main section and at least one auxiliary section and, likewise, other applications requiring other interconnecting lines.
- additional evacuative spaces can also arise, for example, by the column of an electron microscope.
- Apparatus having a high vacuum vessel and at least one additional evacuative space and equipped with a pumping assembly for evacuating said vessel and said space, said pumping assembly comprising a backing pump, and a turbomolecular pump having a main section communicating with said vessel and with said backing pump, said turbomolecular pump having an auxiliary section communicating with said additional evacuative space, said turbomolecular pump having housing means enclosing said main section and said auxiliary section, said turbomolecular pump having first and second pump means disposed in said main section and said auxiliary section respectively, said housing means including separation means intermediate said main section and said auxiliary section for separating said sections in vacuum tight relation to each other, said turbomolecular pump having a rotor shaft passing through said separation means and connecting said first pump means with said second pump means.
- said turbomolecular pump comprising a drive motor attached to one end of said rotor shaft, said housing means comprising first and second housing parts surrounding said main section and said auxiliary section respectively, said second housing part being flange connected to said first housing part, and the other end of said rotor shaft extending vacuum tight through said separation means into said second housing part.
- said backing pump being a two stage backing pump, one of said stages being a high vacuum stage, the input of said high vacuum stage being connected with said main section of said turbomolecular pump, the other one of said stages being a rough vacuum stage, the input of said rough vacuum stage being connected to the output of said high vacuum stage, and means connected between said input of said rough vacuum stage and the output of said auxiliary section of said turbomolecular pump for selectively connecting said rough vacuum stage to said auxiliary section.
- said apparatus being an electron microscope, said vessel defining the space through which the electron beam passes and said one space being a lock space.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Non-Positive Displacement Air Blowers (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19691950328 DE1950328C3 (de) | 1969-09-30 | Korpuskularstrahlgerät, insbesondere Elektronenmikroskop, mit einer aus Hoch- und Vorvakuumpumpen bestehenden Pumpenanlage |
Publications (1)
Publication Number | Publication Date |
---|---|
US3668393A true US3668393A (en) | 1972-06-06 |
Family
ID=5747450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US75883A Expired - Lifetime US3668393A (en) | 1969-09-30 | 1970-09-28 | Apparatus having evacuation spaces and a pumping assembly |
Country Status (4)
Country | Link |
---|---|
US (1) | US3668393A (enrdf_load_stackoverflow) |
JP (1) | JPS4814626B1 (enrdf_load_stackoverflow) |
GB (1) | GB1291353A (enrdf_load_stackoverflow) |
NL (1) | NL7010108A (enrdf_load_stackoverflow) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3969039A (en) * | 1974-08-01 | 1976-07-13 | American Optical Corporation | Vacuum pump |
US4057369A (en) * | 1973-07-21 | 1977-11-08 | Maschinenfabrik Augsburg-Nurnberg Ag | Vacuum pump having a rotor supported in the interior of its casing |
US4139774A (en) * | 1977-02-09 | 1979-02-13 | Hitachi, Ltd. | Apparatus for irradiating a specimen by an electron beam |
US4889995A (en) * | 1987-12-23 | 1989-12-26 | Hitachi, Ltd. | Apparatus for analysis employing electron |
US5228838A (en) * | 1992-04-27 | 1993-07-20 | Leybold Aktiengesellschaft | Method for the evacuation of a low-vacuum chamber and of a HGH-vacuum chamber, as well as a high-vacuum apparatus for the practice thereof |
US6238177B1 (en) * | 1999-01-08 | 2001-05-29 | Fantom Technologies Inc. | Prandtl layer turbine |
US6409477B1 (en) * | 1999-07-05 | 2002-06-25 | Pfeiffer Vacuum Gmbh | Vacuum pump |
EP1496263A2 (en) | 2003-07-10 | 2005-01-12 | Ebara Corporation | Vacuum pump and semiconductor manufacturing apparatus |
EP1589227A1 (fr) * | 2004-04-21 | 2005-10-26 | Alcatel | Pompe à vide multi-étagée et installation de pompage comprenant une telle pompe |
US20060216149A1 (en) * | 2004-10-26 | 2006-09-28 | Wilson Erich A | Fluid Flow Channels in Bladeless Compressors, Turbines and Pumps |
US20060291997A1 (en) * | 2004-10-26 | 2006-12-28 | Wilson Erich A | Fluid Flow Chambers and Bridges in Bladeless Compressors, Turbines and Pumps |
US20070020116A1 (en) * | 2003-09-30 | 2007-01-25 | Ikegami Mold Engineering Co., Ltd | Vacuum pump |
US20070092369A1 (en) * | 2005-10-25 | 2007-04-26 | Erich Wilson | Bracket/Spacer Optimization in Bladeless Turbines, Compressors and Pumps |
US20070274822A1 (en) * | 2003-12-23 | 2007-11-29 | Liu Michael C K | Vacuum Pump |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50139331U (enrdf_load_stackoverflow) * | 1974-05-02 | 1975-11-17 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3483373A (en) * | 1966-07-28 | 1969-12-09 | Siemens Ag | Airlock assembly for corpuscular ray devices |
US3536418A (en) * | 1969-02-13 | 1970-10-27 | Onezime P Breaux | Cryogenic turbo-molecular vacuum pump |
-
1970
- 1970-07-08 NL NL7010108A patent/NL7010108A/xx unknown
- 1970-09-25 GB GB45759/70A patent/GB1291353A/en not_active Expired
- 1970-09-28 US US75883A patent/US3668393A/en not_active Expired - Lifetime
- 1970-09-30 JP JP45085170A patent/JPS4814626B1/ja active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3483373A (en) * | 1966-07-28 | 1969-12-09 | Siemens Ag | Airlock assembly for corpuscular ray devices |
US3536418A (en) * | 1969-02-13 | 1970-10-27 | Onezime P Breaux | Cryogenic turbo-molecular vacuum pump |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4057369A (en) * | 1973-07-21 | 1977-11-08 | Maschinenfabrik Augsburg-Nurnberg Ag | Vacuum pump having a rotor supported in the interior of its casing |
US3969039A (en) * | 1974-08-01 | 1976-07-13 | American Optical Corporation | Vacuum pump |
US4139774A (en) * | 1977-02-09 | 1979-02-13 | Hitachi, Ltd. | Apparatus for irradiating a specimen by an electron beam |
US4889995A (en) * | 1987-12-23 | 1989-12-26 | Hitachi, Ltd. | Apparatus for analysis employing electron |
US5228838A (en) * | 1992-04-27 | 1993-07-20 | Leybold Aktiengesellschaft | Method for the evacuation of a low-vacuum chamber and of a HGH-vacuum chamber, as well as a high-vacuum apparatus for the practice thereof |
US6238177B1 (en) * | 1999-01-08 | 2001-05-29 | Fantom Technologies Inc. | Prandtl layer turbine |
US6409477B1 (en) * | 1999-07-05 | 2002-06-25 | Pfeiffer Vacuum Gmbh | Vacuum pump |
EP1496263A2 (en) | 2003-07-10 | 2005-01-12 | Ebara Corporation | Vacuum pump and semiconductor manufacturing apparatus |
US20050025640A1 (en) * | 2003-07-10 | 2005-02-03 | Shinichi Sekiguchi | Vacuum pump and semiconductor manufacturing apparatus |
EP1496263A3 (en) * | 2003-07-10 | 2010-02-10 | Ebara Corporation | Vacuum pump and semiconductor manufacturing apparatus |
US7645126B2 (en) | 2003-07-10 | 2010-01-12 | Ebara Corporation | Vacuum pump and semiconductor manufacturing apparatus |
US7762763B2 (en) * | 2003-09-30 | 2010-07-27 | Edwards Limited | Vacuum pump |
US20070020116A1 (en) * | 2003-09-30 | 2007-01-25 | Ikegami Mold Engineering Co., Ltd | Vacuum pump |
US20070274822A1 (en) * | 2003-12-23 | 2007-11-29 | Liu Michael C K | Vacuum Pump |
FR2869369A1 (fr) * | 2004-04-21 | 2005-10-28 | Alcatel Sa | Pompe a vide multi-etagee, et installation de pompage comprenant une telle pompe |
US7670119B2 (en) | 2004-04-21 | 2010-03-02 | Alcatel | Multistage vacuum pump and a pumping installation including such a pump |
EP1589227A1 (fr) * | 2004-04-21 | 2005-10-26 | Alcatel | Pompe à vide multi-étagée et installation de pompage comprenant une telle pompe |
US20060291997A1 (en) * | 2004-10-26 | 2006-12-28 | Wilson Erich A | Fluid Flow Chambers and Bridges in Bladeless Compressors, Turbines and Pumps |
US20060216149A1 (en) * | 2004-10-26 | 2006-09-28 | Wilson Erich A | Fluid Flow Channels in Bladeless Compressors, Turbines and Pumps |
US20070092369A1 (en) * | 2005-10-25 | 2007-04-26 | Erich Wilson | Bracket/Spacer Optimization in Bladeless Turbines, Compressors and Pumps |
US7478990B2 (en) | 2005-10-25 | 2009-01-20 | Wilson Erich A | Bracket/spacer optimization in bladeless turbines, compressors and pumps |
Also Published As
Publication number | Publication date |
---|---|
GB1291353A (en) | 1972-10-04 |
DE1950328B2 (de) | 1976-09-23 |
NL7010108A (enrdf_load_stackoverflow) | 1971-04-01 |
JPS4814626B1 (enrdf_load_stackoverflow) | 1973-05-09 |
DE1950328A1 (de) | 1971-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3668393A (en) | Apparatus having evacuation spaces and a pumping assembly | |
US3144035A (en) | High vacuum system | |
US6872956B2 (en) | Particle beam device with a particle source to be operated in high vacuum and cascade-type pump arrangement for such a particle beam device | |
US11434913B2 (en) | Multiple port vacuum pump system | |
US5788825A (en) | Vacuum pumping system for a sputtering device | |
US4383178A (en) | System for driving rotary member in vacuum | |
US5228838A (en) | Method for the evacuation of a low-vacuum chamber and of a HGH-vacuum chamber, as well as a high-vacuum apparatus for the practice thereof | |
US3633027A (en) | Mass spectrometer connected to a gap chromatograph through a valved molecule separator | |
EP0119451B2 (en) | Multiport cryopump | |
US5114316A (en) | Method of regenerating a vacuum pumping device | |
CA2462934A1 (en) | Multi-chamber installation for treating objects under vacuum, method for evacuating said installation and evacuation system therefor | |
US5247133A (en) | High-vacuum substrate enclosure | |
US9336990B2 (en) | Semiconductor process pumping arrangements | |
EP3867528B1 (en) | Non-mechanical vacuum pumping system and analytical instrument | |
US4149084A (en) | Apparatus for maintaining ion bombardment beam under improved vacuum condition | |
JP5342367B2 (ja) | 真空排気装置および真空排気装置の使用方法 | |
WO2020208375A1 (en) | Vacuum chamber module | |
JP7396237B2 (ja) | 質量分析装置 | |
US4081222A (en) | Combined vacuum baffle and valve for diffusion pump | |
JPH0429402Y2 (enrdf_load_stackoverflow) | ||
GB2578293A (en) | A set of pumps, and a method and system for evacuating a vacuum chamber in a radioactive environment | |
JP2000205418A (ja) | 磁性流体封止型回転導入機 | |
KR200324096Y1 (ko) | 이온펌프의 고전압 피드쓰루 장착용 함몰형 유입구 구조 | |
US3515171A (en) | Side pumped vacuum collar | |
JPH1140094A (ja) | 真空装置の排気システムおよび排気方法 |