US3599851A - Hydrodynamic turnover mechanisms - Google Patents
Hydrodynamic turnover mechanisms Download PDFInfo
- Publication number
- US3599851A US3599851A US35850A US3599851DA US3599851A US 3599851 A US3599851 A US 3599851A US 35850 A US35850 A US 35850A US 3599851D A US3599851D A US 3599851DA US 3599851 A US3599851 A US 3599851A
- Authority
- US
- United States
- Prior art keywords
- web material
- turnover
- web
- line
- metal web
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H23/00—Registering, tensioning, smoothing or guiding webs
- B65H23/04—Registering, tensioning, smoothing or guiding webs longitudinally
- B65H23/32—Arrangements for turning or reversing webs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H23/00—Registering, tensioning, smoothing or guiding webs
- B65H23/04—Registering, tensioning, smoothing or guiding webs longitudinally
- B65H23/24—Registering, tensioning, smoothing or guiding webs longitudinally by fluid action, e.g. to retard the running web
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23D—ENAMELLING OF, OR APPLYING A VITREOUS LAYER TO, METALS
- C23D5/00—Coating with enamels or vitreous layers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/08—Apparatus, e.g. for photomechanical printing surfaces
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2406/00—Means using fluid
- B65H2406/10—Means using fluid made only for exhausting gaseous medium
- B65H2406/11—Means using fluid made only for exhausting gaseous medium producing fluidised bed
- B65H2406/111—Means using fluid made only for exhausting gaseous medium producing fluidised bed for handling material along a curved path, e.g. fluidised turning bar
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2406/00—Means using fluid
- B65H2406/10—Means using fluid made only for exhausting gaseous medium
- B65H2406/14—Means using fluid made only for exhausting gaseous medium with selectively operated air supply openings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2511/00—Dimensions; Position; Numbers; Identification; Occurrences
- B65H2511/10—Size; Dimensions
- B65H2511/12—Width
Definitions
- a continuous sheet of material is unwound from a roll and passed through a number of processing stations either on edge or flat.
- a number of vertical or horizontal orientated rollers pressure engage the metal web and maintain it in either a vertical orientation (on edge) or a horizontal orientation (flat) as the metal web passes through these processing stations.
- a metal web moving a horizontal plane can be made to move in a vertical plane by passing the web under a horizontal roller and then guiding the web upward in a vertical direction. Movement of the web upwards in a vertical direction is not desirable as the processing stations would have to be arranged in a vertical manner. Instead, the preferred vertical orientation of the metal web is when the metal web travels laterally or in a line parallel to the horizontal.
- a metal web moving in a horizontal plane cannot be readily turned to move in a line parallel to the horizontal without twisting the metal web.
- the orientation in which the web travels in a vertical plane upward will be referred to as vertical end orientation and the orientation in which the metal web moves in a vertical plane along a line parallel to the horizontal will be referred to as a vertical edge orientation.
- the metal web is maintained in either a horizontal or vertical edge orientation because of the diffi ulty involved in changing the orientation of continuously moving metal web.
- this is not the ideal situation because during certain process steps it is desirable to maintain the metal web in vertical edge orientation and in other process steps it is desirable to maintain the metal web in a horizontal orientation.
- this metal web comes in huge rolls that are unwound as the web is fed into the processing stations. It is preferable to maintain the roll of metal web in a horizontal orientation during unwinding of the roll as it tends to become loosely wound if maintained in a vertical edge orientation. Also it is preferable to convey the metal web horizontally because it is difiicult to maintain the metal in a vertical edge orientation without a number of supporting and compensating rollers to prevent the metal from sagging and slipping on the rollers under its own weight. If the metal sags in a vertical edge orientation, it causes the metal web to unwind unevenly. Also the downward slippage of the metal web along the vertical orientated roller must be compensated for.
- the metal web is maintained in a horizontal orientation the sagging of the metal web does not have an effect on the unwinding of the roll as the weight of the metal web pulls evenly on the roll as it unwinds. Also, the downward slippage of the metal web is eliminated if the rollers are in a horizontal orientation. Thus, it is preferable to unwind and transport the metal web in a horizontal orientation to the processing stations.
- the continuous metal web passes through certain processing stations it is preferable to maintain the metal web in a vertical edge orientation. For example, it is easier to apply a uniform coat of enamel to the metal web if the metal web is in a vertical edge orientation.
- a prior art method of changing a continuously moving sheet of material from a horizontal orientation to a vertical edge orientation or vice versa involved placing an elongated roller having its central axis at 45 angle to the horizontal.
- the continuously moving material passed through a pair of horizontally orientated rollers over the elongated roller located at a 45 angle to the horizontal and then through a pair of vertically orientated rollers or vice versa.
- the purpose of the elongated roller is to change the orientation of the metal web from a vertical end orientation to a vertical edge orientation or vice versa. This type of changeover or turnover roller works particularly well for a wide variety of applications.
- this type of turnover roller is unsuitable for the reason that while the surface of the turnover roller rotates about the axis of the roller, the metal web moves at a 45 angle to the axis of the roller as it moves from vertical end orientation to a vertical edge orientation. Thus, there is slippage between the surface of the turnover roller and the metal web. In many applications, surface scratches cannot be tolerated, especially in the production of precision etched parts. In order to eliminate this scratching of the surface of the metal web it is necessary to either process the metal web continuously horizontally or continuously vertically.
- the present invention overcomes the problem of slippage between the surface of the turnover roller and the metal web, which produces these undesirable scratches, by hydrodynamically supporting the metal web as it passes over a nonrotative guide member. More specifically, there is provided a nonrotating cylindrical guide member having a plurality of slots for supplying air under pressure to the area under the metal web thereby forming a layer of air for hydrodynamically suspending the metal web as it passes over the cylindrical member. Besides being nearly frictionless, the turning guide prevents the metal web from contacting it and therefore protects the surface of the metal web from being marred by rubbing or scratching.
- the present invention comprises a movable valve sleeve member inside the turning guide for changing the number of apertures available to pass air so as to adjust to different sizes of moving metal web.
- the guide member is also covered with a plastic covered screen so as to diffuse the passage of air from the apertures while supporting with a very slippery surface any parts of the web which are not completely supported by the air pressure.
- FIG. l is a block diagram in schematic form illustrating part of the system for handling a metal webbing utilizing the present invention
- FIG. 2 is a side view of the equipment identified as a turnover and pull stand in FIG. 1;
- FIG. 3 is a top view of the equipment identified as a turnover and pull stand in FIG. 1;
- FIG. 4 is a front view of the equi ment identified as a turnover and pull stand in FIG. 1;
- FIG. 5 is a partially fragmentary view of the hydrodynamic turnover and guide member of the present invention.
- FIG. 6 is a perspective view of the valve sleeve.
- FIG. 7 is a perspective view of the plastic covered diffuser screen.
- reference numeral 10 generally designates a structure for storing and processing a continuous roll of metal web. Located within structure 10 are an unwind station 11, a takeup stand 12 and a turnover and pull stand 12. Normally, a metal web 9 is taken from a roll in unwind station 1 l and passed through a takeup stand 12 to turnover and pull stand 12.
- a takeup stand comprises two sets of rollers that can be brought together to speed the metal web as it leaves the stand or can be moved apart to slow or stop the metal web as it leaves the takeup stand.
- the purpose of the takeup stand 12 is to take up and store metal web and then slowly release it while an operator welds the end of one metal web to another. In this manner, a continuous metal web passes through the process stations without having to stop the processing stations while two metal webs are welded together. Takeup stands are well known in the art and do not comprise a part of the present invention.
- Metal web 9 passes from unwind station 11 through takeup stand 12 over a guide roller 14 and a guide roller 15. Therefrom, metal web 9 passes upward until it enters turnover and pull stand 13.
- turnover and pull stand 13 and unwind stand 11 would be remote from each other.
- the unwind stand can be located in a dock area or some storage place where the huge rolls of metal web can be unloaded from trucks or other transportation vehicles while the turnover and pull stands would be located next to the processing stations.
- metal web 9 passes between a first power-driven rubber roller 60 and a second rubber roller 61. Rubber rollers 60 and 61 are maintained in pressure contact so that the power driven roller 60 pulls metal web 9 between rollers 60 and 61.
- a motor 62 drives roller 60 through a speed reducing mechanism 63, a suitable gear 65, and a chain drive 66. To ensure that roller 60 and roller 61 are in pressure contact so metal web 9 will not slip between rollers 60 and 61, there is provided a tension mechanism.
- the tension mechanism comprises a pair of triangular shaped pivot plates 70 that have one corner pivotally mounted to stand 12 on a pivot rod 74, one corner supporting roller 61, and the third corner attached to a hydraulically actuated cylinder 69.
- an operator can adjust the pressure between roller 60 and roller 61 by applying a signal to hydraulically actuated piston 69.
- This pivo s plate 70 causing roller 61 to exert a downward force against roller 60 and metal web 9.
- Web 9 feeds from between rollers 60 and 61 onto a hydrodynamic turnover member 89. From hydrodynamic turnover member 89, metal web 9 passes over a vertical roller 71, a movably mounted vertical takeup roller 72 and a vertical roller 73. From roller 73 metal web 9 is fed into the processing stations.
- Turnover member 89 comprises a cylindrical tube having a plurality of angled slots or apertures 92 located therein.
- a pressure source 90 supplies air to the inside of tube 89 through a pipe 91. In operation, air is continuously supplied to tube 89 wherefrom it exhausts through slots 92. This allows air to flow between the surface of turnover member 89 and metal web 9.
- slots are provided for supplying air to hydrodynamically supported metal web 9 it is envisioned that these supply ducts could also be formed with sintered metal. As the air exhausts through the slots, it forces metal web 9 away from the turnover member 89 thus providing an air cushion hydrodynamic support for metal web 9.
- a plastic coated diffuser screen 50 is fastened to member 89 over slots 92.
- a pair of bands 52 and 54 are used to secure diffuser screen 50 to member 89.
- Screen 50 is formed with a great number of apertures therein so as to spread the air over a larger, more even area. In the preferred embodiment screen 50 has been designed to have about 44 percent of its area as open space. Since screen 50 is shown in fragments in FIG. 5 it is shown again in FIG. 7 in a complete state so as to be more easily understood.
- Screen 50 is plastic coated on the outside to provide a nearly friction free surface to any portions of web 9 which may be temporarily unsupported by the air pressure.
- plastics were found suitable especially those fluorinated plastics known by the trade name Teflon.
- Screen 50 is additionally advantageous in that it is movable and replaceable thus affording easy access to the inside of tube member 89 through the large slots. Thus, cleaning and maintenance are easier. Furthermore if somehow the bearing surface does become marred or scratched only the small screen 50 need be replaced as opposed to the prior art systems wherein the whole turnover member had to be replaced.
- Sleeve valve 40 Disposed inside tube 89 is a sleeve valve 40 shown most clearly in FIG. 6.
- Sleeve valve 40 is movable along the length of tube 89 so as to cover or uncover the correct number of slots or portions of slots so as to supply air to any width of web 9 which is being processed.
- the prior art schemes were confined to one width of material in this respect. With a fixed number ofholes there is not enough air to support a wider web whereas if a smaller web is processed too much air escapes around the edges of the narrow web to maintain support pressure.
- Sleeve valve 40 may be adjusted to open just the right number of holes to support any width web. To move sleeve 40 a handle 42 connected to a rod 44 is turned.
- Rod 44 passes through a bracket 43 on tube 89 and a seal 41 in the end of tube 89.
- the lower portion of rod 44 is threaded so as to engage a sleeve guide 45 connected to sleeve 40.
- As handle 42 is turned sleeve 40 moves along threaded rod 44 to the desired position.
- the pressure inside tube 89 serves to keep sleeve 40 tightly against the inside of tube 89 so as to seal slots 92.
- Apparatus for changing the direction of motion of a continuously moving web material without marring the surface of the web material comprising:
- a fluid pressure containing turnover member mounted on said support stand for receiving and discharging a continuously moving web material
- said turnover member having a central axis defining a first line, the direction of motion of the incoming web material defining a second line located substantially at a 45 angle to said first line and the direction of motion of the discharging web material defining a third line located substantially at an angle to said first line, said turnover member having openings therein so as to hydrodynamically support the moving web material on said member so as to prevent marring of the surface of the web material and said member;
- a movable valve member in said turnover member operable to block a variable number of openings to accommodate different widths of web material.
- said stand includes a pair of pressure engaging rollers, at least one of which is power driven for pulling said web material into said stand.
- openings comprise slots for discharging air under pressure 50 as to hydrodynamic-ally support said web material.
- valve member comprises a sleeve inside said turnover member adapted to slidably block at least some of the slots in said turnover
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Registering, Tensioning, Guiding Webs, And Rollers Therefor (AREA)
- Advancing Webs (AREA)
- Coating Apparatus (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3585070A | 1970-05-08 | 1970-05-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3599851A true US3599851A (en) | 1971-08-17 |
Family
ID=21885166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US35850A Expired - Lifetime US3599851A (en) | 1970-05-08 | 1970-05-08 | Hydrodynamic turnover mechanisms |
Country Status (4)
Country | Link |
---|---|
US (1) | US3599851A (enrdf_load_stackoverflow) |
JP (1) | JPS5515380B1 (enrdf_load_stackoverflow) |
CA (1) | CA936187A (enrdf_load_stackoverflow) |
DE (1) | DE2101228C2 (enrdf_load_stackoverflow) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4197002A (en) * | 1978-11-15 | 1980-04-08 | Xerox Corporation | Pneumatic system for supporting and steering a belt |
US4453465A (en) * | 1982-04-24 | 1984-06-12 | M.A.N.-Roland Druckmaschinen Aktiengesellschaft | Web turning rod having air flow control means |
US4492328A (en) * | 1982-07-10 | 1985-01-08 | M.A.N.-Roland Druckmaschinen Aktiengesellschaft | Air-flow equipped turning bar for web material |
US5273201A (en) * | 1991-05-25 | 1993-12-28 | Heidelberger Druckmaschinen Ag | Turning bar fed by compressed air for turning over webs in rotary printing presses |
US5297755A (en) * | 1992-06-22 | 1994-03-29 | International Business Machines Corporation | Tape cartridge tape path |
US5316199A (en) * | 1992-09-18 | 1994-05-31 | Rockwell International Corporation | Adjustable angle bar assembly for a printing press |
US5464143A (en) * | 1993-04-08 | 1995-11-07 | Hansen; Robert E. | Width adjustable angle bar assembly for a printing press |
US6505792B1 (en) | 2000-11-28 | 2003-01-14 | Megtec Systems, Inc. | Non-contact floating device for turning a floating web |
WO2003002440A3 (de) * | 2001-06-28 | 2003-05-22 | Koenig & Bauer Ag | Wendevorrichtung |
US20030188965A1 (en) * | 2002-04-05 | 2003-10-09 | 3M Innovative Properties Company | Web processing method and apparatus |
US20040089693A1 (en) * | 2001-03-15 | 2004-05-13 | Anton Weis | Turning bar |
WO2008035324A3 (en) * | 2006-09-19 | 2009-04-09 | Coreflow Scient Solutions Ltd | Apparatus for fluid treatment |
US20130152807A1 (en) * | 2011-12-15 | 2013-06-20 | Randy E. Armbruster | Turnbar and turnover module for printing systems |
US20130153618A1 (en) * | 2011-12-15 | 2013-06-20 | Randy E. Armbruster | Method for transporting print media |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61118020U (enrdf_load_stackoverflow) * | 1985-01-09 | 1986-07-25 | ||
US5233919A (en) * | 1992-06-18 | 1993-08-10 | Heidelberg Harris Gmbh | Angle bar air regulating device for turning a web |
FR2697238B1 (fr) * | 1992-10-26 | 1995-02-03 | Heidelberger Druckmasch Ag | Barre de retournement d'une bande de papier, comportant un dispositif d'obturation des trous de soufflage d'air. |
DE4311438C2 (de) * | 1993-04-07 | 1997-06-19 | Koenig & Bauer Albert Ag | Wendestange für eine Materialbahn |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1630713A (en) * | 1925-08-03 | 1927-05-31 | Hoe & Co R | Web-feeding mechanism |
US1790559A (en) * | 1931-01-27 | swjft | ||
US3125268A (en) * | 1964-03-17 | bartholomay |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1072080B (de) * | 1959-12-24 | Jageriberg-Werke Akt.-Ges., Düsseldorf | Vorrichtung zum Ändern der Bewegungsrichtung laufender Bahnen aus Papier, Karton öd. dgl. in Rolllenschmeide- bzw. Wickelmaschinen oder anderen laufende Bahnen verarbeitenden Maschinen | |
GB986259A (en) * | 1963-03-07 | 1965-03-17 | Eastman Kodak Co | Web handling apparatus |
-
1970
- 1970-05-08 US US35850A patent/US3599851A/en not_active Expired - Lifetime
-
1971
- 1971-01-12 DE DE2101228A patent/DE2101228C2/de not_active Expired
- 1971-03-30 JP JP1843371A patent/JPS5515380B1/ja active Pending
- 1971-04-08 CA CA109958A patent/CA936187A/en not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1790559A (en) * | 1931-01-27 | swjft | ||
US3125268A (en) * | 1964-03-17 | bartholomay | ||
US1630713A (en) * | 1925-08-03 | 1927-05-31 | Hoe & Co R | Web-feeding mechanism |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4197002A (en) * | 1978-11-15 | 1980-04-08 | Xerox Corporation | Pneumatic system for supporting and steering a belt |
US4453465A (en) * | 1982-04-24 | 1984-06-12 | M.A.N.-Roland Druckmaschinen Aktiengesellschaft | Web turning rod having air flow control means |
US4492328A (en) * | 1982-07-10 | 1985-01-08 | M.A.N.-Roland Druckmaschinen Aktiengesellschaft | Air-flow equipped turning bar for web material |
US5273201A (en) * | 1991-05-25 | 1993-12-28 | Heidelberger Druckmaschinen Ag | Turning bar fed by compressed air for turning over webs in rotary printing presses |
US5297755A (en) * | 1992-06-22 | 1994-03-29 | International Business Machines Corporation | Tape cartridge tape path |
US5316199A (en) * | 1992-09-18 | 1994-05-31 | Rockwell International Corporation | Adjustable angle bar assembly for a printing press |
US5464143A (en) * | 1993-04-08 | 1995-11-07 | Hansen; Robert E. | Width adjustable angle bar assembly for a printing press |
US6505792B1 (en) | 2000-11-28 | 2003-01-14 | Megtec Systems, Inc. | Non-contact floating device for turning a floating web |
US20040089693A1 (en) * | 2001-03-15 | 2004-05-13 | Anton Weis | Turning bar |
US7100864B2 (en) * | 2001-03-15 | 2006-09-05 | Koenig & Bauer Aktiengesellschaft | Turning bar |
WO2003002440A3 (de) * | 2001-06-28 | 2003-05-22 | Koenig & Bauer Ag | Wendevorrichtung |
US20040149855A1 (en) * | 2001-06-28 | 2004-08-05 | Anton Weis | Turning device |
US7275709B2 (en) | 2001-06-28 | 2007-10-02 | Koenig & Bauer Aktiengesellschaft | Turning device |
US6991717B2 (en) | 2002-04-05 | 2006-01-31 | 3M Innovative Properties Company | Web processing method and apparatus |
US20030188965A1 (en) * | 2002-04-05 | 2003-10-09 | 3M Innovative Properties Company | Web processing method and apparatus |
WO2008035324A3 (en) * | 2006-09-19 | 2009-04-09 | Coreflow Scient Solutions Ltd | Apparatus for fluid treatment |
US20130152807A1 (en) * | 2011-12-15 | 2013-06-20 | Randy E. Armbruster | Turnbar and turnover module for printing systems |
US20130153618A1 (en) * | 2011-12-15 | 2013-06-20 | Randy E. Armbruster | Method for transporting print media |
Also Published As
Publication number | Publication date |
---|---|
DE2101228A1 (de) | 1971-11-18 |
DE2101228C2 (de) | 1984-10-04 |
CA936187A (en) | 1973-10-30 |
JPS5515380B1 (enrdf_load_stackoverflow) | 1980-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3599851A (en) | Hydrodynamic turnover mechanisms | |
CA2083905C (en) | Wrapping apparatus with shuttle change | |
KR960702413A (ko) | 감김 웨브롤을 감는 방법 및 장치(a method and apparatus for reeling a wound web roll) | |
US3679116A (en) | Web turning and guiding apparatus | |
JP4677186B2 (ja) | 高温の金属から成る熱間圧延された粗ストリップの巻取り及び巻戻しをするための装置 | |
CN118817702B (zh) | 一种光学薄膜表面质量检测设备 | |
US4991787A (en) | Pivoting guide for web conveying apparatus | |
US5617134A (en) | Machine for manipulating and working on web material | |
US3298890A (en) | Apparatus for joining weblike material | |
US3779475A (en) | Slitting and rewinding machine | |
US3632030A (en) | Pneumatic fabric-guiding system | |
US5186408A (en) | Machine for winding elongated strips on an axle mounted core | |
US3863858A (en) | Tensioning apparatus | |
JP2691007B2 (ja) | 真空連続処理装置 | |
JP2006264879A (ja) | 帯状シート幅出し装置及び巻戻し装置 | |
US3191926A (en) | Web folding apparatus | |
US3583575A (en) | Roll delivery apparatus | |
US3459351A (en) | Method and apparatus for tensioning a moving strip | |
CN113573999A (zh) | 用于卷对卷加工的流体流卷材张紧装置 | |
CN111231503A (zh) | 一种薄膜在线烫金机 | |
JP2745390B2 (ja) | 表面処理金属ストリップ用の巻取装置とその巻取方法 | |
US4605146A (en) | Hydrostatic film support | |
US3381906A (en) | Apparatus for feeding paper into successive convolutions of metal coils and method therefor | |
US5927173A (en) | Dispenser Apparatus for flexible duct connector | |
US2552245A (en) | Apparatus for handling and coating strip material |