US3428442A - Coated spray-weld alloy powders - Google Patents
Coated spray-weld alloy powders Download PDFInfo
- Publication number
- US3428442A US3428442A US581168A US3428442DA US3428442A US 3428442 A US3428442 A US 3428442A US 581168 A US581168 A US 581168A US 3428442D A US3428442D A US 3428442DA US 3428442 A US3428442 A US 3428442A
- Authority
- US
- United States
- Prior art keywords
- powders
- copper
- alloy
- powder
- welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0255—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/302—Cu as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3033—Ni as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3033—Ni as the principal constituent
- B23K35/304—Ni as the principal constituent with Cr as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3046—Co as the principal constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0433—Nickel- or cobalt-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/10—Alloys based on copper with silicon as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/067—Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/923—Physical dimension
- Y10S428/924—Composite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12181—Composite powder [e.g., coated, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12882—Cu-base component alternative to Ag-, Au-, or Ni-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12903—Cu-base component
- Y10T428/1291—Next to Co-, Cu-, or Ni-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12903—Cu-base component
- Y10T428/12917—Next to Fe-base component
Definitions
- Another object of the present invention is to improve the ability of a variety of metal powders to be utilized in welding in general and in various powder utilizing welding processes.
- Still another object of the present invention is to increase the fluidity of the molten pool generated by welding processes utilizing powder as a welding consumable.
- Yet another object of this invention is to provide these improved characteristics to a very broad spectrum of metal powder alloys utilized in welding.
- Metal powder alloys utilized as consumables in welding fall within the following categories:
- Nickel base alloys Percent by weight Boron .75 to 5 Silicon 1.5 to 6 Chromium (l to Carbon Trace to 1.2 Iron Trace to 6 Nickel (essentially) Balance Iron base alloys Element:
- powders of the alloy system compositions outlined above with the copper layer on the outer surface of the powder when passing through the flame of a powder spray flame welding unit such as that shown in US. Patent No. 3,226,028, or when passing through the heat source of a welding process readily absorb the heat input which causes the highly conductive discrete copper surface layer to melt.
- the melting of the copper conveniently located on the surface of these powders thus provides a molten contact adhesive layer which adheres on contact upon spraying to the base metal or the molten pool of a weld deposit minimizing bounce-back of the powders that is prevalent in all of the described metal powder systems but is especially a problem in the highly melting alloy powders such as the cobalt or iron base alloy powders.
- these copper coated metallic alloy powders show surprisingly improved fluidity and Wetting of the surface of the base metal which is attributed to the alloying of the copper that occurs in the molten pool through the welding process.
- the copper content in some of these alloy systems results in improvement, in some cases, in the weld deposit having increased resistance to corrosion.
- Additional fluidity and surface wettability of the deposited alloy can be obtained by providing on the copper layer surface or alloyed with the copper, an additional layer of phosphorus with the phosphorus ranging from .004 percent to .035 percent by weight.
- the phosphorus on the surface combines its characteristics with the characteristics of the copper alloy outlined above, considerably lowering the melting point and enhancing the fluidity and surface wettability of these alloys, further promoting the ability of these alloys to display good as well as uniform weld deposition characteristics.
- the provision of the copper layers on the metallic alloy powders can be accomplished by any of the well known copper plating processes such as for example immersing the alloy powders in a copper sulfate solution bath and, likewise, the phosphorus layer on the copper can be achieved by treating the copper layer containing powders in a hydrogen phosphate bath or in a dry mixture with copper phosphate with the plating generated by either chemical or electrical means whereby electrolysis or deposition is accomplished.
- Additional colors on the metallic powder alloy systems outlined above can be achieved by diffusion and slight oxidation of the copper phosphorus layers and/or copper phosphorus alloy on the metallic powders.
- the slight oxidation of the copper phosphate layers produce colorings in the gold-purple-blue-green spectrum depending on the amount of oxidation to be tolerated. It has been found that ranges of .003 percent to 1 percent by Weight of generated oxide of copper achieve best tolerated results on the copper layer containing metallic powders, and ranges of .008 percent to .027 percent by weight of generated oxide of phosphorus achieve best tolerated results on the phosphorus top layer containing metallic powders. Achievement of the generated oxides of copper and phosphorus and/or the alloys thereof can be achieved by a number of methods such as by chemical or electrical displacement by immersing the powders in various chemicals and/or controlled oxidation in the atmosphere.
- Still further coloring of the metallic alloy powders can be achieved in the gold-grey-aqua spectrum by further alloying with the copper coatings of .04 to 3 percent by weight of gold; .04 to 6 percent by weight of silver and .03 to percent by weight of platinum.
- the coating layers can be achieved by chemical electrolysis or chemical displacement as for example, placing the copper coated powder in a salt solution of the aforementioned element.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Powder Metallurgy (AREA)
- Contacts (AREA)
- Chemical Treatment Of Metals (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US58116866A | 1966-09-22 | 1966-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3428442A true US3428442A (en) | 1969-02-18 |
Family
ID=24324159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US581168A Expired - Lifetime US3428442A (en) | 1966-09-22 | 1966-09-22 | Coated spray-weld alloy powders |
Country Status (8)
Country | Link |
---|---|
US (1) | US3428442A (xx) |
JP (1) | JPS471685B1 (xx) |
AT (2) | AT287432B (xx) |
BE (1) | BE703933A (xx) |
CH (1) | CH490139A (xx) |
DE (3) | DE1783191B1 (xx) |
GB (4) | GB1205793A (xx) |
NL (1) | NL6712873A (xx) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3690686A (en) * | 1969-08-11 | 1972-09-12 | Ramsey Corp | Piston with seal having high strength molybdenum alloy facing |
US3946793A (en) * | 1973-02-15 | 1976-03-30 | United States Steel Corporation | Method of forming a high-temperature abrasion-resistant coating on a ferrous metal substrate |
US3963451A (en) * | 1973-02-15 | 1976-06-15 | United States Steel Corporation | Method of forming a high-temperature abrasion-resistant coating on a ferrous metal substrate, and resulting article |
US3975891A (en) * | 1974-02-22 | 1976-08-24 | Roland Eric Gunther | Mower blades |
US3991240A (en) * | 1975-02-18 | 1976-11-09 | Metco, Inc. | Composite iron molybdenum boron flame spray powder |
US4031278A (en) * | 1975-08-18 | 1977-06-21 | Eutectic Corporation | High hardness flame spray nickel-base alloy coating material |
US4039318A (en) * | 1976-07-19 | 1977-08-02 | Eutectic Corporation | Metaliferous flame spray material for producing machinable coatings |
US4196237A (en) * | 1976-07-19 | 1980-04-01 | Eutectic Corporation | High hardness copper-aluminum alloy flame spray powder |
US4251599A (en) * | 1979-08-23 | 1981-02-17 | Ramsey Corporation | Ferrous metal body coated with an alloy formed by an iron/silicon extended molybdenum plasma spray powder |
US4254164A (en) * | 1979-07-06 | 1981-03-03 | Nassau Recycle Corporation | Method of depositing copper on copper |
US4274940A (en) * | 1975-08-13 | 1981-06-23 | Societe Metallurgique Le Nickel -S.L.N. | Process for making ferro-nickel shot for electroplating and shot made thereby |
DE3031583A1 (de) * | 1980-08-21 | 1982-02-25 | Ramsey Corp., Manchester, Mo. | Plasmaspritzpulver |
US4404049A (en) * | 1978-03-16 | 1983-09-13 | Fukuda Metal Foil & Powder Co., Ltd. | Hard facing nickel-base alloy |
US4725508A (en) * | 1986-10-23 | 1988-02-16 | The Perkin-Elmer Corporation | Composite hard chromium compounds for thermal spraying |
US4833040A (en) * | 1987-04-20 | 1989-05-23 | Trw Inc. | Oxidation resistant fine metal powder |
US4975333A (en) * | 1989-03-15 | 1990-12-04 | Hoeganaes Corporation | Metal coatings on metal powders |
EP0454073A1 (en) * | 1990-04-23 | 1991-10-30 | Isuzu Motors Limited | Method of strengthening aluminium castings in the specified local part |
US5240742A (en) * | 1991-03-25 | 1993-08-31 | Hoeganaes Corporation | Method of producing metal coatings on metal powders |
US20050249629A1 (en) * | 2002-08-23 | 2005-11-10 | J.W. Harris Co., Inc. | Phosphorous-copper base brazing alloy |
US20090140430A1 (en) * | 2002-11-21 | 2009-06-04 | Nippon Mining & Metals Co., Ltd. | Copper Alloy Sputtering Target and Semiconductor Element Wiring |
CN103302419A (zh) * | 2013-06-06 | 2013-09-18 | 河南科技大学 | 一种cvd金刚石钎焊用镍基合金钎料片及其制备方法 |
CN103921010A (zh) * | 2012-11-21 | 2014-07-16 | 拉曼大学 | 焊接合金 |
EP2853339A2 (en) | 2013-09-30 | 2015-04-01 | Liburdi Engineering Limited | Welding material for welding of superalloys |
US20150239073A1 (en) * | 2014-02-21 | 2015-08-27 | Case Western Reserve University | Low-melting nickel-based alloys for braze joining |
US20170043434A1 (en) * | 2015-08-11 | 2017-02-16 | Hobart Brothers Company | Tubular welding wire with a thinner sheath for improved deposition rates |
US10843260B2 (en) | 2015-05-13 | 2020-11-24 | Daihen Corporation | Metal powder, method of producing additively-manufactured article, and additively-manufactured article |
US10981226B2 (en) | 2016-10-25 | 2021-04-20 | Daihen Corporation | Copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53144420A (en) * | 1977-05-24 | 1978-12-15 | Toyota Motor Corp | Wear resisting alloy |
DE2829702C3 (de) * | 1978-07-06 | 1982-02-18 | Metallgesellschaft Ag, 6000 Frankfurt | Nickel-Basis-Legierung |
US4489136A (en) * | 1982-09-20 | 1984-12-18 | Allied Corporation | Homogeneous low melting point copper based alloys |
US4471034A (en) * | 1982-11-16 | 1984-09-11 | Eutectic Corporation | Alloy coating for cast iron parts, such as glass molds |
US4573630A (en) * | 1983-04-26 | 1986-03-04 | Allied Corporation | Homogeneous low melting point copper based alloys |
US5132083A (en) * | 1986-12-15 | 1992-07-21 | Kabushiki Kaisha Komatsu Seisakusho | Laser padding material and a laser padding method using the same |
JPS63149347A (ja) * | 1986-12-15 | 1988-06-22 | Komatsu Ltd | レ−ザ肉盛用高耐摺動摩耗用銅合金 |
DE3926627A1 (de) * | 1989-08-11 | 1991-02-14 | Wahl Verschleiss Tech | Meissel oder aehnliches werkzeug fuer die rohstoffgewinnung oder das recycling |
DE19750586B4 (de) * | 1997-11-17 | 2007-05-16 | Volkswagen Ag | Laser-Lötverfahren |
CA3017642A1 (en) | 2016-03-22 | 2017-09-28 | Scoperta, Inc. | Fully readable thermal spray coating |
JP2017218633A (ja) * | 2016-06-08 | 2017-12-14 | 積水化学工業株式会社 | 複合粒子の製造方法 |
JP6716410B2 (ja) * | 2016-09-23 | 2020-07-01 | 株式会社ダイヘン | 銅合金粉末、積層造形物の製造方法および積層造形物 |
US11939646B2 (en) | 2018-10-26 | 2024-03-26 | Oerlikon Metco (Us) Inc. | Corrosion and wear resistant nickel based alloys |
CA3136967A1 (en) | 2019-05-03 | 2020-11-12 | Oerlikon Metco (Us) Inc. | Powder feedstock for wear resistant bulk welding configured to optimize manufacturability |
CN111036897A (zh) * | 2019-12-24 | 2020-04-21 | 深圳第三代半导体研究院 | 一种具有微纳米核壳结构的互连材料制备方法 |
CN111719065B (zh) * | 2020-06-08 | 2021-11-16 | 广东中发摩丹科技有限公司 | 一种Cu-Ni-Sn-Si-Ag-P多元合金箔材及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3238060A (en) * | 1964-02-27 | 1966-03-01 | Eutectic Welding Alloys | Method for coating metals |
US3254970A (en) * | 1960-11-22 | 1966-06-07 | Metco Inc | Flame spray clad powder composed of a refractory material and nickel or cobalt |
US3276893A (en) * | 1963-07-31 | 1966-10-04 | Eutectic Welding Alloys | Pigmented metal powder |
US3322547A (en) * | 1964-03-27 | 1967-05-30 | Eutectic Welding Alloys | Alloy powder for flame spraying |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2139730A (en) * | 1938-05-04 | 1938-12-13 | Oxweld Acetylene Co | Filler material for welding |
DE810233C (de) * | 1949-12-24 | 1951-08-06 | Giesserei G M B H | Einrichtung zur UEberwindung grosser Saughoehen bei Pumpenanlagen |
GB824091A (en) * | 1956-04-10 | 1959-11-25 | Sherritt Gordon Mines Ltd | Improvements in or relating to composite metal powder |
-
1966
- 1966-09-22 US US581168A patent/US3428442A/en not_active Expired - Lifetime
-
1967
- 1967-09-15 GB GB42123/67A patent/GB1205793A/en not_active Expired
- 1967-09-15 BE BE703933D patent/BE703933A/xx unknown
- 1967-09-15 GB GB02603/70A patent/GB1206378A/en not_active Expired
- 1967-09-15 GB GB02604/70A patent/GB1206379A/en not_active Expired
- 1967-09-15 GB GB02605/70A patent/GB1206380A/en not_active Expired
- 1967-09-19 DE DE19671783191 patent/DE1783191B1/de not_active Withdrawn
- 1967-09-19 DE DE19671783190 patent/DE1783190B1/de not_active Withdrawn
- 1967-09-19 DE DE1967E0034794 patent/DE1558880B2/de active Granted
- 1967-09-19 CH CH1306567A patent/CH490139A/fr not_active IP Right Cessation
- 1967-09-21 NL NL6712873A patent/NL6712873A/xx unknown
- 1967-09-22 AT AT10718/69A patent/AT287432B/de not_active IP Right Cessation
- 1967-09-22 AT AT864967A patent/AT285275B/de active
- 1967-09-22 JP JP6056567A patent/JPS471685B1/ja active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3254970A (en) * | 1960-11-22 | 1966-06-07 | Metco Inc | Flame spray clad powder composed of a refractory material and nickel or cobalt |
US3276893A (en) * | 1963-07-31 | 1966-10-04 | Eutectic Welding Alloys | Pigmented metal powder |
US3238060A (en) * | 1964-02-27 | 1966-03-01 | Eutectic Welding Alloys | Method for coating metals |
US3322547A (en) * | 1964-03-27 | 1967-05-30 | Eutectic Welding Alloys | Alloy powder for flame spraying |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3690686A (en) * | 1969-08-11 | 1972-09-12 | Ramsey Corp | Piston with seal having high strength molybdenum alloy facing |
US3946793A (en) * | 1973-02-15 | 1976-03-30 | United States Steel Corporation | Method of forming a high-temperature abrasion-resistant coating on a ferrous metal substrate |
US3963451A (en) * | 1973-02-15 | 1976-06-15 | United States Steel Corporation | Method of forming a high-temperature abrasion-resistant coating on a ferrous metal substrate, and resulting article |
US3975891A (en) * | 1974-02-22 | 1976-08-24 | Roland Eric Gunther | Mower blades |
US3991240A (en) * | 1975-02-18 | 1976-11-09 | Metco, Inc. | Composite iron molybdenum boron flame spray powder |
US4274940A (en) * | 1975-08-13 | 1981-06-23 | Societe Metallurgique Le Nickel -S.L.N. | Process for making ferro-nickel shot for electroplating and shot made thereby |
US4031278A (en) * | 1975-08-18 | 1977-06-21 | Eutectic Corporation | High hardness flame spray nickel-base alloy coating material |
US4196237A (en) * | 1976-07-19 | 1980-04-01 | Eutectic Corporation | High hardness copper-aluminum alloy flame spray powder |
US4118527A (en) * | 1976-07-19 | 1978-10-03 | Eutectic Corporation | Metaliferous flame spray material for producing machinable coatings |
US4039318A (en) * | 1976-07-19 | 1977-08-02 | Eutectic Corporation | Metaliferous flame spray material for producing machinable coatings |
US4404049A (en) * | 1978-03-16 | 1983-09-13 | Fukuda Metal Foil & Powder Co., Ltd. | Hard facing nickel-base alloy |
US4254164A (en) * | 1979-07-06 | 1981-03-03 | Nassau Recycle Corporation | Method of depositing copper on copper |
US4251599A (en) * | 1979-08-23 | 1981-02-17 | Ramsey Corporation | Ferrous metal body coated with an alloy formed by an iron/silicon extended molybdenum plasma spray powder |
DE3031583A1 (de) * | 1980-08-21 | 1982-02-25 | Ramsey Corp., Manchester, Mo. | Plasmaspritzpulver |
US4725508A (en) * | 1986-10-23 | 1988-02-16 | The Perkin-Elmer Corporation | Composite hard chromium compounds for thermal spraying |
US4833040A (en) * | 1987-04-20 | 1989-05-23 | Trw Inc. | Oxidation resistant fine metal powder |
US4975333A (en) * | 1989-03-15 | 1990-12-04 | Hoeganaes Corporation | Metal coatings on metal powders |
US5308409A (en) * | 1990-04-23 | 1994-05-03 | Isuzu Motor Limited | Method of strengthening aluminum castings in a specified local part |
EP0454073A1 (en) * | 1990-04-23 | 1991-10-30 | Isuzu Motors Limited | Method of strengthening aluminium castings in the specified local part |
US5240742A (en) * | 1991-03-25 | 1993-08-31 | Hoeganaes Corporation | Method of producing metal coatings on metal powders |
US20110011920A1 (en) * | 2002-08-23 | 2011-01-20 | J.W. Harris Co., Inc. | Phosphorus-copper base brazing alloy |
US9533379B2 (en) * | 2002-08-23 | 2017-01-03 | Lincoln Global, Inc. | Phosphorous-copper base brazing alloy |
US20050249629A1 (en) * | 2002-08-23 | 2005-11-10 | J.W. Harris Co., Inc. | Phosphorous-copper base brazing alloy |
US10665462B2 (en) | 2002-11-21 | 2020-05-26 | Jx Nippon Mining & Metals Corporation | Copper alloy sputtering target and semiconductor element wiring |
US20090140430A1 (en) * | 2002-11-21 | 2009-06-04 | Nippon Mining & Metals Co., Ltd. | Copper Alloy Sputtering Target and Semiconductor Element Wiring |
CN103921010A (zh) * | 2012-11-21 | 2014-07-16 | 拉曼大学 | 焊接合金 |
CN103921010B (zh) * | 2012-11-21 | 2019-01-22 | 拉曼大学 | 焊接合金 |
CN103302419A (zh) * | 2013-06-06 | 2013-09-18 | 河南科技大学 | 一种cvd金刚石钎焊用镍基合金钎料片及其制备方法 |
EP2853339A2 (en) | 2013-09-30 | 2015-04-01 | Liburdi Engineering Limited | Welding material for welding of superalloys |
US20150239073A1 (en) * | 2014-02-21 | 2015-08-27 | Case Western Reserve University | Low-melting nickel-based alloys for braze joining |
US10940565B2 (en) * | 2014-02-21 | 2021-03-09 | Oerlikon Metco (Us) Inc. | Low-melting nickel-based alloys for braze joining |
US10843260B2 (en) | 2015-05-13 | 2020-11-24 | Daihen Corporation | Metal powder, method of producing additively-manufactured article, and additively-manufactured article |
US11077495B2 (en) | 2015-05-13 | 2021-08-03 | Daihen Corporation | Metal powder, method of producing additively-manufactured article, and additively-manufactured article |
US10646965B2 (en) * | 2015-08-11 | 2020-05-12 | Hobart Brothers Llc | Tubular welding wire with a thinner sheath for improved deposition rates |
US20170043434A1 (en) * | 2015-08-11 | 2017-02-16 | Hobart Brothers Company | Tubular welding wire with a thinner sheath for improved deposition rates |
US10981226B2 (en) | 2016-10-25 | 2021-04-20 | Daihen Corporation | Copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article |
US12084745B2 (en) | 2016-10-25 | 2024-09-10 | Daihen Corporation | Copper alloy powder, method of producing additively-manufactured article, and additively-manufactured article |
Also Published As
Publication number | Publication date |
---|---|
GB1206378A (en) | 1970-09-23 |
GB1206380A (en) | 1970-09-23 |
DE1558880B2 (de) | 1976-10-28 |
NL6712873A (xx) | 1968-03-25 |
AT287432B (de) | 1971-01-25 |
DE1783190B1 (de) | 1976-11-25 |
BE703933A (xx) | 1968-03-15 |
GB1206379A (en) | 1970-09-23 |
CH490139A (fr) | 1970-05-15 |
GB1205793A (en) | 1970-09-16 |
AT285275B (de) | 1970-10-27 |
JPS471685B1 (xx) | 1972-01-18 |
DE1783191B1 (de) | 1976-11-25 |
DE1558880A1 (de) | 1970-05-06 |
DE1783192B1 (de) | 1976-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3428442A (en) | Coated spray-weld alloy powders | |
US3322546A (en) | Alloy powder for flame spraying | |
GB1249933A (en) | Improvements in diffusion metallic coating method | |
US3238060A (en) | Method for coating metals | |
US3410714A (en) | Metallizing and bonding non-metallic bodies | |
US3078554A (en) | Columbium base alloy article | |
US4503085A (en) | Amorphous metal powder for coating substrates | |
US2464836A (en) | Welding | |
EP0101936B1 (en) | Boride-dispersed alloy material and process for manufacturing same | |
GB1246109A (en) | A method of manufacturing mesh grid electrodes for electric discharge vessels | |
US2924004A (en) | Refractory metal bodies | |
US2446996A (en) | Metal objects coated with lead alloys | |
US2878554A (en) | Method and coating for protection of molybdenum and its alloys | |
US3445624A (en) | Cobalt alloy and welding electrode based upon this alloy | |
US3073720A (en) | Method of protecting metal from corrosion | |
EP0194701B1 (de) | Verfahren zur Herstellung von Oberflächenschutzschichten | |
JPWO2019186891A1 (ja) | 亜鉛系めっき鋼板および熱処理鋼材 | |
US3186865A (en) | Method of forming chromium diffusion coatings | |
NO124145B (xx) | ||
JP2986590B2 (ja) | 耐溶融金属性に優れる溶射用粉末材料および溶射皮膜 | |
US2359813A (en) | Protective covering for welding rods | |
DE1558880C3 (de) | Schweißpulver | |
US2410850A (en) | Protective covering for welding rods | |
TWI786980B (zh) | 具高溫強度高熵合金 | |
US3450527A (en) | Welding alloy |