US2861900A - Jet plating of high melting point materials - Google Patents
Jet plating of high melting point materials Download PDFInfo
- Publication number
- US2861900A US2861900A US505228A US50522855A US2861900A US 2861900 A US2861900 A US 2861900A US 505228 A US505228 A US 505228A US 50522855 A US50522855 A US 50522855A US 2861900 A US2861900 A US 2861900A
- Authority
- US
- United States
- Prior art keywords
- coating
- particles
- combustion
- flame
- combustible mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/16—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
- B05B7/20—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
- B05B7/201—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
- B05B7/203—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed having originally the shape of a wire, rod or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/16—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
- B05B7/20—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
- B05B7/201—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
- B05B7/205—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed being originally a particulate material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/126—Detonation spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/129—Flame spraying
Definitions
- the gpr-esent invention concerns the application of improved surface coatings to objects and particular'lyrtelates tornew'and improved methods of and apparatus'forflame spraying,uwhich are especially advantageous for applying surface coatings of highmelting point materials' to articles.
- the present invention hasthe general "purpose of overcoming the several limitations mentioned aboveof known surface spraying practices.
- the-more particular Objects are: To make feasible and practicableithe use of higher melting point materials, as well astheusuallow melting point materials for surface coatings. To reduce porosity-in sprayed surface coatings'so as to obtain increased wear and corrosion resistance in such coatings. And to improve hardness and strength characteristics by providing a wider range of available coating'materials.
- Still other objects of this invention arez To'provide'a continuous spraying operation utilizing high thrust to propel coating particles against the surface to be'coated. To make practical the use of fuels with lowerflame-temperatures. To maintain the coating'particles at relatively high temperatures during their travel to the surface of the workpiece without harmtothe latter. Andto increase the residence time of the-coatingmaterial in the flame for a longer period-than heretoforepossible.
- a method offlame-spraying a surface coating on workpieces which includes bringing the coating material to a high'temperature by introducing a fuel-oxygen mixture under pressure appreciably above atmospheric into aconfined space where "burning is initiated and introducing coating material into the combustion-space, and thereafter propelling the heated particles toward the surface of the workpiece to be coated at temperatures and linear velocities greater than 500 feet'per'second such thatthe particles are atleast at flowing temperature uponimpact by discharging the burning gases through aportion of: theconfined space inwhich such gases are accelerated to exit velocities greater thanZOOO feet per second,- sufficiently .high to impart'such linear velocities 'to the particles.
- ,fFlowing tcmperlaturel' may :be defined as that temperature, determined bysumming both'the therinal 2 andkinetic energyofthe material, at which the material or, at least, the lowest melting point constituent of such material becomes-plastic.
- -it isimportant to maintain the burning gases composition non-oxidizing and non-decarburizing to the powderin ordertofproduce a'coating of desired quality.
- the spraying operation is continuous and,.in the pro ferred practice of this invention, comprises suspending comminuted solid material in a combustible mixture made up of a fuel and. a combustion supporting agent in proportions that avoid an excessive oxidizing and decarburizing atmosphere upon combustion.
- the combustion supporting agent may be air. but oxygen is;preferred, particularlywhenplatinghigh melting materials because of the higherflame temperatures produced with its 'use.
- iCoatingmatei-ial maybe introduced into the combustion zone by suspensioneither in the fuel or in the oxygen, or it maybe suspendedin the combustible mixturebefore or even afterlburning is initiated.
- the high flame temperatures and thejhigh linear velocity of the flame jet essential tosuccessful jet flame coating is obtainedby passing the particle-carrying mixture to a burner of the internal conibustiontype where ignition of the mixture under pressure produces large volumes of flaming combustion gases that are discharged to the outside through a confining passageway that efiects acceleration ofrthe gases toihigh velocities.
- the high-temperatures to which the particles can be heated by being entrained'in the combusting mixture and in thejetflame andthe appreciable temperature increase corresponding to kinetic energy expended upon impact of the hig h velocityparticles upon the surface-of the work tObBtOflJtd make it; possible to melt even high melting pointmaterials (or -at least the lowestmelting point constituent of such materials) sufiiciently to insure afirm mechanical bond with the surface of the body to be coated.
- Figure 1 shows a longit'udinal cross-section through, a preferred form of jet flame gun adapted for the practice of this invention.
- FIG 2 is a fragmentary section through a modification'of the gun shown .in Figure 1.
- Figure 3 is a longitudinal cross-section through another form of jet flame gun suitable for the practice of this invention.
- a spray gun indicated generally at 10, is shown .employing a throat-combustion burner 11, which-is the type preferred in the practice of the present invention and which is similar in construction and operation to the'burner disclosed in copending application, Serial No. 212,547,. filed by George H. Smith onfFebruary 24, 1951.
- a throat-combustion burner may be defined as a throat element constituted by a confined space unconstricted from inlet to outlet wherein a fluid combustible mixture received through such inlet at one end of the confined space is ignited within the passageway, passed through the confined space, and then discharged from the confined space through such outlet at the other end of the confined space as a stream of hot burning gases to produce a flame having a high heat transfer intensity, a high velocity and substantial thrust.
- gun It comprises a burner 11 having a hollow cylindrical section 12 tapered at one end toward an integral elongated, centrally bored barrel 13 and open at its other end for the reception of a fuel injector 14 having a central passageway 15 axially aligned with the axis of barrel 13. A threaded mid-section of the injector engages a tapped portion 16 of section 12, the injector being held in preselected axial position in the burner by a lock nut 17.
- the injector 14 is stepped at 18 to provide a mixer section 19 of reduced diameter that lies in radially inwardly spaced relation to section 12 and terminates in an outlet 20 opening into the combustion throat 21 constituted by the bore of barrel 13.
- the mixer 19 is spaced slightly from the tapered end wall of section 12 to provide an annular passageway for fluid flow from the annular space or chamber 22 around mixer 19 into the barrel 13.
- a fuel feed line 24 is connected with passageway 15 through a lateral port 23, and an oxygen feed line 25 is connected with chamber 22 through a lateral port 26.
- the minimum diameter of the outlet should not be substantially smaller than 0.02 inch.
- Coating material may be introduced into the burner in comminuted form as a suspension in the fuel or in the oxygen or as a suspension in the combustible mixture.
- comminuted material is conveyed by a carrier gas, such as hydrogen, into a nipple 27, threadedly received into the head of a centrally open adapter plug 28 that closes'the rear end of passageway 15.
- the nipple has its rear protruding end adapted to be connected to the source of coating material and has fitted into its forward end a forwardly extending hollow stem 29 that projects into passageway 15 at least beyond the lateral fuel feed port 23 and delivers carrier gas and entrained coating material to mixer section 19.
- Fuel and oxygen are supplied to the throat under pressure, preferably at least 15 pounds per square inch gauge.
- the particle-carrying fuel enters the combustion throat 21, itmixes intimately with the oxygen in the rear portion of throat 21 to form a stream of combustible mixture which starts to burn soon after mixing, producing large volumes of flaming combustion gases which pass forwardly at high velocities through the unconstricted confined space of the throat and are then discharged from outlet 30 at the mouth of barrel 13 as a flame jet.
- the coating particles entrained in the combustion gases are then ejected from the gun in a directed flame jet having a high heat transfer intensity, a high velocity and substantial thrust.
- a sleeve 31 is disposed around the barrel in radially outwardly spaced relation to form a water jacket 32 through which cooling water can be circulated via inlet 33 and outlet 34.
- Coating material may also be introduced directly into the combustion zone in powder form or in the form of a rod.
- a rod The latter is illustrated in Figure 2, wherein an elongated rod 40 of solid coating material is introduced through an opening 41 at the back end of the injector 14, extends longitudinally therethrough, and projects from mixer 19 sufficiently forward into the rear portion of throat 21 that its forward tip lies in the combustion zone.
- the rod is moved positively by any suitable driving means, such as for example, oppositely rotating friction wheels, shown schematically at 42, which engage opposite sides of rod 40.
- An O-ring 43 serves to seal opening 41.
- a spray gun employing a throat combustion type burner has the unique advantage that the path of the particles throughout its passage through the confined combustion and discharge space is not constricted and, consequently, the particles meet no obstructions upon which they might lodge and cumulatively plug the passageway.
- the burner employed is of the type where combustion occurs internally, in an enclosed chamber, and the flaming combustion gases are discharged from the combustion chamber through a jet nozzle.
- the gun comprises a combustion chamber Stl formed within a cylindrical shell 51 and a nozzle body 52 welded to the forward end of the shell.
- the combustion chamber 50 threadedly receives in its rear open end an injector member 53 which has at its end remote from the combustion chamber a tapped bore 54 into which an adapter 55 is threaded.
- the forward portion of bore 54 is tapered convergently toward a restricted injector throat 56 which forms an entrance into the relatively large combustion chamber 50.
- the forward parts of the combustion chamber walls converge forwardly toward the throat 57 of a divergent discharge nozzle 58 whose exit passageway flares outwardly and forwardly.
- An oxidizing agent such as gaseous oxygen with pow dered coating material suspended therein is injected under pressure, preferably 15 pounds per square inch or more, through throat 56 into the combustion chamber 50 by an injector 59 which is threaded into an oxygen supply duct 49 centrally disposed in adapter 55.
- injector 59 projects into the tapered portion of bore 54 in axial alignment with throat 56 and combustion chamber 50 and terminates in a frusto-conical head 60 that is spaced from tapered walls of bore 54m provide an annular passageway 61 for fluid from bore 54 into the throat 56.
- a fuel such as acetylene is delivered concurrently but separately under pressure, preferably the same pressure as the oxygen, to the combustion chamber through an eccentrically arranged fuel supply duct 62 in adapter 55, the open portion of bore 54, passageway 61 and throat 56.
- the fuel and coating-particle-carrying oxygen mix intimately together in passing through throat Y56, and the mixture under pressure burns vigorously in combustion chamber 50, producing large volumes of flaming combustion gas which flow at high velocity through the nozzle 58, carrying the coating particles with them. In this way the coating particles are entrained. in the directed flame jet provided by the discharged gases, which imparts high linear velocity to the particles.
- Cooling water isintroduced into the jacket "67 "through aconduit 69 in header 64, sleeve 65"anddu'ct 70in adapter 55, for circulation through the"jacket "ai'iclducts 71 in nozzle body 52 in order to cool'the conibustio'rfchamber and the nozzle.
- Outlets 72 are provided for withdrawing the cooling water.
- the atmosphere composition, high powder velocity and high powdertemperature requiredby the methodof this invention can be obtained'in the described spray guns by proper control of the operating variablesand by proper proportioning of certain parts of the gun.
- control powder temper- There are several factors that control powder temper- Among the more important of these are the nature of the reactants, the fuel-oxygen ratio, the residence time. of the coating powder in the burning gases,
- Fuels with high flame temperatures such as acetylene, for example, are desirable and, where permissible, oxygen-fuel ratios that produce maximum flame temperatures should be used. Such ratios may not be used with many coating materials'for reasons set forth below, but are suitable for flame-plating ceramic materials.
- the coating powder is dependent upon powder velocity as well as on flame temperature for its thermal energy, for the kinetic energy of the particles is effectively converted into thermal energy upon impact on the workpiece. This is shown in the following table of temperature rise on impact, calculated assuming completely inelastic collision.
- Plating quality varied with the carbon content of the coating, as attested by va iations i hard ess i t enes a surfa e pp anq i
- the effective oxidation'potential, me'asu'redin thisginsta'nceiby decarburization, of various combinations 'of fuel and oxygen is closely related to the amount of oxidants in the hot burning gases.
- Oxidants for example, carbon dioxide and water, may be defined for purposes of this disclosure, as substances having oxidizing properties at the operating temperatures. It has been found that when applying a tungsten carbide plating, for example, the fuel-oxygen ratio should be such that less than 67% by volume of oxidations is formed in the reaction carried to completion, i. e.
- the ratio of the volume of oxidants to the total volume of products produced by the reaction must be less than 67%. It is particularly important to limit the oxidizing potential of the atmosphere in the use of coating materials readily oxidizable at high temperatures, such as metal and metal carbide, boride, nitride and silicide powders. It is clear'that control of the composition of the flame is important in obtaining proper plating qualities.
- Acetylene which has particularly high flame temperatures at fuel-oxygen ratios producing desirable flame compositions, has been found to be especially suitable for use in flame plating.
- other fuels which can meet the temperature and composition requirements are also suitable.
- hydrogen, methane and ethylene have been used successfully in the flame plating method of this invention.
- Powder velocity in a spray gun of the nature described is roughly proportional to gas velocity. Since thei supply pressure is the primary determinant of gas velocity, the pressure which can be used becomes an important factor in selection of a fuel. The higher the supply pressure capable of being used with a particular fuel, the higher the attainable powder velocity. Higher powder velocities effectively add thermal energy to the powder. This results from the increased temperature rise upon release of kinetic energy on, impact of the powder against the workpiece surface. Thus, fuels permitting highersupply'pressures and higher powder velocitis'rnay have lower flame temperatures and yet still be practical inthe practice of the flame plating method of this invention. r
- the hardness and porosity of the coating are dependent to a considerable extent upon powder velocity. This is shown in the following table obtained by'spraying tungsten-carbide-cobalt alloy with a gun employing a throat apparent whenever a non-porous, well-bonded coating is desired. These benefits are not limited to any particular coating material, for although the invention is especially adapted for coating with materials of high melting points, it is also adapted for coating surfaces with any of a wide variety of metals, alloys, metallic compounds, plastics, ceramics and minerals. Base surfaces, which may be precleaned in any suitable manner, may also be of a wide variety of materials. The following table shows several illustrative examples of substances which have been platedby this. process.
- An example of the performance of the present invention is its capacity for depositing a substantially nonporous coating of a high melting point, abrasive-resistant hard material such as tungsten carbide compositions.
- a spray gun of the type shown in Figure l a tungsten-carbon-cobalt composition containing about 4% carbon and 9% cobalt, in a finely divided powder of the order of 325 mesh was fed into the burner of the gun at a rate of 15 pounds per hour in a hydrogen carrier gas of 60 cubic feet per hour.
- Acetylene and oxygen at p. s. i. g. were fed to the burner in a ratio of 1.4 cubic feet of the latter to 1 cubic feet of the former at a combined rate of 600 cubic feet per hour.
- the workpiece a cylindrical steel piece /2 inch in diameter and 1 /2 inches in length was rotated at 150 revolutions per minute and advanced Vs inch per revolution past the burner outlet, with a standoff distance of 4 inches. In this way the workpiece was coated with a thickness (on the radius) of 0.004 inch in about five seconds.
- the coated sample was ground and polished by known procedures to a very smooth finish, the hardness of the surface being measured at 1200 Knoop.
- the gun employed had a water-cooled cylindrical nozzle inch inside diameter by 8 inches long.
- the continuous nature of the present invention makes it possible to apply a steady stream of coating particles against a surface with substantially uniform forces imparted to the particles at all times. In this way, a unibe spread over a surface in a relatively short period of operation.
- the gun may be held in either a horizontal or vertical position, and the workpiece to be coated may be moved relative to the gun or the gun may be moved Moreover, in the plating of certain types of work, for example plug gages, the workpiece can be held and rotated in a chuck of the lathe while the gun is moved along the length of the plug. in
- a method of applying a surface coating to an object which comprises introducing a solid coating material and a fluid combustible mixture under pressure into a confined combustion space, heating at least a portion of the coating particles to a high temperature by burning the fluid combustible mixture in said space in the presence of such material, and thereafter propelling heated coating particles toward the surface of the object to be coated at a linear velocity greater than 500 feet per second by discharging the particle-carrying burning gases through a confined path in which such gases are accelerated to an exit velocity sufficiently high to impart such linear velocity to the particles.
- a method of applying a surface coating to an object which comprises introducing a solid coating material and a fluid combustible mixture under pressure into a confined combustion space, heating at least a portion of the coating particles to a high temperature by burning of fluid combustible mixture in said space in the presence of such particles, and thereafter propelling heated coating particles toward the surface of the object to be coated in a jet flame having a linear exit velocity greater than 2000 feet per second by discharging the particle-carrying burning gases through a confined path in which such gases are accelerated to such velocity.
- a method of applying a surface coating to an object which comprises mixing a fluid fuel and a combustion supporting agent to form a combustible mixture, introducing a comminuted solid coating material into said mixture, introducing combustible mixture containing said comminuted solid material into a confined combustion space, heating the coating particles to a high temperature by burning the fluid combustible mixture in said space in the presence of such particles, and thereafter propelling heated coating particles against the surface of the object to be coated in a jet flame having a linear cxit velocity greater than 2,000 feet per second by discharging the particle-carrying burning gases through a confined path in which such gases are accelerated to such velocity.
- a method of applying a surface coating to an object which comprises mixing a fluid fuel containing a cornminuted solid coating material with a combustion supporting agent to form a combustible mixture, introducing combustible mixture containing said comminuted solid material into a confined combustion space, heating the coating particles to a high temperature by burning the fluid combustible mixture in said space in the presence of such particles, and thereafter propelling heated coating particles against the surface of the object to be coated in a jet flame having a linear exit velocity greater than 2,000 feet per second by discharging the particle-carrying burning gases through a confined path in which such gases are accelerated to such velocity.
- a method of applying a surface coating to an object which comprises mixing a fluid fuel with a combustion. supporting agent containing comminuted solid coating material to form a combustible mixture, introducing combustible mixture containing said comminuted solid material into a confined combustion space, heating the coating particles to a high temperature by burning the fluid combustible mixture in said space in the presence of such particles, and thereafter propelling heated coating particles against the surface of the object to be coated in a jet flame having a linear exit velocity greater than 2,000 feet per second by discharging the particle-carrying burning gases through a confined path in which such gases are accelerated to such velocity.
- a method of applying a surface coating to an object which comprises mixing a fluid fuel and a combustion supporting fluid to form a combustible mixture, introducing a carrier fluid containing comminuted solid coating material into one of such fluids prior to mixing, introducing combustible mixture containing comminuted solid material into a confined combustion space, heating the coating particles to a high temperature by burning the fluid combustible in said space in the presence of such particles, and thereafter propelling heated coating particles against the surface of the object to be coated in a jet flame having a linear exit velocity greater than 2,000 feet per second by discharging the particle-carrying burning gases through a confined path in which such gases are accelerated to such velocity.
- a method of applying a surface coating to an object which comprises continuously introducing a fluid combustible mixture under pressure and a solid coating mate rial into a throat combustion burner wherein combustion of the mixture takes place in the presence of the coating material, passing the burning gases containing coating particles through said burner, discharging particle-carrying burning gases from the burner to develop substantial force for transmission to the particles so as to eject them in a jet flame having a high flame intensity and a high mass velocity, and directing said flame toward the surface to be coated so as to propel heated coating particles at a high linear velocity against such surface to deposit there and build up a coating.
- a method of applying a surface coating of a high melting point metal composition to an object which comprises suspending such metal composition in finely divided form in a fluid combustible mixture containing oxygen and fuel in proportions to provide upon combustion a non-oxidizing flame, introducing the particle-carrying fluid combustible mixture under pressure into a confined combustion space, heating the coating particles to a high temperature by burning the fluid combustible mixture in said space in the presence of such particles, and thereafter propelling heated coating particles against the surface of the object to be coated in a jet flame having a linear exit velocity greater than 2,000 feet per second by discharging the particle-carrying burning gases in a confined path in which such gases are accelerated to such velocity.
- a method of applying a surface coating to an object which comprises concomitantly introducing a solid coating material and a fluid combustible mixture under pressure into an internal combustion zone from which burning gases are discharged in a jet flame having a linear velocity greater than 2000 feet per second, heating the coating material to a high temperature by burning the fluid combustible mixture in said zone in the presence of such coating material, and directing the flame toward the surface of the object to be coated to propel heated coating particles ejected by and in the flame onto such surface.
- a flame-spray gun for applying surface coatings to objects, comprising a-hollow member defining at least along a portion of its length a throat combustion chamber said chamber having an inlet at one end and an outlet at its other end and a side wall which is continuous from inlet to outlet, said chamber having an entrance portion in which fuel and oxygen under pressure are mixed and combustion is initiated, passage means for supplying fluid fuel and oxygen to said entrance portion of the throat combustion chamber, means for introducing solid coating material into the combustion chamber, said throat combustion chamber having an outlet at least .02 inch in diameter downstream of said entrance por tion for discharging coating-particle-carrying burning gases in a jet flame, and said throat combustion chamber extending from said entrance portion to said outlet without constriction in cross-sectional area.
- a method of applying a surface coating of a metal carbide composition to an object which comprises suspending said composition in finely divided form in a fluid combustible mixture containing oxygen and fuel in proportions to provide upon combustion a non-oxidizing flame and less than 67 percent oxidants in the burning gases, introducing the particle-carrying fluid combustible mixture under pressure into a confined combustion space, heating the coating particles to a high temperature by burning the fluid combustible mixture in said space in the presence of such particles, and thereafter projecting heated coating particles against the surface of the object to be coated at at least their flowing temperature by discharging the particle-carrying burning gases in a confined path in which such gases are accelerated to an exit velocity imparting sufficient kinetic energy to the particle so that, together with their thermal energy, the particles will be at least at such flowing temperature upon impact.
- a method of applying a surface coating of a tungsten carbide composition to an object which comprises suspending said tungsten carbide composition divided to a powder finer than 325 mesh in a fluid combustible mixture containing oxygen and acetylene in a ratio between 08:1 and 1.9:1, introducing the particlecarrying fluid combustible mixture under pressure into a confined combustion space, heating the coating particles to a high temperature by burning the fluid combustible mixture in said space in the presence of such particles, and thereafter projecting heated coating particles against the surface of the object to be coated at at least their flowing temperature by discharging the particlecarrying burning gases in a confined path in which such gases are accelerated to an exit velocity imparting sufficient kinetic energy to the particles so that, together with their thermal energy, the particles will be at least at such flowing temperature upon impact.
- a flame spray gun comprising a hollow member having at least along a portion of its length an internal combustion throat passage defined by walls extending from an inlet zone at one end to an outlet at its other end, said passage extending from the inlet zone to the outlet without constriction in cross-sectional area and being at least .02 inch in diameter downstream of said inlet zone, means for supplying fluid combustible to said inlet zone comprising first and second conduits supplying fluid fuel and fluid oxidant each under pressure, said conduits terminating respectively in delivery orifices disposed adjacent each other and said inlet zone on the upstream side thereof, said delivery orifices being arranged for delivering the oxidant and fuel streams to intersect at a substantial angle to each other for rapid mixing and combustion in said throat passage; and means for introducing solid material into said internal combustion throat passage wherein the material is heated to a high temperature and particle carrying burning gases are discharged from the outlet in a jet flame.
- a flame spray gun according to claim 15 in which said means for introducing solid material comprises means for feeding a comminuted solid material with one of said oxidant and fuel gas streams to said inlet zone.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Coating By Spraying Or Casting (AREA)
- Nozzles (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
LU34348D LU34348A1 (xx) | 1955-05-02 | ||
NL206772D NL206772A (xx) | 1955-05-02 | ||
NL100168D NL100168C (xx) | 1955-05-02 | ||
US505228A US2861900A (en) | 1955-05-02 | 1955-05-02 | Jet plating of high melting point materials |
GB13125/56A GB830690A (en) | 1955-05-02 | 1956-04-30 | Methods of, and apparatus for, flame spraying |
DEU1662U DE1834839U (de) | 1955-05-02 | 1956-04-30 | Flammspritzpistole. |
CH330839D CH330839A (fr) | 1955-05-02 | 1956-04-30 | Procédé d'application de matières à point de fusion élevé à l'état pulvérisé et pistolet pour la mise en oeuvre de ce procédé |
DEU3875A DE1089614B (de) | 1955-05-02 | 1956-04-30 | Verfahren und Vorrichtung zum Flammspritzen |
FR1148292D FR1148292A (fr) | 1955-05-02 | 1956-04-30 | Procédé d'application de matières à point de fusion élevé à l'état pulvérisé |
ES0228278A ES228278A1 (es) | 1955-05-02 | 1956-05-03 | UN PROCEDIMIENTO DE PULVERIZACIoN MEDIANTE LLAMA PARA APLICAR A UN OBJETO UN REVESTIMIENTO SUPERFICIAL |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US505228A US2861900A (en) | 1955-05-02 | 1955-05-02 | Jet plating of high melting point materials |
Publications (1)
Publication Number | Publication Date |
---|---|
US2861900A true US2861900A (en) | 1958-11-25 |
Family
ID=24009509
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US505228A Expired - Lifetime US2861900A (en) | 1955-05-02 | 1955-05-02 | Jet plating of high melting point materials |
Country Status (8)
Country | Link |
---|---|
US (1) | US2861900A (xx) |
CH (1) | CH330839A (xx) |
DE (2) | DE1834839U (xx) |
ES (1) | ES228278A1 (xx) |
FR (1) | FR1148292A (xx) |
GB (1) | GB830690A (xx) |
LU (1) | LU34348A1 (xx) |
NL (2) | NL100168C (xx) |
Cited By (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2950867A (en) * | 1954-10-21 | 1960-08-30 | Union Carbide Corp | Pulse powder feed for detonation waves |
US3071489A (en) * | 1958-05-28 | 1963-01-01 | Union Carbide Corp | Process of flame spraying a tungsten carbide-chromium carbide-nickel coating, and article produced thereby |
US3084064A (en) * | 1959-08-06 | 1963-04-02 | Union Carbide Corp | Abradable metal coatings and process therefor |
US3105150A (en) * | 1959-11-18 | 1963-09-24 | Honeywell Regulator Co | Coated radiant energy sight guide for temperature measurement |
US3112072A (en) * | 1962-06-26 | 1963-11-26 | Malone Joseph | Striping attachment for metallizing spray gun |
US3118608A (en) * | 1962-02-15 | 1964-01-21 | Walter V Berry | Fuel gas and oxygen injection lance employing webbed coolant deflectors |
US3180397A (en) * | 1963-05-29 | 1965-04-27 | Union Carbide Corp | Thermotreating method and apparatus |
US3195217A (en) * | 1959-08-14 | 1965-07-20 | Westinghouse Electric Corp | Applying layers of materials to semiconductor bodies |
US3231417A (en) * | 1961-06-09 | 1966-01-25 | Union Carbide Corp | Zircon-boron ablation coating |
US3231416A (en) * | 1961-06-09 | 1966-01-25 | Union Carbide Corp | Zirconia-boron ablation coating |
US3255802A (en) * | 1963-09-05 | 1966-06-14 | Fletcher Co H E | Method and apparatus for producing flame jet and controlling temperature and flame stability of same |
US3314612A (en) * | 1964-10-21 | 1967-04-18 | Union Carbide Corp | Constant pressure series of oxy-fuel cutting nozzles |
US3399253A (en) * | 1966-03-28 | 1968-08-27 | Union Carbide Corp | Method of making refractory shapes |
US3399835A (en) * | 1966-07-29 | 1968-09-03 | Coast Metals Inc | Powder spray torch |
US3404020A (en) * | 1964-12-23 | 1968-10-01 | Gen Dynamics Corp | Ceramic-to-metal bonding method |
US3767346A (en) * | 1971-07-22 | 1973-10-23 | Fmc Corp | Film extrusion die |
DE2356616A1 (de) * | 1972-11-17 | 1974-05-22 | Union Carbide Corp | Abriebbestaendiges lagermaterial und verfahren zu seiner herstellung |
US3851824A (en) * | 1973-03-21 | 1974-12-03 | Aga Ab | Nozzle for plasma welding torch |
US3910734A (en) * | 1973-08-20 | 1975-10-07 | Ford Motor Co | Composite apex seal |
US3915381A (en) * | 1971-11-15 | 1975-10-28 | Southwest Res Inst | Method and apparatus for applying particulate coating material to a work piece |
US4004042A (en) * | 1975-03-07 | 1977-01-18 | Sirius Corporation | Method for applying a wear and impact resistant coating |
US4049841A (en) * | 1975-09-08 | 1977-09-20 | Basf Wyandotte Corporation | Sprayed cathodes |
US4067291A (en) * | 1974-04-08 | 1978-01-10 | H. B. Zachry Company | Coating system using tape encapsulated particulate coating material |
US4290555A (en) * | 1979-02-21 | 1981-09-22 | Nippon Sanso K. K. | Method for supplying powder to be used in home spray coating operation |
US4317850A (en) * | 1979-08-03 | 1982-03-02 | Skf Industrial Trading And Development Company B.V. | Method for applying a dense, hard, adhesive and wear-resistant layer of cermets or ceramic material on a metal object |
US4322458A (en) * | 1977-08-18 | 1982-03-30 | Motoren-Und Turbinen Union | Molded ceramic member, particularly of silicon ceramic, and method for the manufacture thereof |
US4364744A (en) * | 1979-12-26 | 1982-12-21 | Texaco Inc. | Burner for the partial oxidation of slurries of solid carbonaceous fuels |
DE3225116A1 (de) * | 1982-07-06 | 1984-01-12 | Erwin 7801 Schallstadt Hühne | Rueckzuend- und flammrueckschlagsicherer pulverauftragsbrenner |
EP0189053A1 (de) * | 1985-01-17 | 1986-07-30 | Linde Aktiengesellschaft | Verfahren zum Auftragen von Lot |
US4694990A (en) * | 1984-09-07 | 1987-09-22 | Karlsson Axel T | Thermal spray apparatus for coating a substrate with molten fluent material |
US4788077A (en) * | 1987-06-22 | 1988-11-29 | Union Carbide Corporation | Thermal spray coating having improved addherence, low residual stress and improved resistance to spalling and methods for producing same |
WO1988010168A1 (en) * | 1987-06-25 | 1988-12-29 | Call, Douglas, Jr. | Metal spraying apparatus |
DE3842263C1 (xx) * | 1988-12-15 | 1990-06-13 | Linde Ag, 6200 Wiesbaden, De | |
US4937417A (en) * | 1987-06-25 | 1990-06-26 | Douglas Call, Jr. | Metal spraying apparatus |
US4957061A (en) * | 1985-12-04 | 1990-09-18 | Canon Kabushiki Kaisha | Plurality of beam producing means disposed in different longitudinal and lateral directions from each other with respect to a substrate |
US5005764A (en) * | 1989-02-10 | 1991-04-09 | Castolin S.A. | Apparatus for flame spraying of powder materials |
US5019686A (en) * | 1988-09-20 | 1991-05-28 | Alloy Metals, Inc. | High-velocity flame spray apparatus and method of forming materials |
US5047265A (en) * | 1988-04-28 | 1991-09-10 | Castolin S.A. | Method of flame-spraying of powdered materials and flame-spraying apparatus for carrying out that method |
US5082179A (en) * | 1988-04-28 | 1992-01-21 | Castolin S.A. | Method of flame-spraying of powdered materials and flame-spraying apparatus for carrying out that method |
US5120582A (en) * | 1991-01-16 | 1992-06-09 | Browning James A | Maximum combustion energy conversion air fuel internal burner |
WO1992012804A1 (en) * | 1991-01-16 | 1992-08-06 | Browning James A | Thermal spray method utilizing in-transit powder particle temperatures below their melting point |
US5207382A (en) * | 1989-06-03 | 1993-05-04 | Eutectic Corporation | Autogenous flame spraying apparatus for the flame spraying of powder-form materials or spray powder |
US5234164A (en) * | 1990-05-22 | 1993-08-10 | Utp Schweibmaterial Gmbh & Co. Kg | Device for high speed flame spraying of refractory wire of powder weld filler for the coating of surfaces |
US5262206A (en) * | 1988-09-20 | 1993-11-16 | Plasma Technik Ag | Method for making an abradable material by thermal spraying |
US5302414A (en) * | 1990-05-19 | 1994-04-12 | Anatoly Nikiforovich Papyrin | Gas-dynamic spraying method for applying a coating |
US5330798A (en) * | 1992-12-09 | 1994-07-19 | Browning Thermal Systems, Inc. | Thermal spray method and apparatus for optimizing flame jet temperature |
US5340615A (en) * | 1993-06-01 | 1994-08-23 | Browning James A | Method to produce non-stressed flame spray coating and bodies |
US5384164A (en) * | 1992-12-09 | 1995-01-24 | Browning; James A. | Flame sprayed coatings of material from solid wire or rods |
US5405085A (en) * | 1993-01-21 | 1995-04-11 | White; Randall R. | Tuneable high velocity thermal spray gun |
US5445325A (en) * | 1993-01-21 | 1995-08-29 | White; Randall R. | Tuneable high velocity thermal spray gun |
DE4418437A1 (de) * | 1994-05-26 | 1995-11-30 | Linde Ag | Verfahren zum autogenen Flammspritzen |
US5498004A (en) * | 1991-09-30 | 1996-03-12 | Kulite Tungsten Corporation | Game dart |
US5520334A (en) * | 1993-01-21 | 1996-05-28 | White; Randall R. | Air and fuel mixing chamber for a tuneable high velocity thermal spray gun |
US5531590A (en) * | 1995-03-30 | 1996-07-02 | Draco | Shock-stabilized supersonic flame-jet method and apparatus |
EP0848998A3 (de) * | 1996-12-18 | 1999-03-17 | Castolin S.A. | Flammspritzvorrichtung und Verfahren zum thermischen Spritzen |
US6233822B1 (en) | 1998-12-22 | 2001-05-22 | General Electric Company | Repair of high pressure turbine shrouds |
US6283386B1 (en) * | 1999-06-29 | 2001-09-04 | National Center For Manufacturing Sciences | Kinetic spray coating apparatus |
US20030190413A1 (en) * | 2002-04-05 | 2003-10-09 | Van Steenkiste Thomas Hubert | Method of maintaining a non-obstructed interior opening in kinetic spray nozzles |
US20030190414A1 (en) * | 2002-04-05 | 2003-10-09 | Van Steenkiste Thomas Hubert | Low pressure powder injection method and system for a kinetic spray process |
US20030207148A1 (en) * | 2001-08-15 | 2003-11-06 | Delphi Technologies, Inc. | Product and method of brazing using kinetic sprayed coatings |
US20030219576A1 (en) * | 2002-05-23 | 2003-11-27 | Elmoursi Alaa A. | Copper Circuit formed by kinetic spray |
US20040058065A1 (en) * | 2002-09-23 | 2004-03-25 | Steenkiste Thomas Hubert Van | Spray system with combined kinetic spray and thermal spray ability |
US20040065432A1 (en) * | 2002-10-02 | 2004-04-08 | Smith John R. | High performance thermal stack for electrical components |
US20040065391A1 (en) * | 2002-10-02 | 2004-04-08 | Smith John R | Direct application of catalysts to substrates via a thermal spray process for treatment of the atmosphere |
US20040072008A1 (en) * | 2001-10-09 | 2004-04-15 | Delphi Technologies, Inc. | Kinetic sprayed electrical contacts on conductive substrates |
US20040101620A1 (en) * | 2002-11-22 | 2004-05-27 | Elmoursi Alaa A. | Method for aluminum metalization of ceramics for power electronics applications |
US20040142198A1 (en) * | 2003-01-21 | 2004-07-22 | Thomas Hubert Van Steenkiste | Magnetostrictive/magnetic material for use in torque sensors |
US20040157000A1 (en) * | 2003-02-07 | 2004-08-12 | Steenkiste Thomas Hubert Van | Method for producing electrical contacts using selective melting and a low pressure kinetic spray process |
US20040187605A1 (en) * | 2003-03-28 | 2004-09-30 | Malakondaiah Naidu | Integrating fluxgate for magnetostrictive torque sensors |
US20050000424A1 (en) * | 2001-10-15 | 2005-01-06 | Tsuyoshi Itsukaichi | Method and system for thermal spraying |
US20050074560A1 (en) * | 2003-10-02 | 2005-04-07 | Fuller Brian K. | Correcting defective kinetically sprayed surfaces |
US20050160834A1 (en) * | 2004-01-23 | 2005-07-28 | Nehl Thomas W. | Assembly for measuring movement of and a torque applied to a shaft |
US20050214474A1 (en) * | 2004-03-24 | 2005-09-29 | Taeyoung Han | Kinetic spray nozzle system design |
US20060038044A1 (en) * | 2004-08-23 | 2006-02-23 | Van Steenkiste Thomas H | Replaceable throat insert for a kinetic spray nozzle |
US20060040048A1 (en) * | 2004-08-23 | 2006-02-23 | Taeyoung Han | Continuous in-line manufacturing process for high speed coating deposition via a kinetic spray process |
US20060100380A1 (en) * | 2004-11-05 | 2006-05-11 | Delphi Technologies, Inc. | Slush moldable thermoplastic polyolefin formulation for interior skin |
US20060251823A1 (en) * | 2003-04-11 | 2006-11-09 | Delphi Corporation | Kinetic spray application of coatings onto covered materials |
US20060278100A1 (en) * | 2005-06-14 | 2006-12-14 | Aga Ab | Seal for burners |
US20070074656A1 (en) * | 2005-10-04 | 2007-04-05 | Zhibo Zhao | Non-clogging powder injector for a kinetic spray nozzle system |
US20080014031A1 (en) * | 2006-07-14 | 2008-01-17 | Thomas Hubert Van Steenkiste | Feeder apparatus for controlled supply of feedstock |
US7335341B2 (en) | 2003-10-30 | 2008-02-26 | Delphi Technologies, Inc. | Method for securing ceramic structures and forming electrical connections on the same |
US7475831B2 (en) | 2004-01-23 | 2009-01-13 | Delphi Technologies, Inc. | Modified high efficiency kinetic spray nozzle |
US20130125859A1 (en) * | 2010-04-30 | 2013-05-23 | General Electric Company | Fuel injector having differential tip cooling system and method |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1261036B (de) * | 1963-11-27 | 1968-02-08 | Osu Maschb H Dieter Matthaeus | Flammspritzpistole zum Verspritzen keramischer oder metallischer Pulver |
DE3006558A1 (de) * | 1979-02-21 | 1980-09-04 | Nippon Oxygen Co Ltd | Brenner zur pulverspruehbeschichtung |
FR2532738A3 (fr) * | 1982-09-08 | 1984-03-09 | Siderurgie Fse Inst Rech | Procede et lance de gunitage a travers une flamme |
DE3331216A1 (de) * | 1983-08-30 | 1985-03-14 | Castolin Gmbh, 6239 Kriftel | Vorrichtung zum thermischen spritzen von auftragsschweisswerkstoffen |
FR2579488B1 (fr) * | 1985-03-26 | 1989-05-19 | Canon Kk | Procede pour regler la densite de particules fines |
FR2579486B1 (fr) * | 1985-03-26 | 1989-05-26 | Canon Kk | Procede pour regler la vitesse de particules fines |
CA1272662A (en) * | 1985-03-26 | 1990-08-14 | Canon Kabushiki Kaisha | Apparatus and process for controlling flow of fine particles |
GB2180047B (en) * | 1985-09-07 | 1989-08-16 | Glaverbel | Forming refractory masses |
DE3620183A1 (de) * | 1986-06-16 | 1987-12-17 | Castolin Gmbh | Vorrichtung zum thermischen spritzen von auftragsschweisswerkstoffen |
DE3620201A1 (de) * | 1986-06-16 | 1987-12-17 | Castolin Gmbh | Vorrichtung zum thermischen spritzen von auftragsschweisswerkstoffen |
CH678067A5 (xx) * | 1989-01-26 | 1991-07-31 | Asea Brown Boveri | |
DE3903887C2 (de) * | 1989-02-10 | 1998-07-16 | Castolin Sa | Vorrichtung zum Flammspritzen von pulverförmigen Werkstoffen mittels autogener Flamme |
CN106622724B (zh) * | 2016-12-03 | 2019-10-11 | 天长市金陵电子有限责任公司 | 一种不易产生堵塞的喷塑枪 |
DE102016125587A1 (de) * | 2016-12-23 | 2018-06-28 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Düsenaufbau für das thermische Spritzen mittels einer Suspension oder einer Präcursorlösung |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2137442A (en) * | 1935-09-27 | 1938-11-22 | Earl F Callan | Method of spraying molten pulverized quartz or enamel mixtures |
US2659623A (en) * | 1948-12-07 | 1953-11-17 | Metallizing Engineering Co Inc | Gun construction for gas blast spraying heat-fusible materials |
US2714563A (en) * | 1952-03-07 | 1955-08-02 | Union Carbide & Carbon Corp | Method and apparatus utilizing detonation waves for spraying and other purposes |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR903239A (fr) * | 1944-04-06 | 1945-09-27 | Metallisation Soc Nouv | Procédé et dispositifs pour la fusion et la projection, au pistolet métalliseur, de métaux et autres substances fusibles |
DE808794C (de) * | 1950-05-04 | 1951-07-19 | Wirth Arno H Fa | Verfahren und Vorrichtung zum Herstellen von Metallueberzuegen |
-
0
- LU LU34348D patent/LU34348A1/xx unknown
- NL NL206772D patent/NL206772A/xx unknown
- NL NL100168D patent/NL100168C/xx active
-
1955
- 1955-05-02 US US505228A patent/US2861900A/en not_active Expired - Lifetime
-
1956
- 1956-04-30 CH CH330839D patent/CH330839A/fr unknown
- 1956-04-30 DE DEU1662U patent/DE1834839U/de not_active Expired
- 1956-04-30 FR FR1148292D patent/FR1148292A/fr not_active Expired
- 1956-04-30 GB GB13125/56A patent/GB830690A/en not_active Expired
- 1956-04-30 DE DEU3875A patent/DE1089614B/de active Pending
- 1956-05-03 ES ES0228278A patent/ES228278A1/es not_active Expired
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2137442A (en) * | 1935-09-27 | 1938-11-22 | Earl F Callan | Method of spraying molten pulverized quartz or enamel mixtures |
US2659623A (en) * | 1948-12-07 | 1953-11-17 | Metallizing Engineering Co Inc | Gun construction for gas blast spraying heat-fusible materials |
US2714563A (en) * | 1952-03-07 | 1955-08-02 | Union Carbide & Carbon Corp | Method and apparatus utilizing detonation waves for spraying and other purposes |
Cited By (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2950867A (en) * | 1954-10-21 | 1960-08-30 | Union Carbide Corp | Pulse powder feed for detonation waves |
US3071489A (en) * | 1958-05-28 | 1963-01-01 | Union Carbide Corp | Process of flame spraying a tungsten carbide-chromium carbide-nickel coating, and article produced thereby |
US3084064A (en) * | 1959-08-06 | 1963-04-02 | Union Carbide Corp | Abradable metal coatings and process therefor |
US3195217A (en) * | 1959-08-14 | 1965-07-20 | Westinghouse Electric Corp | Applying layers of materials to semiconductor bodies |
US3105150A (en) * | 1959-11-18 | 1963-09-24 | Honeywell Regulator Co | Coated radiant energy sight guide for temperature measurement |
US3231416A (en) * | 1961-06-09 | 1966-01-25 | Union Carbide Corp | Zirconia-boron ablation coating |
US3231417A (en) * | 1961-06-09 | 1966-01-25 | Union Carbide Corp | Zircon-boron ablation coating |
US3118608A (en) * | 1962-02-15 | 1964-01-21 | Walter V Berry | Fuel gas and oxygen injection lance employing webbed coolant deflectors |
US3112072A (en) * | 1962-06-26 | 1963-11-26 | Malone Joseph | Striping attachment for metallizing spray gun |
US3180397A (en) * | 1963-05-29 | 1965-04-27 | Union Carbide Corp | Thermotreating method and apparatus |
US3255802A (en) * | 1963-09-05 | 1966-06-14 | Fletcher Co H E | Method and apparatus for producing flame jet and controlling temperature and flame stability of same |
US3314612A (en) * | 1964-10-21 | 1967-04-18 | Union Carbide Corp | Constant pressure series of oxy-fuel cutting nozzles |
US3404020A (en) * | 1964-12-23 | 1968-10-01 | Gen Dynamics Corp | Ceramic-to-metal bonding method |
US3399253A (en) * | 1966-03-28 | 1968-08-27 | Union Carbide Corp | Method of making refractory shapes |
US3399835A (en) * | 1966-07-29 | 1968-09-03 | Coast Metals Inc | Powder spray torch |
US3767346A (en) * | 1971-07-22 | 1973-10-23 | Fmc Corp | Film extrusion die |
US3915381A (en) * | 1971-11-15 | 1975-10-28 | Southwest Res Inst | Method and apparatus for applying particulate coating material to a work piece |
DE2356616A1 (de) * | 1972-11-17 | 1974-05-22 | Union Carbide Corp | Abriebbestaendiges lagermaterial und verfahren zu seiner herstellung |
US3851824A (en) * | 1973-03-21 | 1974-12-03 | Aga Ab | Nozzle for plasma welding torch |
US3910734A (en) * | 1973-08-20 | 1975-10-07 | Ford Motor Co | Composite apex seal |
US4067291A (en) * | 1974-04-08 | 1978-01-10 | H. B. Zachry Company | Coating system using tape encapsulated particulate coating material |
US4004042A (en) * | 1975-03-07 | 1977-01-18 | Sirius Corporation | Method for applying a wear and impact resistant coating |
US4049841A (en) * | 1975-09-08 | 1977-09-20 | Basf Wyandotte Corporation | Sprayed cathodes |
US4322458A (en) * | 1977-08-18 | 1982-03-30 | Motoren-Und Turbinen Union | Molded ceramic member, particularly of silicon ceramic, and method for the manufacture thereof |
US4290555A (en) * | 1979-02-21 | 1981-09-22 | Nippon Sanso K. K. | Method for supplying powder to be used in home spray coating operation |
US4317850A (en) * | 1979-08-03 | 1982-03-02 | Skf Industrial Trading And Development Company B.V. | Method for applying a dense, hard, adhesive and wear-resistant layer of cermets or ceramic material on a metal object |
US4364744A (en) * | 1979-12-26 | 1982-12-21 | Texaco Inc. | Burner for the partial oxidation of slurries of solid carbonaceous fuels |
DE3225116A1 (de) * | 1982-07-06 | 1984-01-12 | Erwin 7801 Schallstadt Hühne | Rueckzuend- und flammrueckschlagsicherer pulverauftragsbrenner |
US4694990A (en) * | 1984-09-07 | 1987-09-22 | Karlsson Axel T | Thermal spray apparatus for coating a substrate with molten fluent material |
EP0189053A1 (de) * | 1985-01-17 | 1986-07-30 | Linde Aktiengesellschaft | Verfahren zum Auftragen von Lot |
US4957061A (en) * | 1985-12-04 | 1990-09-18 | Canon Kabushiki Kaisha | Plurality of beam producing means disposed in different longitudinal and lateral directions from each other with respect to a substrate |
US4788077A (en) * | 1987-06-22 | 1988-11-29 | Union Carbide Corporation | Thermal spray coating having improved addherence, low residual stress and improved resistance to spalling and methods for producing same |
EP0296814A2 (en) * | 1987-06-22 | 1988-12-28 | Union Carbide Corporation | Thermal spray coating method |
EP0296814A3 (en) * | 1987-06-22 | 1989-12-13 | Union Carbide Corporation | Thermal spray coating method |
US4937417A (en) * | 1987-06-25 | 1990-06-26 | Douglas Call, Jr. | Metal spraying apparatus |
WO1988010168A1 (en) * | 1987-06-25 | 1988-12-29 | Call, Douglas, Jr. | Metal spraying apparatus |
US5047265A (en) * | 1988-04-28 | 1991-09-10 | Castolin S.A. | Method of flame-spraying of powdered materials and flame-spraying apparatus for carrying out that method |
US5082179A (en) * | 1988-04-28 | 1992-01-21 | Castolin S.A. | Method of flame-spraying of powdered materials and flame-spraying apparatus for carrying out that method |
US5019686A (en) * | 1988-09-20 | 1991-05-28 | Alloy Metals, Inc. | High-velocity flame spray apparatus and method of forming materials |
US5262206A (en) * | 1988-09-20 | 1993-11-16 | Plasma Technik Ag | Method for making an abradable material by thermal spraying |
EP0374585B1 (de) * | 1988-12-15 | 1993-11-03 | Linde Aktiengesellschaft | Verfahren zur Herstellung einer Oberflächenschicht aus Molybdän durch thermisches Spritzen |
DE3842263C1 (xx) * | 1988-12-15 | 1990-06-13 | Linde Ag, 6200 Wiesbaden, De | |
US5005764A (en) * | 1989-02-10 | 1991-04-09 | Castolin S.A. | Apparatus for flame spraying of powder materials |
US5207382A (en) * | 1989-06-03 | 1993-05-04 | Eutectic Corporation | Autogenous flame spraying apparatus for the flame spraying of powder-form materials or spray powder |
US5302414A (en) * | 1990-05-19 | 1994-04-12 | Anatoly Nikiforovich Papyrin | Gas-dynamic spraying method for applying a coating |
US5234164A (en) * | 1990-05-22 | 1993-08-10 | Utp Schweibmaterial Gmbh & Co. Kg | Device for high speed flame spraying of refractory wire of powder weld filler for the coating of surfaces |
WO1992012804A1 (en) * | 1991-01-16 | 1992-08-06 | Browning James A | Thermal spray method utilizing in-transit powder particle temperatures below their melting point |
US5120582A (en) * | 1991-01-16 | 1992-06-09 | Browning James A | Maximum combustion energy conversion air fuel internal burner |
US5271965A (en) * | 1991-01-16 | 1993-12-21 | Browning James A | Thermal spray method utilizing in-transit powder particle temperatures below their melting point |
US5498004A (en) * | 1991-09-30 | 1996-03-12 | Kulite Tungsten Corporation | Game dart |
US5384164A (en) * | 1992-12-09 | 1995-01-24 | Browning; James A. | Flame sprayed coatings of material from solid wire or rods |
US5330798A (en) * | 1992-12-09 | 1994-07-19 | Browning Thermal Systems, Inc. | Thermal spray method and apparatus for optimizing flame jet temperature |
US5405085A (en) * | 1993-01-21 | 1995-04-11 | White; Randall R. | Tuneable high velocity thermal spray gun |
US5445325A (en) * | 1993-01-21 | 1995-08-29 | White; Randall R. | Tuneable high velocity thermal spray gun |
US5520334A (en) * | 1993-01-21 | 1996-05-28 | White; Randall R. | Air and fuel mixing chamber for a tuneable high velocity thermal spray gun |
US5340615A (en) * | 1993-06-01 | 1994-08-23 | Browning James A | Method to produce non-stressed flame spray coating and bodies |
DE4418437A1 (de) * | 1994-05-26 | 1995-11-30 | Linde Ag | Verfahren zum autogenen Flammspritzen |
US5531590A (en) * | 1995-03-30 | 1996-07-02 | Draco | Shock-stabilized supersonic flame-jet method and apparatus |
EP0848998A3 (de) * | 1996-12-18 | 1999-03-17 | Castolin S.A. | Flammspritzvorrichtung und Verfahren zum thermischen Spritzen |
US6233822B1 (en) | 1998-12-22 | 2001-05-22 | General Electric Company | Repair of high pressure turbine shrouds |
US6283386B1 (en) * | 1999-06-29 | 2001-09-04 | National Center For Manufacturing Sciences | Kinetic spray coating apparatus |
US6949300B2 (en) | 2001-08-15 | 2005-09-27 | Delphi Technologies, Inc. | Product and method of brazing using kinetic sprayed coatings |
US20030207148A1 (en) * | 2001-08-15 | 2003-11-06 | Delphi Technologies, Inc. | Product and method of brazing using kinetic sprayed coatings |
US7001671B2 (en) | 2001-10-09 | 2006-02-21 | Delphi Technologies, Inc. | Kinetic sprayed electrical contacts on conductive substrates |
US20040072008A1 (en) * | 2001-10-09 | 2004-04-15 | Delphi Technologies, Inc. | Kinetic sprayed electrical contacts on conductive substrates |
US20050000424A1 (en) * | 2001-10-15 | 2005-01-06 | Tsuyoshi Itsukaichi | Method and system for thermal spraying |
US6811812B2 (en) | 2002-04-05 | 2004-11-02 | Delphi Technologies, Inc. | Low pressure powder injection method and system for a kinetic spray process |
US6896933B2 (en) | 2002-04-05 | 2005-05-24 | Delphi Technologies, Inc. | Method of maintaining a non-obstructed interior opening in kinetic spray nozzles |
US20030190413A1 (en) * | 2002-04-05 | 2003-10-09 | Van Steenkiste Thomas Hubert | Method of maintaining a non-obstructed interior opening in kinetic spray nozzles |
US20030190414A1 (en) * | 2002-04-05 | 2003-10-09 | Van Steenkiste Thomas Hubert | Low pressure powder injection method and system for a kinetic spray process |
US20030219576A1 (en) * | 2002-05-23 | 2003-11-27 | Elmoursi Alaa A. | Copper Circuit formed by kinetic spray |
US7476422B2 (en) | 2002-05-23 | 2009-01-13 | Delphi Technologies, Inc. | Copper circuit formed by kinetic spray |
US20040058065A1 (en) * | 2002-09-23 | 2004-03-25 | Steenkiste Thomas Hubert Van | Spray system with combined kinetic spray and thermal spray ability |
US7108893B2 (en) | 2002-09-23 | 2006-09-19 | Delphi Technologies, Inc. | Spray system with combined kinetic spray and thermal spray ability |
EP1403396A1 (en) * | 2002-09-23 | 2004-03-31 | Delphi Technologies, Inc. | Spray system with combined kinetic spray and thermal spray ability |
US6924249B2 (en) | 2002-10-02 | 2005-08-02 | Delphi Technologies, Inc. | Direct application of catalysts to substrates via a thermal spray process for treatment of the atmosphere |
US20040065432A1 (en) * | 2002-10-02 | 2004-04-08 | Smith John R. | High performance thermal stack for electrical components |
US20040065391A1 (en) * | 2002-10-02 | 2004-04-08 | Smith John R | Direct application of catalysts to substrates via a thermal spray process for treatment of the atmosphere |
US20040101620A1 (en) * | 2002-11-22 | 2004-05-27 | Elmoursi Alaa A. | Method for aluminum metalization of ceramics for power electronics applications |
US20040142198A1 (en) * | 2003-01-21 | 2004-07-22 | Thomas Hubert Van Steenkiste | Magnetostrictive/magnetic material for use in torque sensors |
US20040157000A1 (en) * | 2003-02-07 | 2004-08-12 | Steenkiste Thomas Hubert Van | Method for producing electrical contacts using selective melting and a low pressure kinetic spray process |
US6872427B2 (en) | 2003-02-07 | 2005-03-29 | Delphi Technologies, Inc. | Method for producing electrical contacts using selective melting and a low pressure kinetic spray process |
US6871553B2 (en) | 2003-03-28 | 2005-03-29 | Delphi Technologies, Inc. | Integrating fluxgate for magnetostrictive torque sensors |
US20050103126A1 (en) * | 2003-03-28 | 2005-05-19 | Delphi Technologies, Inc. | Integrating fluxgate for magnetostrictive torque sensors |
US20040187605A1 (en) * | 2003-03-28 | 2004-09-30 | Malakondaiah Naidu | Integrating fluxgate for magnetostrictive torque sensors |
US20060251823A1 (en) * | 2003-04-11 | 2006-11-09 | Delphi Corporation | Kinetic spray application of coatings onto covered materials |
US20050074560A1 (en) * | 2003-10-02 | 2005-04-07 | Fuller Brian K. | Correcting defective kinetically sprayed surfaces |
US7351450B2 (en) | 2003-10-02 | 2008-04-01 | Delphi Technologies, Inc. | Correcting defective kinetically sprayed surfaces |
US7335341B2 (en) | 2003-10-30 | 2008-02-26 | Delphi Technologies, Inc. | Method for securing ceramic structures and forming electrical connections on the same |
US7475831B2 (en) | 2004-01-23 | 2009-01-13 | Delphi Technologies, Inc. | Modified high efficiency kinetic spray nozzle |
US7024946B2 (en) | 2004-01-23 | 2006-04-11 | Delphi Technologies, Inc. | Assembly for measuring movement of and a torque applied to a shaft |
US20050160834A1 (en) * | 2004-01-23 | 2005-07-28 | Nehl Thomas W. | Assembly for measuring movement of and a torque applied to a shaft |
US20050214474A1 (en) * | 2004-03-24 | 2005-09-29 | Taeyoung Han | Kinetic spray nozzle system design |
US20060038044A1 (en) * | 2004-08-23 | 2006-02-23 | Van Steenkiste Thomas H | Replaceable throat insert for a kinetic spray nozzle |
US20060040048A1 (en) * | 2004-08-23 | 2006-02-23 | Taeyoung Han | Continuous in-line manufacturing process for high speed coating deposition via a kinetic spray process |
US20060100380A1 (en) * | 2004-11-05 | 2006-05-11 | Delphi Technologies, Inc. | Slush moldable thermoplastic polyolefin formulation for interior skin |
US20060278100A1 (en) * | 2005-06-14 | 2006-12-14 | Aga Ab | Seal for burners |
US20070074656A1 (en) * | 2005-10-04 | 2007-04-05 | Zhibo Zhao | Non-clogging powder injector for a kinetic spray nozzle system |
US20080014031A1 (en) * | 2006-07-14 | 2008-01-17 | Thomas Hubert Van Steenkiste | Feeder apparatus for controlled supply of feedstock |
US7674076B2 (en) | 2006-07-14 | 2010-03-09 | F. W. Gartner Thermal Spraying, Ltd. | Feeder apparatus for controlled supply of feedstock |
US20130125859A1 (en) * | 2010-04-30 | 2013-05-23 | General Electric Company | Fuel injector having differential tip cooling system and method |
US9464610B2 (en) * | 2010-04-30 | 2016-10-11 | General Electric Company | Fuel injector having differential tip cooling system and method |
Also Published As
Publication number | Publication date |
---|---|
NL206772A (xx) | 1900-01-01 |
ES228278A1 (es) | 1957-03-01 |
NL100168C (xx) | 1900-01-01 |
GB830690A (en) | 1960-03-16 |
FR1148292A (fr) | 1957-12-05 |
LU34348A1 (xx) | |
CH330839A (fr) | 1958-06-30 |
DE1089614B (de) | 1960-09-22 |
DE1834839U (de) | 1961-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2861900A (en) | Jet plating of high melting point materials | |
US5019686A (en) | High-velocity flame spray apparatus and method of forming materials | |
US2920001A (en) | Jet flame spraying method and apparatus | |
US5206059A (en) | Method of forming metal-matrix composites and composite materials | |
US4865252A (en) | High velocity powder thermal spray gun and method | |
US4869936A (en) | Apparatus and process for producing high density thermal spray coatings | |
US4634611A (en) | Flame spray method and apparatus | |
US4964568A (en) | Shrouded thermal spray gun and method | |
US5296667A (en) | High velocity electric-arc spray apparatus and method of forming materials | |
US5006321A (en) | Thermal spray method for producing glass mold plungers | |
US5932293A (en) | Thermal spray systems | |
US6042019A (en) | Thermal spray gun with inner passage liner and component for such gun | |
US4928879A (en) | Wire and power thermal spray gun | |
US4999225A (en) | High velocity powder thermal spray method for spraying non-meltable materials | |
JPH07258819A (ja) | 溶射用粉末及び炭化物コーティングの製造法 | |
US7449068B2 (en) | Flame spraying process and apparatus | |
EP0375931B1 (en) | High velocity powder thermal spray method for spraying non-meltable materials | |
CN113957376A (zh) | 一种内孔双燃料超音速火焰喷枪及喷涂方法 | |
EP0621079A1 (en) | Dense oxide coatings by thermal spraying | |
NO120577B (xx) | ||
SE186885C1 (xx) |