US2515937A - Photosensitive gold glass and method of making it - Google Patents
Photosensitive gold glass and method of making it Download PDFInfo
- Publication number
- US2515937A US2515937A US513443A US51344343A US2515937A US 2515937 A US2515937 A US 2515937A US 513443 A US513443 A US 513443A US 51344343 A US51344343 A US 51344343A US 2515937 A US2515937 A US 2515937A
- Authority
- US
- United States
- Prior art keywords
- glass
- glasses
- gold
- article
- color
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 title description 103
- 239000010931 gold Substances 0.000 title description 45
- 229910052737 gold Inorganic materials 0.000 title description 32
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 title description 31
- 238000004519 manufacturing process Methods 0.000 title description 9
- 238000005816 glass manufacturing process Methods 0.000 title description 3
- 238000010438 heat treatment Methods 0.000 description 26
- 239000006089 photosensitive glass Substances 0.000 description 21
- 230000005855 radiation Effects 0.000 description 18
- 239000005368 silicate glass Substances 0.000 description 14
- 239000003086 colorant Substances 0.000 description 12
- 206010034972 Photosensitivity reaction Diseases 0.000 description 11
- 230000036211 photosensitivity Effects 0.000 description 11
- 239000000203 mixture Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 230000001747 exhibiting effect Effects 0.000 description 6
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 6
- 229910052684 Cerium Inorganic materials 0.000 description 5
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- 229910052793 cadmium Inorganic materials 0.000 description 4
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 244000178870 Lavandula angustifolia Species 0.000 description 3
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 3
- 229910006853 SnOz Inorganic materials 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- 229910052785 arsenic Inorganic materials 0.000 description 3
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 239000000839 emulsion Substances 0.000 description 3
- 239000006025 fining agent Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000001102 lavandula vera Substances 0.000 description 3
- 235000018219 lavender Nutrition 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- 230000033458 reproduction Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- 241001579016 Nanoa Species 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 229910001610 cryolite Inorganic materials 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 210000004209 hair Anatomy 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 229910052716 thallium Inorganic materials 0.000 description 2
- BKVIYDNLLOSFOA-UHFFFAOYSA-N thallium Chemical compound [Tl] BKVIYDNLLOSFOA-UHFFFAOYSA-N 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- MCSXGCZMEPXKIW-UHFFFAOYSA-N 3-hydroxy-4-[(4-methyl-2-nitrophenyl)diazenyl]-N-(3-nitrophenyl)naphthalene-2-carboxamide Chemical compound Cc1ccc(N=Nc2c(O)c(cc3ccccc23)C(=O)Nc2cccc(c2)[N+]([O-])=O)c(c1)[N+]([O-])=O MCSXGCZMEPXKIW-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 1
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000007496 glass forming Methods 0.000 description 1
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- -1 that is Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/02—Compositions for glass with special properties for coloured glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B44—DECORATIVE ARTS
- B44F—SPECIAL DESIGNS OR PICTURES
- B44F1/00—Designs or pictures characterised by special or unusual light effects
- B44F1/08—Designs or pictures characterised by special or unusual light effects characterised by colour effects
- B44F1/10—Changing, amusing, or secret pictures
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C14/00—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
- C03C14/006—Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/04—Compositions for glass with special properties for photosensitive glass
Definitions
- This invention relates to photosensitive glasses, that is, glasses in which exposure-to short wave radiations such as ultraviolet brings about a change in the glass as a result of which irradiated areas are capable of heat developed coloration while non-irradiated areas remain substantially It has recently been shown that certain copper-containing glasses, when melted under proper reducing conditions, possess photosensitive characteristics.
- the primary object of this invention is to provide an improved photosensitive glass.
- Another object is to provide a photosensitive glass which is more sensitive to short wave radiations than prior glasses.
- Another object is to provide a photosensitiv glass which can develop a wider range of colors with greater contrast than prior glasses.
- Another object is to provide a photosensitive glass which is capable of developing colors ranging from blue through various intermediate shades of purple and maroon to red.
- Still another object is to provide a photosensitive glass, the color producing ingredient of which is gold.
- Another object is to form permanent positive photographic images within the massof a glass body and integral with the glass.
- a further object is to provide glasses in which positive images can be produced with sharp detail by ordinary printing methods from photographic negatives.
- Another object is to produce such positive images in glass with novel arrangements of color.
- Still a further object is to provide portraits, landscapes and the like in glass.
- Another object is to produce in glass microphotographs and photographic reproductions of line drawings, cartoons, mechanical drawings, printed matter, and the like.
- the glasses of my invention are obtained by melting under proper conditions a silicate batch containing a small amount of a compound of gold and preferably but not essentially containing also a compound of a metal of the second periodic group, excluding cadmium, mercury and radium.
- Glasses made according to my invention are colorless and when exposed to short wave radiations they show no permanent change, but when subsequently reheated at temperatures below their softening points the irradiated areas develop colors which vary in hue and in saturation or intensity, depending upon the presence or absence of certain auxiliary substances and the duration or intensity of exposure and/or subsequent reheating, as will later appear.
- the presence of one or more of the oxides of barium, strontium, zinc, calcium, magnesium and beryllium is desirable. This not only ensures a glass of good chemical durabflity but, with barium oxide at least, seems to improve its photosensitivity. Cadmium oxide in substantial amounts unexpectedly appearsto inhibit photosensitivity.
- the gold is preferably introduced into the batch as a solution of gold chloride.
- the batches for the glasses according to the invention must be free from certain substances which inhibit photosensitivity.
- such substances comprise reducing agents, or materials having a reducing action, and ultraviolet absorbing impurities.
- Reducing agents in general cause precipitation of the gold and complete inhibition of photosensitivity.
- I have found also that the presence of substantial amounts of compounds of arsenic, antimony, cadmium, uranium, thallium, copper, iron, vanadium, manganese, and selenium inhibit photosensitivity in the finished glasses.
- lead in amounts up to 2% to 3% of PbO on the oxide basis is harmless, larger amounts also inhibit photosensitivity, probably through absorption of the efiective radiations.
- not more than about 4% to 5% of B20: nor about 5% to 6% of A: on the oxide basis can be tolerated.
- the presence of substantial tin oxide decreases the photosensitivity of my glasses by causing heat developed coloration irrespective of irradiation. Inamounts greater than about 0.02% SD02, it is practically inhibitive. However, 0.02% or less of SnOz may be advantageous for some purposes because'it will induce .cerium in my glasses has several important efiects and advantages despite the fact that cerium in substantial amounts may absorb the effective radiations. It greatly improves the sensitivity of the glasses, 1. e., it increases the exposure speed ten-fold or decreases the time of exposure by a factor of ten.
- cerium increases the color intensity which may be produced by a given quantity of gold on irradiation and heat treatment.
- an oxidizing agent such as nitre (NaNOa), or saltpeter (KNOa)
- CeOz are suflicient to produce such effects. Amounts in excess of 0.05% cause absorption of the effective radiations and decrease or inhibit photosensitivity.
- the colors obtainable by irradiating and heating my glasses will vary with the exposure and the heat treatment and will range from blue through various intermediate shades of lavender, purple and maroon to a deep red.
- the coloration passes progressively through this range of colors in the recited order as time or intensity of exposure is increased.
- Blue is usually the first color to appear and after it has passed into the glass it is followed by a red coloration, the combination of the two colors causing the glass to appear lavender, purple or maroon. With sufliciently long heating the blue color ultimately is entirely replaced by red.
- the heat-developed color will also change through the above described range as the time or temperature of heat treatment is increased.
- the glass may i .be so aflected that only a red color can be developed by heat treatment.
- the time of exposure necessary to obtain an effect in my glasses which can'be developed into a coloration by heating will vary. depending upon the composition of the glass, the color effects desired and the intensity of the eflective radiations, i. e., the type and distance of the source of the radiations from the glass during exposure.
- a five minute direct exposure at eight inches from a carbon arc will generally suflice for the production of a blue color in a glass containing gold and cerium when subsequently heated.
- the glass will become colored and the colors produced in the exposed areas will differ from one another and may vary from blue to red. depending upon the times and intensities of the exposures. For example. a blue portrait may be produced on a colorless background surrounded by a red border, as will later be shown.
- ultraviolet emitting lamps such as the carbon are or the quartz mercury arc, are examples of ultraviolet emitting lamps.
- the temperature and time of heat treatment will depend upon how greatly the gold in the glass has been affected by irradiation.
- the most suitable temperatures are between 500 C and 600 C. Long treatments at the lower temperatures are as efiective as short treatments at the higher temperatures. Very drastic heat treatments near the softening temperature of the glass may cause the development of some coloration in unexposed areas.
- the glass may be reheated repeatedly for thirty minute intervals at 550 C. without coloration of unexposed areas. Such areas, if subsequently exposed, will thereafter become colored on being heated. Exposed areas which are repeatedly reheated undergo color changes as above pointed out and progress from blue through intermediate shades to red.
- diflferentially colored designs and photographic images may be produced in a glass body by exposing only previously unexposed areas one after another, using the same exposure time and intensity and reheating the glass after each exposure.
- compositions 1 to 5 inclusive are examples of batches for glasses which contain a second group oxide, specifically BaO.
- Compositions 6 to 8 inclusive are similar examples which contain no the unexposed areas, thus providing in a single second group oxide. It will be observed that the batches all contain gold equivalent to about 0.01% of the finished glass. Batches Nos. 2, 4, 6, '7, and Bcontain in addition nitre; No. 3 contains CeO: equivalent to about 0.04% of the glass, but no nitre; No. 4 contains both C802 and nitre; and No. 5 contains tin oxide equivalent to about 0.02% of the glass.
- composition 4 also contains a small quantity of cryolite.
- This material functions as. a. fining agent.
- arsenic and antimony the usual fining agents, cannot be used in my glasses.- I have found that fluorine acts as a fining agent in these glasses and that any fluorine compound which contains no inhibitory substance can be used, such as cryolite, fluorspar, sodium silicofluoride, sodium fluoride, etc.
- the glasses of the above compositions are colorless, highly photosensitive, and can develop a variety of colors and combinations of colors subject to the necessary conditions of, time and/or intensity of exposure or heat treatment, as hereinbefore explained.
- 1 represents a glass plate having a thickness of about inch, a length of about 4% inches and a width of about 3 /2 inches, and bearing within its mass a centrally located portrait of one color and a narrow circumscribed stripe of an-- other color, but being otherwise colorless;
- Fig. 2 is a sectional view on the line .22 of Fig. 1;
- Fig. 3 is a reticle for an optical instrument comprising a small, transparent, homogeneous glass disc having a plurality of extremely thin planes of color extending perpendicularly inward from one face of the disc and forming a cross hair when viewed from either face of the disc.
- a colorless, transparent and polished plate of the stated size composed of glass composition4 of Table I was covered with a light-proof mask which permitted exposure of only that area which was to be provided with the circumscribed border stripe.
- the plate was thereafter exposed for about 15 hours at a distance of about twenty inches from a quartz mercury arc lamp.
- the mask was then removed and an ordinary photographic negative of the desired portrait was superimposed over the central portion of the plate and the area surrounding the portrait was again masked.
- the whole was exposed at about eight inches from a carbon arc, the negative being between the arc and the sensitive glass plate.
- the plate was removed, the negative and mask were separated therefrom and the exposed plate was slowly taneously for thirty minutesat about 550 C. 40 heated uniformly to about 550 C.
- photographic negatives can be employed, in the conventional manner, using an ultraviolet lamp or other source of short wave radiations to make positive images in the glass which are equal 'in detail and contrast to positive images printed in like manner upon photographic printing paper.
- the glass plates and celluloslc films, hich are used as supports for the emulsion of ordinary photographic negatives have a substantial absorption for ultraviolet. Although such absorption is not sufficient to prevent printing in my glasses with ultraviolet in the ordinary manner], I have found that it practically quadruples the exposure time necessary to produce a given effect.
- This difliculty can be avoided by using negatives in which the emulsion is supported on plates of ultraviolet transmitting glass, or by forming the emulsion directly upon the glass in which the positive image is to be developed.
- the plate was slowly cooled.
- the plate thereafter bore within its mass a permanent positive image which was a faithful reproduction of the negative and which was surrounded by a bordering stripe of contrasting color.
- the color of the portrait was blue and the color of the border stripe was red.
- the colors could have been reversed by reversing the exposure times and intensities. Other color combinations could also have been produced by varying the different factors as hereinbefore explained.
- the reticle of Fig. 3 may conveniently be made by preparing an enlarged drawing of the desired cross hairs, photographing the drawing to form a negative thereof on agreatly reduced scale and then employing the negative to transfer a positive photographic image to the glass disc in the manner employed for making the portrait shown in
- mechanical drawings, cartoons and various sorts of sketches, etchings, paintings and the like can be photographed, printed and developed in the glasses of my invention.
- oxidized silicate glass means a glass prepared by fusion of raw glassmaking materials under oxidizing conditions, preferably in the presence of an oxidizing agent such as NaNOa or KNOa, containing on the oxide basis a major proportion of silica and a minor proportion of an alkali metal oxide such as sodium oxide, preferably containing a minor proportion of an oxide of a metal other than cadmium of the second periodic group up to and including barium, and optionally containing a minor proportion of one or more other conventional glass-forming oxides such as A1203, B203, and PhD, but being free of constituents which inhibit photosensitivity including compounds of arsenic, antimony, cadmium, uranium, thallium, copper, iron, vanadium, manganese, and selenium and also over 6% A1203, over B203, and over 3% P120.
- an oxidizing agent such as NaNOa or KNOa
- a photosensitive glass consisting essentially of an oxidized silicate glass containing on the oxide basis by weight about 0.01% to about 0.03% of gold computed as Au, and CeOz in an amount up to 0.05%.
- a photosensitive glass consisting essentially of an oxidized silicate glass containing on the oxide basis by weight about 0.01% to about 0.03% of gold computed as Au, and SnOz in an amount up to 0.02%.
- An article comprising a body of irradiated, substantially colorless photosensitive glass consisting essentially of an oxidized silicate glass containing on the oxide basis by weight about 0.01% to about 0.03% of gold computed as Au, and CeOz in an amount up to 0.05%, said glass body containing within its mass a predetermined latent photographic image capable of being developed, by uniform heating of the entire glass body, into a visible colored image exhibiting photographic detail.
- An article comprising a body of irradiated, substantially colorless photosensitive glass consisting essentially of an oxidized silicate glass containing on the oxide basis by weight about 0.01% to about 0.03% of gold computed as Au, and SnOz in an amount up to 0.02%, said glass body containing within its mass a predetermined latent photographic image capable of being developed, by uniform heating of the entire glass body, into a visible colored image exhibiting photographic detail.
- An article comprising a, glass body made of a photosensitive glass consisting essentially of an oxidized silicate glass containing on the oxide basis by weight about 0.01% to about 0.03% of gold computed as Au, selected portions of said glass body being colored by the gold to form within its mass a heat-stable image exhibiting photographic detail.
- An article comprising a glass body made of a photosensitive glass consisting essentially of an oxidized silicate glass containing on the oxide basis by weight about 0.01% to about 0.03% of gold computed as Au, and C802 in an amount up to 0.05%, selected portions of said glass body being colored by the gold to form within its mass a heat-stable image exhibiting photographic detail.
- An. article comprising a glass body made of a photosensitive glass consisting essentially of an oxidized silicate glass containing on the oxide basis by weight about 0.01% to about 0.03% of gold computed as Au, and $1102 in an amount up to 0.02%, selected portions of said glass body being colored by the gold to form within its mass a heat-stable image exhibiting photographic detail.
- the method of making a glass article which comprises forming an article of a substantially colorless photosensitive glass consisting essentially of an oxidized silicate glass containing on the oxide basis by weight about 0.01% to about 0.03% of gold computed as Au, exposing an area of the article to short-wave radiations and thereafter heating the article uniformly for a time and at a temperature suilicient to develop color in the exposed area.
- the method of making a glass article which comprises forming an article of a substantially colorless photosensitive glass consisting essentially of an oxidized silicate glass containing on the oxide basis by weight about 0.01% to about 0.03% of gold computed as Au, and CeOz in an amount up to 0.05%, exposing an area of the article to short-wave radiations and thereafter heating the article uniformly for a time and at a temperature suflicient to develop color in the exposed area.
- the method of making a glass article which comprises forming an article of a substantially colorles photosensitive glass consisting essentially of an oxidized silicate glass containing on the oxide basis by weight about 0.01% to about 0.03% of gold computed as Au, exposing an area of the article to short-wave radiations of a given intensity, exposing another area of the article to short-wave radiations of a diiferent intensity, and thereafter heating the article uniformly for a time and at a temperature suflicient to develop color in the exposed areas.
- the method of making a glass article which comprises forming an article oi. a substantially colorless photosensitive glass consisting essentially of an oxidized silicate glass containing a on the oxide basis by weight about 0.01% to about 0.03% of gold computed as Au, exposing selected areas of the article to short-wave radiations, heating the article uniformly for a time and at a temperature sumcient to develop color in the exposed areas, thereafter exposing hitherto unexposed areas to short-wave radiations and thereafter again heating the article appris iormly for a time and at a temperature suflicient to develop color in the subsequently exposed areas.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Dispersion Chemistry (AREA)
- Glass Compositions (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL69675D NL69675C (fr) | 1943-12-08 | ||
FR957663D FR957663A (fr) | 1943-12-08 | ||
US515938D USB515938I5 (fr) | 1943-12-08 | ||
BE478624D BE478624A (fr) | 1943-12-08 | ||
US513445A US2515939A (en) | 1943-12-08 | 1943-12-08 | Opacifiable photosensitive glasses |
US513443A US2515937A (en) | 1943-12-08 | 1943-12-08 | Photosensitive gold glass and method of making it |
GB18372/44A GB597089A (en) | 1943-12-08 | 1944-09-26 | Improvements in the manufacture of photosensitive glass, and articles made therefrom |
GB33147/47A GB635649A (en) | 1943-12-08 | 1947-12-16 | Improvements in photosensitive copper glass and method of making articles thereof |
GB33148/47A GB636151A (en) | 1943-12-08 | 1947-12-16 | Improvements in the manufacture of opacifiable photosensitive glasses |
CH283355D CH283355A (de) | 1943-12-08 | 1947-12-30 | Für kurzwellige Bestrahlung photoempfindliches Silikatglas. |
CH283356D CH283356A (de) | 1943-12-08 | 1947-12-30 | Für kurzwellige Bestrahlung photoempfindliches Silikatglas. |
CH283353D CH283353A (de) | 1943-12-08 | 1947-12-30 | Durchsichtiges, für kurzwellige Bestrahlung photoempfindliches Silikatglas. |
DEP29224A DE809847C (de) | 1943-12-08 | 1949-01-01 | Lichtempfindliches Glas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US513443A US2515937A (en) | 1943-12-08 | 1943-12-08 | Photosensitive gold glass and method of making it |
Publications (1)
Publication Number | Publication Date |
---|---|
US2515937A true US2515937A (en) | 1950-07-18 |
Family
ID=24043287
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US515938D Pending USB515938I5 (fr) | 1943-12-08 | ||
US513443A Expired - Lifetime US2515937A (en) | 1943-12-08 | 1943-12-08 | Photosensitive gold glass and method of making it |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US515938D Pending USB515938I5 (fr) | 1943-12-08 |
Country Status (7)
Country | Link |
---|---|
US (2) | US2515937A (fr) |
BE (1) | BE478624A (fr) |
CH (3) | CH283356A (fr) |
DE (1) | DE809847C (fr) |
FR (1) | FR957663A (fr) |
GB (3) | GB597089A (fr) |
NL (1) | NL69675C (fr) |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2653516A (en) * | 1949-10-17 | 1953-09-29 | Glen A Johnson | Light-beam-rectifying lens |
US2752785A (en) * | 1951-08-16 | 1956-07-03 | Pittsburgh Plate Glass Co | Graduated glassware and method of making |
US2949361A (en) * | 1956-08-13 | 1960-08-16 | Gen Electric | Photosensitive compositions |
US3031301A (en) * | 1959-03-30 | 1962-04-24 | Gen Electric | Photosensitive resin compositions |
US3040213A (en) * | 1956-11-15 | 1962-06-19 | Corning Glass Works | Composite glaceramic articles and method of making |
US3454386A (en) * | 1965-01-13 | 1969-07-08 | Ppg Industries Inc | Method for making radiation induced crystallized glass |
US3519522A (en) * | 1966-12-21 | 1970-07-07 | Corning Glass Works | Strengthening of photosensitive glass articles |
US3615318A (en) * | 1967-08-01 | 1971-10-26 | Owens Illinois Inc | Decorating process |
US3615317A (en) * | 1967-08-01 | 1971-10-26 | Owens Illinois Inc | Glass and glass-ceramic treating process |
US3944697A (en) * | 1972-05-12 | 1976-03-16 | Nippon Kogaku K.K. | Glass body having a fluorescent pattern inwardly of a surface thereof |
US4057408A (en) * | 1976-01-02 | 1977-11-08 | Corning Glass Works | Method for making photosensitive colored glasses |
DE2811420A1 (de) * | 1977-03-17 | 1978-09-21 | Corning Glass Works | Verfahren zur bildkontrastverstaerkung in kathodenstrahlroehren |
US4134747A (en) * | 1977-03-16 | 1979-01-16 | Corning Glass Works | Method of forming transparent and opaque portions in a reducing atmosphere glass |
US5102833A (en) * | 1991-07-10 | 1992-04-07 | Alfred University | Strengthening glass articles with electromagnetic radiation and resulting product |
US5212120A (en) * | 1991-06-10 | 1993-05-18 | Corning Incorporated | Photosensitive glass |
US6132643A (en) * | 1998-01-06 | 2000-10-17 | Pavel; Eugen | Fluorescent photosensitive vitroceramics and process for the production thereof |
US6228787B1 (en) | 1998-07-27 | 2001-05-08 | Eugen Pavel | Fluorescent photosensitive glasses and process for the production thereof |
WO2014109819A1 (fr) | 2013-01-09 | 2014-07-17 | United Technologies Corporation | Profil aérodynamique et procédé de fabrication |
US9365314B2 (en) | 2012-11-16 | 2016-06-14 | Owens-Brockway Glass Container Inc. | Product and package with a photosensitive use-evident feature |
WO2017218468A1 (fr) * | 2016-06-13 | 2017-12-21 | Corning Incorporated | Pièces en verre photosensible multicolore et leurs procédés de production |
EP4046187A4 (fr) * | 2019-10-14 | 2022-12-07 | 3D Glass Solutions, Inc. | Substrat de carte de circuit imprimé à haute température |
US11677373B2 (en) | 2018-01-04 | 2023-06-13 | 3D Glass Solutions, Inc. | Impedence matching conductive structure for high efficiency RF circuits |
US11894594B2 (en) | 2017-12-15 | 2024-02-06 | 3D Glass Solutions, Inc. | Coupled transmission line resonate RF filter |
US11908617B2 (en) | 2020-04-17 | 2024-02-20 | 3D Glass Solutions, Inc. | Broadband induction |
US11929199B2 (en) | 2014-05-05 | 2024-03-12 | 3D Glass Solutions, Inc. | 2D and 3D inductors fabricating photoactive substrates |
US11962057B2 (en) | 2019-04-05 | 2024-04-16 | 3D Glass Solutions, Inc. | Glass based empty substrate integrated waveguide devices |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE513836A (fr) * | 1951-08-30 | |||
GB770992A (en) * | 1952-09-12 | 1957-03-27 | Wilson Samuel Kao | Improvements in or relating to a method for producing 3-dimensional reproductions ofsolid objects |
DE955996C (de) * | 1953-05-14 | 1957-01-10 | Leitz Ernst Gmbh | Verfahren zur Herstellung von Interferenzfiltern |
DE1148859B (de) * | 1956-11-16 | 1963-05-16 | C L Dr Otto John Munz M | Verfahren und Vorrichtung zum Herstellen von Photoreliefs |
DE1260178B (de) * | 1964-11-20 | 1968-02-01 | Agfa Gevaert Ag | Fotografische Kamera mit einem rasterartigen Abbildungssystem |
DE2937433C2 (de) * | 1979-09-15 | 1981-08-06 | Standard Elektrik Lorenz Ag, 7000 Stuttgart | Belichtungsanordnung |
GB2163866B (en) * | 1984-08-30 | 1988-07-20 | Erba Farmitalia | Method of measurement using a microscope and a photographically produced grid |
GB2301678B (en) * | 1995-04-28 | 1999-02-24 | Univ Southampton | Optical waveguide device |
US9296641B2 (en) | 2012-11-01 | 2016-03-29 | Owens-Brockway Glass Container Inc. | Inspectable black glass containers |
Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE22306C (de) * | A. freystadtl in Hannover | Neuerungen in dem Verfahren zur Herstellung von Kathedralglas | ||
US332294A (en) * | 1885-12-15 | Feedeeick stagey shieley | ||
US337170A (en) * | 1886-03-02 | Glassware | ||
US343823A (en) * | 1886-06-15 | Glassware | ||
US366364A (en) * | 1887-07-12 | Method of manufacturing ornamental glass | ||
US703512A (en) * | 1901-12-26 | 1902-07-01 | Richard Zsigmondy | Composition for ruby glass. |
US1169571A (en) * | 1914-01-21 | 1916-01-25 | Harry Rosenthal | Art of coloring glass. |
US1271652A (en) * | 1917-02-05 | 1918-07-09 | Western Electric Co | Method of making colored glass. |
GB205381A (en) * | 1922-11-29 | 1923-10-18 | Francis Everard Lamplough | Improvements relating to glass for producing daylight effects from artificial sources of illumination |
US1475473A (en) * | 1923-11-27 | of rochester | ||
US1771435A (en) * | 1926-12-11 | 1930-07-29 | Pittsburgh Plate Glass Co | Absorption glass |
DE571017C (de) * | 1929-09-12 | 1933-06-20 | Auergesellschaft Gmbh | Verfahren zur Nuancierung gefaerbter Glaeser nach Rot |
US2049765A (en) * | 1932-05-09 | 1936-08-04 | Fischer Hellmuth | Luminescent glass and method of making same |
US2068801A (en) * | 1935-07-30 | 1937-01-26 | Corning Glass Works | Borosilicate glass containing cerium |
US2097275A (en) * | 1933-05-20 | 1937-10-26 | Fischer Hellmuth | Glass composition for electrical discharge devices |
US2237042A (en) * | 1938-04-23 | 1941-04-01 | Pittsburgh Plate Glass Co | Method and batch for making colored glass |
US2241950A (en) * | 1938-03-02 | 1941-05-13 | Gen Electric | Luminescent material |
US2306626A (en) * | 1939-05-25 | 1942-12-29 | Gen Electric | Luminescent composition |
US2326012A (en) * | 1941-03-31 | 1943-08-03 | Corning Glass Works | Glass article and method of making it |
US2422472A (en) * | 1941-03-31 | 1947-06-17 | Corning Glass Works | Glass article |
-
0
- NL NL69675D patent/NL69675C/xx active
- BE BE478624D patent/BE478624A/xx unknown
- FR FR957663D patent/FR957663A/fr not_active Expired
- US US515938D patent/USB515938I5/en active Pending
-
1943
- 1943-12-08 US US513443A patent/US2515937A/en not_active Expired - Lifetime
-
1944
- 1944-09-26 GB GB18372/44A patent/GB597089A/en not_active Expired
-
1947
- 1947-12-16 GB GB33148/47A patent/GB636151A/en not_active Expired
- 1947-12-16 GB GB33147/47A patent/GB635649A/en not_active Expired
- 1947-12-30 CH CH283356D patent/CH283356A/de unknown
- 1947-12-30 CH CH283353D patent/CH283353A/de unknown
- 1947-12-30 CH CH283355D patent/CH283355A/de unknown
-
1949
- 1949-01-01 DE DEP29224A patent/DE809847C/de not_active Expired
Patent Citations (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE22306C (de) * | A. freystadtl in Hannover | Neuerungen in dem Verfahren zur Herstellung von Kathedralglas | ||
US332294A (en) * | 1885-12-15 | Feedeeick stagey shieley | ||
US337170A (en) * | 1886-03-02 | Glassware | ||
US343823A (en) * | 1886-06-15 | Glassware | ||
US366364A (en) * | 1887-07-12 | Method of manufacturing ornamental glass | ||
US1475473A (en) * | 1923-11-27 | of rochester | ||
US703512A (en) * | 1901-12-26 | 1902-07-01 | Richard Zsigmondy | Composition for ruby glass. |
US1169571A (en) * | 1914-01-21 | 1916-01-25 | Harry Rosenthal | Art of coloring glass. |
US1271652A (en) * | 1917-02-05 | 1918-07-09 | Western Electric Co | Method of making colored glass. |
GB205381A (en) * | 1922-11-29 | 1923-10-18 | Francis Everard Lamplough | Improvements relating to glass for producing daylight effects from artificial sources of illumination |
US1771435A (en) * | 1926-12-11 | 1930-07-29 | Pittsburgh Plate Glass Co | Absorption glass |
DE571017C (de) * | 1929-09-12 | 1933-06-20 | Auergesellschaft Gmbh | Verfahren zur Nuancierung gefaerbter Glaeser nach Rot |
US2049765A (en) * | 1932-05-09 | 1936-08-04 | Fischer Hellmuth | Luminescent glass and method of making same |
US2097275A (en) * | 1933-05-20 | 1937-10-26 | Fischer Hellmuth | Glass composition for electrical discharge devices |
US2068801A (en) * | 1935-07-30 | 1937-01-26 | Corning Glass Works | Borosilicate glass containing cerium |
US2241950A (en) * | 1938-03-02 | 1941-05-13 | Gen Electric | Luminescent material |
US2237042A (en) * | 1938-04-23 | 1941-04-01 | Pittsburgh Plate Glass Co | Method and batch for making colored glass |
US2306626A (en) * | 1939-05-25 | 1942-12-29 | Gen Electric | Luminescent composition |
US2326012A (en) * | 1941-03-31 | 1943-08-03 | Corning Glass Works | Glass article and method of making it |
US2422472A (en) * | 1941-03-31 | 1947-06-17 | Corning Glass Works | Glass article |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2653516A (en) * | 1949-10-17 | 1953-09-29 | Glen A Johnson | Light-beam-rectifying lens |
US2752785A (en) * | 1951-08-16 | 1956-07-03 | Pittsburgh Plate Glass Co | Graduated glassware and method of making |
US2949361A (en) * | 1956-08-13 | 1960-08-16 | Gen Electric | Photosensitive compositions |
US3040213A (en) * | 1956-11-15 | 1962-06-19 | Corning Glass Works | Composite glaceramic articles and method of making |
US3031301A (en) * | 1959-03-30 | 1962-04-24 | Gen Electric | Photosensitive resin compositions |
US3454386A (en) * | 1965-01-13 | 1969-07-08 | Ppg Industries Inc | Method for making radiation induced crystallized glass |
US3519522A (en) * | 1966-12-21 | 1970-07-07 | Corning Glass Works | Strengthening of photosensitive glass articles |
US3615317A (en) * | 1967-08-01 | 1971-10-26 | Owens Illinois Inc | Glass and glass-ceramic treating process |
US3615318A (en) * | 1967-08-01 | 1971-10-26 | Owens Illinois Inc | Decorating process |
US3944697A (en) * | 1972-05-12 | 1976-03-16 | Nippon Kogaku K.K. | Glass body having a fluorescent pattern inwardly of a surface thereof |
US4057408A (en) * | 1976-01-02 | 1977-11-08 | Corning Glass Works | Method for making photosensitive colored glasses |
US4134747A (en) * | 1977-03-16 | 1979-01-16 | Corning Glass Works | Method of forming transparent and opaque portions in a reducing atmosphere glass |
DE2811420A1 (de) * | 1977-03-17 | 1978-09-21 | Corning Glass Works | Verfahren zur bildkontrastverstaerkung in kathodenstrahlroehren |
US5212120A (en) * | 1991-06-10 | 1993-05-18 | Corning Incorporated | Photosensitive glass |
US5102833A (en) * | 1991-07-10 | 1992-04-07 | Alfred University | Strengthening glass articles with electromagnetic radiation and resulting product |
US6132643A (en) * | 1998-01-06 | 2000-10-17 | Pavel; Eugen | Fluorescent photosensitive vitroceramics and process for the production thereof |
US6228787B1 (en) | 1998-07-27 | 2001-05-08 | Eugen Pavel | Fluorescent photosensitive glasses and process for the production thereof |
EP3444199A2 (fr) | 2012-11-16 | 2019-02-20 | Owens-Brockway Glass Container Inc. | Produit et emballage doté d'une caractéristique photosensible de preuve d'utilisation |
US9365314B2 (en) | 2012-11-16 | 2016-06-14 | Owens-Brockway Glass Container Inc. | Product and package with a photosensitive use-evident feature |
EP3263476A2 (fr) | 2012-11-16 | 2018-01-03 | Owens-Brockway Glass Container Inc. | Produit et emballage doté d'une caractéristique photosensible de preuve d'utilisation |
US9938058B2 (en) | 2012-11-16 | 2018-04-10 | Owens-Brockway Glass Container Inc. | Product and package with a photosensitive use-evident feature |
US11279532B2 (en) | 2012-11-16 | 2022-03-22 | Owens-Brockway Glass Container Inc. | Product and package with a photosensitive use-evident feature |
WO2014109819A1 (fr) | 2013-01-09 | 2014-07-17 | United Technologies Corporation | Profil aérodynamique et procédé de fabrication |
US11929199B2 (en) | 2014-05-05 | 2024-03-12 | 3D Glass Solutions, Inc. | 2D and 3D inductors fabricating photoactive substrates |
JP2019522623A (ja) * | 2016-06-13 | 2019-08-15 | コーニング インコーポレイテッド | 多色感光性ガラス系部品および製造方法 |
KR20190017015A (ko) * | 2016-06-13 | 2019-02-19 | 코닝 인코포레이티드 | 다색 감광성(photosensitive) 유리-계 부품 및 이의 제조 방법 |
US11198639B2 (en) | 2016-06-13 | 2021-12-14 | Corning Incorporated | Multicolored photosensitive glass-based parts and methods of manufacture |
CN109311732A (zh) * | 2016-06-13 | 2019-02-05 | 康宁股份有限公司 | 基于多色光敏玻璃的部件及其制造方法 |
TWI763679B (zh) * | 2016-06-13 | 2022-05-11 | 美商康寧公司 | 基於多色感光玻璃的部件以及製作方法 |
WO2017218468A1 (fr) * | 2016-06-13 | 2017-12-21 | Corning Incorporated | Pièces en verre photosensible multicolore et leurs procédés de production |
US11894594B2 (en) | 2017-12-15 | 2024-02-06 | 3D Glass Solutions, Inc. | Coupled transmission line resonate RF filter |
US11677373B2 (en) | 2018-01-04 | 2023-06-13 | 3D Glass Solutions, Inc. | Impedence matching conductive structure for high efficiency RF circuits |
US11962057B2 (en) | 2019-04-05 | 2024-04-16 | 3D Glass Solutions, Inc. | Glass based empty substrate integrated waveguide devices |
EP4046187A4 (fr) * | 2019-10-14 | 2022-12-07 | 3D Glass Solutions, Inc. | Substrat de carte de circuit imprimé à haute température |
US11908617B2 (en) | 2020-04-17 | 2024-02-20 | 3D Glass Solutions, Inc. | Broadband induction |
Also Published As
Publication number | Publication date |
---|---|
GB636151A (en) | 1950-04-26 |
GB635649A (en) | 1950-04-12 |
CH283355A (de) | 1952-06-15 |
CH283356A (de) | 1952-06-15 |
FR957663A (fr) | 1950-02-23 |
NL69675C (fr) | |
DE809847C (de) | 1951-08-02 |
GB597089A (en) | 1948-01-19 |
BE478624A (fr) | |
CH283353A (de) | 1952-06-15 |
USB515938I5 (fr) |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2515937A (en) | Photosensitive gold glass and method of making it | |
US2515940A (en) | Photosensitive opal glass | |
US4057408A (en) | Method for making photosensitive colored glasses | |
Stookey | Photosensitive glass | |
US2515941A (en) | Photosensitive opal glass | |
US2326012A (en) | Glass article and method of making it | |
US2515936A (en) | Silver-containing photosensitive glass | |
US2515943A (en) | Photosensitive glass article and composition and method for making it | |
US4118214A (en) | Treating polychromatic glass in reducing atmospheres | |
US4092139A (en) | Process for making colored photosensitive glass | |
EP0148238B1 (fr) | Verres sensibles a un rayon de grande energie | |
DE948280C (de) | Verfahren zur Herstellung dauerhafter zweidimensionaler photographischer Bilder | |
US2422472A (en) | Glass article | |
US4134747A (en) | Method of forming transparent and opaque portions in a reducing atmosphere glass | |
US2651145A (en) | Photosensitively opacifiable glass | |
US2515275A (en) | Photosensitive glass | |
US4670366A (en) | High energy beam sensitive glasses | |
US4979975A (en) | Fast response photosensitive opal glasses | |
JPH0826767A (ja) | ソーダ石灰シリカ系感光性ガラス及びその製造方法 | |
US2651146A (en) | Method of opacifying the surface of glass articles | |
US5019538A (en) | Colored photosensitive opal glasses | |
US4328299A (en) | Polychromatic glasses and method | |
US2515939A (en) | Opacifiable photosensitive glasses | |
US3833511A (en) | Photochromic glass and process for producing the same | |
US3328182A (en) | Phototropic glass article and method |