US20230357617A9 - Abrasive particles having an elongated body comprising a twist along an axis of the body - Google Patents
Abrasive particles having an elongated body comprising a twist along an axis of the body Download PDFInfo
- Publication number
- US20230357617A9 US20230357617A9 US17/447,078 US202117447078A US2023357617A9 US 20230357617 A9 US20230357617 A9 US 20230357617A9 US 202117447078 A US202117447078 A US 202117447078A US 2023357617 A9 US2023357617 A9 US 2023357617A9
- Authority
- US
- United States
- Prior art keywords
- shaped abrasive
- face
- abrasive grain
- another aspect
- abrasive particle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims description 210
- 239000000463 material Substances 0.000 claims description 23
- 229910003460 diamond Inorganic materials 0.000 claims description 3
- 239000010432 diamond Substances 0.000 claims description 3
- 239000006061 abrasive grain Substances 0.000 abstract description 320
- 239000000203 mixture Substances 0.000 description 128
- 238000000034 method Methods 0.000 description 71
- 239000002585 base Substances 0.000 description 61
- 230000008569 process Effects 0.000 description 52
- 239000011230 binding agent Substances 0.000 description 39
- 238000009472 formulation Methods 0.000 description 25
- 230000000670 limiting effect Effects 0.000 description 25
- 238000001035 drying Methods 0.000 description 22
- 239000011800 void material Substances 0.000 description 20
- 230000015572 biosynthetic process Effects 0.000 description 16
- 239000007788 liquid Substances 0.000 description 15
- 238000012545 processing Methods 0.000 description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 11
- 238000001125 extrusion Methods 0.000 description 11
- DDUHZTYCFQRHIY-RBHXEPJQSA-N griseofulvin Chemical compound COC1=CC(=O)C[C@@H](C)[C@@]11C(=O)C(C(OC)=CC(OC)=C2Cl)=C2O1 DDUHZTYCFQRHIY-RBHXEPJQSA-N 0.000 description 11
- 239000000654 additive Substances 0.000 description 10
- 238000001723 curing Methods 0.000 description 10
- 238000000465 moulding Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 238000013519 translation Methods 0.000 description 10
- 239000002243 precursor Substances 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 230000005855 radiation Effects 0.000 description 8
- 239000003082 abrasive agent Substances 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 7
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000011368 organic material Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 238000007493 shaping process Methods 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 229910001593 boehmite Inorganic materials 0.000 description 6
- 238000000227 grinding Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 229910010293 ceramic material Inorganic materials 0.000 description 5
- 238000000059 patterning Methods 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- 239000006259 organic additive Substances 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- -1 oxides Chemical class 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000000828 canola oil Substances 0.000 description 2
- 235000019519 canola oil Nutrition 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011344 liquid material Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000011236 particulate material Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000004080 punching Methods 0.000 description 2
- 238000003847 radiation curing Methods 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000007514 turning Methods 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- XTEGARKTQYYJKE-UHFFFAOYSA-N chloric acid Chemical compound OCl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-N 0.000 description 1
- 229940005991 chloric acid Drugs 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000001548 drop coating Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000009503 electrostatic coating Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 238000009685 knife-over-roll coating Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000007764 slot die coating Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 238000001029 thermal curing Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1409—Abrasive particles per se
- C09K3/1418—Abrasive particles per se obtained by division of a mass agglomerated by sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2/00—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
- B01J2/26—Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic on endless conveyor belts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23D—PLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
- B23D3/00—Planing or slotting machines cutting by relative movement of the tool and workpiece in a vertical or inclined straight line
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/44—Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
- C01F7/441—Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
- C01F7/442—Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination in presence of a calcination additive
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09G—POLISHING COMPOSITIONS; SKI WAXES
- C09G1/00—Polishing compositions
- C09G1/02—Polishing compositions containing abrasives or grinding agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1409—Abrasive particles per se
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1409—Abrasive particles per se
- C09K3/1427—Abrasive particles per se obtained by division of a mass agglomerated by melting, at least partially, e.g. with a binder
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Definitions
- This disclosure in general, relates to methods and systems for forming structured abrasive articles. More particularly, this disclosure relates to shaped abrasive grains.
- Abrasive articles such as coated abrasives and bonded abrasives, are used in various industries to machine workpieces, such as by lapping, grinding, or polishing. Machining utilizing abrasive articles spans a wide industrial scope from optics industries, automotive paint repair industries, to metal fabrication industries. In each of these examples, manufacturing facilities use abrasives to remove bulk material or affect the surface characteristics of products.
- Surface characteristics include shine, texture, and uniformity.
- manufacturers of metal components use abrasive articles to fine and polish surfaces, and oftentimes desire a uniformly smooth surface.
- optics manufacturers desire abrasive articles that produce defect-free surfaces to prevent light diffraction and scattering.
- Manufactures also desire abrasive articles that have a high stock removal rate for certain applications. However, there is often a trade-off between removal rate and surface quality. Finer grain abrasive articles typically produce smoother surfaces, yet have lower stock removal rates. Lower stock removal rates lead to slower production and increased cost.
- manufactures of abrasive articles have introduced surface structures to improve stock removal rate, while maintaining surface quality.
- a typical process for forming a structured abrasive article includes coating a backing with a viscous binder, coating the viscous binder with a functional powder, and stamping or rolling structure patterns into the viscous binder.
- the functional powder prevents the binder from sticking to patterning tools.
- the binder is subsequently cured.
- Typical binders include high loading of traditional fillers that increase the viscosity of the binder.
- Such traditional fillers affect the mechanical characteristics of the binder. For example, high loading of traditional fillers may adversely affect tensile strength, tensile modulus, and elongation at break characteristics of the binder. Poor mechanical characteristics of the binder allow for loss of abrasive grains, leading to scratching and haze on surfaces and reducing abrasive article life.
- An abrasive grain may include a body.
- the body may define a length (l), a height (h), and a width (w).
- the length is greater than or equal to the height and the height is greater than or equal to the width.
- the body may include a primary aspect ratio defined by the ratio of length:height of at least about 1:1.
- the body may also include an upright orientation probability of at least about 50%.
- an abrasive grain may include a body that has a length (l), a width (w), and a height (h).
- the length, width, and height may correspond to a longitudinal axis, a lateral axis, and a vertical axis, respectively, and the longitudinal axis, lateral axis, and vertical axis may define three perpendicular planes.
- the body may include an asymmetric geometry with respect to any of the three perpendicular planes.
- an abrasive grain may include a body having a complex three-dimensional geometry including 3-fold symmetry in three perpendicular planes defined by a longitudinal axis, a lateral axis, and a vertical axis. Further, the body may include an opening that extends through the entire interior of the body along one of the longitudinal axis, lateral axis, or vertical axis.
- an abrasive grain may include a body having a complex three-dimensional geometry defined by a length (l), a width (w), and a height (h).
- the body may also include a center of mass and a geometric midpoint.
- the center of mass may be displaced from the geometric midpoint by a distance (D h ) of at least about 0.05(h) along a vertical axis of the body defining the height.
- an abrasive grain may include a body that defines a length (l), a width (w), and a height (h).
- the body may include a base surface and an upper surface. Further, the base surface comprises a different cross-sectional shape than a cross-sectional shape of the upper surface.
- an abrasive grain may include a body that has a generally flat bottom and a dome-shaped top extending from the generally flat bottom.
- an abrasive grain may include a body comprising a length (l), a width (w), and a height (h).
- the length, width, and height may correspond to a longitudinal axis, a lateral axis, and a vertical axis, respectively.
- the body may include a twist along a longitudinal axis defining the length of the body such that a base surface is rotated with respect to an upper surface to establish a twist angle.
- an abrasive grain may include a body having a first end face and a second end face a, at least three adjacent side faces extending between the first end face and the second end face, and an edge structure established between each pair of adjacent side faces.
- an abrasive grain may include a body having a central portion and at least three radial arms extending outwardly from the central portion along the entire length of the central portion.
- an abrasive grain in yet another aspect, includes a body having a length (l), a width (w), and a height (h), wherein the body has a base surface end and an upper surface, and wherein the base surface includes a different cross-sectional shape than a cross-sectional shape of the upper surface.
- an abrasive grain includes a body having a central portion and at least three radial arms extending outwardly from the central portion along the entire length of the central portion, wherein each radial arm includes an arrow-shaped distal end.
- a shaped abrasive particle includes a body having a length (l), a width (w), and a height (h), wherein the body comprises a base surface end, an upper surface, and a side surface extending between the base surface and the upper surface, and wherein the base surface has a different cross-sectional shape than a cross-sectional shape of the upper surface.
- a shaped abrasive particle includes a body having a length (l), a width (w), and a height (h), wherein the body has a three-pointed star including a first arm defining a first arm, a second arm defining a second arm, and a third arm defining a second arm, and wherein the first arm, second arm and third arm define a total angle of less than about 180 degrees, and wherein the body has a curling factor of not greater than about 10.
- a shaped abrasive particle includes a body having a length (l), a width (w), and a height (h), wherein the body defines a four-pointed star having a first arm, second arm, third arm, and fourth arm extending from a central portion, and wherein the body has a curling factor of not greater than about 10.
- a shaped abrasive particle includes a body having a length (l), a width (w), and a height (h), wherein the body is defined by a base surface, an upper surface, and a side surface extending between the base surface and the upper surface, wherein the base surface comprises a cross-shaped two-dimensional shape and the upper surface comprises a rounded quadrilateral two-dimensional shape.
- a shaped abrasive particle includes a body having a first layer having a first length and a second layer overlying the first layer, wherein the second layer has a length that is within a range between about 50% and about 90% of the length of the first layer.
- FIG. 1 is a diagram of an exemplary process
- FIG. 2 is a perspective view of a structured abrasive article
- FIG. 3 is a perspective view of a first embodiment of a shaped abrasive grain
- FIG. 4 is a plan view of a second end of the first embodiment of a shaped abrasive grain
- FIG. 5 is a perspective view of a second embodiment of a shaped abrasive grain
- FIG. 6 is a plan view of a second end face of the second embodiment of a shaped abrasive grain
- FIG. 7 is a perspective view of a third embodiment of a shaped abrasive grain
- FIG. 8 is a plan view of a second end face of the first embodiment of a shaped abrasive grain
- FIG. 9 is a perspective view of a fourth embodiment of a shaped abrasive grain.
- FIG. 10 is a plan view of a second end face of the fourth embodiment of a shaped abrasive grain
- FIG. 11 is a perspective view of a fifth embodiment of a shaped abrasive grain
- FIG. 12 is a plan view of a bottom of the fifth embodiment of a shaped abrasive grain
- FIG. 13 is a perspective view of a sixth embodiment of a shaped abrasive grain
- FIG. 14 is a plan view of a second end face of the fourth embodiment of a shaped abrasive grain
- FIG. 15 is a plan view of a top of a seventh embodiment of a shaped abrasive grain
- FIG. 16 is a plan view of a bottom of the seventh embodiment of a shaped abrasive grain
- FIG. 17 is a plan view of a top of an eighth embodiment of a shaped abrasive grain
- FIG. 18 is a plan view of a bottom of the eighth embodiment of a shaped abrasive grain
- FIG. 19 is a perspective view of a ninth embodiment of a shaped abrasive grain
- FIG. 20 is a plan view of a second end face of the ninth embodiment of a shaped abrasive grain
- FIG. 21 is a perspective view of a tenth embodiment of a shaped abrasive grain
- FIG. 22 is a plan view of a first end face of the tenth embodiment of a shaped abrasive grain
- FIG. 23 is a plan view of a second end face of the tenth embodiment of a shaped abrasive grain
- FIG. 24 is a perspective view of an eleventh embodiment of a shaped abrasive grain
- FIG. 25 is a plan view of a second end face of the eleventh embodiment of a shaped abrasive grain
- FIG. 26 is a perspective view of a twelfth embodiment of a shaped abrasive grain
- FIG. 27 is a plan view of a second end face of the twelfth embodiment of a shaped abrasive grain
- FIG. 28 is a perspective view of a thirteenth embodiment of a shaped abrasive grain
- FIG. 29 is a plan view of a second end face of the thirteenth embodiment of a shaped abrasive grain
- FIG. 30 is a perspective view of a fourteenth embodiment of a shaped abrasive grain
- FIG. 31 is a plan view of a second end face of the fourteenth embodiment of a shaped abrasive grain
- FIG. 32 is a perspective view of a fifteenth embodiment of a shaped abrasive grain
- FIG. 33 is a plan view of a second end face of the fifteenth embodiment of a shaped abrasive grain
- FIG. 34 is a perspective view of a sixteenth embodiment of a shaped abrasive grain
- FIG. 35 is a plan view of a second end face of the sixteenth embodiment of a shaped abrasive grain
- FIG. 36 is a perspective view of a seventeenth embodiment of a shaped abrasive grain
- FIG. 37 is a plan view of a second end face of the seventeenth embodiment of a shaped abrasive grain
- FIG. 38 is a perspective view of an eighteenth embodiment of a shaped abrasive grain
- FIG. 39 is a plan view of a second end face of the eighteenth embodiment of a shaped abrasive grain
- FIG. 40 is a perspective view of a nineteenth embodiment of a shaped abrasive grain
- FIG. 41 is a plan view of a second end face of the nineteenth embodiment of a shaped abrasive grain
- FIG. 42 is a perspective view of a twentieth embodiment of a shaped abrasive grain
- FIG. 43 is a plan view of a second end face of the twentieth embodiment of a shaped abrasive grain
- FIG. 44 is a perspective view of a twenty-first embodiment of a shaped abrasive grain
- FIG. 45 is a plan view of a first end face of the twenty-first embodiment of a shaped abrasive grain
- FIG. 46 is a plan view of a second end face of the twenty-first embodiment of a shaped abrasive grain
- FIG. 47 is a perspective view of a twenty-second embodiment of a shaped abrasive grain
- FIG. 48 is a plan view of a first end face of the twenty-second embodiment of a shaped abrasive grain
- FIG. 49 is a plan view of a second end face of the twenty-second embodiment of a shaped abrasive grain
- FIG. 50 is a perspective view of a twenty-third embodiment of a shaped abrasive grain
- FIG. 51 is a plan view of a first end face of the twenty-third embodiment of a shaped abrasive grain
- FIG. 52 is a plan view of a second end face of the twenty-third embodiment of a shaped abrasive grain
- FIG. 53 is a perspective view of a twenty-fourth embodiment of a shaped abrasive grain
- FIG. 54 is a plan view of a first end face of the twenty-fourth embodiment of a shaped abrasive grain
- FIG. 55 is a plan view of a second end face of the twenty-fourth embodiment of a shaped abrasive grain
- FIG. 56 is a perspective view of a twenty-fifth embodiment of a shaped abrasive grain
- FIG. 57 is a plan view of a first end face of the twenty-fifth embodiment of a shaped abrasive grain
- FIG. 58 is a plan view of a second end face of the twenty-fifth embodiment of a shaped abrasive grain
- FIG. 59 is a perspective view of a twenty-sixth embodiment of a shaped abrasive grain
- FIG. 60 is a plan view of a first end face of the twenty-sixth embodiment of a shaped abrasive grain.
- FIG. 61 is a plan view of a second end face of the twenty-sixth embodiment of a shaped abrasive grain.
- FIGS. 62 A and B include illustrations of a system for forming shaped abrasive particles in accordance with an embodiment.
- FIG. 63 includes an illustration of a system for forming a shaped abrasive particle in accordance with an embodiment.
- FIG. 64 includes an illustration of a portion of a system for forming a shaped abrasive particle in accordance with an embodiment.
- FIG. 65 A includes an image of a shaped abrasive particle according to an embodiment.
- FIG. 65 B includes an illustration of a side view of the shaped abrasive particle of FIG. 65 A .
- FIG. 65 C includes an image of a shaped abrasive particle according to an embodiment.
- FIG. 66 A includes an image of a shaped abrasive particle according to an embodiment.
- FIG. 66 B includes an illustration of a side view of the shaped abrasive particle of FIG. 66 A .
- FIG. 67 includes a top view image of a shaped abrasive particle formed according to a particular embodiment.
- FIG. 68 includes a top view image of a shaped abrasive particle according to an embodiment.
- FIG. 69 A includes a side view image of a shaped abrasive particle according to an embodiment.
- FIG. 69 B includes a top view image of a shaped abrasive particle according to an embodiment.
- the following is also directed to methods of forming shaped abrasive particles and features of such shaped abrasive particles.
- the shaped abrasive particles may be used in various abrasive articles, including for example bonded abrasive articles, coated abrasive articles, and the like.
- the shaped abrasive particles of the embodiments herein may be utilized in free abrasive technologies, including for example grinding and/or polishing slurries.
- a backing 102 may be paid from a roll 104 .
- the backing 102 may be coated with a binder formulation 106 dispensed from a coating apparatus 108 .
- An exemplary coating apparatus includes a drop die coater, a knife coater, a curtain coater, a vacuum die coater or a die coater.
- Coating methodologies can include either contact or non-contact methods. Such methods include 2 roll, 3 roll reverse, knife over roll, slot die, gravure, extrusion, or spray coating applications.
- the binder formulation 106 may be provided in a slurry that includes the binder formulation and abrasive grains.
- the binder formulation 106 may be dispensed separate from the abrasive grains.
- the abrasive grains may be provided following the coating of the backing 102 with the binder formulation 106 , after partial curing of the binder formulation 106 , after patterning of the binder formulation 106 , or after fully curing the binder formulation 108 .
- the abrasive grains may, for example, be applied by a technique, such as electrostatic coating, drop coating or mechanical projection.
- the abrasive grains may be any combination of one or more of the shaped abrasive grains described herein.
- the binder formulation 106 may be cured after passing under an energy source 110 .
- the selection of the energy source 110 may depend in part upon the chemistry of the binder formulation 106 .
- the energy source 110 may be a source of thermal energy or actinic radiation energy, such as electron beam, ultraviolet light, or visible light.
- the amount of energy used may depend on the chemical nature of the reactive groups in the precursor polymer constituents, as well as upon the thickness and density of the binder formulation 106 .
- thermal energy an oven temperature of about 75° C. to about 150° C. and a duration of about 5 minutes to about 60 minutes may be generally sufficient.
- Electron beam radiation or ionizing radiation may be used at an energy level of about 0.1 MRad to about 100 MRad, particularly at an energy level of about 1 MRad to about 10 MRad.
- Ultraviolet radiation includes radiation having a wavelength within a range of about 200 nanometers to about 400 nanometers, particularly within a range of about 250 nanometers to 400 nanometers.
- Visible radiation includes radiation having a wavelength within a range of about 400 nanometers to about 800 nanometers, particularly in a range of about 400 nanometers to about 550 nanometers.
- Curing parameters, such as exposure are generally formulation dependent and can be adjusted via lamp power and belt speed.
- the energy source 110 may provide actinic radiation to the coated backing, partially curing the binder formulation 106 .
- the binder formulation 106 is thermally curable and the energy source 110 may provide heat for thermal treatment.
- the binder formulation 106 may include actinic radiation curable and thermally curable components.
- the binder formulation may be partially cured through one of thermal and actinic radiation curing and cured to complete curing through a second of thermal and actinic radiation curing.
- an epoxy constituent of the binder formulation may be partially cured using ultraviolet electromagnetic radiation and an acrylic constituent of the binder formulation may be further cured through thermal curing.
- a structured abrasive article 112 is formed.
- a size coat may be applied over the patterned abrasive structures.
- the structured abrasive article 112 may be rolled into a roll 114 .
- fully curing may be performed after rolling a partially cured abrasive article 112 .
- a size coat may be applied over the binder formulation 106 and abrasive grains.
- the size coat may be applied before partially curing the binder formulation 106 , after partially curing the binder formulation 106 or after further curing the binder formulation 106 .
- the size coat may be applied, for example, by roll coating or spray coating.
- the size coat may be cured in conjunction with the binder formulation 106 or cured separately.
- a supersize coat including grinding aids may be applied over the size coat and cured with the binder formulation 106 , cured with the size coat or cured separately.
- a structured abrasive article is shown and is generally designated 200 .
- the structured abrasive article 200 may include a backing 202 and a plurality of shaped abrasive grains 204 deposited thereon.
- the structured abrasive article 200 may be manufactured using the process described in conjunction with FIG. 1 .
- the shaped abrasive grains 204 may be one or more of the shaped abrasive grains described herein. Further, the shaped abrasive grains may include one or more, or any combination, of the shaped abrasive grains described herein. Further, one or more of the shaped abrasive grains described herein may include an upright orientation probability.
- the upright orientation may be considered an orientation that corresponds to a favorable abrasive/cutting position for each shaped abrasive grain and the probability is a simple mathematical probability that the grain lands in the upright orientation.
- the upright orientation is at least fifty percent (50%). In another aspect, the upright orientation is at least fifty-five percent (55%). In another aspect, the upright orientation is at least sixty percent (60%). In another aspect, the upright orientation is at least sixty-five percent (65%). In another aspect, the upright orientation is at least seventy percent (70%). In another aspect, the upright orientation is at least seventy-five percent (75%). In another aspect, the upright orientation is at least eighty percent (80%). In another aspect, the upright orientation is at least eighty-five percent (85%). In another aspect, the upright orientation is at least ninety percent (90%). In another aspect, the upright orientation is at least ninety-five percent (95%). In another aspect, the upright orientation is one hundred percent (100%).
- the body of each of the shaped abrasive grains described herein may include a polycrystalline material.
- the polycrystalline material may include abrasive grains.
- the abrasive grains may include nitrides, oxides, carbides, borides, oxynitrides, diamond, or a combination thereof.
- the abrasive grains may include an oxide selected from the group of oxides consisting of aluminum oxide, zirconium oxide, titanium oxide, yttrium oxide, chromium oxide, strontium oxide, silicon oxide, and a combination thereof.
- the abrasive grains may include alumina. In yet another aspect, the abrasive grains consist essentially of alumina. Further, the abrasive grains may have an average grain size of not greater than about 500 microns. Alternatively, the average grain size is not greater than about 250 microns. In another aspect, the average grain size is not greater than about 100 microns. In another aspect, the average grain size is not greater than about 50 microns. In another aspect, the average grain size is not greater than about 30 microns. In another aspect, the average grain size is not greater than about 20 microns. In another aspect, the average grain size is not greater than about 10 microns. In another aspect, the average grain size is not greater than about 1 micron.
- the average grain size is at least about 0.01 microns. In another aspect, the average grain size is at least about 0.05 microns. In another aspect, the average grain size is at least about 0.08 microns. In another aspect, the average grain size is at least about 0.1 microns.
- each of the shaped abrasive grains described herein may be a composite that includes at least about 2 different types of abrasive grains.
- FIG. 3 and FIG. 4 illustrate a first embodiment of a shaped abrasive grain 300 .
- the shaped abrasive grain 300 may include a body 301 that is generally prismatic with a first end face 302 and a second end face 304 .
- the shaped abrasive grain 300 may include a first side face 310 extending between the first end face 302 and the second end face 304 .
- a second side face 312 may extend between the first end face 302 and the second end face 304 adjacent to the first side face 310 .
- the shaped abrasive grain 300 may also include a third side face 314 extending between the first end face 302 and the second end face 304 adjacent to the second side face 312 and the first side face 310 .
- the shaped abrasive grain 300 may also include a first edge 320 between the first side face 310 and the second side face 312 .
- the shaped abrasive grain 300 may also include a second edge 322 between the second side face 312 and the third side face 314 .
- the shaped abrasive grain 300 may include a third edge 324 between the third side face 314 and the first side face 312 .
- each end face 302 , 304 the shaped abrasive grain 300 may be generally triangular in shape.
- Each side face 310 , 312 , 314 may be generally rectangular in shape.
- the cross-section of the shaped abrasive grain 300 in a plane parallel to the end faces 302 , 304 is generally triangular. It can be appreciated that the shaped abrasive grain 300 may include more than the three side faces 310 , 312 , 314 , and three edges 320 , 322 , 324 .
- the end faces 302 , 304 and cross-section of the shaped abrasive grain 300 through a plane parallel to the end faces 302 , 304 may have that shape of any polygon, e.g., a quadrilateral, a pentagon, a hexagon, a heptagon, an octagon, a nonagon, a decagon, etc. Further, the polygon may be convex, non-convex, concave, or non-concave.
- FIG. 5 and FIG. 6 illustrate a second embodiment of a shaped abrasive grain 500 .
- the shaped abrasive grain 500 may include a body 501 that is generally prismatic with a first end face 502 and a second end face 504 .
- the shaped abrasive grain 500 may include a first side face 510 extending between the first end face 502 and the second end face 504 .
- a second side face 512 may extend between the first end face 502 and the second end face 504 adjacent to the first side face 510 .
- the shaped abrasive grain 500 may also include a third side face 514 extending between the first end face 502 and the second end face 504 adjacent to the second side face 512 and the first side face 510 .
- the shaped abrasive grain 500 may also include a first edge face 520 between the first side face 510 and the second side face 512 .
- the shaped abrasive grain 500 may also include a second edge face 522 between the second side face 512 and the third side face 514 .
- the shaped abrasive grain 500 may include a third edge face 524 between the third side face 514 and the first side face 512 .
- each end face 502 , 504 the shaped abrasive grain 500 may be generally triangular in shape.
- Each side face 510 , 512 , 514 may be generally rectangular in shape.
- the cross-section of the shaped abrasive grain 500 in a plane parallel to the end faces 502 , 504 is generally triangular.
- FIG. 7 and FIG. 8 illustrate a third embodiment of a shaped abrasive grain 700 .
- the shaped abrasive grain 700 may include a body 701 that is generally prismatic with a first end face 702 and a second end face 704 .
- the shaped abrasive grain 700 may include a first side face 710 extending between the first end face 702 and the second end face 704 .
- a second side face 712 may extend between the first end face 702 and the second end face 704 adjacent to the first side face 710 .
- the shaped abrasive grain 700 may also include a third side face 714 extending between the first end face 702 and the second end face 704 adjacent to the second side face 712 and the first side face 710 .
- the shaped abrasive grain 700 may also include a first concave edge channel 720 between the first side face 710 and the second side face 712 .
- the shaped abrasive grain 700 may also include a second concave edge channel 722 between the second side face 712 and the third side face 714 .
- the shaped abrasive grain 700 may include a third concave edge channel 724 between the third side face 714 and the first side face 712 .
- each end face 702 , 704 the shaped abrasive grain 700 may be generally triangular in shape.
- Each side face 710 , 712 , 714 may be generally rectangular in shape.
- the cross-section of the shaped abrasive grain 700 in a plane parallel to the end faces 702 , 704 is generally triangular.
- FIG. 9 and FIG. 10 illustrate a fourth embodiment of a shaped abrasive grain 900 .
- the shaped abrasive grain 900 may include a body 901 that is generally prismatic with a first end face 902 and a second end face 904 .
- the shaped abrasive grain 900 may include a first side face 910 extending between the first end face 902 and the second end face 904 .
- a second side face 912 may extend between the first end face 902 and the second end face 904 adjacent to the first side face 910 .
- the shaped abrasive grain 900 may also include a third side face 914 extending between the first end face 902 and the second end face 904 adjacent to the second side face 912 and the first side face 910 .
- the shaped abrasive grain 900 may also include a first V-shaped edge channel face 920 between the first side face 910 and the second side face 912 .
- the shaped abrasive grain 900 may also include a second V-shaped edge channel face 922 between the second side face 912 and the third side face 914 .
- the shaped abrasive grain 900 may include a third V-shaped edge channel face 924 between the third side face 914 and the first side face 912 .
- each end face 902 , 904 the shaped abrasive grain 900 may be generally triangular in shape.
- Each side face 910 , 912 , 914 may be generally rectangular in shape.
- the cross-section of the shaped abrasive grain 900 in a plane parallel to the end faces 902 , 904 is generally triangular.
- edges 320 , 322 , 324 ; the edge faces 520 , 522 , 524 ; the concave edge channels 720 , 722 , 724 ; and the V-shaped edge channels 920 , 922 , 924 may be considered edge structures.
- the edge structures ensure that when the shaped abrasive grains 300 , 500 , 700 , 900 are deposited, or otherwise disposed, on a backing, a side face will land on the backing and an edge structure will face up, or outward, from the backing. Further, the edge structures provide sharp edges that provide substantially increased grinding performance.
- the face of the shaped abrasive grain 300 , 500 , 700 , 900 i.e., the base, that is touching a backing has an area that is substantially greater than the area of the portion of the shaped abrasive grain 300 , 500 , 700 , 900 that is pointed outward, or upward, e.g., the edge structure.
- the base may comprise at least about thirty percent (30%) of the total surface area of the particle. In another aspect, the base may comprise at least about forty percent (40%) of the total surface area of the particle. In another aspect, the base may comprise at least about fifty percent (50%) of the total surface area of the particle. In another aspect, the base may comprise at least about sixty percent (60%) of the total surface area of the particle. In another aspect, the base may comprise no greater than ninety-nine percent (99%) of the total surface area of the particle. In another aspect, the base may comprise no greater than ninety-five percent (95%) of the total surface area of the particle. In another aspect, the base may comprise no greater than ninety percent (90%) of the total surface area of the particle. In another aspect, the base may comprise no greater than eighty percent (80%) of the total surface area of the particle. In another aspect, the base may comprise no greater than seventy-five percent (75%) of the total surface area of the particle.
- a fifth embodiment of a shaped abrasive grain is shown and is generally designated 1100 .
- the shaped abrasive grain 1100 may include a body 1101 that is generally pyramid-shaped with a generally triangle-shaped bottom face 1102 . Further, the shaped abrasive grain 1100 may be formed with a hole 1104 , i.e., an opening, therein.
- the hole 1104 may define a central axis 1106 that passes through a center of the hole 1104 .
- the shaped abrasive grain 1100 may also define a central axis 1108 that passes through a center of the shaped abrasive grain 1100 .
- the hole 1104 may be formed in the shaped abrasive grain 1100 such that the central axis 1106 of the hole 1104 is spaced a distance 1110 above the central axis 1108 of the shaped abrasive grain 1100 . As such, a center of mass of the shaped abrasive grain 1100 may be moved below the geometric midpoint of the shaped abrasive grain 1100 .
- Moving the center of mass below the geometric midpoint of the shaped abrasive grain may ensure that the shaped abrasive grain 1100 lands on the same face, e.g., the bottom face 1102 , when dropped, or otherwise deposited, onto a backing, such that the shaped abrasive grain has an upright orientation.
- the center of mass of is displaced from the geometric midpoint by a distance that is equal to 0.05 the height (h) along a vertical axis of the body 1102 defining a height.
- the center of mass may be displaced by a distance of at least about 0.1(h).
- the center of mass may be displaced by a distance of at least about 0.15(h).
- the center of mass may be displaced by a distance of at least about 0.18(h).
- the center of mass may be displaced by a distance of at least about 0.2(h).
- the center of mass may be displaced by a distance of at least about 0.22(h).
- the center of mass may be displaced by a distance of at least about 0.25(h). In another aspect, the center of mass may be displaced by a distance of at least about 0.27(h). In another aspect, the center of mass may be displaced by a distance of at least about 0.3(h). In another aspect, the center of mass may be displaced by a distance of at least about 0.32(h). In another aspect, the center of mass may be displaced by a distance of at least about 0.35(h). In another aspect, the center of mass may be displaced by a distance of at least about 0.38(h).
- the center of mass is displaced a distance no greater than 0.5(h). In yet another aspect, the center of mass is displaced a distance no greater than 0.49(h). In still another aspect, the center of mass is displaced a distance no greater than 0.48(h). In another aspect, the center of mass is displaced a distance no greater than 0.45(h). In still another aspect, the center of mass is displaced a distance no greater than 0.43(h). In yet still another aspect, the center of mass is displaced a distance no greater than 0.40(h). In another aspect, the center of mass is displaced a distance no greater than 0.39(h). In another aspect, the center of mass is displaced a distance no greater than 0.38(h).
- center of mass may be displaced so that the center of mass is closer to a base, e.g., the bottom face 1102 , of the body 1101 , than a top of the body 1101 when the shaped abrasive grain 1100 is in an upright orientation as shown in FIG. 11 .
- the center of mass may be displaced from the geometric midpoint by a distance 1110 that is equal to 0.05 the width (w) along a horizontal axis of the of the body 1102 defining the width.
- the center of mass may be displaced by a distance of at least about 0.1(w).
- the center of mass may be displaced by a distance of at least about 0.15(w).
- the center of mass may be displaced by a distance of at least about 0.18(w).
- the center of mass may be displaced by a distance of at least about 0.2(w).
- the center of mass may be displaced by a distance of at least about 0.22(w).
- the center of mass may be displaced by a distance of at least about 0.25(w). In another aspect, the center of mass may be displaced by a distance of at least about 0.27(w). In another aspect, the center of mass may be displaced by a distance of at least about 0.3(w). In another aspect, the center of mass may be displaced by a distance of at least about 0.32(w). In another aspect, the center of mass may be displaced by a distance of at least about 0.35(w). In another aspect, the center of mass may be displaced by a distance of at least about 0.38(w).
- the center of mass is displaced a distance no greater than 0.5(w). In yet another aspect, the center of mass is displaced a distance no greater than 0.49 (w). In still another aspect, the center of mass is displaced a distance no greater than 0.48(w). In another aspect, the center of mass is displaced a distance no greater than 0.45(w). In still another aspect, the center of mass is displaced a distance no greater than 0.43(w). In yet still another aspect, the center of mass is displaced a distance no greater than 0.40(w). In another aspect, the center of mass is displaced a distance no greater than 0.39(w). In another aspect, the center of mass is displaced a distance no greater than 0.38(w).
- the center of mass may be displaced from the geometric midpoint by a distance that is equal to 0.05 the length (l) along a longitudinal axis of the body 1102 defining a length. In another aspect, the center of mass may be displaced by a distance of at least about 0.1(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.15(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.18(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.2(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.22(l).
- the center of mass may be displaced by a distance of at least about 0.25(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.27(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.3(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.32(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.35(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.38(l).
- the center of mass is displaced a distance no greater than 0.5(l). In yet another aspect, the center of mass is displaced a distance no greater than 0.49(l). In still another aspect, the center of mass is displaced a distance no greater than 0.48(l). In another aspect, the center of mass is displaced a distance no greater than 0.45(l). In still another aspect, the center of mass is displaced a distance no greater than 0.43(l). In yet still another aspect, the center of mass is displaced a distance no greater than 0.40(l). In another aspect, the center of mass is displaced a distance no greater than 0.39(l). In another aspect, the center of mass is displaced a distance no greater than 0.38(l).
- FIG. 13 and FIG. 14 illustrate a sixth embodiment of a shaped abrasive grain that is generally designated 1300 .
- the shaped abrasive grain 1300 may include a body 1301 that may include a central portion 1302 that extends along a longitudinal axis 1304 .
- a first radial arm 1306 may extend outwardly from the central portion 1302 along the length of the central portion 1302 .
- a second radial arm 1308 may extend outwardly from the central portion 1302 along the length of the central portion 1302 .
- a third radial arm 1310 may extend outwardly from the central portion 1302 along the length of the central portion 1302 .
- a fourth radial arm 1312 may extend outwardly from the central portion 1302 along the length of the central portion 1302 .
- the radial arms 1306 , 1308 , 1310 , 1312 may be equally spaced around the central portion 1302 of the shaped abrasive grain 1300 .
- the first radial arm 1306 may include a generally arrow-shaped distal end 1320 .
- the second radial arm 1308 may include a generally arrow-shaped distal end 1322 .
- the third radial arm 1310 may include a generally arrow-shaped distal end 1324 .
- the fourth radial arm 1312 may include a generally arrow-shaped distal end 1326 .
- FIG. 13 also indicates that the shaped abrasive grain 1300 may be formed with a first void 1330 between the first radial arm 1306 and the second radial arm 1308 .
- a second void 1332 may be formed between the second radial arm 1308 and the third radial arm 1310 .
- a third void 1334 may also be formed between the third radial arm 1310 and the fourth radial arm 1312 .
- a fourth void 1336 may be formed between the fourth radial arm 1312 and the first radial arm 1306 .
- the shaped abrasive grain 1300 may include a length 1340 , a height 1342 , and a width 1344 .
- the length 1340 is greater than the height 1342 and the height 1342 is greater than the width 1344 .
- the shaped abrasive grain 1300 may define a primary aspect ratio that is the ratio of the length 1340 to the height 1342 (length:height).
- the shaped abrasive grain 1300 may define a secondary aspect ratio that is the ratio of the height 1342 to the width 1344 (height:width).
- the shaped abrasive grain 1300 may define a tertiary aspect ratio that is the ratio of the length 1340 to the width 1342 (length:width).
- the primary aspect ratio is at least 1:1. In another aspect, the primary aspect ratio is at least 2:1. In another aspect, the primary aspect ratio is at least 2.5:1. In another aspect, the primary aspect ratio is at least 3:1. In another aspect, the primary aspect ratio is at least 3.5:1. In another aspect, the primary aspect ratio is at least 4:1. In another aspect, the primary aspect ratio is at least 4.5:1. In another aspect, the primary aspect ratio is at least 5:1. In another aspect, the primary aspect ratio is at least 5.5:1. In another aspect, the primary aspect ratio is at least 6:1. In another aspect, the primary aspect ratio is at least 6.5:1. In another aspect, the primary aspect ratio is at least 7:1. In another aspect, the primary aspect ratio is at least 7.5:1.
- the primary aspect ratio is at least 8:1. In another aspect, the primary aspect ratio is at least 8.5:1. In another aspect, the primary aspect ratio is at least 9:1. In another aspect, the primary aspect ratio is at least 9.5:1. In another aspect, the primary aspect ratio is at least 10:1.
- the secondary aspect ratio is at least 1:1. In another aspect, the secondary aspect ratio is at least 1.5:1. In another aspect, the secondary aspect ratio is 2:1. In another aspect, the secondary aspect ratio is at least 2.5:1. In another aspect, the secondary aspect ratio is at least 3:1. In another aspect, the secondary aspect ratio is at least 3.5:1. In another aspect, the secondary aspect ratio is at least 4:1. In another aspect, the secondary aspect ratio is at least 4.5:1. In another aspect, the secondary aspect ratio is at least 5:1. In another aspect, the secondary aspect ratio is at least 5.5:1. In another aspect, the secondary aspect ratio is at least 6:1. In another aspect, the secondary aspect ratio is at least 6.5:1. In another aspect, the secondary aspect ratio is at least 7:1.
- the secondary aspect ratio is at least 7.5:1. In another aspect, the secondary aspect ratio is at least 8:1. In another aspect, the secondary aspect ratio is at least 8.5:1. In another aspect, the secondary aspect ratio is at least 9:1. In another aspect, the secondary aspect ratio is at least 9.5:1. In another aspect, the secondary aspect ratio is at least 10:1.
- the tertiary aspect ratio is at least 1:1. In another aspect, the tertiary aspect ratio is at least 1.5:1. In another aspect, the tertiary aspect ratio is 2:1. In another aspect, the tertiary aspect ratio is at least 2.5:1. In another aspect, the tertiary aspect ratio is at least 3:1. In another aspect, the tertiary aspect ratio is at least 3.5:1. In another aspect, the tertiary aspect ratio is at least 4:1. In another aspect, the tertiary aspect ratio is at least 4.5:1. In another aspect, the tertiary aspect ratio is at least 5:1. In another aspect, the tertiary aspect ratio is at least 5.5:1.
- the tertiary aspect ratio is at least 6:1. In another aspect, the tertiary aspect ratio is at least 6.5:1. In another aspect, the tertiary aspect ratio is at least 7:1. In another aspect, the tertiary aspect ratio is at least 7.5:1. In another aspect, the tertiary aspect ratio is at least 8:1. In another aspect, the tertiary aspect ratio is at least 8.5:1. In another aspect, the tertiary aspect ratio is at least 9:1. In another aspect, the tertiary aspect ratio is at least 9.5:1. In another aspect, the tertiary aspect ratio is at least 10:1.
- the shape of the shaped abrasive grain 1300 with respect to the primary aspect ratio is generally rectangular, e.g., flat, or curved.
- the shape of the shaped abrasive grain 1300 with respect to the secondary aspect ratio may be any polyhedral shape, e.g., a triangle, a square, a rectangle, a pentagon, etc.
- the shape of the shaped abrasive grain 1300 with respect to the secondary aspect ratio may also be the shape of any alphanumeric character, e.g., 1, 2, 3, etc., A, B, C, etc.
- the shape of the shaped abrasive grain 1300 with respect to the secondary aspect ratio may be a character selected from the Greek alphabet, the modern Latin alphabet, the ancient Latin alphabet, the Russian alphabet, any other alphabet, or any combination thereof. Further, the shape of the shaped abrasive grain 1300 with respect to the secondary aspect ratio may be a Kanji character.
- the width 1344 is greater than the height 1342 and the height 1342 is greater than the length 1340 .
- the shaped abrasive grain 1300 may define a primary aspect ratio that is the ratio of the width 1344 to the height 1342 (width:height). Further, the shaped abrasive grain 1300 may define a secondary aspect ratio that is the ratio of the height 1342 to the length 1340 (height:length). Finally, the shaped abrasive grain 1300 may define a tertiary aspect ratio that is the ratio of the width 1342 to the length 1340 (width:length).
- the primary aspect ratio is at least 2:1. In another aspect, the primary aspect ratio is at least 2.5:1. In another aspect, the primary aspect ratio is at least 3:1. In another aspect, the primary aspect ratio is at least 3.5:1. In another aspect, the primary aspect ratio is at least 4:1. In another aspect, the primary aspect ratio is at least 4.5:1. In another aspect, the primary aspect ratio is at least 5:1. In another aspect, the primary aspect ratio is at least 5.5:1. In another aspect, the primary aspect ratio is at least 6:1. In another aspect, the primary aspect ratio is at least 6.5:1. In another aspect, the primary aspect ratio is at least 7:1. In another aspect, the primary aspect ratio is at least 7.5:1. In another aspect, the primary aspect ratio is at least 8:1. In another aspect, the primary aspect ratio is at least 8.5:1. In another aspect, the primary aspect ratio is at least 9:1. In another aspect, the primary aspect ratio is at least 9.5:1. In another aspect, the primary aspect ratio is at least 10:1.
- the secondary aspect ratio is at least 1.5:1. In another aspect, the secondary aspect ratio is 2:1. In another aspect, the secondary aspect ratio is at least 2.5:1. In another aspect, the secondary aspect ratio is at least 3:1. In another aspect, the secondary aspect ratio is at least 3.5:1. In another aspect, the secondary aspect ratio is at least 4:1. In another aspect, the secondary aspect ratio is at least 4.5:1. In another aspect, the secondary aspect ratio is at least 5:1. In another aspect, the secondary aspect ratio is at least 5.5:1. In another aspect, the secondary aspect ratio is at least 6:1. In another aspect, the secondary aspect ratio is at least 6.5:1. In another aspect, the secondary aspect ratio is at least 7:1. In another aspect, the secondary aspect ratio is at least 7.5:1.
- the secondary aspect ratio is at least 8:1. In another aspect, the secondary aspect ratio is at least 8.5:1. In another aspect, the secondary aspect ratio is at least 9:1. In another aspect, the secondary aspect ratio is at least 9.5:1. In another aspect, the secondary aspect ratio is at least 10:1.
- the tertiary aspect ratio is at least 1.5:1. In another aspect, the tertiary aspect ratio is 2:1. In another aspect, the tertiary aspect ratio is at least 2.5:1. In another aspect, the tertiary aspect ratio is at least 3:1. In another aspect, the tertiary aspect ratio is at least 3.5:1. In another aspect, the tertiary aspect ratio is at least 4:1. In another aspect, the tertiary aspect ratio is at least 4.5:1. In another aspect, the tertiary aspect ratio is at least 5:1. In another aspect, the tertiary aspect ratio is at least 5.5:1. In another aspect, the tertiary aspect ratio is at least 6:1.
- the tertiary aspect ratio is at least 6.5:1. In another aspect, the tertiary aspect ratio is at least 7:1. In another aspect, the tertiary aspect ratio is at least 7.5:1. In another aspect, the tertiary aspect ratio is at least 8:1. In another aspect, the tertiary aspect ratio is at least 8.5:1. In another aspect, the tertiary aspect ratio is at least 9:1. In another aspect, the tertiary aspect ratio is at least 9.5:1. In another aspect, the tertiary aspect ratio is at least 10:1.
- the shape of the shaped abrasive grain 1300 with respect to the secondary aspect ratio is generally rectangular, e.g., flat, or curved.
- the shape of the shaped abrasive grain 1300 with respect to the primary aspect ratio may be any polyhedral shape, e.g., a triangle, a square, a rectangle, a pentagon, etc.
- the shape of the shaped abrasive grain 1300 with respect to the primary aspect ratio may also be the shape of any alphanumeric character, e.g., 1, 2, 3, etc., A, B, C, etc.
- the shape of the shaped abrasive grain 1300 with respect to the primary aspect ratio may be a character selected from the Greek alphabet, the modern Latin alphabet, the ancient Latin alphabet, the Russian alphabet, any other alphabet, or any combination thereof.
- the shape of the shaped abrasive grain 1300 with respect to the primary aspect ratio may be a Kanji character.
- the shaped abrasive grain 1500 may include a body 1501 that includes a flat bottom 1502 and a generally dome-shaped top 1504 .
- the domed-shaped top 1504 may be formed with a first edge 1506 , a second edge 1508 , a third edge 1510 , a fourth edge 1512 , and a fifth edge 1514 .
- the shaped abrasive grain 1500 may include more or less than five edges 1506 , 1508 , 1510 , 1512 , 1514 .
- the edges 1506 , 1508 , 1510 , 1512 , 1514 may be equally spaced radially around a center of the dome-shaped top 1504 .
- the edges 1506 , 1508 , 1510 , 1512 , 1514 in the dome-shaped top 1504 may be formed by injecting the material comprising the shaped abrasive grain 1500 through a generally star-shaped nozzle. It may be appreciated that the shape of the shaped abrasive grain 1500 may facilitate orientation of the shaped abrasive grain 1500 as it is dropped, or otherwise deposited, on a backing. Specifically, the dome-shaped top 1504 will allow the shaped abrasive grain 1500 to roll onto the flat bottom 1502 ensuring that the edges face out, or up, from the backing.
- FIG. 17 and FIG. 18 illustrate an eighth embodiment of a shaped abrasive grain, designated 1700 .
- the shaped abrasive grain 1700 may include a body 1701 that includes a flat bottom 1702 and a generally dome-shaped top 1704 .
- the domed-shaped top 1704 may be formed with a peak 1706 .
- the peak 1706 in the dome-shaped top 1704 may be formed by injecting the material comprising the shaped abrasive grain 1700 through a generally round, generally small nozzle.
- the shape of the shaped abrasive grain 1700 may facilitate orientation of the shaped abrasive grain 1700 as it is dropped, or otherwise deposited, on a backing.
- the dome-shaped top 1704 and the peak 1706 will allow the shaped abrasive grain 1700 to roll onto the flat bottom 1702 ensuring that the peak 1706 and the dome-shaped top 1704 face out, or up, from the backing.
- the shaped abrasive grain 1900 may include a body 1901 that is generally box-shaped with six exterior faces 1902 and twelve 1904 edges. Further, the shaped abrasive grain 1900 may be formed with a generally X-shaped hole 1906 , i.e., an opening, through the shaped abrasive grain 1900 parallel to a longitudinal axis 1908 that passes through a center 1910 of the shaped abrasive grain. Further, a center 1912 of the X shaped hole 1906 may be spaced a distance 1914 from the longitudinal axis 1908 .
- a center of mass 1916 of the shaped abrasive grain 1900 may be moved below the geometric midpoint 1910 of the shaped abrasive grain 1900 . Moving the center of mass below the geometric midpoint of the shaped abrasive grain may ensure that the shaped abrasive grain 1900 lands on the same face when dropped, or otherwise deposited, onto a backing.
- the X shaped hole 1906 may be formed along the longitudinal axis 1908 through the geometric midpoint 1910 of the shaped abrasive grain 1900 . Further, it may be appreciated that the X shaped hole 1906 may be rotated forty-five degrees (45°) and in such a case the hole 1906 would appear to be generally + shaped. It may be appreciated that the hole 1906 formed in the shaped abrasive grain 1900 may have any shape: polygonal or otherwise.
- FIG. 21 through FIG. 23 depict a tenth embodiment of a shaped abrasive grain that is generally designated 2100 .
- the shaped abrasive grain 2100 may include a body 2101 that may have a first end face 2102 and a second end face 2104 .
- the first end face 2102 may be a base surface and the second end face 2104 may be an upper surface.
- the shaped abrasive grain 2100 may include a first lateral face 2106 extending between the first end face 2102 and the second end face 2104 .
- a second lateral face 2108 may extend between the first end face 2102 and the second end face 2104 .
- a third lateral face 2110 may extend between the first end face 2102 and the second end face 2104 .
- a fourth lateral face 2112 may also extend between the first end face 2102 and the second end face 2104 .
- the first end face 2102 and the second end face 2104 are parallel to each other. However, in a particular aspect, the first end face 2102 is rotated with respect to the second end face 2104 to establish a twist angle 2114 .
- the twist angle 2114 is at least about one degree. In another aspect, the twist angle 2114 is at least about two degrees. In another aspect, the twist angle 2114 is at least about five degrees. In another aspect, the twist angle 2114 is at least about eight degrees. In another aspect, the twist angle 2114 is at least about ten degrees. In another aspect, the twist angle 2114 is at least about twelve degrees. In another aspect, the twist angle 2114 is at least about fifteen degrees. In another aspect, the twist angle 2114 is at least about eighteen degrees.
- the twist angle 2114 is at least about twenty degrees. In another aspect, the twist angle 2114 is at least about twenty-five degrees. In another aspect, the twist angle 2114 is at least about thirty degrees. In another aspect, the twist angle 2114 is at least about forty degrees. In another aspect, the twist angle 2114 is at least about fifty degrees. In another aspect, the twist angle 2114 is at least about sixty degrees. In another aspect, the twist angle 2114 is at least about seventy degrees. In another aspect, the twist angle 2114 is at least about eighty degrees. In another aspect, the twist angle 2114 is at least about ninety degrees.
- the twist angle 2100 of the shaped abrasive grain may be a horizontal twist angle, i.e., along a longitudinal axis of the body 2101 defining a length.
- the twist angle 2100 of the shaped abrasive grain may be a vertical twist angle, i.e., along a vertical axis defining a height of the body 2101 .
- an eleventh embodiment of a shaped abrasive grain is shown and is generally designated 2400 .
- the shaped abrasive grain 2400 may include a body 2401 that may include a central portion 2402 that extends along a longitudinal axis 2404 .
- a first radial arm 2406 may extend outwardly from the central portion 2402 along the length of the central portion 2402 .
- a second radial arm 2408 may extend outwardly from the central portion 2402 along the length of the central portion 2402 .
- a third radial arm 2410 may extend outwardly from the central portion 2402 along the length of the central portion 2402 .
- a fourth radial arm 2412 may extend outwardly from the central portion 2402 along the length of the central portion 2402 .
- the radial arms 2406 , 2408 , 2410 , 2412 may be equally spaced around the central portion 2402 of the shaped abrasive grain 2400 .
- the first radial arm 2406 may include a generally box-shaped distal end 2420 .
- the second radial arm 2408 may include a generally box-shaped distal end 2422 .
- the third radial arm 2410 may include a generally box-shaped distal end 2424 .
- the fourth radial arm 2412 may include a generally box-shaped distal end 2426 .
- FIG. 24 and FIG. 25 further show that the shaped abrasive grain 2400 may be formed with a hole 2428 through the shaped abrasive grain 2400 along the longitudinal axis 2404 .
- the hole 2428 may be generally triangular in shape. It may be appreciated that in other aspects the hole 2428 formed in the shaped abrasive grain 2400 may have any shape: polygonal or otherwise.
- FIG. 26 and FIG. 27 illustrate a twelfth embodiment of a shaped abrasive grain that is generally designated 2600 .
- the shaped abrasive grain 2600 may include a body 2601 that may include a central portion 2602 that extends along a longitudinal axis 2604 .
- a first radial arm 2606 may extend outwardly from the central portion 2602 along the length of the central portion 2602 .
- a second radial arm 2608 may extend outwardly from the central portion 2602 along the length of the central portion 2602 .
- a third radial arm 2610 may extend outwardly from the central portion 2602 along the length of the central portion 2602 .
- a fourth radial arm 2612 may extend outwardly from the central portion 2602 along the length of the central portion 2602 .
- the radial arms 2606 , 2608 , 2610 , 2612 may be equally spaced around the central portion 2602 of the shaped abrasive grain 2600 .
- the first radial arm 2606 may include a generally box-shaped distal end 2620 formed with a V-shaped channel 2622 .
- the second radial arm 2608 may include a generally box-shaped distal end 2624 formed with a V-shaped channel 2626 .
- the third radial arm 2610 may also include a generally box-shaped distal end 2628 formed with a V-shaped channel 2630 .
- the fourth radial arm 2612 may include a generally box-shaped distal end 2632 that is also formed with a V shape channel 2634 .
- FIG. 28 and FIG. 29 illustrate a thirteenth embodiment of a shaped abrasive grain that is generally designated 2800 .
- the shaped abrasive grain 2800 may include a body 2801 that may include a central portion 2802 that extends along a longitudinal axis 2804 .
- a first radial arm 2806 may extend outwardly from the central portion 2802 along the length of the central portion 2802 .
- a second radial arm 2808 may extend outwardly from the central portion 2802 along the length of the central portion 2802 .
- a third radial arm 2810 may extend outwardly from the central portion 2802 along the length of the central portion 2802 .
- a fourth radial arm 2812 may extend outwardly from the central portion 2802 along the length of the central portion 2802 .
- the radial arms 2806 , 2808 , 2810 , 2812 may be equally spaced around the central portion 2802 of the shaped abrasive grain 2800 .
- the first radial arm 2806 may include a generally box-shaped distal end 2820 formed with a concave channel 2822 .
- the second radial arm 2808 may include a generally box-shaped distal end 2824 formed with a concave channel 2826 .
- the third radial arm 2810 may also include a generally box-shaped distal end 2828 formed with a concave channel 2830 .
- the fourth radial arm 2812 may include a generally box-shaped distal end 2832 that is also formed with a concave channel 2834 .
- FIG. 30 and FIG. 31 illustrate a fourteenth embodiment of a shaped abrasive grain that is generally designated 3000 .
- the shaped abrasive grain 3000 may include a body 3001 having a central portion 3002 that extends along a longitudinal axis 3004 .
- a first radial arm 3006 may extend outwardly from the central portion 3002 along the length of the central portion 3002 .
- a second radial arm 3008 may extend outwardly from the central portion 3002 along the length of the central portion 3002 .
- a third radial arm 3010 may extend outwardly from the central portion 3002 along the length of the central portion 3002 .
- a fourth radial arm 3012 may extend outwardly from the central portion 3002 along the length of the central portion 3002 .
- the radial arms 3006 , 3008 , 3010 , 3012 may be equally spaced around the central portion 3002 of the shaped abrasive grain 3000 .
- the first radial arm 3006 may include a generally T-shaped distal end 3020 .
- the second radial arm 3008 may include a generally T-shaped distal end 3022 .
- the third radial arm 3010 may include a generally T-shaped distal end 3024 .
- the fourth radial arm 3012 may include a generally T-shaped distal end 3026 .
- FIG. 30 also indicates that the shaped abrasive grain 3000 may be formed with a first void 3030 between the first radial arm 3006 and the second radial arm 3008 .
- a second void 3032 may be formed between the second radial arm 3008 and the third radial arm 3010 .
- a third void 3034 may also be formed between the third radial arm 3010 and the fourth radial arm 3012 .
- a fourth void 3036 may be formed between the fourth radial arm 3012 and the first radial arm 3006 .
- FIG. 32 and FIG. 33 illustrate a fifteenth embodiment of a shaped abrasive grain that is generally designated 3200 .
- the shaped abrasive grain 3200 may include a body 3201 that may include a central portion 3202 that extends along a longitudinal axis 3204 .
- a first radial arm 3206 may extend outwardly from the central portion 3202 along the length of the central portion 3202 .
- a second radial arm 3208 may extend outwardly from the central portion 3202 along the length of the central portion 3202 .
- a third radial arm 3210 may extend outwardly from the central portion 3202 along the length of the central portion 3202 .
- a fourth radial arm 3212 may extend outwardly from the central portion 3202 along the length of the central portion 3202 .
- the radial arms 3206 , 3208 , 3210 , 3212 may be equally spaced around the central portion 3202 of the shaped abrasive grain 3200 .
- the first radial arm 3206 may include a generally rounded T-shaped distal end 3220 .
- the second radial arm 3208 may include a generally rounded T-shaped distal end 3222 .
- the third radial arm 3210 may include a generally rounded T-shaped distal end 3224 .
- the fourth radial arm 3212 may include a generally rounded T-shaped distal end 3226 .
- FIG. 32 also indicates that the shaped abrasive grain 3200 may be formed with a first void 3230 between the first radial arm 3206 and the second radial arm 3208 .
- a second void 3232 may be formed between the second radial arm 3208 and the third radial arm 3210 .
- a third void 3234 may also be formed between the third radial arm 3210 and the fourth radial arm 3212 .
- a fourth void 3236 may be formed between the fourth radial arm 3212 and the first radial arm 3206 .
- FIG. 34 and FIG. 35 illustrate a sixteenth embodiment of a shaped abrasive grain that is generally designated 3400 .
- the shaped abrasive grain 3400 may include a body 3401 having a central portion 3402 that extends along a longitudinal axis 3404 .
- the central portion 3402 may be formed with a hole 3406 along the longitudinal axis 3404 along the entire length of the central portion 3402 of the shaped abrasive grain 3400 .
- a generally triangular first radial arm 3410 may extend outwardly from the central portion 3402 of the shaped abrasive grain 3400 along the length of the central portion 3402 .
- a generally triangular second radial arm 3412 may extend outwardly from the central portion 3402 of the shaped abrasive grain 3400 along the length of the central portion 3402 .
- a generally triangular third radial arm 3414 may extend outwardly from the central portion 3402 of the shaped abrasive grain 3400 along the length of the central portion 3402 .
- a generally triangular fourth radial arm 3416 may extend outwardly from the central portion 3402 of the shaped abrasive grain 3400 along the length of the central portion 3402 .
- a generally triangular fifth radial arm 3418 may extend outwardly from the central portion 3402 of the shaped abrasive grain 3400 along the length of the central portion 3402 .
- a generally triangular sixth radial arm 3420 may extend outwardly from the central portion 3402 of the shaped abrasive grain 3400 along the length of the central portion 3402 .
- a generally triangular seventh radial arm 3422 may extend outwardly from the central portion 3402 of the shaped abrasive grain 3400 along the length of the central portion 3402 .
- a generally triangular eighth radial arm 3424 may extend outwardly from the central portion 3402 of the shaped abrasive grain 3400 along the length of the central portion 3402 .
- a generally triangular ninth radial arm 3426 may extend outwardly from the central portion 3402 of the shaped abrasive grain 3400 along the length of the central portion 3402 .
- a generally triangular tenth radial arm 3428 may extend outwardly from the central portion 3402 of the shaped abrasive grain 3400 along the length of the central portion 3402 .
- the radial arms 3410 , 3412 , 3414 , 3416 , 3418 , 3420 , 3422 , 3424 , 3426 , 3428 may be equally spaced around the central portion 3402 of the shaped abrasive grain to form a generally star-shaped first end face 3430 , a generally star-shaped second end face 3432 and a generally star-shaped cross-section taken parallel to the end faces 3430 , 3432 .
- the shaped abrasive grain 3600 may include a body 3601 having a first end face 3602 and a second end face 3604 .
- the first end face 3602 may be a base surface and the second end face 3604 may be an upper surface.
- the shaped abrasive grain 3600 may be formed with a hole 3606 along a longitudinal axis 3608 . As shown, the hole 3606 may be generally box shaped.
- FIG. 36 and FIG. 37 show that the shaped abrasive grain 3600 may include a generally K-shaped first side face 3610 extending between the first end face 3602 and the second end face 3604 .
- the shaped abrasive grain 3600 may also include a generally K-shaped second side face 3612 extending between the first end face 3602 and the second end face 3604 opposite the generally K-shaped first side face 3610 .
- the shaped abrasive grain 3600 may include a generally flat third side face 3614 extending between the first K shaped side face 3610 and the second K shaped side face 3612 and between the first end face 3602 and the second end face 3604 .
- the shaped abrasive grain 3600 may also include a generally flat fourth side face 3616 extending between the first K-shaped side face 3610 and the second K shape side face 3612 opposite the generally flat third side face 3614 .
- FIG. 38 and FIG. 39 depict an eighteenth embodiment of a shaped abrasive grain that is generally designated 3800 .
- the shaped abrasive grain 3800 may include a body 3801 having a first end face 3802 and a second end face 3804 .
- the first end face 3802 may be a base surface and the second end face 3804 may be an upper surface.
- the shaped abrasive grain 3800 may include a generally K-shaped first side face 3806 extending between the first end face 3802 and the second end face 3804 .
- the shaped abrasive grain 3800 may include a generally flat second side face 3808 opposite the generally K-shaped first side face 3806 and extending between the first end face 3802 and the second end face 3804 .
- the shaped abrasive grain 3800 may also include a third side face 3810 extending between the first end face 3802 and the second end face 3804 and between the first side face 3806 and the second side face 3808 . Further, the shaped abrasive grain 3800 may include a fourth side face 3812 extending between the first end face 3802 and the second end face 3804 opposite the third side face 3810 .
- FIG. 40 and FIG. 41 show a nineteenth embodiment of a shaped abrasive grain 4000 .
- the shaped abrasive grain 4000 may include a body 4001 that is generally prismatic with a first end face 4002 and a second end face 4004 .
- the first end face 4002 may be a base surface and the second end face 4004 may be an upper surface.
- the shaped abrasive grain 4000 may include a first side face 4010 extending between the first end face 4002 and the second end face 4004 .
- a second side face 4012 may extend between the first end face 4002 and the second end face 4004 adjacent to the first side face 4010 .
- the shaped abrasive grain 4000 may also include a third side face 4014 extending between the first end face 4002 and the second end face 4004 adjacent to the second side face 4012 . Further, the shaped abrasive grain 4000 may include a fourth side face 4016 extending between the first end face 4002 and the second end face 4004 adjacent to the third side face 4014 and the first side face 4010 .
- the shaped abrasive grain 4000 may also include a first edge 4020 between the first side face 4010 and the second side face 4012 .
- the shaped abrasive grain 4000 may also include a second edge 4022 between the second side face 4012 and the third side face 4014 .
- the shaped abrasive grain 4000 may include a third edge 4024 between the third side face 4014 and the fourth side face 4016 .
- the shaped abrasive grain 4000 may include a fourth edge 4026 between the fourth side face 4016 and the first side face 4010 .
- each end face 4002 , 4004 the shaped abrasive grain 4000 may be generally diamond-shaped.
- Each side face 4010 , 4012 , 4014 , 4016 may be generally rectangular in shape.
- the cross-section of the shaped abrasive grain 4000 in a plane parallel to the end faces 4002 , 4004 is generally diamond-shaped.
- the shaped abrasive grain 4000 may also include a hole 4030 formed along a central longitudinal axis 4032 .
- the hole 4030 may pass through the center of the shaped abrasive grain 4000 .
- the hole 4030 may be offset from the center of the shaped abrasive grain 4000 in any direction.
- FIG. 42 and FIG. 43 illustrate a twentieth embodiment of a shaped abrasive grain that is generally designated 4200 .
- the shaped abrasive grain 4200 may include a body 4201 that includes a generally circular first end face 4202 and a generally circular second end face 4204 .
- the first end face 4202 may be a base surface and the second end face 4204 may be an upper surface.
- a diameter of the second end face 4204 may be larger than a diameter of the first end face 4202 .
- the shaped abrasive grain 4200 may include continuous side face 4206 between the first end face 4202 and the second end face 4204 . Accordingly, the shaped abrasive grain 4200 is generally frusto-conically shaped. FIG. 42 and FIG. 43 further indicate that the shaped abrasive grain 4200 may include a generally cylindrical hole 4208 formed along a central longitudinal axis 4210 .
- the shaped abrasive grain 4400 may include a body 4401 that may include a generally triangular first end face 4402 and a generally circular second end face 4404 .
- the first end face 4402 may be an upper surface and the second end face 4404 may be a base surface.
- the shaped abrasive grain 4400 may include a first side face 4410 extending between the first end face 4402 and the second end face 4404 .
- a second side face 4412 may extend between the first end face 4402 and the second end face 4404 adjacent to the first side face 4410 .
- the shaped abrasive grain 4400 may also include a third side face 4414 extending between the first end face 4402 and the second end face 4404 adjacent to the second side face 4412 and the first side face 4410 .
- the shaped abrasive grain 4400 may also include a first edge 4420 between the first side face 4410 and the second side face 4412 .
- the shaped abrasive grain 4400 may also include a second edge 4422 between the second side face 4412 and the third side face 4414 .
- the shaped abrasive grain 4400 may include a third edge 4424 between the third side face 4414 and the first side face 4412 .
- the shaped abrasive grain 4700 may include a body 4701 having a generally square first end face 4702 and a generally circular second end face 4704 .
- the first end face 4702 may be an upper surface and the second end face 4704 may be a base surface.
- the shaped abrasive grain 4700 may include a first side face 4710 extending between the first end face 4702 and the second end face 4704 .
- a second side face 4712 may extend between the first end face 4702 and the second end face 4704 adjacent to the first side face 4710 .
- the shaped abrasive grain 4700 may also include a third side face 4714 extending between the first end face 4702 and the second end face 4704 adjacent to the second side face 4712 .
- the shaped abrasive grain 4700 may also include a fourth side face 4716 adjacent to the third side face 4714 and the first side face 4710 .
- the shaped abrasive grain 4700 may also include a first edge 4720 between the first side face 4710 and the second side face 4712 .
- the shaped abrasive grain 4700 may also include a second edge 4722 between the second side face 4712 and the third side face 4714 .
- the shaped abrasive grain 4700 may include a third edge 4724 between the third side face 4714 and the fourth side face 4716 .
- the shaped abrasive grain 4700 may include a fourth edge 4726 between the fourth side face 4716 and the first side face 4710 .
- FIG. 50 through FIG. 52 show a twenty-third embodiment of a shaped abrasive grain that is generally designated 5000 .
- the shaped abrasive grain 5000 may include a body 5001 having a generally plus (+) shaped first end face 5002 and a generally circular second end face 5004 .
- the first end face 5002 may be an upper surface and the second end face 5004 may be a base surface.
- the shaped abrasive grain 5000 may include a first side face 5010 extending between the first end face 5002 and the second end face 5004 .
- a second side face 5012 may extend between the first end face 5002 and the second end face 5004 adjacent to the first side face 5010 .
- the shaped abrasive grain 5000 may also include a third side face 5014 extending between the first end face 5002 and the second end face 5004 adjacent to the second side face 5012 .
- the shaped abrasive grain 5000 may also include a fourth side face 5016 adjacent to the third side face 5014 and the first side face 5010 .
- the shaped abrasive grain 5000 may also include a first void 5020 between the first side face 5010 and the second side face 5012 .
- the shaped abrasive grain 5000 may also include a second void 5022 between the second side face 5012 and the third side face 5014 .
- the shaped abrasive grain 5000 may include a third void 5024 between the third side face 5014 and the fourth side face 5016 .
- the shaped abrasive grain 5000 may include a fourth void 5026 between the fourth side face 5016 and the first side face 5010 .
- FIG. 53 through FIG. 55 show a twenty-fourth embodiment of a shaped abrasive grain that is generally designated 5300 .
- the shaped abrasive grain 5300 may include a body 5301 having a generally plus (+) shaped first end face 5302 and a generally rounded plus (+) shaped end face 5304 .
- the first end face 5302 may be an upper surface and the second end face 5304 may be a base surface.
- the shaped abrasive grain 5300 may include a first side face 5310 extending between the first end face 5302 and the second end face 5304 .
- a second side face 5312 may extend between the first end face 5302 and the second end face 5304 adjacent to the first side face 5310 .
- the shaped abrasive grain 5300 may also include a third side face 5314 extending between the first end face 5302 and the second end face 5304 adjacent to the second side face 5312 .
- the shaped abrasive grain 5300 may also include a fourth side face 5316 adjacent to the third side face 5314 and the first side face 5310 .
- the shaped abrasive grain 5300 may also include a first void 5320 between the first side face 5310 and the second side face 5312 .
- the shaped abrasive grain 5300 may also include a second void 5322 between the second side face 5312 and the third side face 5314 .
- the shaped abrasive grain 5300 may include a third void 5324 between the third side face 5314 and the fourth side face 5316 .
- the shaped abrasive grain 5300 may include a fourth void 5326 between the fourth side face 5316 and the first side face 5310 .
- the shaped abrasive grain 5600 may include a body 5601 having a generally circular first end face 5602 and a generally triangular second end face 5604 .
- the second end face 5604 is relatively larger than the first end face 5602 .
- the first end face 5602 may be an upper surface and the second end face 5604 may be a base surface.
- the shaped abrasive grain 5600 may include a first side face 5610 extending between the first end face 5602 and the second end face 5604 .
- a second side face 5612 may extend between the first end face 5602 and the second end face 5604 adjacent to the first side face 5610 .
- the shaped abrasive grain 5600 may also include a third side face 5614 extending between the first end face 5602 and the second end face 5604 adjacent to the second side face 5612 and the first side face 5610 .
- the shaped abrasive grain 5600 may also include a first edge 5620 between the first side face 5610 and the second side face 5612 .
- the shaped abrasive grain 5600 may also include a second edge 5622 between the second side face 5612 and the third side face 5614 .
- the shaped abrasive grain 5600 may include a third edge 5624 between the third side face 5614 and the first side face 5612 .
- the shaped abrasive grain 5900 may include a body 5901 having a generally circular first end face 5902 and a generally square second end face 5904 .
- the second end face 5904 is relatively larger than the first end face 5902 .
- the first end face 5902 may be an upper surface and the second end face 5904 may be a base surface.
- the shaped abrasive grain 5900 may include a first side face 5910 extending between the first end face 5902 and the second end face 5904 .
- a second side face 5912 may extend between the first end face 5902 and the second end face 5904 adjacent to the first side face 5910 .
- the shaped abrasive grain 5900 may also include a third side face 5914 extending between the first end face 5902 and the second end face 5904 adjacent to the second side face 5912 .
- the shaped abrasive grain 5900 may also include a fourth side face 5916 adjacent to the third side face 5914 and the first side face 5910 .
- the shaped abrasive grain 5900 may also include a first edge 5920 between the first side face 5910 and the second side face 5912 .
- the shaped abrasive grain 5900 may also include a second edge 5922 between the second side face 5912 and the third side face 5914 .
- the shaped abrasive grain 5900 may include a third edge 5924 between the third side face 5914 and the fourth side face 5916 .
- the shaped abrasive grain 5900 may include a fourth edge 5926 between the fourth side face 5916 and the first side face 5910 .
- One or more of the shaped abrasive grains described herein are configured to land in an upright orientation when deposited onto a backing. Further, one or more of the embodiments described herein may provide a relatively high aspect ratio associated with a particular length:height ratio, height:width ratio, length:width ratio, width:height ratio, height:length ratio, width:length ratio, or a combination thereof.
- a high aspect ratio enables the manufacture of a coated abrasive structure having an open coat, i.e., the distance between adjacent shaped abrasive grains may be increased. Further, the open coat provides greater space for chip clearance and may lower power consumption by making a better cut, or grind.
- shaped abrasive grains having high aspect ratios with sharp edges allows the manufacture of grinding wheels having greater porosity. Greater porosity provides more space for swarf and chip clearance and may enable more coolant to flow through the grinding wheel to provide greater efficiency.
- FIGS. 62 A and B include illustrations of a system for forming shaped abrasive particles in accordance with an embodiment.
- the process of forming shaped abrasive particles can be initiated by forming a mixture 6201 including a ceramic material and a liquid.
- the mixture 6201 can be a gel formed of a ceramic powder material and a liquid, wherein the gel can be characterized as a shape-stable material having the ability to hold a given shape even in the green (i.e., unfired) state.
- the gel can include a powder material that is an integrated network of discrete particles.
- the mixture 6201 can be formed to have a particular content of solid material, such as the ceramic powder material.
- the mixture 6201 can have a solids content of at least about 25 wt %, such as at least about 35 wt %, at least about 38 wt %, or even at least about 42 wt % for the total weight of the mixture 6201 .
- the solid content of the mixture 6201 can be not greater than about 75 wt %, such as not greater than about 70 wt %, not greater than about 65 wt %, or even not greater than about 55 wt %. It will be appreciated that the content of the solids materials in the mixture 6201 can be within a range between any of the minimum and maximum percentages noted above.
- the ceramic powder material can include an oxide, a nitride, a carbide, a boride, an oxycarbide, an oxynitride, and a combination thereof.
- the ceramic material can include alumina.
- the ceramic material may include a boehmite material, which may be a precursor of alpha alumina.
- boehmite is generally used herein to denote alumina hydrates including mineral boehmite, typically being Al2O3 ⁇ H2O and having a water content on the order of 15%, as well as psuedoboehmite, having a water content higher than 15%, such as 20-38% by weight.
- boehmite (including psuedoboehmite) has a particular and identifiable crystal structure, and accordingly unique X-ray diffraction pattern, and as such, is distinguished from other aluminous materials including other hydrated aluminas such as ATH (aluminum trihydroxide) a common precursor material used herein for the fabrication of boehmite particulate materials.
- ATH aluminum trihydroxide
- the mixture 6201 can be formed to have a particular content of liquid material.
- suitable liquids may include organic materials, such as water.
- the mixture 6201 can be formed to have a liquid content less than the solids content of the mixture 6201 .
- the mixture 6201 can have a liquid content of at least about 25 wt % for the total weight of the mixture 6201 .
- the amount of liquid within the mixture 6201 can be greater, such as at least about 35 wt %, at least about 45 wt %, at least about 50 wt %, or even at least about 58 wt %.
- the liquid content of the mixture can be not greater than about 75 wt %, such as not greater than about 70 wt %, not greater than about 65 wt %, not greater than about 60 wt %, or even not greater than about 55 wt %. It will be appreciated that the content of the liquid in the mixture 6201 can be within a range between any of the minimum and maximum percentages noted above.
- the mixture 6201 can have a particular storage modulus.
- the mixture 6201 can have a storage modulus of at least about 1 ⁇ 10 4 Pa, such as at least about 4 ⁇ 10 4 Pa, or even at least about 5 ⁇ 10 4 Pa.
- the mixture 6201 may have a storage modulus of not greater than about 1 ⁇ 10 7 Pa, such as not greater than about 1 ⁇ 10 6 Pa. It will be appreciated that the storage modulus of the mixture 6201 can be within a range between any of the minimum and maximum values noted above.
- the storage modulus can be measured via a parallel plate system using ARES or AR-G2 rotational rheometers, with Peltier plate temperature control systems.
- the mixture 6201 can be extruded within a gap between two plates that are set to be approximately 8 mm apart from each other. After extruding the get into the gap, the distance between the two plates defining the gap is reduced to 2 mm until the mixture 6201 completely fills the gap between the plates. After wiping away excess mixture, the gap is decreased by 0.1 mm and the test is initiated.
- the test is an oscillation strain sweep test conducted with instrument settings of a strain range between 0.1% to 100%, at 6.28 rad/s (1 Hz), using 25-mm parallel plate and recording 10 points per decade. Within 1 hour after the test completes, lower the gap again by 0.1 mm and repeat the test. The test can be repeated at least 6 times.
- the first test may differ from the second and third tests. Only the results from the second and third tests for each specimen should be reported.
- the mixture 6201 can have a particular viscosity.
- the mixture 6201 can have a viscosity of at least about 4 ⁇ 10 3 Pa s, at least about 5 ⁇ 10 3 Pa s, at least about 6 ⁇ 10 3 Pa s, at least about 8 ⁇ 10 3 Pa s, at least about 10 ⁇ 10 3 Pa s, at least about 20 ⁇ 10 3 Pa s, at least about 30 ⁇ 10 3 Pa s, at least about 40 ⁇ 10 3 Pa s, at least about 50 ⁇ 10 3 Pa s, at least about 60 ⁇ 10 3 Pa s, or even at least about 65 ⁇ 10 3 Pa s.
- the mixture 6201 may have a viscosity of not greater than about 1 ⁇ 10 6 Pa s, not greater than about 5 ⁇ 10 5 Pa s, not greater than about 3 ⁇ 10 5 Pa s, or even not greater than about 2 ⁇ 10 5 Pa s. It will be appreciated that the viscosity of the mixture 6201 can be within a range between any of the minimum and maximum values noted above. The viscosity can be calculated by dividing the storage modulus value by 6.28 s ⁇ 1.
- the mixture 6201 can be formed to have a particular content of organic materials, including for example, organic additives that can be distinct from the liquid, to facilitate processing and formation of shaped abrasive particles according to the embodiments herein.
- organic additives can include stabilizers, binders, such as fructose, sucrose, lactose, glucose, UV curable resins, and the like.
- the embodiments herein may utilize a mixture 6201 that is distinct from slurries used in conventional tape casting operations.
- the content of organic materials within the mixture 6201 may be a minor amount as compared to other components within the mixture 6201 .
- the mixture 6201 can be formed to have not greater than about 30 wt % organic material for the total weight of the mixture 6201 . In other instances, the amount of organic materials may be less, such as not greater than about 15 wt %, not greater than about 10 wt %, or even not greater than about 5 wt %.
- the amount of organic materials within the mixture 6201 can be at least about 0.1 wt %, such as at least about 0.5 wt % for the total weight of the mixture 6201 . It will be appreciated that the amount of organic materials in the mixture 6201 can be within a range between any of the minimum and maximum values noted above.
- the mixture 6201 can be formed to have a particular content of acid or base distinct from the liquid, to facilitate processing and formation of shaped abrasive particles according to the embodiments herein.
- suitable acids or bases can include nitric acid, sulfuric acid, citric acid, chloric acid, tartaric acid, phosphoric acid, ammonium nitrate, ammonium citrate.
- the mixture 6201 can have a pH of less than about 5, and more particularly, within a range between about 2 and about 4, using a nitric acid additive.
- the system 6200 can include a die 6203 .
- the mixture 6201 can be provided within the interior of the die 6203 and configured to be extruded through a die opening 6205 positioned at one end of the die 6203 .
- forming can include applying a force 6280 (that may be translated into a pressure) on the mixture 6201 to facilitate moving the mixture 6201 through the die opening 6205 .
- a particular pressure may be utilized during extrusion.
- the pressure can be at least about 10 kPa, such as at least about 500 kPa.
- the pressure utilized during extrusion can be not greater than about 4 MPa. It will be appreciated that the pressure used to extrude the mixture 6201 can be within a range between any of the minimum and maximum values noted above.
- the die 6203 can include a die opening 6205 having a particular shape. It will be appreciated that the die opening 6205 may be shaped to impart a particular shape to the mixture 6201 during extrusion. In accordance with an embodiment, the die opening 6205 can have a rectangular shape. Furthermore, the mixture 6201 extruded through the die opening 6205 can have essentially the same cross-sectional shape as the die opening 6205 . As further illustrated, the mixture 6201 may be extruded in the form of a sheet 6211 and onto a belt 6209 underlying the die 6203 . In specific instances, the mixture 6201 can be extruded in the form of a sheet 6211 directly onto the belt 6209 , which may facilitate continuous processing.
- the belt can be formed to have a film overlying a substrate, wherein the film can be a discrete and separate layer of material configured to facilitate processing and forming of shaped abrasive particles.
- the process can include providing the mixture 6201 directly onto the film of the belt to form the sheet 6211 .
- the film can include a polymer material, such as polyester.
- the film can consist essentially of polyester.
- the belt 6209 can be translated while moving the mixture 6201 through the die opening 6205 .
- the mixture 6201 may be extruded in a direction 6291 .
- the direction of translation 6210 of the belt 6209 can be angled relative to the direction of extrusion 6291 of the mixture. While the angle between the direction of translation 6210 and the direction of extrusion 6291 are illustrated as substantially orthogonal in the system 6200 , other angles are contemplated, including for example, an acute angle or an obtuse angle.
- the belt 6209 may be translated at a particular rate to facilitate processing.
- the belt 6209 may be translated at a rate of at least about 3 cm/s, such as at least about 4 cm/s, at least about 6 cm/s, at least about 8 cm/s, or even at least about 10 cm/s. Still, in at least one non-limiting embodiment, the belt 6209 may be translated in a direction 6210 at a rate of not greater than about 5 m/s, such as not greater than about 1 m/s, or even not greater than about 0.5 m/s. It will be appreciated that the belt 6209 may be translated at a rate within a range between any of the minimum and maximum values noted above.
- the rate of translation of the belt 6209 as compared to the rate of extrusion of the mixture 6201 in the direction 6291 may be controlled to facilitate proper processing.
- the rate of translation of the belt 6209 can be essentially the same as the rate of extrusion to ensure formation of a suitable sheet 6211 .
- the mixture 6201 may be translated along the belt 6209 under a knife edge 6207 attached to a surface of the die 6203 .
- the knife edge 6207 may facilitate forming a sheet 6211 .
- the opening defined between the surface of the knife edge 6207 and belt 6209 may define particular dimensions of the extruded mixture 6201 .
- the mixture 6201 may be extruded in the form of a sheet 6211 having a generally rectangular cross-sectional shape as viewed in a plane defined by a height and width of the sheet 6211 . While the extrudate is illustrated as a sheet, other shapes can be extruded, including for example cylindrical shapes and the like.
- the process of forming the sheet 6211 from the mixture 6201 can include control of particular features and process parameters to facilitate suitable formation of shaped abrasive particles having one or more features as provided in the embodiments herein.
- the process of forming a sheet 6211 from the mixture 6201 can include forming a sheet 6211 having a particular height 6281 controlled in part by a distance between the knife edge 6207 and a surface of the belt 6209 .
- the height 6281 of the sheet 6211 can be controlled by varying a distance between the knife edge 6207 and the surface of the belt 6209 .
- forming the mixture 6201 into the sheet 6211 can include controlling the dimensions of the sheet 6211 based in part upon the viscosity of the mixture 6201 .
- forming the sheet 6211 can include adjusting the height 6281 of the sheet 6211 based on the viscosity of the mixture 6201 .
- the sheet 6211 can have particular dimensions, including for example a length (l), a width (w), and a height (h).
- the sheet 6211 may have a length that extends in the direction of the translating belt 6209 , which can be greater than the width, wherein the width of the sheet 6211 is a dimension extending in a direction perpendicular to the length of the belt 6209 and to the length of the sheet.
- the sheet 6211 can have a height 6281 , wherein the length and width are greater than the height 6281 of the sheet 6211 .
- the height 6281 of the sheet 6211 can be the dimension extending vertically from the surface of the belt 6209 .
- the sheet 6211 can be formed to have a particular dimension of height 6281 , wherein the height may be an average height of the sheet 6211 derived from multiple measurements.
- the height 6281 of the sheet 6211 can be at least about 0.1 mm, such as at least about 0.5 mm. In other instances, the height 6281 of the sheet 6211 can be greater, such as at least about 0.8 mm, at least about 1 mm, at least about 1.2 mm, at least about 1.6 mm, or even at least about 2 mm.
- the height 6281 of the sheet 6211 may be not greater than about 10 mm, not greater than about 5 mm, or even not greater than about 2 mm. It will be appreciated that the sheet 6211 may have an average height within a range between any of the minimum and maximum values noted above.
- the sheet 6211 can have a length (l), a width (w), and a height (h), wherein the length ⁇ width ⁇ height. Moreover, the sheet 6211 can have a secondary aspect ratio of length:height of at least about 10, such as at least about 100, at least about 1000, or even at least about 1000.
- the sheet 6211 may be translated in a direction 6212 along the surface of the belt 6209 . Translation of the sheet 6211 along the belt 6209 may facilitate further processing to form precursor-shaped abrasive particles.
- the sheet 6211 may undergo a shaping process within the shaping zone 6213 .
- the process of shaping can include shaping a surface of the sheet 6211 , including for example, an upper major surface 6217 of the sheet 6211 , which may be completed using a shaping article 6215 .
- other major surfaces of the sheet may undergo shaping, including for example, the bottom surface or side surfaces.
- shaping can include altering a contour of the sheet through one or more processes, such as, embossing, rolling, cutting, engraving, patterning, stretching, twisting, and a combination thereof.
- the process of forming a shaped abrasive particle can further include translation of the sheet along the belt 6209 through a forming zone 6221 .
- the process of forming a shaped abrasive particle can include sectioning the sheet 6211 to form precursor shaped abrasive particles 6223 .
- forming can include perforating a portion of the sheet 6211 .
- the process of forming can include patterning the sheet 6211 to form a patterned sheet and extracting shapes from the patterned sheet.
- Particular processes of forming can include cutting, pressing, punching, crushing, rolling, twisting, bending, drying, and a combination thereof.
- the process of forming can include sectioning of the sheet 6211 .
- Sectioning of the sheet 6211 can include the use of at least one mechanical object, which may be in the form of a gas, liquid, or solid material.
- the process of sectioning can include at least one or a combination of cutting, pressing, punching, crushing, rolling, twisting, bending, and drying.
- sectioning can include perforating or creating a partial opening through a portion of the sheet 6211 , which may not extend through the entire height of the sheet 6211 .
- sectioning of the sheet 6211 can include use of a mechanical object including one or a plurality of a blade, a wire, a disc, and a combination thereof.
- the process of sectioning can create different types of shaped abrasive particles in a single sectioning process.
- Different types of shaped abrasive particles can be formed from the same processes of the embodiments herein.
- Different types of shaped abrasive particles include a first type of shaped abrasive particle having a first two-dimensional shape and a second type of shaped abrasive particle having a different two-dimensional shape as compared to the first two-dimensional shape.
- different types of shaped abrasive particles may differ from each other in size.
- different types of shaped abrasive particles may have different volumes as compared to each other.
- a single process which is capable of forming different types of shaped abrasive particles may be particularly suited for producing certain types of abrasive articles.
- Sectioning can include moving the mechanical object through a portion of a sheet 6211 and creating an opening within the sheet 6211 .
- the sheet can be formed to have an opening extending into the volume of the sheet and defined by certain surfaces.
- the opening can define a cut extending through at least a fraction of the entire height of sheet. It will be appreciated that the opening does not necessarily need to extend through the full height of the sheet.
- the method of sectioning can include maintaining the opening in the sheet. Maintaining the opening after sectioning the sheet has been sectioned by a mechanical object may facilitate suitable formation of shaped abrasive particles and features of shaped abrasive particles and features of a batch of shaped abrasive particles.
- Maintaining the opening can include at least partially drying at least one surface of the sheet defining the opening.
- the process of at least partially drying can include directing a drying material at the opening.
- a drying material may include a liquid, a solid, or even a gas.
- the drying material can include air. Controlled drying may facilitate the formation of shaped abrasive particles according to embodiments herein.
- the process of sectioning can be conducted prior to sufficient drying of the sheet.
- sectioning can be conducted prior to volatilization of not greater than about 20% of the liquid from the sheet as compared to the original liquid content of the sheet during initial formation of the sheet.
- the amount of volatilization allowed to occur before or during sectioning can be less, such as, not greater than about 15%, not greater than about 12%, not greater than about 10%, not greater than about 8%, or even not greater than about 4% of the original liquid content of the sheet.
- the particles may be translated through a post-forming zone 6225 .
- Various processes may be conducted in the post-forming zone 6225 , including for example, heating, curing, vibration, impregnation, doping, and a combination thereof.
- the post-forming zone 6225 includes a heating process, wherein the precursor-shaped abrasive particles 6223 may be dried. Drying may include removal of a particular content of material, including volatiles, such as water.
- the drying process can be conducted at a drying temperature of not greater than 300° C. such as not greater than 280° C. or even not greater than about 250° C. Still, in one non-limiting embodiment, the drying process may be conducted at a drying temperature of at least 50° C. It will be appreciated that the drying temperature may be within a range between any of the minimum and maximum temperatures noted above.
- the precursor-shaped abrasive particles 6223 may be translated through a post-forming zone at a particular rate, such as at least about 0.2 feet/min and not greater than about 8 feet/min. Furthermore, the drying process may be conducted for a particular duration. For example, the drying process may be not greater than about six hours.
- the particles may be removed from the belt 6209 .
- the precursor-shaped abrasive particles 6223 may be collected in a bin 6227 for further processing.
- the process of forming shaped abrasive particles may further comprise a sintering process.
- the sintering process can be conducted after collecting the precursor-shaped abrasive particles 6223 from the belt 6209 .
- Sintering of the precursor-shaped abrasive particles 6223 may be utilized to densify the particles, which are generally in a green state.
- the sintering process can facilitate the formation of a high-temperature phase of the ceramic material.
- the precursor-shaped abrasive particles 6223 may be sintered such that a high-temperature phase of alumina, such as alpha alumina is formed.
- a shaped abrasive particle can comprise at least about 90 wt % alpha alumina for the total weight of the particle. In other instances, the content of alpha alumina may be greater, such that the shaped abrasive particle may consist essentially of alpha alumina.
- FIG. 63 includes an illustration of a system for forming a shaped abrasive particle in accordance with an embodiment.
- the system 6300 can generally include a screen printing process of forming shaped abrasive particles.
- certain portions of the system may be modified to conduct a molding process.
- the system 6300 can include a screen 6351 configured to be translated between rollers 6370 and 6371 . It will be appreciated that the screen 6351 can be translated over a greater number of rollers or other devices if so desired.
- the system 6300 can include a belt 6309 configured to be translated in a direction 6316 over rollers 6372 and 6373 . It will be appreciated that the belt 6309 may be translated over a greater number of rollers or other devices if so desired.
- the system 6300 can further include a die 6303 configured to conduct extrusion of a mixture 6301 contained within a reservoir 6302 of the die 6303 .
- the process of forming shaped abrasive particles can be initiated by forming a mixture 6301 including a ceramic material and a liquid as described herein.
- the mixture 6301 can be provided within the interior of the die 6303 and configured to be extruded through a die opening 6305 positioned at one end of the die 6303 .
- extruding can include applying a force (or a pressure) on the mixture 6301 to facilitate extruding the mixture 6301 through the die opening 6305 .
- a particular pressure may be utilized during extrusion.
- the pressure can be at least about 10 kPa, such as at least about 500 kPa.
- the pressure utilized during extrusion can be not greater than about 4 MPa. It will be appreciated that the pressure used to extrude the mixture 6301 can be within a range between any of the minimum and maximum values noted above.
- the mixture 6301 can be extruded through a die opening 6305 at the end of the die 6303 proximate to the screen 6351 .
- the screen 6351 may be translated in a direction 6353 at a particular rate to facilitate suitable processing.
- the screen 6351 can be translated through the application zone 6383 including the die opening 6305 to facilitate the formation of precursor-shaped abrasive particles.
- the screen 6351 may be translated through the application zone at a rate of at least about 3 cm/s, such as at least about 4 cm/s, at least about 6 cm/s, at least about 8 cm/s, or even at least about 10 cm/s.
- the screen 6351 may be translated in a direction 6353 at a rate of not greater than about 5 m/s, such as not greater than about 1 m/s, or even not greater than about 0.5 m/s. It will be appreciated that the screen 6351 may be translated at a rate within a range between any of the minimum and maximum values noted above.
- the belt 6309 can be translated in a direction 6316 at a particular rate to facilitate suitable processing.
- the belt 6309 can be translated at a rate of at least about 3 cm/s, such as at least about 4 cm/s, at least about 6 cm/s, at least about 8 cm/s, or even at least about 10 cm/s.
- the belt 6309 may be translated in a direction 6316 at a rate of not greater than about 5 m/s, such as not greater than about 1 m/s, or even not greater than about 0.5 m/s. It will be appreciated that the belt 6309 may be translated at a rate within a range between any of the minimum and maximum values noted above.
- the screen 6351 may be translated at a particular rate as compared to the rate of translation of the belt 6309 .
- the screen 6351 may be translated at substantially the same rate of translation of the belt 6309 . That is, the difference in rate of translation between the screen and the belt may be not greater than about 5%, such as not greater than about 3%, or even not greater than about 1% based on the rate of the translation of the screen 6351 .
- the system 6300 can include an application zone 6383 , including the die opening 6305 .
- the mixture 6301 may be extruded from the die 6303 and directly onto the screen 6351 . More particularly, a portion of the mixture 6301 may be extruded from the die opening 6305 , and further extruded through one or more openings in the screen 6351 and onto the underlying belt 6309 .
- the screen 6451 can include an opening 6452 , and more particularly, a plurality of openings 6452 .
- the openings can extend through the volume of the screen 6451 , to facilitate passable of the mixture 6301 through the openings and onto the belt 6309 .
- the openings 6452 can have a two-dimensional shape as viewed in a plane defined by the length (l) and width (w) of the screen. While the openings 6452 are illustrated as having a three-pointed star two-dimensional shape, other shapes are contemplated.
- the openings 6452 can have a two-dimensional shape such as polygons, ellipsoids, numerals, Greek alphabet letters, Latin alphabet letters, Russian alphabet characters, complex shapes including a combination of polygonal shapes, and a combination thereof.
- the openings 6452 may have two-dimensional polygonal shapes such as, a triangle, a rectangle, a quadrilateral, a pentagon, a hexagon, a heptagon, an octagon, a nonagon, a decagon, and a combination thereof.
- a screen 6451 can be formed to include a combination of openings 6452 having a plurality of different two-dimensional shapes.
- precursor-shaped abrasive particles 6353 may be printed on a belt 6309 disposed under the screen 6351 .
- the precursor-shaped abrasive particles 6353 can have a shape substantially replicating the shape of the openings 6352 .
- the belt 6309 and screen 6351 may be translated to a release zone 6385 , wherein the belt 6309 and screen 6351 can be separated to facilitate the formation of precursor shaped abrasive particles.
- the screen 6351 and belt 6309 may be separated from each other within the release zone 6385 at a particular release angle 6355 .
- the release angle 6355 can be a measure of the angle between a lower surface 6354 of the screen 6351 and an upper surface 6356 of the belt 6309 .
- the mixture 6301 can be forced through the screen 6351 in rapid fashion, such that the average residence time of the mixture 6301 within the openings 152 can be less than about 2 minutes, less than about 1 minute, less than about 40 second, or even less than about 20 seconds.
- the mixture 6301 may be substantially unaltered during printing as it travels through the screen openings 6352 , thus experiencing no change in the amount of components, and may experience no appreciable drying in the openings 6352 of the screen 6351 .
- the process of forming can include a molding process.
- the molding process may utilize some of the same components of the system 6300 , however, the screen can be replaced with a molding blank having openings within a substrate material for molding the mixture 6301 .
- the molding blank can have openings that extend partially through the entire thickness of the blank, such that the openings are not apertures extending from one major surface to the opposite major surface of the blank.
- the mold openings can have a bottom surface within the interior volume, which are intended to form a major surface of the precursor-shaped abrasive particle formed therein.
- a molding system may not necessarily utilize a belt underlying the molding blank.
- the forming process may also utilize a particular drying process to facilitate formation of shaped abrasive particles having features of the embodiments herein.
- the drying process may include drying under conditions including humidity, temperature, and atmospheric pressure and composition suitable for limiting distortions to the shaped abrasive particles.
- the process of forming complex shapes required control of one or more process parameters, including drying conditions, amount and type of lubricant, pressure applied to the mixture during extrusion, material of the blank or belt, and the like.
- a belt or blank of stainless steel or polycarbonate polymer could be used.
- a natural oil material e.g., canola oil
- the use of a natural oil material as a lubricant on the openings of the blank or belt may facilitate improved forming of shaped abrasive particles.
- the body of the shaped abrasive particles may include additives, such as dopants, which may be in the form of elements or compounds (e.g., oxides).
- additives such as dopants, which may be in the form of elements or compounds (e.g., oxides).
- Certain suitable additives can include alkali elements, alkaline earth elements, rare-earth elements, hafnium (Hf), zirconium (Zr), niobium (Nb), tantalum (Ta), molybdenum (Mo), and a combination thereof.
- the additive can include an element such as lithium (Li), sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), scandium (Sc), yttrium (Y), lanthanum (La), cesium (Ce), praseodymium (Pr), niobium (Nb), hafnium (Hf), zirconium (Zr), tantalum (Ta), molybdenum (Mo), vanadium (V), chromium (Cr), cobalt (Co), iron (Fe), germanium (Ge), manganese (Mn), nickel (Ni), titanium (Ti), zinc (Zn), and a combination thereof.
- an element such as lithium (Li), sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), scandium (Sc), yttrium (Y), lanthanum (La), cesium (Ce), p
- the body of a shaped abrasive article may include a specific content of additive (e.g., dopant).
- the body of a shaped abrasive particle may include not greater than about 12 wt % additive for the total weight of the body.
- the amount of additive may be less, such as not greater than about 11 wt %, not greater than about 10 wt %, not greater than about 9 wt %, not greater than about 8 wt %, not greater than about 7 wt %, not greater than about 6 wt %, or even not greater than about 5 wt %.
- the amount of additive in at least one non-limiting embodiment can be at least about 0.5 wt %, such as at least about 1 wt %, at least about 1.3 wt %, at least about 1.8 wt %, at least about 2 wt %, at least about 2.3 wt %, at least about 2.8 wt %, or even at least about 3 wt %. It will be appreciated that the amount of additive within a body of a shaped abrasive particle may be within a range between any of the minimum and maximum percentages noted above.
- FIG. 65 A includes a top view image of a shaped abrasive particle formed according to a particular embodiment.
- the shaped abrasive particle 6500 can define a star-shaped body, as viewed in two dimensions.
- the shaped abrasive particle 6500 can include a body 6501 having a central portion 6502 and a first arm 6503 , a second arm 6504 , and a third arm 6505 extending from the central portion 6502 .
- the body 6501 can have a length (l) measured as the longest dimension along a side of the particle and a width (w), measured as the longest dimension of the particle between a midpoint 6553 of a side through the midpoint 6590 of the body 6501 to a first tip 6506 of the first arm 6503 .
- the width can extend in a direction perpendicular to the dimension of the length.
- the body 6501 can have a height (h), extending in a direction perpendicular to the upper surface 6510 of the body 6501 defining the third side surface 6556 between the upper surface and the base surface 6511 as illustrated in FIG. 65 B , which is a side view illustration of the image of the particle of FIG. 65 A .
- the shaped abrasive particle 6500 can have a body 6501 in the form of a three-pointed star defined by the first arm 6503 , second arm 6504 , and the third arm 6505 extending from the central portion 6502 .
- at least one of the arms including for example, the first arm 6503 , can have a midpoint width 6513 that is less than a central portion width 6512 .
- the central portion 6502 can be defined as a region between the midpoints 6551 , 6552 , and 6553 of the first side surface 6554 , second side surface 6555 , and third side surface 6556 , respectively.
- the central portion width 6512 of the first arm 6503 can be the width of the dimension between the midpoints 6551 and 6552 .
- the midpoint width 6513 can be the width of the line at a midpoint between the line of the central portion width 6510 and the tip 6506 of the first arm 6503 along a first axis 6560 .
- the midpoint width 6513 can be not greater than about 90% of the central portion width 6512 , such as not greater than about 80%, not greater than about 70%, not greater than about 65%, or even not greater than about 60%.
- the midpoint width 6513 can be at least about 10%, such as at least about 20%, at least about 30%, or even at least about 40% of the central portion width 6510 . It will be appreciated that the midpoint width 6513 can have a width relative to the central portion width 6512 within a range between any of the above minimum and maximum percentages.
- the body 6501 can have at least one arm, such as the first arm 6503 , having a tip width 6514 at the tip 6506 of the first arm 6503 that is less than a midpoint width 6513 .
- the tip width 6514 may be considered 0.
- the tip width 6514 may be considered the diameter of the circle defined by the radius of curvature.
- the tip width 6514 can be not greater than about 90% of the midpoint width 6513 , such as not greater than about 80%, not greater than about 70%, not greater than about 60%, not greater than about 50%, not greater than about 40%, not greater than about 30%, not greater than about 20%, or even not greater than about 10%. Still, in certain non-limiting embodiments, the tip width 6514 can be at least about 1%, such as at least about 2%, at least about 3%, at least about 5%, or even at least about 10% of the midpoint width 6513 . It will be appreciated that the tip width 6514 can have a width relative to the midpoint width 6513 within a range between any of the above minimum and maximum percentages.
- the body 6501 can have a first arm 6503 including a first tip 6506 defining a first tip angle 6521 between the first side surface 6554 and the second side surface 6555 .
- the first tip angle can be less than about 60 degrees, such as not greater than about 55 degrees, not greater than about 50 degrees, not greater than about 45 degrees, or even not greater than about 40 degrees.
- the first tip angle can be at least about 5 degrees, such as at least about 8 degrees, at least about 10 degrees, at least about 15 degrees, at least about 20 degrees, at least about 25 degrees, or even at least about 30 degrees.
- the first tip angle can be within a range between any of the minimum and maximum values noted above.
- the body 6501 can include a second arm 6504 having a second tip 6507 defining a second tip angle 6522 between the second side surface 6555 and third side surface 6556 .
- the second tip angle can be substantially the same as the first tip angle, such as within 5% of the angle numerical value. Alternatively, the second tip angle can be substantially different relative to the first tip angle.
- the body 6501 can include a third arm 6505 having a third tip 6508 defining a third tip angle 6523 between the first side surface 6554 and third side surface 6556 .
- the third tip angle can be substantially the same as the first tip angle or second tip angle, such as within 5% of the angle numerical value. Alternatively, the third tip angle can be substantially different relative to the first tip angle or the second tip angle.
- the body 6501 can have a total angle, which is a sum of the value of the first tip angle, second tip angle, and third tip angle which can be less than about 180 degrees.
- the total angle can be not greater than about 175 degrees, such as not greater than about 170 degrees, not greater than about 165 degrees, not greater than about 150 degrees, such as not greater than about 140 degrees, not greater than about 130 degrees, not greater than about 125 degrees, or even not greater than about 120 degrees.
- the body 6501 can have a total angle of at least about 60 degrees, such as at least about 70 degrees, at least about 80 degrees, at least about 90 degrees, such as at least about 95 degrees, at least about 100 degrees, or even at least about 105 degrees. It will be appreciated that the total sum angle can be within a range between any of the minimum and maximum values noted above.
- the body 6501 can have a first side surface 6554 extending between the first arm 6506 and the third arm 6508 .
- the first side surface 6554 can have an arcuate contour.
- FIG. 65 C a top view image of a shaped abrasive particle according to an embodiment is provided.
- the shaped abrasive particle of FIG. 65 C can include a three-pointed star having a body 6581 and an arcuate side surface 6582 extending between two points.
- the side surface 6582 can have a concave contour defining a curved portion extending inward toward the central portion 6583 of the body 6581 .
- the body 6501 can have a first side surface 6554 having a first side section 6558 and a second side section 6559 .
- the first side section 6558 can extend between the first tip 6506 and the midpoint 6551 and the second side section 6559 can extend between the third tip 6508 and the midpoint 6551 .
- the first side section 6558 and second side section 6559 can define an interior angle 6562 that can be obtuse.
- the interior angle 6562 can be greater than about 90 degrees, such as greater than about 95 degrees, greater than about 100 degrees, greater than about 110 degree, or even greater than about 120 degrees.
- the interior angle 6562 can be not greater than about 320 degrees, such as not greater than about 300 degrees, or even not greater than about 270 degrees. It will be appreciated that the interior angle can be within a range between any of the minimum and maximum values noted above.
- the first side section 6558 can extend for a significant portion of the length of the first side surface 6554 .
- the first side section 6558 can extend for at least about 20%, such as at least about 25%, at least about 30%, at least about 35%, or even at least about 40% of a total length of the first side surface 6554 .
- the first side section 6558 can have a length (ls1) between the midpoint 6551 and the first tip 6506 of not greater than about 80%, such as not greater than about 75%, not greater than about 70%, or even not greater than about 65% of the total length of the side surface 6554 . It will be appreciated that the length of the first side section 6558 can be within a range between any of the minimum and maximum percentages noted above.
- the second side section 6559 can extend for a significant portion of the length of the first side surface 6554 .
- the second side section 6559 can extend for at least about 20%, such as at least about 25%, at least about 30%, at least about 35%, or even at least about 40% of a total length of the first side surface 6554 .
- the second side section 6559 can have a length (ls2) between the midpoint 6551 and the third tip 6508 of not greater than about 80%, such as not greater than about 75%, not greater than about 70%, or even not greater than about 65% of the total length of the side surface 6554 as a straight line between the first tip 6506 and the third tip 6508 .
- the length of the second side section 6559 can be within a range between any of the minimum and maximum percentages noted above.
- the body 6501 can further include a fractured region 6570 on at least a portion of one side surface.
- the body 6501 can have a fractured region 6570 on a portion of the side surface 6554 between the midpoint 6551 and the third tip 6508 .
- the fracture region 6570 can be intersecting at least a portion of an edge defining the base surface 6511 .
- the fracture region 6570 can be intersecting at least a portion of an edge defining the upper surface 6510 .
- the fractured region can be characterized by having a surface roughness greater than a surface roughness of at least the upper surface 6510 or the base surface 6511 of the body 6501 .
- the fractured region 6570 can define a portion of the body extending from the base surface 6511 .
- the fractured region 6570 can be characterized by irregularly shaped protrusions and grooves extending from the base surface 6511 along the first side surface 6554 . In certain instances, the fractured region 6570 can appear as and define a serrated edge. A fracture region 6583 is also illustrated on the side surface 6582 of the shaped abrasive particle of FIG. 65 C .
- the fracture region 6570 can be preferentially located at or near the tips of the arms of the body.
- the fractured region 6570 can extend from the bottom surface 1703 and extend vertically for a fraction of the entire height of the side surface or even for the entire height of the side surface.
- the cross-sectional shape of the body at the base surface can define a base surface shape from the group consisting of a three-pointed star, a four-pointed star, a cross-shape, a polygon, ellipsoids, numerals, Greek alphabet characters, Latin alphabet characters, Russian alphabet characters, complex shapes having a combination of polygonal shapes, and a combination thereof.
- the cross-sectional shape of the body at the upper surface can define an upper surface shape, which can be different than the base surface shape and selected from the group of a three-pointed star, a four-pointed star, a cross-shape, a polygon, ellipsoids, numerals, Greek alphabet characters, Latin alphabet characters, Russian alphabet characters, complex shapes having a combination of polygonal shapes, and a combination thereof.
- the upper surface shape can have an arcuate form of the base surface shape.
- the upper surface shape can define an arcuate three-pointed two-dimensional shape, wherein the arcuate three-pointed two-dimensional shape defines arms having rounded ends.
- the arms as defined at the base surface can have a smaller radius of curvature at the tip as compared to the radius of curvature of the corresponding tip at the upper surface.
- At least one of the arms of the body 6501 may be formed to have a twist, such that the arm twists around a central axis.
- the first arm 6503 may twist around the axis 6560 .
- the body 6501 can be formed such that at least one arm extends in an arcuate path from the central region.
- FIG. 66 A includes a top view image of a shaped abrasive particle formed according to a particular embodiment.
- the shaped abrasive particle 6600 can define a star-shaped body, as viewed in a plane defined by the two dimensions of length and width.
- the shaped abrasive particle 6600 can include a body 6601 having a central portion 6602 and a first arm 6603 , a second arm 6604 , a third arm 6605 , and a fourth arm 6606 extending from the central portion 6602 .
- the body 6601 can have a length (l), measured as the longest dimension along a side of the particle and a width (w), and measured as the longest dimension of the particle between two points of opposite arms and through the midpoint 6609 of the body 6601 .
- the width can extend in a direction perpendicular to the dimension of the length.
- the body 6601 can have a height (h), extending in a direction perpendicular to the upper surface 6610 of the body 6601 defining the third side surface 6656 between the upper surface and the base surface 6611 as illustrated in FIG. 66 B .
- the body 6601 can have more than one height as will be described in more detail herein.
- the shaped abrasive particle 6600 can have a body 6601 in the form of a four-pointed star defined by the first arm 6603 , a second arm 6604 , a third arm 6605 , and the fourth arm 6606 extending from the central portion 6602 .
- the body 6601 can have any of the features described in the embodiments herein.
- at least one of the arms including for example, the first arm 6603 , can have a midpoint width that is less than a central portion width, as described in accordance with the embodiment of FIG. 65 A .
- the body 6601 can have at least one arm, such as the first arm 6603 , having a tip width at the tip of the first arm that is less than a midpoint width as described in accordance with the embodiment of FIG. 65 A .
- the body 6601 can have a first arm 6603 including a first tip 6607 defining a first tip angle 6621 between the first side surface 6654 and the second side surface 6655 .
- the first tip angle can be less than about 60 degrees, such as not greater than about 55 degrees, not greater than about 50 degrees, not greater than about 45 degrees, or even not greater than about 40 degrees.
- the first tip angle 6621 can be at least about 5 degrees, such as at least about 8 degrees, at least about 10 degrees, at least about 15 degrees, or even at least about 20 degrees.
- the first tip angle 6621 can be within a range between any of the minimum and maximum values noted above.
- any of the other tips including the second tip 6608 of the second arm 6604 , the third tip 6609 of the third arm 6605 , or fourth tip 6610 of the fourth arm 6606 can have a tip angle having the same features described in accordance with the first tip angle 6621 above.
- the second tip 6608 can define a second tip angle that is substantially the same as the first tip angle 6621 , such as within 5% of the angle numerical value. Alternatively, the second tip angle can be substantially different relative to the first tip angle 6621 .
- the third tip 6609 can define a third tip angle that is substantially the same as the first tip angle 6621 , such as within 5% of the angle numerical value. Alternatively, the third tip angle can be substantially different relative to the first tip angle 6621 .
- the fourth tip 6610 can define a fourth tip angle that is substantially the same as the first tip angle 6621 , such as within 5% of the angle numerical value. Alternatively, the fourth tip angle can be substantially different relative to the first tip angle 6621 .
- the body 6601 can include a first arm 6603 , second arm 6604 , third arm 6605 , and fourth arm 6606 that are substantially evenly spaced apart with respect to each other.
- the arms 6603 - 6606 can be spaced substantially evenly around the central portion 6602 .
- the arms 6603 - 6606 can be spaced apart from each other at substantially orthogonal angles relative to each other.
- the first arm 6603 and second arm 6604 can be spaced apart from each other based on the spacing angle 6631 defined by the angle between the axis 6690 extending between opposite tips 6609 and 6607 and through the midpoint 6609 relative to the axis 6691 extending between tips 6608 and 6610 and through the midpoint 6609 .
- the first arm 6603 and second arm 6604 can be spaced apart from each other as define by the spacing angle 6631 by at least about 45 degrees, such as at least about 60 degrees, or even at least about 70 degrees.
- the spacing angle 6631 can be not greater than about 120 degrees, such as not greater than about 110 degrees, or even approximately 90 degrees.
- the spacing angle 6631 can be within a range between any of the minimum and maximum values noted above.
- the body 6601 can be formed such that at least one side surface, such as the first side surface 6654 can have an arcuate contour.
- at least one side surface can have a concave curvature for at least a portion of the length of the entire side surface.
- At least one side surface of the body 6601 can have a first section 6625 and a second section 6626 , which can be joined together at a first side surface midpoint 6627 and defining a first interior angle 6628 .
- the first interior angle can be greater than about 90 degrees, such as greater than about 95 degrees, greater than about 100 degrees, greater than about 130 degrees, greater than about 160 degrees, greater than about 180 degrees, or even greater than about 210 degrees.
- the first interior angle can be not greater than about 320 degrees, not greater than about 300 degrees, or even not greater than about 270 degrees.
- the first interior angle can be within a range between any of the minimum and maximum values noted above.
- the body can include a second interior angle 6629 at the second side surface 6655 , a third interior angle 6632 at the third side surface 6656 , and a fourth interior angle 6633 at the fourth side surface 6657 .
- Each of the interior angles can have the features described with respect to the first interior angle 6628 .
- each and any of the second side surface 6655 , the third side surface 6656 , and the fourth side surface 6657 can have any of the features of the first side surface 6654 .
- the body 6601 can have a first arm 6603 and the third arm 6605 extending in opposite directions from the central portion 6602 of the body 6601 relative to each other.
- the second arm 6604 and the fourth arm 6606 can extend in opposite directions relative to each other.
- the second arm 6604 can have a length, as measured between from the boundary of the central portion 6602 to the tip 6608 along the axis 6691 that can be substantially the same as a length of the fourth arm 6606 .
- the second arm 6604 can have a length that is substantially different than (e.g., less than or greater than) a length of the first arm 6603 or third arm 6605 .
- the cross-sectional shape of the body at the base surface can define a base surface shape from the group consisting of a three-pointed star, a four-pointed star, a cross-shape, a polygon, ellipsoids, numerals, Greek alphabet characters, Latin alphabet characters, Russian alphabet characters, complex shapes having a combination of polygonal shapes, and a combination thereof.
- the cross-sectional shape of the body at the upper surface can define an upper surface shape, which can be different than the base surface shape and selected from the group of a three-pointed star, a four-pointed star, a cross-shape, a polygon, ellipsoids, numerals, Greek alphabet characters, Latin alphabet characters, Russian alphabet characters, complex shapes having a combination of polygonal shapes, and a combination thereof.
- the upper surface shape can have an arcuate form of the base surface shape.
- the upper surface shape can define an arcuate four-pointed two-dimensional shape, wherein the arcuate four-pointed two-dimensional shape defines arms having rounded ends.
- the arms as defined at the base surface can have a smaller radius of curvature at the tip as compared to the radius of curvature of the corresponding tip at the upper surface.
- the body can be formed to have limited deformation or warping of the body.
- the body can have a curling factor (ht/hi) of not greater than about 10 , wherein the curling factor is defined as a ratio between the greatest height of the body at one tip of an arm (ht) as compared to a smallest dimension of height of the body at the interior (hi) (e.g., within the central portion 6602 ).
- the body 6601 can have an interior height, which represents the smallest height of the particle as viewed from the side.
- the greatest height (ht) of the body is represented by the distance between the bottom surface (or plane of the bottom surface) and the highest point of the body 6601 as viewed from the side, which can be tip of a curled up arm.
- the shaped abrasive particles of the embodiments herein demonstrate limited warping, having a curling factor of not greater than about 5, not greater than about 3, not greater than about 2, not greater than about 1.8, not greater than about 1.7, not greater than about 1.6, not greater than about 1.5, not greater than about 1.3, not greater than about 1.2, not greater than about 1.14, or even not greater than about 1.10.
- Suitable computer programs, such as ImageJ software may be used to conduct an accurate analysis from images of the shaped abrasive particles to measure curling factor.
- FIG. 67 includes a top view image of a shaped abrasive particle formed according to a particular embodiment.
- the shaped abrasive particle 6700 can define a cross-shaped body, as viewed in a plane defined by the two dimensions of length and width.
- the shaped abrasive particle 6700 can include a body 6701 having a central portion 6702 and a first arm 6703 , a second arm 6704 , a third arm 6705 , and a fourth arm 6706 extending from the central portion 6702 .
- the body 6701 can have a length (l), measured as the longest dimension along a side of the particle and a width (w), and measured as the longest dimension of the particle between two points of opposite arms and through the midpoint 6709 of the body 6701 .
- the width can extend in a direction perpendicular to the dimension of the length.
- the body 6701 can have a height (h), extending in a direction perpendicular to the upper surface 6710 of the body 6701 defining a side surface between the upper surface 6710 and the base surface 6711 .
- the body 6701 can have any one or a combination of features described in any of the embodiments herein.
- the body 6701 can have at least one arm, such as the first arm 6703 having a midpoint width 6714 that is substantially the same as a central portion width 6712 of the first arm 6703 .
- the length of the arm between points 6715 and 6716 on the axis 6790 defining the width of the body 6701 can be less than the width of the first arm 6703 .
- the length can be not greater than about 90% of the width, such as not greater than about 80%, not greater than about 70%, not greater than about 60%.
- the length of the first arm 6703 can be at least about 10%, such as at least about 20% of the width of the first arm 6703 .
- the length can have a dimension relative to the width within a range between any of the minimum and maximum percentages noted above.
- Reference to the width of the first arm 6703 can be reference to the central portion width 6712 , or midpoint width 6714 . Any of the arms of the body 6701 can have the same features of the first arm 6703 .
- FIG. 68 includes a top view image of a shaped abrasive particle according to an embodiment.
- the shaped abrasive particle 6800 can define a generally cross-shaped body, as viewed in a plane defined by the two dimensions of length and width.
- the shaped abrasive particle 6800 can include a body 6801 having a central portion 6802 and a first arm 6803 , a second arm 6804 , a third arm 6805 , and a fourth arm 6806 extending from the central portion 6802 .
- the body 6801 can have a length (l), measured as the longest dimension along a side of the particle and a width (w), and measured as the longest dimension of the particle between two points of opposite arms and through the midpoint 6809 of the body 6801 .
- the width can extend in a direction perpendicular to the dimension of the length.
- the body 6801 can have a height (h), extending in a direction perpendicular to the upper surface 6810 of the body 6801 defining a side surface between the upper surface 6810 and the base surface 6811 .
- the body 6801 can have any one or a combination of features described in any of the embodiments herein.
- the body can have a particular combination of two-dimensional shapes of the base surface 6811 and the upper surface 6810 .
- the body can have a two-dimensional shape (i.e., cross-sectional shape) of the body at the base surface defining a base surface shape, and a two-dimensional shape of the body at the upper surface defining an upper surface shape, and in particular, the base surface shape can be a generally cross-shaped the upper surface shape can be a rounded quadrilateral shape.
- the rounded quadrilateral shape can be defined by an upper surface 6810 (edges shown by the dotted line) that has four sides joined by rounded corners, wherein the corners generally correspond to the arms of the cross-shape defined by the base surface.
- the upper surface may not define arm portions separated by a side surface having at least two side surface sections angled with respect to each other, which are shown by the cross-shaped contour of the base surface shape.
- FIG. 69 A includes an illustration of a side view of a shaped abrasive particle according to an embodiment.
- the shaped abrasive particle 6900 can include a body 6901 including a first layer 6902 and a second layer 6903 overlying the first layer 6902 .
- the body 6901 can have layers 6902 and 6903 that are arranged in a stepped configuration relative to each other.
- a stepped configuration can be characterized by at least one plateau region 6920 on an upper surface 6910 of the first layer 6902 between a side surface 6904 of the first layer 6902 and a side surface 6905 of the second layer 6903 .
- the size and shape of the plateau region 6920 may be controlled or predetermined by one or more processing parameters and may facilitate an improved deployment of the abrasive particles into an abrasive article and performance of the abrasive article.
- the plateau region 6902 can have a lateral distance 6921 , which can be defined as the greatest distance between an edge 6907 between the upper surface 6910 of the first layer 6902 and a side surface 6904 of the first layer to the side surface 6905 of the second layer. Analysis of the lateral distance 6921 may be facilitated by a top-view image of the body 6901 , such as shown in FIG. 69 B . As illustrated, the lateral distance 6921 can be the greatest distance of the plateau region 6902 . In one embodiment, the lateral distance 6921 may have a length that is less than the length 6910 of the first layer 6902 (i.e., larger layer).
- the lateral distance 6921 can be not greater than about 90%, such as not greater than about 80%, not greater than about 70%, not greater than about 60%, not greater than about 50%, not greater than about 40%, not greater than about 30%, or even not greater than about 20% of the length 6910 of the first layer 6902 of the body 6901 . Still, in one non-limiting embodiment, the lateral distance 6921 can have a length that is at least about 2%, at least about 5%, at least about 8%, at least about 10%, at least about 20%, at least about 25%, at least about 30%, or even at least about 50% of the length of the first layer 6902 of the body 6901 . It will be appreciated that the lateral distance 6921 can have a length within a range between any of the minimum and maximum percentages noted above.
- the second layer 6903 can have a particular length 6909 , which is the longest dimension of a side, such as shown in FIG. 69 B , relative to a length 6910 of the first layer 6902 that may facilitate improved deployment of the abrasive particles into an abrasive article and/or performance of the abrasive article.
- the length 6909 of the second layer 6903 can be not greater than about 90%, such as not greater than about 80%, not greater than about 70%, not greater than about 60%, not greater than about 50%, not greater than about 40%, not greater than about 30%, or even not greater than about 20% of the length 6910 of the first layer 6902 of the body 6901 .
- the second layer 6903 can have a length 69909 that can be at least about 2%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, or even at least about 70% of the length 6910 of the first layer 6902 of the body 6901 . It will be appreciated that the length 6909 of the second layer 6903 relative to the length 6910 of the first layer 6902 can be within a range between any of the minimum and maximum percentages noted above.
- the foregoing shaped abrasive particle of FIGS. 69 A and 69 B can be formed using multiple sheets of material, multiple screens, and/or multiple molding blanks.
- one process can include the use of a first screen, which is completely or partially filled with a first mixture, and provision of a second screen, which can be different in size, shape or orientation with respect to the first screen, and provision of a second mixture within the openings of the second screen.
- the second screen can be placed over the first screen or over precursor-shaped abrasive particles formed from the first screen.
- the second mixture can be provided on the precursor-shaped abrasive particles of the first mixture to form precursor-shaped abrasive particles having the stepped and layered configuration.
- the openings of the second screen can be smaller than the openings of the first screen.
- the first screen and second screen can have, but need not necessarily utilize, different size openings, different two-dimensional shapes of openings, and a combination thereof.
- the first screen and second screen can be used at the same time as a composite screen to shape the mixture.
- the first screen and second screen may be affixed to each other to facilitate proper and continuous alignment between the openings of the first screen and second screen.
- the second screen can be oriented on the first screen to facilitate alignment between the openings in the first screen and openings in the second screens to facilitate suitable delivery of the mixture into the openings of the first screen and second screen.
- first screen and second screen may be used in separate processes.
- first mixture is provided in the first screen at a first time and the second mixture is provided in the second screen at a second time.
- the first mixture can be provided in the openings of the first screen, and after the first mixture has been formed in the openings of the first screen, the second mixture can be provided on the first mixture.
- Such a process may be conducted while the first mixture is contained in the first openings of the first screen.
- the first mixture may be removed from the openings of the first screen to create precursor-shaped abrasive particles of the first mixture.
- the precursor shaped abrasive particles of the first mixture can be oriented with respect to openings of the second screen, and the second mixture can be placed in the openings of the second screen and onto the precursor shaped abrasive particles of the first mixture to facilitate formation of composite precursor shaped abrasive particles including the first mixture and the second mixture.
- the same process may be used with one mold and one screen. Moreover, the same process may be completed using first and second molds to form the first and second layers, respectively.
- a batch of shaped abrasive particles can include, but need not necessarily include, a group of shaped abrasive particles made through the same forming process.
- a batch of shaped abrasive particles can be a group of shaped abrasive particles of an abrasive article, such as a fixed abrasive article, and more particularly, a coated abrasive article, which may be independent of a particular forming method, but having one or more defining features present in a particular population of the particles.
- a batch of particles may include an amount of shaped abrasive particles suitable for forming a commercial grade abrasive product, such as at least about 20 lbs. of particles.
- any of the features of the embodiments herein can be a characteristic of a single particle, a median value from a sampling of particles of a batch, or an average value derived from analysis of a sampling of particles from a batch.
- reference herein to the characteristics can be considered reference to a median value that is a based on a statistically significant value derived from a random sampling of a suitable number of particles of a batch.
- the sample size can include at least 10, and more typically, at least 40 randomly selected particles from a batch of particles.
- any of the features described in the embodiments herein can represent features that are present in at least a portion of a batch of shaped abrasive particles.
- the portion may be a minority portion (e.g., less than 50% and any whole number integer between 1% and 49%) of the total number of particles in a batch, a majority portion (e.g., 50% or greater and any whole number integer between 50% and 99%) of the total number of particles of the batch, or even essentially all of the particles of a batch (e.g., between 99% and 100%).
- the provision of one or more features of any shaped abrasive particle of a batch may facilitate alternative or improved deployment of the particles in an abrasive article and may further facilitate improved performance or use of the abrasive article.
- a batch of particulate material can include a first portion including a first type of shaped abrasive particle and a second portion including a second type of shaped abrasive particle.
- the content of the first portion and second portion within the batch may be controlled at least in part based upon certain processing parameters. Provision of a batch having a first portion and a second portion may facilitate alternative or improved deployment of the particles in an abrasive article and may further facilitate improved performance or use of the abrasive article.
- the first portion may include a plurality of shaped abrasive particles, wherein each of the particles of the first portion can have substantially the same features, including for example, but not limited to, the same two-dimensional shape of a major surface.
- the batch may include various contents of the first portion.
- the first portion may be present in a minority amount or majority amount.
- the first portion may be present in an amount of at least about 1%, such as at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, or even at least about 70% for the total content of portions within the batch.
- the batch may include not greater than about 99%, such as not greater than about 90%, not greater than about 80%, not greater than about 70%, not greater than about 60%, not greater than about 50%, not greater than about 40%, not greater than about 30%, not greater than about 20%, not greater than about 10%, not greater than about 8%, not greater than about 6%, or even not greater than about 4% of the total portions within the batch.
- the batch can include a content of the first portion within a range between any of the minimum and maximum percentages noted above.
- the second portion of the batch can include a plurality of shaped abrasive particles, wherein each of the shaped abrasive particles of the second portion can have substantially the same feature, including for example, but not limited to, the same two-dimensional shape of a major surface.
- the second portion can have one or more features of the embodiments herein, which can be distinct compared to the plurality of shaped abrasive particles of the first portion.
- the batch may include a lesser content of the second portion relative to the first portion, and more particularly, may include a minority content of the second portion relative to the total content of particles in the batch.
- the batch may contain a particular content of the second portion, including for example, not greater than about 40%, such as not greater than about 30%, not greater than about 20%, not greater than about 10%, not greater than about 8%, not greater than about 6%, or even not greater than about 4%. Still, in at least on non-limiting embodiment, the batch may contain at least about 0.5%, such as at least about 1%, at least about 2%, at least about 3%, at least about 4%, at least about 10%, at least about 15%, or even at least about 20% of the second portion for the total content of portions within the batch. It will be appreciated that the batch can contain a content of the second portion within a range between any of the minimum and maximum percentages noted above.
- the batch may include a greater content of the second portion relative to the first portion, and more particularly, can include a majority content of the second portion for the total content of particles in the batch.
- the batch may contain at least about 55%, such as at least about 60% of the second portion for the total portions of the batch.
- the batch can include other portions, including for example a third portion, comprising a plurality of shaped abrasive particles having a third feature that can be distinct from the features of the particles of the first and second portions.
- the batch may include various contents of the third portion relative to the second portion and first portion.
- the third portion may be present in a minority amount or majority amount. In particular instances, the third portion may be present in an amount of not greater than about 40%, such as not greater than about 30%, not greater than about 20%, not greater than about 10%, not greater than about 8%, not greater than about 6%, or even not greater than about 4% of the total portions within the batch.
- the batch may include a minimum content of the third portion, such as at least about 1%, such as at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, or even at least about 50%.
- the batch can include a content of the third portion within a range between any of the minimum and maximum percentages noted above.
- the batch may include a content of diluent, randomly shaped abrasive particles, which may be present in an amount the same as any of the portions of the embodiments herein.
- a mixture in the form of a gel is obtained having approximately 42% solids loading of boehmite commercially available as Catapal B from Sasol Corp. combined with 58 wt % water containing a minority content of nitric acid and organic additives.
- the gel has a viscosity of approximately 3 ⁇ 10 3 to 4 ⁇ 10 4 Pa. and a storage modulus of 3 ⁇ 10 4 to 2 ⁇ 10 5 Pa.
- the gel is extruded from a die using a pressure of up to 80 psi (552 kPa) onto a mold blank of polycarbonate and into a plurality of openings, wherein each of the openings are in the shape of a three-pointed star.
- the surfaces of the openings within the mold blank have been coated with canola oil.
- the openings define three-pointed star two-dimensional shapes having a length of approximately 5-7 mm, a width of 3-5 mm, and a depth of approximately 0.8 mm.
- the openings have tip angles of approximately 35 degrees, and an interior angle between the three arms of approximately 225 degrees.
- FIG. 65 A is an image of a representative particle formed Example 1.
- the body has a curling factor of less than 5.
- Example 1 The process of Example 1 was used with the exception that the mold blank utilized openings defining a four-point star-shaped two-dimensional shape having a length of approximately 7-9 mm, a width of 7-9 mm, and a depth of approximately 0.8 mm.
- the openings have tip angles of approximately 25 degrees, and an interior angle between the three arms of approximately 250 degrees.
- FIG. 66 A is an image of a representative particle formed from Example 2.
- the body has a curling factor of less than 5.
- Example 1 The process of Example 1 was used with the exception that the mold blank utilized openings defining a cross-shaped two-dimensional shape having a length of approximately 5-6 mm, a width of 5-6 mm, and a depth of approximately 0.8 mm.
- the arms have a width of approximately 2 mm and a length of approximately 1 mm.
- FIG. 67 is an image of a representative particle formed from Example 3.
- the body has a curling factor of less than 5.
- shaped abrasive particles may be formed through processes such as molding and screen printing, the processes of the embodiments herein are distinct from such processes. Moreover, the resulting shaped abrasive particles have one or a combination of distinct features from particles formed according to conventional approaches.
- the shaped abrasive particles of the embodiments herein can have a particular combination of features distinct from other conventional particles including, but not limited to, aspect ratio, composition, additives, two-dimensional shape, three-dimensional shape, stepped configuration, curling factor, tip angles, interior angles, and the like.
- the embodiments herein include a combination of features facilitating the formation of batches of shaped abrasive particle having particular features. And in fact, one or more such features facilitate alternative deployment of the particles in abrasive articles, and further, may facilitate improved performance in the context of fixed abrasives, such as bonded abrasives or coated abrasives.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
- This application is a continuation of U.S. Non-Provisional patent application Ser. No. 16/459,044, filed Jul. 1, 2019, entitled “ABRASIVE PARTICLES HAVING COMPLEX SHAPES AND METHODS OF FORMING SAME,” naming inventors Doruk O. Yener et al., which is a continuation of U.S. Non-Provisional patent application Ser. No. 15/962,838, filed Apr. 25, 2018, which issued on Jul. 30, 2019, as U.S. Pat. No. 10,364,383, entitled “ABRASIVE PARTICLES HAVING COMPLEX SHAPES AND METHODS OF FORMING SAME,” naming inventors Doruk O. Yener et al., which is a continuation of U.S. Non-Provisional patent application Ser. No. 15/681,796, filed Aug. 21, 2017, which issued on Oct. 23, 2018, as U.S. Pat. No. 10,106,715, entitled “ABRASIVE PARTICLES HAVING COMPLEX SHAPES AND METHODS OF FORMING SAME,” naming inventors Doruk O. Yener et al., which is a continuation of U.S. Non-Provisional patent application Ser. No. 15/402,860, filed Jan. 10, 2017, which issued Sep. 26, 2017, as U.S. Pat. No. 9,771,506, entitled “ABRASIVE PARTICLES HAVING COMPLEX SHAPES AND METHODS OF FORMING SAME,” naming inventors Doruk O. Yener et al., which is a continuation of U.S. Non-Provisional patent application Ser. No. 14/964,229, filed Dec. 9, 2015, which issued on Feb. 14, 2017, as U.S. Pat. No. 9,567,505, entitled “ABRASIVE PARTICLES HAVING COMPLEX SHAPES AND METHODS OF FORMING SAME,” naming inventors Doruk O. Yener et al., which is a continuation of U.S. Non-Provisional patent application Ser. No. 14/201,436, filed Mar. 7, 2014, which issued Jan. 19, 2016, as U.S. Pat. No. 9,238,768, entitled “ABRASIVE PARTICLES HAVING COMPLEX SHAPES AND METHODS OF FORMING SAME,” naming inventors Doruk O. Yener et al., which is a continuation of U.S. Non-Provisional patent application Ser. No. 13/738,890, filed Jan. 10, 2013, which issued Jun. 17, 2014, as U.S. Pat. No. 8,753,742, entitled “ABRASIVE PARTICLES HAVING COMPLEX SHAPES AND METHODS OF FORMING SAME,” naming inventors Doruk O. Yener et al., and claims priority from U.S. Provisional Patent Application No. 61/584,998, filed Jan. 10, 2012, entitled “ABRASIVE PARTICLES HAVING COMPLEX SHAPES AND METHODS OF FORMING SAME,” naming inventors Doruk O. Yener et al., all of which are assigned to the current assignee hereof and incorporated by reference herein in their entireties.
- This disclosure, in general, relates to methods and systems for forming structured abrasive articles. More particularly, this disclosure relates to shaped abrasive grains.
- Abrasive articles, such as coated abrasives and bonded abrasives, are used in various industries to machine workpieces, such as by lapping, grinding, or polishing. Machining utilizing abrasive articles spans a wide industrial scope from optics industries, automotive paint repair industries, to metal fabrication industries. In each of these examples, manufacturing facilities use abrasives to remove bulk material or affect the surface characteristics of products.
- Surface characteristics include shine, texture, and uniformity. For example, manufacturers of metal components use abrasive articles to fine and polish surfaces, and oftentimes desire a uniformly smooth surface. Similarly, optics manufacturers desire abrasive articles that produce defect-free surfaces to prevent light diffraction and scattering.
- Manufactures also desire abrasive articles that have a high stock removal rate for certain applications. However, there is often a trade-off between removal rate and surface quality. Finer grain abrasive articles typically produce smoother surfaces, yet have lower stock removal rates. Lower stock removal rates lead to slower production and increased cost.
- Particularly in the context of coated abrasive articles, manufactures of abrasive articles have introduced surface structures to improve stock removal rate, while maintaining surface quality. Coated abrasive articles having surface structures or patterns of raised abrasive layers, often called engineered or structured abrasives, typically exhibit improved useful life.
- However, typical techniques for forming structured abrasive articles are unreliable and suffer from performance limitations. A typical process for forming a structured abrasive article includes coating a backing with a viscous binder, coating the viscous binder with a functional powder, and stamping or rolling structure patterns into the viscous binder. The functional powder prevents the binder from sticking to patterning tools. The binder is subsequently cured.
- Imperfect coating of the viscous binder with functional powder leads to binder sticking on patterning tools. Binder sticking produces poor structures, leading to poor product performance and wasted product.
- Selection of binders appropriate for typical structured abrasive formation techniques is limited by the process. Typical binders include high loading of traditional fillers that increase the viscosity of the binder. Such traditional fillers affect the mechanical characteristics of the binder. For example, high loading of traditional fillers may adversely affect tensile strength, tensile modulus, and elongation at break characteristics of the binder. Poor mechanical characteristics of the binder allow for loss of abrasive grains, leading to scratching and haze on surfaces and reducing abrasive article life.
- Loss of grains also degrades the performance of abrasive articles, leading to frequent replacement. Frequent abrasive article replacement is costly to manufacturers. As such, improved abrasive articles and methods for manufacturing abrasive articles would be desirable.
- An abrasive grain is disclosed and may include a body. The body may define a length (l), a height (h), and a width (w). In a particular aspect, the length is greater than or equal to the height and the height is greater than or equal to the width. Further, in a particular aspect, the body may include a primary aspect ratio defined by the ratio of length:height of at least about 1:1. The body may also include an upright orientation probability of at least about 50%.
- In another aspect, an abrasive grain is disclosed and may include a body that has a length (l), a width (w), and a height (h). The length, width, and height may correspond to a longitudinal axis, a lateral axis, and a vertical axis, respectively, and the longitudinal axis, lateral axis, and vertical axis may define three perpendicular planes. In this aspect, the body may include an asymmetric geometry with respect to any of the three perpendicular planes.
- In yet another aspect, an abrasive grain is disclosed and may include a body having a complex three-dimensional geometry including 3-fold symmetry in three perpendicular planes defined by a longitudinal axis, a lateral axis, and a vertical axis. Further, the body may include an opening that extends through the entire interior of the body along one of the longitudinal axis, lateral axis, or vertical axis.
- In still another aspect, an abrasive grain is disclosed and may include a body having a complex three-dimensional geometry defined by a length (l), a width (w), and a height (h). The body may also include a center of mass and a geometric midpoint. The center of mass may be displaced from the geometric midpoint by a distance (Dh) of at least about 0.05(h) along a vertical axis of the body defining the height.
- In another aspect, an abrasive grain is disclosed and may include a body that defines a length (l), a width (w), and a height (h). The body may include a base surface and an upper surface. Further, the base surface comprises a different cross-sectional shape than a cross-sectional shape of the upper surface.
- In still another aspect, an abrasive grain is disclosed and may include a body that has a generally flat bottom and a dome-shaped top extending from the generally flat bottom.
- In another aspect, an abrasive grain is disclosed and may include a body comprising a length (l), a width (w), and a height (h). The length, width, and height may correspond to a longitudinal axis, a lateral axis, and a vertical axis, respectively. Further, the body may include a twist along a longitudinal axis defining the length of the body such that a base surface is rotated with respect to an upper surface to establish a twist angle.
- In yet another aspect, an abrasive grain is disclosed and may include a body having a first end face and a second end face a, at least three adjacent side faces extending between the first end face and the second end face, and an edge structure established between each pair of adjacent side faces.
- In another aspect, an abrasive grain is disclosed and may include a body having a central portion and at least three radial arms extending outwardly from the central portion along the entire length of the central portion.
- In yet another aspect, an abrasive grain includes a body having a length (l), a width (w), and a height (h), wherein the body has a base surface end and an upper surface, and wherein the base surface includes a different cross-sectional shape than a cross-sectional shape of the upper surface.
- For another aspect, an abrasive grain includes a body having a central portion and at least three radial arms extending outwardly from the central portion along the entire length of the central portion, wherein each radial arm includes an arrow-shaped distal end.
- According to another aspect, a shaped abrasive particle includes a body having a length (l), a width (w), and a height (h), wherein the body comprises a base surface end, an upper surface, and a side surface extending between the base surface and the upper surface, and wherein the base surface has a different cross-sectional shape than a cross-sectional shape of the upper surface.
- In one aspect, a shaped abrasive particle includes a body having a length (l), a width (w), and a height (h), wherein the body has a three-pointed star including a first arm defining a first arm, a second arm defining a second arm, and a third arm defining a second arm, and wherein the first arm, second arm and third arm define a total angle of less than about 180 degrees, and wherein the body has a curling factor of not greater than about 10.
- For another aspect, a shaped abrasive particle includes a body having a length (l), a width (w), and a height (h), wherein the body defines a four-pointed star having a first arm, second arm, third arm, and fourth arm extending from a central portion, and wherein the body has a curling factor of not greater than about 10.
- According to yet another aspect, a shaped abrasive particle includes a body having a length (l), a width (w), and a height (h), wherein the body is defined by a base surface, an upper surface, and a side surface extending between the base surface and the upper surface, wherein the base surface comprises a cross-shaped two-dimensional shape and the upper surface comprises a rounded quadrilateral two-dimensional shape.
- For still another aspect, a shaped abrasive particle includes a body having a first layer having a first length and a second layer overlying the first layer, wherein the second layer has a length that is within a range between about 50% and about 90% of the length of the first layer.
- The present disclosure may be better understood, and its numerous features and advantages made apparent to those skilled in the art by referencing the accompanying drawings.
-
FIG. 1 is a diagram of an exemplary process; -
FIG. 2 is a perspective view of a structured abrasive article; -
FIG. 3 is a perspective view of a first embodiment of a shaped abrasive grain; -
FIG. 4 is a plan view of a second end of the first embodiment of a shaped abrasive grain; -
FIG. 5 is a perspective view of a second embodiment of a shaped abrasive grain; -
FIG. 6 is a plan view of a second end face of the second embodiment of a shaped abrasive grain; -
FIG. 7 is a perspective view of a third embodiment of a shaped abrasive grain; -
FIG. 8 is a plan view of a second end face of the first embodiment of a shaped abrasive grain; -
FIG. 9 is a perspective view of a fourth embodiment of a shaped abrasive grain; -
FIG. 10 is a plan view of a second end face of the fourth embodiment of a shaped abrasive grain; -
FIG. 11 is a perspective view of a fifth embodiment of a shaped abrasive grain; -
FIG. 12 is a plan view of a bottom of the fifth embodiment of a shaped abrasive grain; -
FIG. 13 is a perspective view of a sixth embodiment of a shaped abrasive grain; -
FIG. 14 is a plan view of a second end face of the fourth embodiment of a shaped abrasive grain; -
FIG. 15 is a plan view of a top of a seventh embodiment of a shaped abrasive grain; -
FIG. 16 is a plan view of a bottom of the seventh embodiment of a shaped abrasive grain; -
FIG. 17 is a plan view of a top of an eighth embodiment of a shaped abrasive grain; -
FIG. 18 is a plan view of a bottom of the eighth embodiment of a shaped abrasive grain; -
FIG. 19 is a perspective view of a ninth embodiment of a shaped abrasive grain; -
FIG. 20 is a plan view of a second end face of the ninth embodiment of a shaped abrasive grain; -
FIG. 21 is a perspective view of a tenth embodiment of a shaped abrasive grain; -
FIG. 22 is a plan view of a first end face of the tenth embodiment of a shaped abrasive grain; -
FIG. 23 is a plan view of a second end face of the tenth embodiment of a shaped abrasive grain; -
FIG. 24 is a perspective view of an eleventh embodiment of a shaped abrasive grain; -
FIG. 25 is a plan view of a second end face of the eleventh embodiment of a shaped abrasive grain; -
FIG. 26 is a perspective view of a twelfth embodiment of a shaped abrasive grain; -
FIG. 27 is a plan view of a second end face of the twelfth embodiment of a shaped abrasive grain; -
FIG. 28 is a perspective view of a thirteenth embodiment of a shaped abrasive grain; -
FIG. 29 is a plan view of a second end face of the thirteenth embodiment of a shaped abrasive grain; -
FIG. 30 is a perspective view of a fourteenth embodiment of a shaped abrasive grain; -
FIG. 31 is a plan view of a second end face of the fourteenth embodiment of a shaped abrasive grain; -
FIG. 32 is a perspective view of a fifteenth embodiment of a shaped abrasive grain; -
FIG. 33 is a plan view of a second end face of the fifteenth embodiment of a shaped abrasive grain; -
FIG. 34 is a perspective view of a sixteenth embodiment of a shaped abrasive grain; -
FIG. 35 is a plan view of a second end face of the sixteenth embodiment of a shaped abrasive grain; -
FIG. 36 is a perspective view of a seventeenth embodiment of a shaped abrasive grain; -
FIG. 37 is a plan view of a second end face of the seventeenth embodiment of a shaped abrasive grain; -
FIG. 38 is a perspective view of an eighteenth embodiment of a shaped abrasive grain; -
FIG. 39 is a plan view of a second end face of the eighteenth embodiment of a shaped abrasive grain; -
FIG. 40 is a perspective view of a nineteenth embodiment of a shaped abrasive grain; -
FIG. 41 is a plan view of a second end face of the nineteenth embodiment of a shaped abrasive grain; -
FIG. 42 is a perspective view of a twentieth embodiment of a shaped abrasive grain; -
FIG. 43 is a plan view of a second end face of the twentieth embodiment of a shaped abrasive grain; -
FIG. 44 is a perspective view of a twenty-first embodiment of a shaped abrasive grain; -
FIG. 45 is a plan view of a first end face of the twenty-first embodiment of a shaped abrasive grain; -
FIG. 46 is a plan view of a second end face of the twenty-first embodiment of a shaped abrasive grain; -
FIG. 47 is a perspective view of a twenty-second embodiment of a shaped abrasive grain; -
FIG. 48 is a plan view of a first end face of the twenty-second embodiment of a shaped abrasive grain; -
FIG. 49 is a plan view of a second end face of the twenty-second embodiment of a shaped abrasive grain; -
FIG. 50 is a perspective view of a twenty-third embodiment of a shaped abrasive grain; -
FIG. 51 is a plan view of a first end face of the twenty-third embodiment of a shaped abrasive grain; -
FIG. 52 is a plan view of a second end face of the twenty-third embodiment of a shaped abrasive grain; -
FIG. 53 is a perspective view of a twenty-fourth embodiment of a shaped abrasive grain; -
FIG. 54 is a plan view of a first end face of the twenty-fourth embodiment of a shaped abrasive grain; -
FIG. 55 is a plan view of a second end face of the twenty-fourth embodiment of a shaped abrasive grain; -
FIG. 56 is a perspective view of a twenty-fifth embodiment of a shaped abrasive grain; -
FIG. 57 is a plan view of a first end face of the twenty-fifth embodiment of a shaped abrasive grain; -
FIG. 58 is a plan view of a second end face of the twenty-fifth embodiment of a shaped abrasive grain; -
FIG. 59 is a perspective view of a twenty-sixth embodiment of a shaped abrasive grain; -
FIG. 60 is a plan view of a first end face of the twenty-sixth embodiment of a shaped abrasive grain; and -
FIG. 61 is a plan view of a second end face of the twenty-sixth embodiment of a shaped abrasive grain. -
FIGS. 62A and B include illustrations of a system for forming shaped abrasive particles in accordance with an embodiment. -
FIG. 63 includes an illustration of a system for forming a shaped abrasive particle in accordance with an embodiment. -
FIG. 64 includes an illustration of a portion of a system for forming a shaped abrasive particle in accordance with an embodiment. -
FIG. 65A includes an image of a shaped abrasive particle according to an embodiment. -
FIG. 65B includes an illustration of a side view of the shaped abrasive particle ofFIG. 65A . -
FIG. 65C includes an image of a shaped abrasive particle according to an embodiment. -
FIG. 66A includes an image of a shaped abrasive particle according to an embodiment. -
FIG. 66B includes an illustration of a side view of the shaped abrasive particle ofFIG. 66A . -
FIG. 67 includes a top view image of a shaped abrasive particle formed according to a particular embodiment. -
FIG. 68 includes a top view image of a shaped abrasive particle according to an embodiment. -
FIG. 69A includes a side view image of a shaped abrasive particle according to an embodiment. -
FIG. 69B includes a top view image of a shaped abrasive particle according to an embodiment. - The use of the same reference symbols in different drawings indicates similar or identical items.
- The following is also directed to methods of forming shaped abrasive particles and features of such shaped abrasive particles. The shaped abrasive particles may be used in various abrasive articles, including for example bonded abrasive articles, coated abrasive articles, and the like. Alternatively, the shaped abrasive particles of the embodiments herein may be utilized in free abrasive technologies, including for example grinding and/or polishing slurries.
- Referring initially to
FIG. 1 , an exemplary process is shown and is generally designated 100. As shown, abacking 102 may be paid from aroll 104. Thebacking 102 may be coated with abinder formulation 106 dispensed from acoating apparatus 108. An exemplary coating apparatus includes a drop die coater, a knife coater, a curtain coater, a vacuum die coater or a die coater. Coating methodologies can include either contact or non-contact methods. Such methods include 2 roll, 3 roll reverse, knife over roll, slot die, gravure, extrusion, or spray coating applications. - In a particular embodiment, the
binder formulation 106 may be provided in a slurry that includes the binder formulation and abrasive grains. In an alternative embodiment, thebinder formulation 106 may be dispensed separate from the abrasive grains. Then, the abrasive grains may be provided following the coating of thebacking 102 with thebinder formulation 106, after partial curing of thebinder formulation 106, after patterning of thebinder formulation 106, or after fully curing thebinder formulation 108. The abrasive grains may, for example, be applied by a technique, such as electrostatic coating, drop coating or mechanical projection. In a particular aspect, the abrasive grains may be any combination of one or more of the shaped abrasive grains described herein. - The
binder formulation 106 may be cured after passing under anenergy source 110. The selection of theenergy source 110 may depend in part upon the chemistry of thebinder formulation 106. For example, theenergy source 110 may be a source of thermal energy or actinic radiation energy, such as electron beam, ultraviolet light, or visible light. The amount of energy used may depend on the chemical nature of the reactive groups in the precursor polymer constituents, as well as upon the thickness and density of thebinder formulation 106. For thermal energy, an oven temperature of about 75° C. to about 150° C. and a duration of about 5 minutes to about 60 minutes may be generally sufficient. Electron beam radiation or ionizing radiation may be used at an energy level of about 0.1 MRad to about 100 MRad, particularly at an energy level of about 1 MRad to about 10 MRad. Ultraviolet radiation includes radiation having a wavelength within a range of about 200 nanometers to about 400 nanometers, particularly within a range of about 250 nanometers to 400 nanometers. Visible radiation includes radiation having a wavelength within a range of about 400 nanometers to about 800 nanometers, particularly in a range of about 400 nanometers to about 550 nanometers. Curing parameters, such as exposure, are generally formulation dependent and can be adjusted via lamp power and belt speed. - In an exemplary embodiment, the
energy source 110 may provide actinic radiation to the coated backing, partially curing thebinder formulation 106. In another embodiment, thebinder formulation 106 is thermally curable and theenergy source 110 may provide heat for thermal treatment. In a further embodiment, thebinder formulation 106 may include actinic radiation curable and thermally curable components. As such, the binder formulation may be partially cured through one of thermal and actinic radiation curing and cured to complete curing through a second of thermal and actinic radiation curing. For example, an epoxy constituent of the binder formulation may be partially cured using ultraviolet electromagnetic radiation and an acrylic constituent of the binder formulation may be further cured through thermal curing. - Once the
binder formulation 106 is cured a structuredabrasive article 112 is formed. Alternatively, a size coat may be applied over the patterned abrasive structures. In a particular embodiment, the structuredabrasive article 112 may be rolled into aroll 114. In other embodiments, fully curing may be performed after rolling a partially curedabrasive article 112. - In one or more alternative embodiments, a size coat may be applied over the
binder formulation 106 and abrasive grains. For example, the size coat may be applied before partially curing thebinder formulation 106, after partially curing thebinder formulation 106 or after further curing thebinder formulation 106. The size coat may be applied, for example, by roll coating or spray coating. Depending on the composition of the size coat and when it is applied, the size coat may be cured in conjunction with thebinder formulation 106 or cured separately. A supersize coat including grinding aids may be applied over the size coat and cured with thebinder formulation 106, cured with the size coat or cured separately. - Referring to
FIG. 2 , a structured abrasive article is shown and is generally designated 200. As illustrated, the structuredabrasive article 200 may include abacking 202 and a plurality of shapedabrasive grains 204 deposited thereon. In a particular aspect, the structuredabrasive article 200 may be manufactured using the process described in conjunction withFIG. 1 . - In a particular aspect, the shaped
abrasive grains 204 may be one or more of the shaped abrasive grains described herein. Further, the shaped abrasive grains may include one or more, or any combination, of the shaped abrasive grains described herein. Further, one or more of the shaped abrasive grains described herein may include an upright orientation probability. The upright orientation may be considered an orientation that corresponds to a favorable abrasive/cutting position for each shaped abrasive grain and the probability is a simple mathematical probability that the grain lands in the upright orientation. - In a particular aspect, the upright orientation is at least fifty percent (50%). In another aspect, the upright orientation is at least fifty-five percent (55%). In another aspect, the upright orientation is at least sixty percent (60%). In another aspect, the upright orientation is at least sixty-five percent (65%). In another aspect, the upright orientation is at least seventy percent (70%). In another aspect, the upright orientation is at least seventy-five percent (75%). In another aspect, the upright orientation is at least eighty percent (80%). In another aspect, the upright orientation is at least eighty-five percent (85%). In another aspect, the upright orientation is at least ninety percent (90%). In another aspect, the upright orientation is at least ninety-five percent (95%). In another aspect, the upright orientation is one hundred percent (100%).
- The body of each of the shaped abrasive grains described herein may include a polycrystalline material. The polycrystalline material may include abrasive grains. The abrasive grains may include nitrides, oxides, carbides, borides, oxynitrides, diamond, or a combination thereof. Further, the abrasive grains may include an oxide selected from the group of oxides consisting of aluminum oxide, zirconium oxide, titanium oxide, yttrium oxide, chromium oxide, strontium oxide, silicon oxide, and a combination thereof.
- In another aspect, the abrasive grains may include alumina. In yet another aspect, the abrasive grains consist essentially of alumina. Further, the abrasive grains may have an average grain size of not greater than about 500 microns. Alternatively, the average grain size is not greater than about 250 microns. In another aspect, the average grain size is not greater than about 100 microns. In another aspect, the average grain size is not greater than about 50 microns. In another aspect, the average grain size is not greater than about 30 microns. In another aspect, the average grain size is not greater than about 20 microns. In another aspect, the average grain size is not greater than about 10 microns. In another aspect, the average grain size is not greater than about 1 micron.
- In another aspect, the average grain size is at least about 0.01 microns. In another aspect, the average grain size is at least about 0.05 microns. In another aspect, the average grain size is at least about 0.08 microns. In another aspect, the average grain size is at least about 0.1 microns.
- In another aspect, the body of each of the shaped abrasive grains described herein may be a composite that includes at least about 2 different types of abrasive grains.
-
FIG. 3 andFIG. 4 illustrate a first embodiment of a shapedabrasive grain 300. As shown inFIG. 3 , the shapedabrasive grain 300 may include abody 301 that is generally prismatic with afirst end face 302 and asecond end face 304. Further, the shapedabrasive grain 300 may include afirst side face 310 extending between thefirst end face 302 and thesecond end face 304. Asecond side face 312 may extend between thefirst end face 302 and thesecond end face 304 adjacent to thefirst side face 310. As shown, the shapedabrasive grain 300 may also include athird side face 314 extending between thefirst end face 302 and thesecond end face 304 adjacent to thesecond side face 312 and thefirst side face 310. - As depicted in
FIG. 3 andFIG. 4 , the shapedabrasive grain 300 may also include afirst edge 320 between thefirst side face 310 and thesecond side face 312. The shapedabrasive grain 300 may also include asecond edge 322 between thesecond side face 312 and thethird side face 314. Further, the shapedabrasive grain 300 may include athird edge 324 between thethird side face 314 and thefirst side face 312. - As shown, each
end face abrasive grain 300 may be generally triangular in shape. Eachside face abrasive grain 300 in a plane parallel to the end faces 302, 304 is generally triangular. It can be appreciated that the shapedabrasive grain 300 may include more than the three side faces 310, 312, 314, and threeedges abrasive grain 300 through a plane parallel to the end faces 302, 304 may have that shape of any polygon, e.g., a quadrilateral, a pentagon, a hexagon, a heptagon, an octagon, a nonagon, a decagon, etc. Further, the polygon may be convex, non-convex, concave, or non-concave. -
FIG. 5 andFIG. 6 illustrate a second embodiment of a shapedabrasive grain 500. As shown inFIG. 5 , the shapedabrasive grain 500 may include abody 501 that is generally prismatic with afirst end face 502 and asecond end face 504. Further, the shapedabrasive grain 500 may include afirst side face 510 extending between thefirst end face 502 and thesecond end face 504. Asecond side face 512 may extend between thefirst end face 502 and thesecond end face 504 adjacent to thefirst side face 510. As shown, the shapedabrasive grain 500 may also include athird side face 514 extending between thefirst end face 502 and thesecond end face 504 adjacent to thesecond side face 512 and thefirst side face 510. - As depicted in
FIG. 5 andFIG. 6 , the shapedabrasive grain 500 may also include afirst edge face 520 between thefirst side face 510 and thesecond side face 512. The shapedabrasive grain 500 may also include asecond edge face 522 between thesecond side face 512 and thethird side face 514. Further, the shapedabrasive grain 500 may include athird edge face 524 between thethird side face 514 and thefirst side face 512. - As shown, each
end face abrasive grain 500 may be generally triangular in shape. Eachside face abrasive grain 500 in a plane parallel to the end faces 502, 504 is generally triangular. -
FIG. 7 andFIG. 8 illustrate a third embodiment of a shapedabrasive grain 700. As shown inFIG. 7 , the shapedabrasive grain 700 may include abody 701 that is generally prismatic with afirst end face 702 and asecond end face 704. Further, the shapedabrasive grain 700 may include afirst side face 710 extending between thefirst end face 702 and thesecond end face 704. Asecond side face 712 may extend between thefirst end face 702 and thesecond end face 704 adjacent to thefirst side face 710. As shown, the shapedabrasive grain 700 may also include athird side face 714 extending between thefirst end face 702 and thesecond end face 704 adjacent to thesecond side face 712 and thefirst side face 710. - As depicted in
FIG. 7 andFIG. 8 , the shapedabrasive grain 700 may also include a firstconcave edge channel 720 between thefirst side face 710 and thesecond side face 712. The shapedabrasive grain 700 may also include a secondconcave edge channel 722 between thesecond side face 712 and thethird side face 714. Further, the shapedabrasive grain 700 may include a thirdconcave edge channel 724 between thethird side face 714 and thefirst side face 712. - As shown, each
end face abrasive grain 700 may be generally triangular in shape. Eachside face abrasive grain 700 in a plane parallel to the end faces 702, 704 is generally triangular. -
FIG. 9 andFIG. 10 illustrate a fourth embodiment of a shapedabrasive grain 900. As shown inFIG. 9 , the shapedabrasive grain 900 may include abody 901 that is generally prismatic with afirst end face 902 and asecond end face 904. Further, the shapedabrasive grain 900 may include afirst side face 910 extending between thefirst end face 902 and thesecond end face 904. Asecond side face 912 may extend between thefirst end face 902 and thesecond end face 904 adjacent to thefirst side face 910. As shown, the shapedabrasive grain 900 may also include athird side face 914 extending between thefirst end face 902 and thesecond end face 904 adjacent to thesecond side face 912 and thefirst side face 910. - As depicted in
FIG. 9 andFIG. 10 , the shapedabrasive grain 900 may also include a first V-shapededge channel face 920 between thefirst side face 910 and thesecond side face 912. The shapedabrasive grain 900 may also include a second V-shapededge channel face 922 between thesecond side face 912 and thethird side face 914. Further, the shapedabrasive grain 900 may include a third V-shapededge channel face 924 between thethird side face 914 and thefirst side face 912. - As shown, each
end face abrasive grain 900 may be generally triangular in shape. Eachside face abrasive grain 900 in a plane parallel to the end faces 902, 904 is generally triangular. - In the exemplary embodiments shown in
FIG. 3 throughFIG. 10 , it can be appreciated that theedges concave edge channels edge channels abrasive grains - Additionally, it may be appreciated that in each of the exemplary embodiments shown in
FIG. 3 throughFIG. 10 , the face of the shapedabrasive grain abrasive grain - In particular, the base may comprise at least about thirty percent (30%) of the total surface area of the particle. In another aspect, the base may comprise at least about forty percent (40%) of the total surface area of the particle. In another aspect, the base may comprise at least about fifty percent (50%) of the total surface area of the particle. In another aspect, the base may comprise at least about sixty percent (60%) of the total surface area of the particle. In another aspect, the base may comprise no greater than ninety-nine percent (99%) of the total surface area of the particle. In another aspect, the base may comprise no greater than ninety-five percent (95%) of the total surface area of the particle. In another aspect, the base may comprise no greater than ninety percent (90%) of the total surface area of the particle. In another aspect, the base may comprise no greater than eighty percent (80%) of the total surface area of the particle. In another aspect, the base may comprise no greater than seventy-five percent (75%) of the total surface area of the particle.
- Referring to
FIG. 11 andFIG. 12 , a fifth embodiment of a shaped abrasive grain is shown and is generally designated 1100. As shown, the shapedabrasive grain 1100 may include abody 1101 that is generally pyramid-shaped with a generally triangle-shapedbottom face 1102. Further, the shapedabrasive grain 1100 may be formed with ahole 1104, i.e., an opening, therein. - In a particular aspect, the
hole 1104 may define acentral axis 1106 that passes through a center of thehole 1104. Further, the shapedabrasive grain 1100 may also define acentral axis 1108 that passes through a center of the shapedabrasive grain 1100. It may be appreciated that thehole 1104 may be formed in the shapedabrasive grain 1100 such that thecentral axis 1106 of thehole 1104 is spaced adistance 1110 above thecentral axis 1108 of the shapedabrasive grain 1100. As such, a center of mass of the shapedabrasive grain 1100 may be moved below the geometric midpoint of the shapedabrasive grain 1100. Moving the center of mass below the geometric midpoint of the shaped abrasive grain may ensure that the shapedabrasive grain 1100 lands on the same face, e.g., thebottom face 1102, when dropped, or otherwise deposited, onto a backing, such that the shaped abrasive grain has an upright orientation. - In a particular embodiment, the center of mass of is displaced from the geometric midpoint by a distance that is equal to 0.05 the height (h) along a vertical axis of the
body 1102 defining a height. In another aspect, the center of mass may be displaced by a distance of at least about 0.1(h). In another aspect, the center of mass may be displaced by a distance of at least about 0.15(h). In another aspect, the center of mass may be displaced by a distance of at least about 0.18(h). In another aspect, the center of mass may be displaced by a distance of at least about 0.2(h). In another aspect, the center of mass may be displaced by a distance of at least about 0.22(h). In another aspect, the center of mass may be displaced by a distance of at least about 0.25(h). In another aspect, the center of mass may be displaced by a distance of at least about 0.27(h). In another aspect, the center of mass may be displaced by a distance of at least about 0.3(h). In another aspect, the center of mass may be displaced by a distance of at least about 0.32(h). In another aspect, the center of mass may be displaced by a distance of at least about 0.35(h). In another aspect, the center of mass may be displaced by a distance of at least about 0.38(h). - In another aspect, the center of mass is displaced a distance no greater than 0.5(h). In yet another aspect, the center of mass is displaced a distance no greater than 0.49(h). In still another aspect, the center of mass is displaced a distance no greater than 0.48(h). In another aspect, the center of mass is displaced a distance no greater than 0.45(h). In still another aspect, the center of mass is displaced a distance no greater than 0.43(h). In yet still another aspect, the center of mass is displaced a distance no greater than 0.40(h). In another aspect, the center of mass is displaced a distance no greater than 0.39(h). In another aspect, the center of mass is displaced a distance no greater than 0.38(h).
- Further, the center of mass may be displaced so that the center of mass is closer to a base, e.g., the
bottom face 1102, of thebody 1101, than a top of thebody 1101 when the shapedabrasive grain 1100 is in an upright orientation as shown inFIG. 11 . - In another embodiment, the center of mass may be displaced from the geometric midpoint by a
distance 1110 that is equal to 0.05 the width (w) along a horizontal axis of the of thebody 1102 defining the width. In another aspect, the center of mass may be displaced by a distance of at least about 0.1(w). In another aspect, the center of mass may be displaced by a distance of at least about 0.15(w). In another aspect, the center of mass may be displaced by a distance of at least about 0.18(w). In another aspect, the center of mass may be displaced by a distance of at least about 0.2(w). In another aspect, the center of mass may be displaced by a distance of at least about 0.22(w). In another aspect, the center of mass may be displaced by a distance of at least about 0.25(w). In another aspect, the center of mass may be displaced by a distance of at least about 0.27(w). In another aspect, the center of mass may be displaced by a distance of at least about 0.3(w). In another aspect, the center of mass may be displaced by a distance of at least about 0.32(w). In another aspect, the center of mass may be displaced by a distance of at least about 0.35(w). In another aspect, the center of mass may be displaced by a distance of at least about 0.38(w). - In another aspect, the center of mass is displaced a distance no greater than 0.5(w). In yet another aspect, the center of mass is displaced a distance no greater than 0.49 (w). In still another aspect, the center of mass is displaced a distance no greater than 0.48(w). In another aspect, the center of mass is displaced a distance no greater than 0.45(w). In still another aspect, the center of mass is displaced a distance no greater than 0.43(w). In yet still another aspect, the center of mass is displaced a distance no greater than 0.40(w). In another aspect, the center of mass is displaced a distance no greater than 0.39(w). In another aspect, the center of mass is displaced a distance no greater than 0.38(w).
- In another embodiment, the center of mass may be displaced from the geometric midpoint by a distance that is equal to 0.05 the length (l) along a longitudinal axis of the
body 1102 defining a length. In another aspect, the center of mass may be displaced by a distance of at least about 0.1(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.15(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.18(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.2(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.22(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.25(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.27(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.3(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.32(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.35(l). In another aspect, the center of mass may be displaced by a distance of at least about 0.38(l). - In another aspect, the center of mass is displaced a distance no greater than 0.5(l). In yet another aspect, the center of mass is displaced a distance no greater than 0.49(l). In still another aspect, the center of mass is displaced a distance no greater than 0.48(l). In another aspect, the center of mass is displaced a distance no greater than 0.45(l). In still another aspect, the center of mass is displaced a distance no greater than 0.43(l). In yet still another aspect, the center of mass is displaced a distance no greater than 0.40(l). In another aspect, the center of mass is displaced a distance no greater than 0.39(l). In another aspect, the center of mass is displaced a distance no greater than 0.38(l).
-
FIG. 13 andFIG. 14 illustrate a sixth embodiment of a shaped abrasive grain that is generally designated 1300. As depicted, the shapedabrasive grain 1300 may include abody 1301 that may include acentral portion 1302 that extends along alongitudinal axis 1304. A firstradial arm 1306 may extend outwardly from thecentral portion 1302 along the length of thecentral portion 1302. A secondradial arm 1308 may extend outwardly from thecentral portion 1302 along the length of thecentral portion 1302. A thirdradial arm 1310 may extend outwardly from thecentral portion 1302 along the length of thecentral portion 1302. Moreover, a fourth radial arm 1312 may extend outwardly from thecentral portion 1302 along the length of thecentral portion 1302. Theradial arms central portion 1302 of the shapedabrasive grain 1300. - As shown in
FIG. 13 , the firstradial arm 1306 may include a generally arrow-shapeddistal end 1320. The secondradial arm 1308 may include a generally arrow-shapeddistal end 1322. The thirdradial arm 1310 may include a generally arrow-shapeddistal end 1324. Further, the fourth radial arm 1312 may include a generally arrow-shapeddistal end 1326. -
FIG. 13 also indicates that the shapedabrasive grain 1300 may be formed with afirst void 1330 between the firstradial arm 1306 and the secondradial arm 1308. Asecond void 1332 may be formed between the secondradial arm 1308 and the thirdradial arm 1310. Athird void 1334 may also be formed between the thirdradial arm 1310 and the fourth radial arm 1312. Additionally, afourth void 1336 may be formed between the fourth radial arm 1312 and the firstradial arm 1306. - As shown in
FIG. 13 , the shapedabrasive grain 1300 may include alength 1340, aheight 1342, and awidth 1344. In a particular aspect, thelength 1340 is greater than theheight 1342 and theheight 1342 is greater than thewidth 1344. In a particular aspect, the shapedabrasive grain 1300 may define a primary aspect ratio that is the ratio of thelength 1340 to the height 1342 (length:height). Further, the shapedabrasive grain 1300 may define a secondary aspect ratio that is the ratio of theheight 1342 to the width 1344 (height:width). Finally, the shapedabrasive grain 1300 may define a tertiary aspect ratio that is the ratio of thelength 1340 to the width 1342 (length:width). - In a particular aspect, the primary aspect ratio is at least 1:1. In another aspect, the primary aspect ratio is at least 2:1. In another aspect, the primary aspect ratio is at least 2.5:1. In another aspect, the primary aspect ratio is at least 3:1. In another aspect, the primary aspect ratio is at least 3.5:1. In another aspect, the primary aspect ratio is at least 4:1. In another aspect, the primary aspect ratio is at least 4.5:1. In another aspect, the primary aspect ratio is at least 5:1. In another aspect, the primary aspect ratio is at least 5.5:1. In another aspect, the primary aspect ratio is at least 6:1. In another aspect, the primary aspect ratio is at least 6.5:1. In another aspect, the primary aspect ratio is at least 7:1. In another aspect, the primary aspect ratio is at least 7.5:1. In another aspect, the primary aspect ratio is at least 8:1. In another aspect, the primary aspect ratio is at least 8.5:1. In another aspect, the primary aspect ratio is at least 9:1. In another aspect, the primary aspect ratio is at least 9.5:1. In another aspect, the primary aspect ratio is at least 10:1.
- In a particular aspect, the secondary aspect ratio is at least 1:1. In another aspect, the secondary aspect ratio is at least 1.5:1. In another aspect, the secondary aspect ratio is 2:1. In another aspect, the secondary aspect ratio is at least 2.5:1. In another aspect, the secondary aspect ratio is at least 3:1. In another aspect, the secondary aspect ratio is at least 3.5:1. In another aspect, the secondary aspect ratio is at least 4:1. In another aspect, the secondary aspect ratio is at least 4.5:1. In another aspect, the secondary aspect ratio is at least 5:1. In another aspect, the secondary aspect ratio is at least 5.5:1. In another aspect, the secondary aspect ratio is at least 6:1. In another aspect, the secondary aspect ratio is at least 6.5:1. In another aspect, the secondary aspect ratio is at least 7:1. In another aspect, the secondary aspect ratio is at least 7.5:1. In another aspect, the secondary aspect ratio is at least 8:1. In another aspect, the secondary aspect ratio is at least 8.5:1. In another aspect, the secondary aspect ratio is at least 9:1. In another aspect, the secondary aspect ratio is at least 9.5:1. In another aspect, the secondary aspect ratio is at least 10:1.
- In a particular aspect, the tertiary aspect ratio is at least 1:1. In another aspect, the tertiary aspect ratio is at least 1.5:1. In another aspect, the tertiary aspect ratio is 2:1. In another aspect, the tertiary aspect ratio is at least 2.5:1. In another aspect, the tertiary aspect ratio is at least 3:1. In another aspect, the tertiary aspect ratio is at least 3.5:1. In another aspect, the tertiary aspect ratio is at least 4:1. In another aspect, the tertiary aspect ratio is at least 4.5:1. In another aspect, the tertiary aspect ratio is at least 5:1. In another aspect, the tertiary aspect ratio is at least 5.5:1. In another aspect, the tertiary aspect ratio is at least 6:1. In another aspect, the tertiary aspect ratio is at least 6.5:1. In another aspect, the tertiary aspect ratio is at least 7:1. In another aspect, the tertiary aspect ratio is at least 7.5:1. In another aspect, the tertiary aspect ratio is at least 8:1. In another aspect, the tertiary aspect ratio is at least 8.5:1. In another aspect, the tertiary aspect ratio is at least 9:1. In another aspect, the tertiary aspect ratio is at least 9.5:1. In another aspect, the tertiary aspect ratio is at least 10:1.
- In a particular aspect, the shape of the shaped
abrasive grain 1300 with respect to the primary aspect ratio is generally rectangular, e.g., flat, or curved. Moreover, the shape of the shapedabrasive grain 1300 with respect to the secondary aspect ratio may be any polyhedral shape, e.g., a triangle, a square, a rectangle, a pentagon, etc. The shape of the shapedabrasive grain 1300 with respect to the secondary aspect ratio may also be the shape of any alphanumeric character, e.g., 1, 2, 3, etc., A, B, C, etc. Further, the shape of the shapedabrasive grain 1300 with respect to the secondary aspect ratio may be a character selected from the Greek alphabet, the modern Latin alphabet, the ancient Latin alphabet, the Russian alphabet, any other alphabet, or any combination thereof. Further, the shape of the shapedabrasive grain 1300 with respect to the secondary aspect ratio may be a Kanji character. - In another aspect of the shaped
abrasive grain 1300, thewidth 1344 is greater than theheight 1342 and theheight 1342 is greater than thelength 1340. In this aspect, the shapedabrasive grain 1300 may define a primary aspect ratio that is the ratio of thewidth 1344 to the height 1342 (width:height). Further, the shapedabrasive grain 1300 may define a secondary aspect ratio that is the ratio of theheight 1342 to the length 1340 (height:length). Finally, the shapedabrasive grain 1300 may define a tertiary aspect ratio that is the ratio of thewidth 1342 to the length 1340 (width:length). - In a particular aspect, the primary aspect ratio is at least 2:1. In another aspect, the primary aspect ratio is at least 2.5:1. In another aspect, the primary aspect ratio is at least 3:1. In another aspect, the primary aspect ratio is at least 3.5:1. In another aspect, the primary aspect ratio is at least 4:1. In another aspect, the primary aspect ratio is at least 4.5:1. In another aspect, the primary aspect ratio is at least 5:1. In another aspect, the primary aspect ratio is at least 5.5:1. In another aspect, the primary aspect ratio is at least 6:1. In another aspect, the primary aspect ratio is at least 6.5:1. In another aspect, the primary aspect ratio is at least 7:1. In another aspect, the primary aspect ratio is at least 7.5:1. In another aspect, the primary aspect ratio is at least 8:1. In another aspect, the primary aspect ratio is at least 8.5:1. In another aspect, the primary aspect ratio is at least 9:1. In another aspect, the primary aspect ratio is at least 9.5:1. In another aspect, the primary aspect ratio is at least 10:1.
- In a particular aspect, the secondary aspect ratio is at least 1.5:1. In another aspect, the secondary aspect ratio is 2:1. In another aspect, the secondary aspect ratio is at least 2.5:1. In another aspect, the secondary aspect ratio is at least 3:1. In another aspect, the secondary aspect ratio is at least 3.5:1. In another aspect, the secondary aspect ratio is at least 4:1. In another aspect, the secondary aspect ratio is at least 4.5:1. In another aspect, the secondary aspect ratio is at least 5:1. In another aspect, the secondary aspect ratio is at least 5.5:1. In another aspect, the secondary aspect ratio is at least 6:1. In another aspect, the secondary aspect ratio is at least 6.5:1. In another aspect, the secondary aspect ratio is at least 7:1. In another aspect, the secondary aspect ratio is at least 7.5:1. In another aspect, the secondary aspect ratio is at least 8:1. In another aspect, the secondary aspect ratio is at least 8.5:1. In another aspect, the secondary aspect ratio is at least 9:1. In another aspect, the secondary aspect ratio is at least 9.5:1. In another aspect, the secondary aspect ratio is at least 10:1.
- In a particular aspect, the tertiary aspect ratio is at least 1.5:1. In another aspect, the tertiary aspect ratio is 2:1. In another aspect, the tertiary aspect ratio is at least 2.5:1. In another aspect, the tertiary aspect ratio is at least 3:1. In another aspect, the tertiary aspect ratio is at least 3.5:1. In another aspect, the tertiary aspect ratio is at least 4:1. In another aspect, the tertiary aspect ratio is at least 4.5:1. In another aspect, the tertiary aspect ratio is at least 5:1. In another aspect, the tertiary aspect ratio is at least 5.5:1. In another aspect, the tertiary aspect ratio is at least 6:1. In another aspect, the tertiary aspect ratio is at least 6.5:1. In another aspect, the tertiary aspect ratio is at least 7:1. In another aspect, the tertiary aspect ratio is at least 7.5:1. In another aspect, the tertiary aspect ratio is at least 8:1. In another aspect, the tertiary aspect ratio is at least 8.5:1. In another aspect, the tertiary aspect ratio is at least 9:1. In another aspect, the tertiary aspect ratio is at least 9.5:1. In another aspect, the tertiary aspect ratio is at least 10:1.
- In a particular aspect, the shape of the shaped
abrasive grain 1300 with respect to the secondary aspect ratio is generally rectangular, e.g., flat, or curved. Moreover, the shape of the shapedabrasive grain 1300 with respect to the primary aspect ratio may be any polyhedral shape, e.g., a triangle, a square, a rectangle, a pentagon, etc. The shape of the shapedabrasive grain 1300 with respect to the primary aspect ratio may also be the shape of any alphanumeric character, e.g., 1, 2, 3, etc., A, B, C, etc. Further, the shape of the shapedabrasive grain 1300 with respect to the primary aspect ratio may be a character selected from the Greek alphabet, the modern Latin alphabet, the ancient Latin alphabet, the Russian alphabet, any other alphabet, or any combination thereof. Moreover, the shape of the shapedabrasive grain 1300 with respect to the primary aspect ratio may be a Kanji character. - Referring now to
FIG. 15 andFIG. 16 , a seventh embodiment of a shaped abrasive grain is shown and is generally designated 1500. As shown, the shapedabrasive grain 1500 may include abody 1501 that includes aflat bottom 1502 and a generally dome-shapedtop 1504. The domed-shapedtop 1504 may be formed with afirst edge 1506, asecond edge 1508, athird edge 1510, afourth edge 1512, and afifth edge 1514. It may be appreciated that the shapedabrasive grain 1500 may include more or less than fiveedges edges top 1504. - In a particular aspect, the
edges top 1504 may be formed by injecting the material comprising the shapedabrasive grain 1500 through a generally star-shaped nozzle. It may be appreciated that the shape of the shapedabrasive grain 1500 may facilitate orientation of the shapedabrasive grain 1500 as it is dropped, or otherwise deposited, on a backing. Specifically, the dome-shapedtop 1504 will allow the shapedabrasive grain 1500 to roll onto theflat bottom 1502 ensuring that the edges face out, or up, from the backing. -
FIG. 17 andFIG. 18 illustrate an eighth embodiment of a shaped abrasive grain, designated 1700. As depicted, the shapedabrasive grain 1700 may include abody 1701 that includes aflat bottom 1702 and a generally dome-shapedtop 1704. The domed-shapedtop 1704 may be formed with apeak 1706. In a particular aspect, thepeak 1706 in the dome-shapedtop 1704 may be formed by injecting the material comprising the shapedabrasive grain 1700 through a generally round, generally small nozzle. It may be appreciated that the shape of the shapedabrasive grain 1700 may facilitate orientation of the shapedabrasive grain 1700 as it is dropped, or otherwise deposited, on a backing. Specifically, the dome-shapedtop 1704 and thepeak 1706 will allow the shapedabrasive grain 1700 to roll onto theflat bottom 1702 ensuring that thepeak 1706 and the dome-shaped top 1704 face out, or up, from the backing. - Referring now to
FIG. 19 andFIG. 20 , a ninth embodiment of a shaped abrasive grain is shown and is generally designated 1900. As shown, the shapedabrasive grain 1900 may include abody 1901 that is generally box-shaped with sixexterior faces 1902 and twelve 1904 edges. Further, the shapedabrasive grain 1900 may be formed with a generallyX-shaped hole 1906, i.e., an opening, through the shapedabrasive grain 1900 parallel to alongitudinal axis 1908 that passes through acenter 1910 of the shaped abrasive grain. Further, acenter 1912 of the X shapedhole 1906 may be spaced adistance 1914 from thelongitudinal axis 1908. As such, a center ofmass 1916 of the shapedabrasive grain 1900 may be moved below thegeometric midpoint 1910 of the shapedabrasive grain 1900. Moving the center of mass below the geometric midpoint of the shaped abrasive grain may ensure that the shapedabrasive grain 1900 lands on the same face when dropped, or otherwise deposited, onto a backing. - It may be appreciated that the X shaped
hole 1906 may be formed along thelongitudinal axis 1908 through thegeometric midpoint 1910 of the shapedabrasive grain 1900. Further, it may be appreciated that the X shapedhole 1906 may be rotated forty-five degrees (45°) and in such a case thehole 1906 would appear to be generally + shaped. It may be appreciated that thehole 1906 formed in the shapedabrasive grain 1900 may have any shape: polygonal or otherwise. -
FIG. 21 throughFIG. 23 depict a tenth embodiment of a shaped abrasive grain that is generally designated 2100. As shown, the shapedabrasive grain 2100 may include abody 2101 that may have afirst end face 2102 and asecond end face 2104. In a particular aspect, depending on the orientation, thefirst end face 2102 may be a base surface and thesecond end face 2104 may be an upper surface. Further, the shapedabrasive grain 2100 may include a firstlateral face 2106 extending between thefirst end face 2102 and thesecond end face 2104. A secondlateral face 2108 may extend between thefirst end face 2102 and thesecond end face 2104. Further, a thirdlateral face 2110 may extend between thefirst end face 2102 and thesecond end face 2104. A fourthlateral face 2112 may also extend between thefirst end face 2102 and thesecond end face 2104. - As shown, the
first end face 2102 and thesecond end face 2104 are parallel to each other. However, in a particular aspect, thefirst end face 2102 is rotated with respect to thesecond end face 2104 to establish atwist angle 2114. In a particular aspect, thetwist angle 2114 is at least about one degree. In another aspect, thetwist angle 2114 is at least about two degrees. In another aspect, thetwist angle 2114 is at least about five degrees. In another aspect, thetwist angle 2114 is at least about eight degrees. In another aspect, thetwist angle 2114 is at least about ten degrees. In another aspect, thetwist angle 2114 is at least about twelve degrees. In another aspect, thetwist angle 2114 is at least about fifteen degrees. In another aspect, thetwist angle 2114 is at least about eighteen degrees. In another aspect, thetwist angle 2114 is at least about twenty degrees. In another aspect, thetwist angle 2114 is at least about twenty-five degrees. In another aspect, thetwist angle 2114 is at least about thirty degrees. In another aspect, thetwist angle 2114 is at least about forty degrees. In another aspect, thetwist angle 2114 is at least about fifty degrees. In another aspect, thetwist angle 2114 is at least about sixty degrees. In another aspect, thetwist angle 2114 is at least about seventy degrees. In another aspect, thetwist angle 2114 is at least about eighty degrees. In another aspect, thetwist angle 2114 is at least about ninety degrees. - It can be appreciated that the
twist angle 2100 of the shaped abrasive grain may be a horizontal twist angle, i.e., along a longitudinal axis of thebody 2101 defining a length. In another aspect, thetwist angle 2100 of the shaped abrasive grain may be a vertical twist angle, i.e., along a vertical axis defining a height of thebody 2101. - Referring to
FIG. 24 andFIG. 25 , an eleventh embodiment of a shaped abrasive grain is shown and is generally designated 2400. As illustrated, the shapedabrasive grain 2400 may include abody 2401 that may include acentral portion 2402 that extends along alongitudinal axis 2404. A firstradial arm 2406 may extend outwardly from thecentral portion 2402 along the length of thecentral portion 2402. A secondradial arm 2408 may extend outwardly from thecentral portion 2402 along the length of thecentral portion 2402. A thirdradial arm 2410 may extend outwardly from thecentral portion 2402 along the length of thecentral portion 2402. Moreover, a fourthradial arm 2412 may extend outwardly from thecentral portion 2402 along the length of thecentral portion 2402. Theradial arms central portion 2402 of the shapedabrasive grain 2400. - As shown in
FIG. 24 , the firstradial arm 2406 may include a generally box-shapeddistal end 2420. The secondradial arm 2408 may include a generally box-shapeddistal end 2422. The thirdradial arm 2410 may include a generally box-shapeddistal end 2424. Further, the fourthradial arm 2412 may include a generally box-shapeddistal end 2426. -
FIG. 24 andFIG. 25 further show that the shapedabrasive grain 2400 may be formed with ahole 2428 through the shapedabrasive grain 2400 along thelongitudinal axis 2404. As shown, thehole 2428 may be generally triangular in shape. It may be appreciated that in other aspects thehole 2428 formed in the shapedabrasive grain 2400 may have any shape: polygonal or otherwise. -
FIG. 26 andFIG. 27 illustrate a twelfth embodiment of a shaped abrasive grain that is generally designated 2600. As shown, the shapedabrasive grain 2600 may include abody 2601 that may include acentral portion 2602 that extends along alongitudinal axis 2604. A firstradial arm 2606 may extend outwardly from thecentral portion 2602 along the length of thecentral portion 2602. A secondradial arm 2608 may extend outwardly from thecentral portion 2602 along the length of thecentral portion 2602. A thirdradial arm 2610 may extend outwardly from thecentral portion 2602 along the length of thecentral portion 2602. Moreover, a fourthradial arm 2612 may extend outwardly from thecentral portion 2602 along the length of thecentral portion 2602. Theradial arms central portion 2602 of the shapedabrasive grain 2600. - As shown in
FIG. 26 andFIG. 27 , the firstradial arm 2606 may include a generally box-shapeddistal end 2620 formed with a V-shapedchannel 2622. The secondradial arm 2608 may include a generally box-shapeddistal end 2624 formed with a V-shapedchannel 2626. The thirdradial arm 2610 may also include a generally box-shapeddistal end 2628 formed with a V-shapedchannel 2630. Further, the fourthradial arm 2612 may include a generally box-shapeddistal end 2632 that is also formed with aV shape channel 2634. -
FIG. 28 andFIG. 29 illustrate a thirteenth embodiment of a shaped abrasive grain that is generally designated 2800. As shown, the shapedabrasive grain 2800 may include abody 2801 that may include acentral portion 2802 that extends along alongitudinal axis 2804. A firstradial arm 2806 may extend outwardly from thecentral portion 2802 along the length of thecentral portion 2802. A secondradial arm 2808 may extend outwardly from thecentral portion 2802 along the length of thecentral portion 2802. A thirdradial arm 2810 may extend outwardly from thecentral portion 2802 along the length of thecentral portion 2802. Moreover, a fourthradial arm 2812 may extend outwardly from thecentral portion 2802 along the length of thecentral portion 2802. Theradial arms central portion 2802 of the shapedabrasive grain 2800. - As shown in
FIG. 28 andFIG. 29 , the firstradial arm 2806 may include a generally box-shapeddistal end 2820 formed with aconcave channel 2822. The secondradial arm 2808 may include a generally box-shapeddistal end 2824 formed with aconcave channel 2826. The thirdradial arm 2810 may also include a generally box-shapeddistal end 2828 formed with aconcave channel 2830. Further, the fourthradial arm 2812 may include a generally box-shapeddistal end 2832 that is also formed with aconcave channel 2834. -
FIG. 30 andFIG. 31 illustrate a fourteenth embodiment of a shaped abrasive grain that is generally designated 3000. As depicted, the shapedabrasive grain 3000 may include abody 3001 having acentral portion 3002 that extends along alongitudinal axis 3004. A firstradial arm 3006 may extend outwardly from thecentral portion 3002 along the length of thecentral portion 3002. A secondradial arm 3008 may extend outwardly from thecentral portion 3002 along the length of thecentral portion 3002. A thirdradial arm 3010 may extend outwardly from thecentral portion 3002 along the length of thecentral portion 3002. Moreover, a fourthradial arm 3012 may extend outwardly from thecentral portion 3002 along the length of thecentral portion 3002. Theradial arms central portion 3002 of the shapedabrasive grain 3000. - As shown in
FIG. 30 , the firstradial arm 3006 may include a generally T-shapeddistal end 3020. The secondradial arm 3008 may include a generally T-shapeddistal end 3022. The thirdradial arm 3010 may include a generally T-shapeddistal end 3024. Further, the fourthradial arm 3012 may include a generally T-shapeddistal end 3026. -
FIG. 30 also indicates that the shapedabrasive grain 3000 may be formed with afirst void 3030 between the firstradial arm 3006 and the secondradial arm 3008. Asecond void 3032 may be formed between the secondradial arm 3008 and the thirdradial arm 3010. Athird void 3034 may also be formed between the thirdradial arm 3010 and the fourthradial arm 3012. Additionally, afourth void 3036 may be formed between the fourthradial arm 3012 and the firstradial arm 3006. -
FIG. 32 andFIG. 33 illustrate a fifteenth embodiment of a shaped abrasive grain that is generally designated 3200. As depicted, the shapedabrasive grain 3200 may include abody 3201 that may include acentral portion 3202 that extends along alongitudinal axis 3204. A firstradial arm 3206 may extend outwardly from thecentral portion 3202 along the length of thecentral portion 3202. A secondradial arm 3208 may extend outwardly from thecentral portion 3202 along the length of thecentral portion 3202. A thirdradial arm 3210 may extend outwardly from thecentral portion 3202 along the length of thecentral portion 3202. Moreover, a fourthradial arm 3212 may extend outwardly from thecentral portion 3202 along the length of thecentral portion 3202. Theradial arms central portion 3202 of the shapedabrasive grain 3200. - As shown in
FIG. 32 , the firstradial arm 3206 may include a generally rounded T-shapeddistal end 3220. The secondradial arm 3208 may include a generally rounded T-shapeddistal end 3222. The thirdradial arm 3210 may include a generally rounded T-shapeddistal end 3224. Further, the fourthradial arm 3212 may include a generally rounded T-shapeddistal end 3226. -
FIG. 32 also indicates that the shapedabrasive grain 3200 may be formed with afirst void 3230 between the firstradial arm 3206 and the secondradial arm 3208. Asecond void 3232 may be formed between the secondradial arm 3208 and the thirdradial arm 3210. Athird void 3234 may also be formed between the thirdradial arm 3210 and the fourthradial arm 3212. Additionally, afourth void 3236 may be formed between the fourthradial arm 3212 and the firstradial arm 3206. -
FIG. 34 andFIG. 35 illustrate a sixteenth embodiment of a shaped abrasive grain that is generally designated 3400. As depicted, the shapedabrasive grain 3400 may include abody 3401 having acentral portion 3402 that extends along alongitudinal axis 3404. Thecentral portion 3402 may be formed with ahole 3406 along thelongitudinal axis 3404 along the entire length of thecentral portion 3402 of the shapedabrasive grain 3400. - A generally triangular first
radial arm 3410 may extend outwardly from thecentral portion 3402 of the shapedabrasive grain 3400 along the length of thecentral portion 3402. A generally triangular secondradial arm 3412 may extend outwardly from thecentral portion 3402 of the shapedabrasive grain 3400 along the length of thecentral portion 3402. A generally triangular thirdradial arm 3414 may extend outwardly from thecentral portion 3402 of the shapedabrasive grain 3400 along the length of thecentral portion 3402. A generally triangular fourthradial arm 3416 may extend outwardly from thecentral portion 3402 of the shapedabrasive grain 3400 along the length of thecentral portion 3402. Further, a generally triangular fifthradial arm 3418 may extend outwardly from thecentral portion 3402 of the shapedabrasive grain 3400 along the length of thecentral portion 3402. - As further depicted in
FIG. 34 andFIG. 35 , a generally triangular sixthradial arm 3420 may extend outwardly from thecentral portion 3402 of the shapedabrasive grain 3400 along the length of thecentral portion 3402. A generally triangular seventhradial arm 3422 may extend outwardly from thecentral portion 3402 of the shapedabrasive grain 3400 along the length of thecentral portion 3402. A generally triangular eighthradial arm 3424 may extend outwardly from thecentral portion 3402 of the shapedabrasive grain 3400 along the length of thecentral portion 3402. A generally triangular ninthradial arm 3426 may extend outwardly from thecentral portion 3402 of the shapedabrasive grain 3400 along the length of thecentral portion 3402. Moreover, a generally triangular tenthradial arm 3428 may extend outwardly from thecentral portion 3402 of the shapedabrasive grain 3400 along the length of thecentral portion 3402. - In a particular aspect, the
radial arms central portion 3402 of the shaped abrasive grain to form a generally star-shapedfirst end face 3430, a generally star-shapedsecond end face 3432 and a generally star-shaped cross-section taken parallel to the end faces 3430, 3432. - Referring now to
FIG. 36 andFIG. 37 , a seventeenth embodiment of a shaped abrasive grain is shown and is generally designated 3600. As shown, the shapedabrasive grain 3600 may include abody 3601 having afirst end face 3602 and asecond end face 3604. In a particular aspect, depending on the orientation, thefirst end face 3602 may be a base surface and thesecond end face 3604 may be an upper surface. Further, the shapedabrasive grain 3600 may be formed with a hole 3606 along a longitudinal axis 3608. As shown, the hole 3606 may be generally box shaped. -
FIG. 36 andFIG. 37 show that the shapedabrasive grain 3600 may include a generally K-shapedfirst side face 3610 extending between thefirst end face 3602 and thesecond end face 3604. The shapedabrasive grain 3600 may also include a generally K-shapedsecond side face 3612 extending between thefirst end face 3602 and thesecond end face 3604 opposite the generally K-shapedfirst side face 3610. - As illustrated, the shaped
abrasive grain 3600 may include a generally flatthird side face 3614 extending between the first K shapedside face 3610 and the second K shapedside face 3612 and between thefirst end face 3602 and thesecond end face 3604. The shapedabrasive grain 3600 may also include a generally flatfourth side face 3616 extending between the first K-shapedside face 3610 and the second Kshape side face 3612 opposite the generally flatthird side face 3614. -
FIG. 38 andFIG. 39 depict an eighteenth embodiment of a shaped abrasive grain that is generally designated 3800. As shown, the shapedabrasive grain 3800 may include abody 3801 having afirst end face 3802 and asecond end face 3804. In a particular aspect, depending on the orientation, thefirst end face 3802 may be a base surface and thesecond end face 3804 may be an upper surface. The shapedabrasive grain 3800 may include a generally K-shaped first side face 3806 extending between thefirst end face 3802 and thesecond end face 3804. Further, the shapedabrasive grain 3800 may include a generally flat second side face 3808 opposite the generally K-shaped first side face 3806 and extending between thefirst end face 3802 and thesecond end face 3804. - As shown, the shaped
abrasive grain 3800 may also include athird side face 3810 extending between thefirst end face 3802 and thesecond end face 3804 and between the first side face 3806 and the second side face 3808. Further, the shapedabrasive grain 3800 may include afourth side face 3812 extending between thefirst end face 3802 and thesecond end face 3804 opposite thethird side face 3810. -
FIG. 40 andFIG. 41 show a nineteenth embodiment of a shapedabrasive grain 4000. As shown inFIG. 40 andFIG. 41 , the shapedabrasive grain 4000 may include abody 4001 that is generally prismatic with afirst end face 4002 and asecond end face 4004. In a particular aspect, depending on the orientation, thefirst end face 4002 may be a base surface and thesecond end face 4004 may be an upper surface. Further, the shapedabrasive grain 4000 may include afirst side face 4010 extending between thefirst end face 4002 and thesecond end face 4004. Asecond side face 4012 may extend between thefirst end face 4002 and thesecond end face 4004 adjacent to thefirst side face 4010. As shown, the shapedabrasive grain 4000 may also include athird side face 4014 extending between thefirst end face 4002 and thesecond end face 4004 adjacent to thesecond side face 4012. Further, the shapedabrasive grain 4000 may include afourth side face 4016 extending between thefirst end face 4002 and thesecond end face 4004 adjacent to thethird side face 4014 and thefirst side face 4010. - As depicted in
FIG. 40 andFIG. 41 , the shapedabrasive grain 4000 may also include afirst edge 4020 between thefirst side face 4010 and thesecond side face 4012. The shapedabrasive grain 4000 may also include asecond edge 4022 between thesecond side face 4012 and thethird side face 4014. The shapedabrasive grain 4000 may include athird edge 4024 between thethird side face 4014 and thefourth side face 4016. Moreover, the shapedabrasive grain 4000 may include afourth edge 4026 between thefourth side face 4016 and thefirst side face 4010. - As shown, each
end face abrasive grain 4000 may be generally diamond-shaped. Eachside face abrasive grain 4000 in a plane parallel to the end faces 4002, 4004 is generally diamond-shaped. As shown, the shapedabrasive grain 4000 may also include ahole 4030 formed along a centrallongitudinal axis 4032. Thehole 4030 may pass through the center of the shapedabrasive grain 4000. Alternatively, thehole 4030 may be offset from the center of the shapedabrasive grain 4000 in any direction. -
FIG. 42 andFIG. 43 illustrate a twentieth embodiment of a shaped abrasive grain that is generally designated 4200. As shown, the shapedabrasive grain 4200 may include abody 4201 that includes a generally circularfirst end face 4202 and a generally circularsecond end face 4204. In a particular aspect, depending on the orientation, thefirst end face 4202 may be a base surface and thesecond end face 4204 may be an upper surface. In a particular aspect, a diameter of thesecond end face 4204 may be larger than a diameter of thefirst end face 4202. - As shown, the shaped
abrasive grain 4200 may includecontinuous side face 4206 between thefirst end face 4202 and thesecond end face 4204. Accordingly, the shapedabrasive grain 4200 is generally frusto-conically shaped.FIG. 42 andFIG. 43 further indicate that the shapedabrasive grain 4200 may include a generallycylindrical hole 4208 formed along a centrallongitudinal axis 4210. - Referring now to
FIG. 44 throughFIG. 46 , a twenty-first embodiment of a shaped abrasive grain is shown and is generally designated 4400. The shapedabrasive grain 4400 may include abody 4401 that may include a generally triangularfirst end face 4402 and a generally circularsecond end face 4404. In a particular aspect, depending on the orientation, thefirst end face 4402 may be an upper surface and thesecond end face 4404 may be a base surface. - Further, the shaped
abrasive grain 4400 may include afirst side face 4410 extending between thefirst end face 4402 and thesecond end face 4404. Asecond side face 4412 may extend between thefirst end face 4402 and thesecond end face 4404 adjacent to thefirst side face 4410. As shown, the shapedabrasive grain 4400 may also include athird side face 4414 extending between thefirst end face 4402 and thesecond end face 4404 adjacent to thesecond side face 4412 and thefirst side face 4410. - As depicted in
FIG. 44 andFIG. 45 , the shapedabrasive grain 4400 may also include afirst edge 4420 between thefirst side face 4410 and thesecond side face 4412. The shapedabrasive grain 4400 may also include asecond edge 4422 between thesecond side face 4412 and thethird side face 4414. Further, the shapedabrasive grain 4400 may include athird edge 4424 between thethird side face 4414 and thefirst side face 4412. - Referring now to
FIG. 47 throughFIG. 49 , a twenty-second embodiment of a shaped abrasive grain is shown and is generally designated 4700. The shapedabrasive grain 4700 may include abody 4701 having a generally squarefirst end face 4702 and a generally circularsecond end face 4704. In a particular aspect, depending on the orientation, thefirst end face 4702 may be an upper surface and thesecond end face 4704 may be a base surface. - Further, the shaped
abrasive grain 4700 may include afirst side face 4710 extending between thefirst end face 4702 and thesecond end face 4704. Asecond side face 4712 may extend between thefirst end face 4702 and thesecond end face 4704 adjacent to thefirst side face 4710. As shown, the shapedabrasive grain 4700 may also include athird side face 4714 extending between thefirst end face 4702 and thesecond end face 4704 adjacent to thesecond side face 4712. The shapedabrasive grain 4700 may also include afourth side face 4716 adjacent to thethird side face 4714 and thefirst side face 4710. - As depicted in
FIG. 47 andFIG. 48 , the shapedabrasive grain 4700 may also include afirst edge 4720 between thefirst side face 4710 and thesecond side face 4712. The shapedabrasive grain 4700 may also include asecond edge 4722 between thesecond side face 4712 and thethird side face 4714. Further, the shapedabrasive grain 4700 may include athird edge 4724 between thethird side face 4714 and thefourth side face 4716. Also, the shapedabrasive grain 4700 may include afourth edge 4726 between thefourth side face 4716 and thefirst side face 4710. -
FIG. 50 throughFIG. 52 show a twenty-third embodiment of a shaped abrasive grain that is generally designated 5000. The shapedabrasive grain 5000 may include abody 5001 having a generally plus (+) shapedfirst end face 5002 and a generally circularsecond end face 5004. In a particular aspect, depending on the orientation, thefirst end face 5002 may be an upper surface and thesecond end face 5004 may be a base surface. - Further, the shaped
abrasive grain 5000 may include afirst side face 5010 extending between thefirst end face 5002 and thesecond end face 5004. Asecond side face 5012 may extend between thefirst end face 5002 and thesecond end face 5004 adjacent to thefirst side face 5010. As shown, the shapedabrasive grain 5000 may also include athird side face 5014 extending between thefirst end face 5002 and thesecond end face 5004 adjacent to thesecond side face 5012. The shapedabrasive grain 5000 may also include afourth side face 5016 adjacent to thethird side face 5014 and thefirst side face 5010. - As depicted in
FIG. 50 andFIG. 51 , the shapedabrasive grain 5000 may also include afirst void 5020 between thefirst side face 5010 and thesecond side face 5012. The shapedabrasive grain 5000 may also include asecond void 5022 between thesecond side face 5012 and thethird side face 5014. Further, the shapedabrasive grain 5000 may include athird void 5024 between thethird side face 5014 and thefourth side face 5016. Also, the shapedabrasive grain 5000 may include afourth void 5026 between thefourth side face 5016 and thefirst side face 5010. -
FIG. 53 throughFIG. 55 show a twenty-fourth embodiment of a shaped abrasive grain that is generally designated 5300. The shapedabrasive grain 5300 may include abody 5301 having a generally plus (+) shapedfirst end face 5302 and a generally rounded plus (+)shaped end face 5304. In a particular aspect, depending on the orientation, thefirst end face 5302 may be an upper surface and thesecond end face 5304 may be a base surface. - As shown, the shaped
abrasive grain 5300 may include afirst side face 5310 extending between thefirst end face 5302 and thesecond end face 5304. Asecond side face 5312 may extend between thefirst end face 5302 and thesecond end face 5304 adjacent to thefirst side face 5310. As shown, the shapedabrasive grain 5300 may also include athird side face 5314 extending between thefirst end face 5302 and thesecond end face 5304 adjacent to thesecond side face 5312. The shapedabrasive grain 5300 may also include afourth side face 5316 adjacent to thethird side face 5314 and thefirst side face 5310. - As depicted in
FIG. 53 throughFIG. 55 , the shapedabrasive grain 5300 may also include afirst void 5320 between thefirst side face 5310 and thesecond side face 5312. The shapedabrasive grain 5300 may also include asecond void 5322 between thesecond side face 5312 and thethird side face 5314. Further, the shapedabrasive grain 5300 may include athird void 5324 between thethird side face 5314 and thefourth side face 5316. Also, the shapedabrasive grain 5300 may include afourth void 5326 between thefourth side face 5316 and thefirst side face 5310. - Referring now to
FIG. 56 throughFIG. 58 , a twenty-fifth embodiment of a shaped abrasive grain is shown and is generally designated 5600. The shapedabrasive grain 5600 may include abody 5601 having a generally circularfirst end face 5602 and a generally triangularsecond end face 5604. Thesecond end face 5604 is relatively larger than thefirst end face 5602. In a particular aspect, depending on the orientation, thefirst end face 5602 may be an upper surface and thesecond end face 5604 may be a base surface. - As depicted, the shaped
abrasive grain 5600 may include afirst side face 5610 extending between thefirst end face 5602 and thesecond end face 5604. Asecond side face 5612 may extend between thefirst end face 5602 and thesecond end face 5604 adjacent to thefirst side face 5610. As shown, the shapedabrasive grain 5600 may also include athird side face 5614 extending between thefirst end face 5602 and thesecond end face 5604 adjacent to thesecond side face 5612 and thefirst side face 5610. - As shown in
FIG. 56 throughFIG. 58 , the shapedabrasive grain 5600 may also include afirst edge 5620 between thefirst side face 5610 and thesecond side face 5612. The shapedabrasive grain 5600 may also include asecond edge 5622 between thesecond side face 5612 and thethird side face 5614. Further, the shapedabrasive grain 5600 may include athird edge 5624 between thethird side face 5614 and thefirst side face 5612. - Referring to
FIG. 59 throughFIG. 61 , a twenty-sixth embodiment of a shaped abrasive grain is shown and is generally designated 5900. The shapedabrasive grain 5900 may include abody 5901 having a generally circularfirst end face 5902 and a generally squaresecond end face 5904. In a particular aspect, thesecond end face 5904 is relatively larger than thefirst end face 5902. In a particular aspect, depending on the orientation, thefirst end face 5902 may be an upper surface and thesecond end face 5904 may be a base surface. - Further, the shaped
abrasive grain 5900 may include afirst side face 5910 extending between thefirst end face 5902 and thesecond end face 5904. Asecond side face 5912 may extend between thefirst end face 5902 and thesecond end face 5904 adjacent to thefirst side face 5910. As shown, the shapedabrasive grain 5900 may also include athird side face 5914 extending between thefirst end face 5902 and thesecond end face 5904 adjacent to thesecond side face 5912. The shapedabrasive grain 5900 may also include afourth side face 5916 adjacent to thethird side face 5914 and thefirst side face 5910. - As depicted in
FIG. 59 throughFIG. 61 , the shapedabrasive grain 5900 may also include afirst edge 5920 between thefirst side face 5910 and thesecond side face 5912. The shapedabrasive grain 5900 may also include asecond edge 5922 between thesecond side face 5912 and thethird side face 5914. Further, the shapedabrasive grain 5900 may include athird edge 5924 between thethird side face 5914 and thefourth side face 5916. Also, the shapedabrasive grain 5900 may include afourth edge 5926 between thefourth side face 5916 and thefirst side face 5910. - One or more of the shaped abrasive grains described herein are configured to land in an upright orientation when deposited onto a backing. Further, one or more of the embodiments described herein may provide a relatively high aspect ratio associated with a particular length:height ratio, height:width ratio, length:width ratio, width:height ratio, height:length ratio, width:length ratio, or a combination thereof. A high aspect ratio enables the manufacture of a coated abrasive structure having an open coat, i.e., the distance between adjacent shaped abrasive grains may be increased. Further, the open coat provides greater space for chip clearance and may lower power consumption by making a better cut, or grind.
- Moreover, in bonded abrasive and thin wheel applications shaped abrasive grains having high aspect ratios with sharp edges allows the manufacture of grinding wheels having greater porosity. Greater porosity provides more space for swarf and chip clearance and may enable more coolant to flow through the grinding wheel to provide greater efficiency.
-
FIGS. 62A and B include illustrations of a system for forming shaped abrasive particles in accordance with an embodiment. The process of forming shaped abrasive particles can be initiated by forming amixture 6201 including a ceramic material and a liquid. In particular, themixture 6201 can be a gel formed of a ceramic powder material and a liquid, wherein the gel can be characterized as a shape-stable material having the ability to hold a given shape even in the green (i.e., unfired) state. In accordance with an embodiment, the gel can include a powder material that is an integrated network of discrete particles. - The
mixture 6201 can be formed to have a particular content of solid material, such as the ceramic powder material. For example, in one embodiment, themixture 6201 can have a solids content of at least about 25 wt %, such as at least about 35 wt %, at least about 38 wt %, or even at least about 42 wt % for the total weight of themixture 6201. Still, in at least one non-limiting embodiment, the solid content of themixture 6201 can be not greater than about 75 wt %, such as not greater than about 70 wt %, not greater than about 65 wt %, or even not greater than about 55 wt %. It will be appreciated that the content of the solids materials in themixture 6201 can be within a range between any of the minimum and maximum percentages noted above. - According to one embodiment, the ceramic powder material can include an oxide, a nitride, a carbide, a boride, an oxycarbide, an oxynitride, and a combination thereof. In particular instances, the ceramic material can include alumina. More specifically, the ceramic material may include a boehmite material, which may be a precursor of alpha alumina. The term “boehmite” is generally used herein to denote alumina hydrates including mineral boehmite, typically being Al2O3⋅H2O and having a water content on the order of 15%, as well as psuedoboehmite, having a water content higher than 15%, such as 20-38% by weight. It is noted that boehmite (including psuedoboehmite) has a particular and identifiable crystal structure, and accordingly unique X-ray diffraction pattern, and as such, is distinguished from other aluminous materials including other hydrated aluminas such as ATH (aluminum trihydroxide) a common precursor material used herein for the fabrication of boehmite particulate materials.
- Furthermore, the
mixture 6201 can be formed to have a particular content of liquid material. Some suitable liquids may include organic materials, such as water. In accordance with one embodiment, themixture 6201 can be formed to have a liquid content less than the solids content of themixture 6201. In more particular instances, themixture 6201 can have a liquid content of at least about 25 wt % for the total weight of themixture 6201. In other instances, the amount of liquid within themixture 6201 can be greater, such as at least about 35 wt %, at least about 45 wt %, at least about 50 wt %, or even at least about 58 wt %. Still, in at least one non-limiting embodiment, the liquid content of the mixture can be not greater than about 75 wt %, such as not greater than about 70 wt %, not greater than about 65 wt %, not greater than about 60 wt %, or even not greater than about 55 wt %. It will be appreciated that the content of the liquid in themixture 6201 can be within a range between any of the minimum and maximum percentages noted above. - Furthermore, to facilitate processing and forming shaped abrasive particles according to embodiments herein, the
mixture 6201 can have a particular storage modulus. For example, themixture 6201 can have a storage modulus of at least about 1×104 Pa, such as at least about 4×104 Pa, or even at least about 5×104 Pa. However, in at least one non-limiting embodiment, themixture 6201 may have a storage modulus of not greater than about 1×107 Pa, such as not greater than about 1×106 Pa. It will be appreciated that the storage modulus of themixture 6201 can be within a range between any of the minimum and maximum values noted above. The storage modulus can be measured via a parallel plate system using ARES or AR-G2 rotational rheometers, with Peltier plate temperature control systems. For testing, themixture 6201 can be extruded within a gap between two plates that are set to be approximately 8 mm apart from each other. After extruding the get into the gap, the distance between the two plates defining the gap is reduced to 2 mm until themixture 6201 completely fills the gap between the plates. After wiping away excess mixture, the gap is decreased by 0.1 mm and the test is initiated. The test is an oscillation strain sweep test conducted with instrument settings of a strain range between 0.1% to 100%, at 6.28 rad/s (1 Hz), using 25-mm parallel plate and recording 10 points per decade. Within 1 hour after the test completes, lower the gap again by 0.1 mm and repeat the test. The test can be repeated at least 6 times. The first test may differ from the second and third tests. Only the results from the second and third tests for each specimen should be reported. - Furthermore, to facilitate processing and forming shaped abrasive particles according to embodiments herein, the
mixture 6201 can have a particular viscosity. For example, themixture 6201 can have a viscosity of at least about 4×103 Pa s, at least about 5×103 Pa s, at least about 6×103 Pa s, at least about 8×103 Pa s, at least about 10×103 Pa s, at least about 20×103 Pa s, at least about 30×103 Pa s, at least about 40×103 Pa s, at least about 50×103 Pa s, at least about 60×103 Pa s, or even at least about 65×103 Pa s. In at least one non-limiting embodiment, themixture 6201 may have a viscosity of not greater than about 1×106 Pa s, not greater than about 5×105 Pa s, not greater than about 3×105 Pa s, or even not greater than about 2×105 Pa s. It will be appreciated that the viscosity of themixture 6201 can be within a range between any of the minimum and maximum values noted above. The viscosity can be calculated by dividing the storage modulus value by 6.28 s−1. - Moreover, the
mixture 6201 can be formed to have a particular content of organic materials, including for example, organic additives that can be distinct from the liquid, to facilitate processing and formation of shaped abrasive particles according to the embodiments herein. Some suitable organic additives can include stabilizers, binders, such as fructose, sucrose, lactose, glucose, UV curable resins, and the like. - Notably, the embodiments herein may utilize a
mixture 6201 that is distinct from slurries used in conventional tape casting operations. For example, the content of organic materials within themixture 6201, particularly, any of the organic additives noted above may be a minor amount as compared to other components within themixture 6201. In at least one embodiment, themixture 6201 can be formed to have not greater than about 30 wt % organic material for the total weight of themixture 6201. In other instances, the amount of organic materials may be less, such as not greater than about 15 wt %, not greater than about 10 wt %, or even not greater than about 5 wt %. Still, in at least one non-limiting embodiment, the amount of organic materials within themixture 6201 can be at least about 0.1 wt %, such as at least about 0.5 wt % for the total weight of themixture 6201. It will be appreciated that the amount of organic materials in themixture 6201 can be within a range between any of the minimum and maximum values noted above. - Moreover, the
mixture 6201 can be formed to have a particular content of acid or base distinct from the liquid, to facilitate processing and formation of shaped abrasive particles according to the embodiments herein. Some suitable acids or bases can include nitric acid, sulfuric acid, citric acid, chloric acid, tartaric acid, phosphoric acid, ammonium nitrate, ammonium citrate. According to one particular embodiment, themixture 6201 can have a pH of less than about 5, and more particularly, within a range between about 2 and about 4, using a nitric acid additive. - Referencing
FIG. 62 , thesystem 6200 can include adie 6203. As illustrated, themixture 6201 can be provided within the interior of thedie 6203 and configured to be extruded through adie opening 6205 positioned at one end of thedie 6203. As further illustrated, forming can include applying a force 6280 (that may be translated into a pressure) on themixture 6201 to facilitate moving themixture 6201 through thedie opening 6205. In accordance with an embodiment, a particular pressure may be utilized during extrusion. For example, the pressure can be at least about 10 kPa, such as at least about 500 kPa. Still, in at least one non-limiting embodiment, the pressure utilized during extrusion can be not greater than about 4 MPa. It will be appreciated that the pressure used to extrude themixture 6201 can be within a range between any of the minimum and maximum values noted above. - In certain systems, the
die 6203 can include adie opening 6205 having a particular shape. It will be appreciated that thedie opening 6205 may be shaped to impart a particular shape to themixture 6201 during extrusion. In accordance with an embodiment, thedie opening 6205 can have a rectangular shape. Furthermore, themixture 6201 extruded through thedie opening 6205 can have essentially the same cross-sectional shape as thedie opening 6205. As further illustrated, themixture 6201 may be extruded in the form of asheet 6211 and onto abelt 6209 underlying thedie 6203. In specific instances, themixture 6201 can be extruded in the form of asheet 6211 directly onto thebelt 6209, which may facilitate continuous processing. - According to one particular embodiment, the belt can be formed to have a film overlying a substrate, wherein the film can be a discrete and separate layer of material configured to facilitate processing and forming of shaped abrasive particles. The process can include providing the
mixture 6201 directly onto the film of the belt to form thesheet 6211. In certain instances, the film can include a polymer material, such as polyester. In at least one particular embodiment, the film can consist essentially of polyester. - In some embodiments, the
belt 6209 can be translated while moving themixture 6201 through thedie opening 6205. As illustrated in thesystem 6200, themixture 6201 may be extruded in adirection 6291. The direction oftranslation 6210 of thebelt 6209 can be angled relative to the direction ofextrusion 6291 of the mixture. While the angle between the direction oftranslation 6210 and the direction ofextrusion 6291 are illustrated as substantially orthogonal in thesystem 6200, other angles are contemplated, including for example, an acute angle or an obtuse angle. Thebelt 6209 may be translated at a particular rate to facilitate processing. For example, thebelt 6209 may be translated at a rate of at least about 3 cm/s, such as at least about 4 cm/s, at least about 6 cm/s, at least about 8 cm/s, or even at least about 10 cm/s. Still, in at least one non-limiting embodiment, thebelt 6209 may be translated in adirection 6210 at a rate of not greater than about 5 m/s, such as not greater than about 1 m/s, or even not greater than about 0.5 m/s. It will be appreciated that thebelt 6209 may be translated at a rate within a range between any of the minimum and maximum values noted above. - For certain processes according to embodiments herein, the rate of translation of the
belt 6209 as compared to the rate of extrusion of themixture 6201 in thedirection 6291 may be controlled to facilitate proper processing. For example, the rate of translation of thebelt 6209 can be essentially the same as the rate of extrusion to ensure formation of asuitable sheet 6211. - After the
mixture 6201 is extruded through thedie opening 6205, themixture 6201 may be translated along thebelt 6209 under aknife edge 6207 attached to a surface of thedie 6203. Theknife edge 6207 may facilitate forming asheet 6211. More particularly, the opening defined between the surface of theknife edge 6207 andbelt 6209 may define particular dimensions of the extrudedmixture 6201. For certain embodiments, themixture 6201 may be extruded in the form of asheet 6211 having a generally rectangular cross-sectional shape as viewed in a plane defined by a height and width of thesheet 6211. While the extrudate is illustrated as a sheet, other shapes can be extruded, including for example cylindrical shapes and the like. - The process of forming the
sheet 6211 from themixture 6201 can include control of particular features and process parameters to facilitate suitable formation of shaped abrasive particles having one or more features as provided in the embodiments herein. For example, in certain instances, the process of forming asheet 6211 from themixture 6201 can include forming asheet 6211 having aparticular height 6281 controlled in part by a distance between theknife edge 6207 and a surface of thebelt 6209. Moreover, it is noted that theheight 6281 of thesheet 6211 can be controlled by varying a distance between theknife edge 6207 and the surface of thebelt 6209. Additionally, forming themixture 6201 into thesheet 6211 can include controlling the dimensions of thesheet 6211 based in part upon the viscosity of themixture 6201. In particular, forming thesheet 6211 can include adjusting theheight 6281 of thesheet 6211 based on the viscosity of themixture 6201. - The
sheet 6211 can have particular dimensions, including for example a length (l), a width (w), and a height (h). In accordance with an embodiment, thesheet 6211 may have a length that extends in the direction of the translatingbelt 6209, which can be greater than the width, wherein the width of thesheet 6211 is a dimension extending in a direction perpendicular to the length of thebelt 6209 and to the length of the sheet. Thesheet 6211 can have aheight 6281, wherein the length and width are greater than theheight 6281 of thesheet 6211. - Notably, the
height 6281 of thesheet 6211 can be the dimension extending vertically from the surface of thebelt 6209. In accordance with an embodiment, thesheet 6211 can be formed to have a particular dimension ofheight 6281, wherein the height may be an average height of thesheet 6211 derived from multiple measurements. For example, theheight 6281 of thesheet 6211 can be at least about 0.1 mm, such as at least about 0.5 mm. In other instances, theheight 6281 of thesheet 6211 can be greater, such as at least about 0.8 mm, at least about 1 mm, at least about 1.2 mm, at least about 1.6 mm, or even at least about 2 mm. Still, in one non-limiting embodiment, theheight 6281 of thesheet 6211 may be not greater than about 10 mm, not greater than about 5 mm, or even not greater than about 2 mm. It will be appreciated that thesheet 6211 may have an average height within a range between any of the minimum and maximum values noted above. - According to one embodiment, the
sheet 6211 can have a length (l), a width (w), and a height (h), wherein the length≥width≥height. Moreover, thesheet 6211 can have a secondary aspect ratio of length:height of at least about 10, such as at least about 100, at least about 1000, or even at least about 1000. - After extruding the
mixture 6201 from thedie 6203, thesheet 6211 may be translated in adirection 6212 along the surface of thebelt 6209. Translation of thesheet 6211 along thebelt 6209 may facilitate further processing to form precursor-shaped abrasive particles. For example, thesheet 6211 may undergo a shaping process within theshaping zone 6213. In particular instances, the process of shaping can include shaping a surface of thesheet 6211, including for example, an uppermajor surface 6217 of thesheet 6211, which may be completed using ashaping article 6215. In other embodiments, other major surfaces of the sheet may undergo shaping, including for example, the bottom surface or side surfaces. For certain processes, shaping can include altering a contour of the sheet through one or more processes, such as, embossing, rolling, cutting, engraving, patterning, stretching, twisting, and a combination thereof. - In accordance with an embodiment, the process of forming a shaped abrasive particle can further include translation of the sheet along the
belt 6209 through a formingzone 6221. In accordance with an embodiment, the process of forming a shaped abrasive particle can include sectioning thesheet 6211 to form precursor shapedabrasive particles 6223. For example, in certain instances, forming can include perforating a portion of thesheet 6211. In other instances, the process of forming can include patterning thesheet 6211 to form a patterned sheet and extracting shapes from the patterned sheet. - Particular processes of forming can include cutting, pressing, punching, crushing, rolling, twisting, bending, drying, and a combination thereof. In one embodiment, the process of forming can include sectioning of the
sheet 6211. Sectioning of thesheet 6211 can include the use of at least one mechanical object, which may be in the form of a gas, liquid, or solid material. The process of sectioning can include at least one or a combination of cutting, pressing, punching, crushing, rolling, twisting, bending, and drying. Moreover, it will be appreciated that sectioning can include perforating or creating a partial opening through a portion of thesheet 6211, which may not extend through the entire height of thesheet 6211. In one embodiment, sectioning of thesheet 6211 can include use of a mechanical object including one or a plurality of a blade, a wire, a disc, and a combination thereof. - The process of sectioning can create different types of shaped abrasive particles in a single sectioning process. Different types of shaped abrasive particles can be formed from the same processes of the embodiments herein. Different types of shaped abrasive particles include a first type of shaped abrasive particle having a first two-dimensional shape and a second type of shaped abrasive particle having a different two-dimensional shape as compared to the first two-dimensional shape. Furthermore, different types of shaped abrasive particles may differ from each other in size. For example, different types of shaped abrasive particles may have different volumes as compared to each other. A single process which is capable of forming different types of shaped abrasive particles may be particularly suited for producing certain types of abrasive articles.
- Sectioning can include moving the mechanical object through a portion of a
sheet 6211 and creating an opening within thesheet 6211. In particular, the sheet can be formed to have an opening extending into the volume of the sheet and defined by certain surfaces. The opening can define a cut extending through at least a fraction of the entire height of sheet. It will be appreciated that the opening does not necessarily need to extend through the full height of the sheet. In certain instances, the method of sectioning can include maintaining the opening in the sheet. Maintaining the opening after sectioning the sheet has been sectioned by a mechanical object may facilitate suitable formation of shaped abrasive particles and features of shaped abrasive particles and features of a batch of shaped abrasive particles. Maintaining the opening can include at least partially drying at least one surface of the sheet defining the opening. The process of at least partially drying can include directing a drying material at the opening. A drying material may include a liquid, a solid, or even a gas. According to one particular embodiment, the drying material can include air. Controlled drying may facilitate the formation of shaped abrasive particles according to embodiments herein. - In certain instances, the process of sectioning can be conducted prior to sufficient drying of the sheet. For example, sectioning can be conducted prior to volatilization of not greater than about 20% of the liquid from the sheet as compared to the original liquid content of the sheet during initial formation of the sheet. In other embodiments, the amount of volatilization allowed to occur before or during sectioning can be less, such as, not greater than about 15%, not greater than about 12%, not greater than about 10%, not greater than about 8%, or even not greater than about 4% of the original liquid content of the sheet.
- Referring again to
FIGS. 62A and 62B , after forming precursor-shapedabrasive particles 6223, the particles may be translated through apost-forming zone 6225. Various processes may be conducted in thepost-forming zone 6225, including for example, heating, curing, vibration, impregnation, doping, and a combination thereof. - In one embodiment, the
post-forming zone 6225 includes a heating process, wherein the precursor-shapedabrasive particles 6223 may be dried. Drying may include removal of a particular content of material, including volatiles, such as water. In accordance with an embodiment, the drying process can be conducted at a drying temperature of not greater than 300° C. such as not greater than 280° C. or even not greater than about 250° C. Still, in one non-limiting embodiment, the drying process may be conducted at a drying temperature of at least 50° C. It will be appreciated that the drying temperature may be within a range between any of the minimum and maximum temperatures noted above. - Furthermore, the precursor-shaped
abrasive particles 6223 may be translated through a post-forming zone at a particular rate, such as at least about 0.2 feet/min and not greater than about 8 feet/min. Furthermore, the drying process may be conducted for a particular duration. For example, the drying process may be not greater than about six hours. - After the precursor-shaped
abrasive particles 6223 are translated through thepost-forming zone 6225, the particles may be removed from thebelt 6209. The precursor-shapedabrasive particles 6223 may be collected in abin 6227 for further processing. - In accordance with an embodiment, the process of forming shaped abrasive particles may further comprise a sintering process. The sintering process can be conducted after collecting the precursor-shaped
abrasive particles 6223 from thebelt 6209. Sintering of the precursor-shapedabrasive particles 6223 may be utilized to densify the particles, which are generally in a green state. In a particular instance, the sintering process can facilitate the formation of a high-temperature phase of the ceramic material. For example, in one embodiment, the precursor-shapedabrasive particles 6223 may be sintered such that a high-temperature phase of alumina, such as alpha alumina is formed. In one instance, a shaped abrasive particle can comprise at least about 90 wt % alpha alumina for the total weight of the particle. In other instances, the content of alpha alumina may be greater, such that the shaped abrasive particle may consist essentially of alpha alumina. -
FIG. 63 includes an illustration of a system for forming a shaped abrasive particle in accordance with an embodiment. In particular, thesystem 6300 can generally include a screen printing process of forming shaped abrasive particles. However, as noted herein, certain portions of the system may be modified to conduct a molding process. As illustrated, thesystem 6300 can include ascreen 6351 configured to be translated betweenrollers 6370 and 6371. It will be appreciated that thescreen 6351 can be translated over a greater number of rollers or other devices if so desired. As illustrated, thesystem 6300 can include abelt 6309 configured to be translated in adirection 6316 overrollers belt 6309 may be translated over a greater number of rollers or other devices if so desired. - As illustrated, the
system 6300 can further include adie 6303 configured to conduct extrusion of amixture 6301 contained within areservoir 6302 of thedie 6303. The process of forming shaped abrasive particles can be initiated by forming amixture 6301 including a ceramic material and a liquid as described herein. - The
mixture 6301 can be provided within the interior of thedie 6303 and configured to be extruded through a die opening 6305 positioned at one end of thedie 6303. As further illustrated, extruding can include applying a force (or a pressure) on themixture 6301 to facilitate extruding themixture 6301 through the die opening 6305. In accordance with an embodiment, a particular pressure may be utilized during extrusion. For example, the pressure can be at least about 10 kPa, such as at least about 500 kPa. Still, in at least one non-limiting embodiment, the pressure utilized during extrusion can be not greater than about 4 MPa. It will be appreciated that the pressure used to extrude themixture 6301 can be within a range between any of the minimum and maximum values noted above. - In particular instances, the
mixture 6301 can be extruded through a die opening 6305 at the end of thedie 6303 proximate to thescreen 6351. Thescreen 6351 may be translated in adirection 6353 at a particular rate to facilitate suitable processing. Notably, thescreen 6351 can be translated through theapplication zone 6383 including the die opening 6305 to facilitate the formation of precursor-shaped abrasive particles. Thescreen 6351 may be translated through the application zone at a rate of at least about 3 cm/s, such as at least about 4 cm/s, at least about 6 cm/s, at least about 8 cm/s, or even at least about 10 cm/s. Still, in at least one non-limiting embodiment, thescreen 6351 may be translated in adirection 6353 at a rate of not greater than about 5 m/s, such as not greater than about 1 m/s, or even not greater than about 0.5 m/s. It will be appreciated that thescreen 6351 may be translated at a rate within a range between any of the minimum and maximum values noted above. - Additionally, the
belt 6309 can be translated in adirection 6316 at a particular rate to facilitate suitable processing. For example, thebelt 6309 can be translated at a rate of at least about 3 cm/s, such as at least about 4 cm/s, at least about 6 cm/s, at least about 8 cm/s, or even at least about 10 cm/s. Still, in at least one non-limiting embodiment, thebelt 6309 may be translated in adirection 6316 at a rate of not greater than about 5 m/s, such as not greater than about 1 m/s, or even not greater than about 0.5 m/s. It will be appreciated that thebelt 6309 may be translated at a rate within a range between any of the minimum and maximum values noted above. - In accordance with a particular embodiment, the
screen 6351 may be translated at a particular rate as compared to the rate of translation of thebelt 6309. For example, within theapplication zone 6383, thescreen 6351 may be translated at substantially the same rate of translation of thebelt 6309. That is, the difference in rate of translation between the screen and the belt may be not greater than about 5%, such as not greater than about 3%, or even not greater than about 1% based on the rate of the translation of thescreen 6351. - As illustrated, the
system 6300 can include anapplication zone 6383, including the die opening 6305. Within theapplication zone 6383, themixture 6301 may be extruded from thedie 6303 and directly onto thescreen 6351. More particularly, a portion of themixture 6301 may be extruded from the die opening 6305, and further extruded through one or more openings in thescreen 6351 and onto theunderlying belt 6309. - Referring briefly to
FIG. 64 , a portion of ascreen 6451 is illustrated. As shown, thescreen 6451 can include anopening 6452, and more particularly, a plurality ofopenings 6452. The openings can extend through the volume of thescreen 6451, to facilitate passable of themixture 6301 through the openings and onto thebelt 6309. In accordance with an embodiment, theopenings 6452 can have a two-dimensional shape as viewed in a plane defined by the length (l) and width (w) of the screen. While theopenings 6452 are illustrated as having a three-pointed star two-dimensional shape, other shapes are contemplated. For example, theopenings 6452 can have a two-dimensional shape such as polygons, ellipsoids, numerals, Greek alphabet letters, Latin alphabet letters, Russian alphabet characters, complex shapes including a combination of polygonal shapes, and a combination thereof. In particular instances, theopenings 6452 may have two-dimensional polygonal shapes such as, a triangle, a rectangle, a quadrilateral, a pentagon, a hexagon, a heptagon, an octagon, a nonagon, a decagon, and a combination thereof. Moreover, ascreen 6451 can be formed to include a combination ofopenings 6452 having a plurality of different two-dimensional shapes. - Certain aspects of processing were found to facilitate the formation of shaped abrasive particles according to embodiments herein. Notably, the orientation of the openings relative to the die head was found to have an effect on the shape of the shaped abrasive particles. In particular, it was noted, that when the openings are aligned as illustrated in
FIG. 64 , wherein apoint 6455 of the opening is first filled with themixture 6301 the shaped abrasive particles are suitably formed having the features described herein. In other orientations, wherein for example, aside 6456 of the opening would be first filled, as opposed to a point (e.g., 6455) of theopening 6452, it was noted that the shaped abrasive particles had certain less suitable features. - Referring again to
FIG. 63 , after forcing themixture 6301 through the die opening 6305 and a portion of themixture 6301 through the openings 6352 in thescreen 6351, precursor-shapedabrasive particles 6353 may be printed on abelt 6309 disposed under thescreen 6351. According to a particular embodiment, the precursor-shapedabrasive particles 6353 can have a shape substantially replicating the shape of the openings 6352. - After extruding the
mixture 6301 into the openings 6352 of thescreen 6351, thebelt 6309 andscreen 6351 may be translated to arelease zone 6385, wherein thebelt 6309 andscreen 6351 can be separated to facilitate the formation of precursor shaped abrasive particles. In accordance with an embodiment, thescreen 6351 andbelt 6309 may be separated from each other within therelease zone 6385 at aparticular release angle 6355. In accordance with specific embodiment, therelease angle 6355 can be a measure of the angle between alower surface 6354 of thescreen 6351 and anupper surface 6356 of thebelt 6309. - Notably, the
mixture 6301 can be forced through thescreen 6351 in rapid fashion, such that the average residence time of themixture 6301 within the openings 152 can be less than about 2 minutes, less than about 1 minute, less than about 40 second, or even less than about 20 seconds. In particular non-limiting embodiments, themixture 6301 may be substantially unaltered during printing as it travels through the screen openings 6352, thus experiencing no change in the amount of components, and may experience no appreciable drying in the openings 6352 of thescreen 6351. - In an alternative embodiment, the process of forming can include a molding process. The molding process may utilize some of the same components of the
system 6300, however, the screen can be replaced with a molding blank having openings within a substrate material for molding themixture 6301. Notably, unlike a screen, the molding blank can have openings that extend partially through the entire thickness of the blank, such that the openings are not apertures extending from one major surface to the opposite major surface of the blank. Instead, the mold openings can have a bottom surface within the interior volume, which are intended to form a major surface of the precursor-shaped abrasive particle formed therein. Moreover, a molding system may not necessarily utilize a belt underlying the molding blank. - The forming process may also utilize a particular drying process to facilitate formation of shaped abrasive particles having features of the embodiments herein. In particular, the drying process may include drying under conditions including humidity, temperature, and atmospheric pressure and composition suitable for limiting distortions to the shaped abrasive particles.
- It was found that unlike the formation of shaped abrasive particles having typical polygonal shapes, the process of forming complex shapes, particularly using replication processes, required control of one or more process parameters, including drying conditions, amount and type of lubricant, pressure applied to the mixture during extrusion, material of the blank or belt, and the like. In particular instances, it was found that a belt or blank of stainless steel or polycarbonate polymer could be used. Moreover, it was found that the use of a natural oil material (e.g., canola oil) as a lubricant on the openings of the blank or belt may facilitate improved forming of shaped abrasive particles.
- The body of the shaped abrasive particles may include additives, such as dopants, which may be in the form of elements or compounds (e.g., oxides). Certain suitable additives can include alkali elements, alkaline earth elements, rare-earth elements, hafnium (Hf), zirconium (Zr), niobium (Nb), tantalum (Ta), molybdenum (Mo), and a combination thereof. In particular instances, the additive can include an element such as lithium (Li), sodium (Na), potassium (K), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), scandium (Sc), yttrium (Y), lanthanum (La), cesium (Ce), praseodymium (Pr), niobium (Nb), hafnium (Hf), zirconium (Zr), tantalum (Ta), molybdenum (Mo), vanadium (V), chromium (Cr), cobalt (Co), iron (Fe), germanium (Ge), manganese (Mn), nickel (Ni), titanium (Ti), zinc (Zn), and a combination thereof.
- The body of a shaped abrasive article may include a specific content of additive (e.g., dopant). For example, the body of a shaped abrasive particle may include not greater than about 12 wt % additive for the total weight of the body. In still other embodiments, the amount of additive may be less, such as not greater than about 11 wt %, not greater than about 10 wt %, not greater than about 9 wt %, not greater than about 8 wt %, not greater than about 7 wt %, not greater than about 6 wt %, or even not greater than about 5 wt %. Still, the amount of additive in at least one non-limiting embodiment can be at least about 0.5 wt %, such as at least about 1 wt %, at least about 1.3 wt %, at least about 1.8 wt %, at least about 2 wt %, at least about 2.3 wt %, at least about 2.8 wt %, or even at least about 3 wt %. It will be appreciated that the amount of additive within a body of a shaped abrasive particle may be within a range between any of the minimum and maximum percentages noted above.
-
FIG. 65A includes a top view image of a shaped abrasive particle formed according to a particular embodiment. As illustrated, the shapedabrasive particle 6500 can define a star-shaped body, as viewed in two dimensions. In particular, the shapedabrasive particle 6500 can include abody 6501 having acentral portion 6502 and afirst arm 6503, asecond arm 6504, and athird arm 6505 extending from thecentral portion 6502. Thebody 6501 can have a length (l) measured as the longest dimension along a side of the particle and a width (w), measured as the longest dimension of the particle between amidpoint 6553 of a side through themidpoint 6590 of thebody 6501 to afirst tip 6506 of thefirst arm 6503. The width can extend in a direction perpendicular to the dimension of the length. Thebody 6501 can have a height (h), extending in a direction perpendicular to theupper surface 6510 of thebody 6501 defining thethird side surface 6556 between the upper surface and thebase surface 6511 as illustrated inFIG. 65B , which is a side view illustration of the image of the particle ofFIG. 65A . - The shaped
abrasive particle 6500 can have abody 6501 in the form of a three-pointed star defined by thefirst arm 6503,second arm 6504, and thethird arm 6505 extending from thecentral portion 6502. According to one particular embodiment, at least one of the arms, including for example, thefirst arm 6503, can have amidpoint width 6513 that is less than acentral portion width 6512. Thecentral portion 6502 can be defined as a region between themidpoints first side surface 6554,second side surface 6555, andthird side surface 6556, respectively. Thecentral portion width 6512 of thefirst arm 6503 can be the width of the dimension between themidpoints midpoint width 6513 can be the width of the line at a midpoint between the line of thecentral portion width 6510 and thetip 6506 of thefirst arm 6503 along afirst axis 6560. In certain instances, themidpoint width 6513 can be not greater than about 90% of thecentral portion width 6512, such as not greater than about 80%, not greater than about 70%, not greater than about 65%, or even not greater than about 60%. Still, themidpoint width 6513 can be at least about 10%, such as at least about 20%, at least about 30%, or even at least about 40% of thecentral portion width 6510. It will be appreciated that themidpoint width 6513 can have a width relative to thecentral portion width 6512 within a range between any of the above minimum and maximum percentages. - Moreover, the
body 6501 can have at least one arm, such as thefirst arm 6503, having atip width 6514 at thetip 6506 of thefirst arm 6503 that is less than amidpoint width 6513. In such instances wherein thetip 6506 is sharply formed, thetip width 6514 may be considered 0. In instances wherein thetip 6506 has a radius of curvature, thetip width 6514 may be considered the diameter of the circle defined by the radius of curvature. According to one embodiment, thetip width 6514 can be not greater than about 90% of themidpoint width 6513, such as not greater than about 80%, not greater than about 70%, not greater than about 60%, not greater than about 50%, not greater than about 40%, not greater than about 30%, not greater than about 20%, or even not greater than about 10%. Still, in certain non-limiting embodiments, thetip width 6514 can be at least about 1%, such as at least about 2%, at least about 3%, at least about 5%, or even at least about 10% of themidpoint width 6513. It will be appreciated that thetip width 6514 can have a width relative to themidpoint width 6513 within a range between any of the above minimum and maximum percentages. - As further illustrated, the
body 6501 can have afirst arm 6503 including afirst tip 6506 defining afirst tip angle 6521 between thefirst side surface 6554 and thesecond side surface 6555. According to an embodiment, the first tip angle can be less than about 60 degrees, such as not greater than about 55 degrees, not greater than about 50 degrees, not greater than about 45 degrees, or even not greater than about 40 degrees. Still, the first tip angle can be at least about 5 degrees, such as at least about 8 degrees, at least about 10 degrees, at least about 15 degrees, at least about 20 degrees, at least about 25 degrees, or even at least about 30 degrees. The first tip angle can be within a range between any of the minimum and maximum values noted above. - The
body 6501 can include asecond arm 6504 having asecond tip 6507 defining asecond tip angle 6522 between thesecond side surface 6555 andthird side surface 6556. The second tip angle can be substantially the same as the first tip angle, such as within 5% of the angle numerical value. Alternatively, the second tip angle can be substantially different relative to the first tip angle. - The
body 6501 can include athird arm 6505 having athird tip 6508 defining athird tip angle 6523 between thefirst side surface 6554 andthird side surface 6556. The third tip angle can be substantially the same as the first tip angle or second tip angle, such as within 5% of the angle numerical value. Alternatively, the third tip angle can be substantially different relative to the first tip angle or the second tip angle. - The
body 6501 can have a total angle, which is a sum of the value of the first tip angle, second tip angle, and third tip angle which can be less than about 180 degrees. In other embodiments, the total angle can be not greater than about 175 degrees, such as not greater than about 170 degrees, not greater than about 165 degrees, not greater than about 150 degrees, such as not greater than about 140 degrees, not greater than about 130 degrees, not greater than about 125 degrees, or even not greater than about 120 degrees. Still, in one non-limiting embodiment, thebody 6501 can have a total angle of at least about 60 degrees, such as at least about 70 degrees, at least about 80 degrees, at least about 90 degrees, such as at least about 95 degrees, at least about 100 degrees, or even at least about 105 degrees. It will be appreciated that the total sum angle can be within a range between any of the minimum and maximum values noted above. - As noted herein, the
body 6501 can have afirst side surface 6554 extending between thefirst arm 6506 and thethird arm 6508. In certain instances, thefirst side surface 6554 can have an arcuate contour. For example, turning briefly toFIG. 65C , a top view image of a shaped abrasive particle according to an embodiment is provided. Notably, the shaped abrasive particle ofFIG. 65C can include a three-pointed star having abody 6581 and anarcuate side surface 6582 extending between two points. In particular instances, theside surface 6582 can have a concave contour defining a curved portion extending inward toward thecentral portion 6583 of thebody 6581. - Referring again to
FIG. 65A , thebody 6501 can have afirst side surface 6554 having afirst side section 6558 and asecond side section 6559. Thefirst side section 6558 can extend between thefirst tip 6506 and themidpoint 6551 and thesecond side section 6559 can extend between thethird tip 6508 and themidpoint 6551. Thefirst side section 6558 andsecond side section 6559 can define aninterior angle 6562 that can be obtuse. For example, theinterior angle 6562 can be greater than about 90 degrees, such as greater than about 95 degrees, greater than about 100 degrees, greater than about 110 degree, or even greater than about 120 degrees. Still, in one non-limiting embodiment, theinterior angle 6562 can be not greater than about 320 degrees, such as not greater than about 300 degrees, or even not greater than about 270 degrees. It will be appreciated that the interior angle can be within a range between any of the minimum and maximum values noted above. - The
first side section 6558 can extend for a significant portion of the length of thefirst side surface 6554. For example, thefirst side section 6558 can extend for at least about 20%, such as at least about 25%, at least about 30%, at least about 35%, or even at least about 40% of a total length of thefirst side surface 6554. Still, in one non-limiting embodiment, thefirst side section 6558 can have a length (ls1) between themidpoint 6551 and thefirst tip 6506 of not greater than about 80%, such as not greater than about 75%, not greater than about 70%, or even not greater than about 65% of the total length of theside surface 6554. It will be appreciated that the length of thefirst side section 6558 can be within a range between any of the minimum and maximum percentages noted above. - The
second side section 6559 can extend for a significant portion of the length of thefirst side surface 6554. For example, thesecond side section 6559 can extend for at least about 20%, such as at least about 25%, at least about 30%, at least about 35%, or even at least about 40% of a total length of thefirst side surface 6554. Still, in one non-limiting embodiment, thesecond side section 6559 can have a length (ls2) between themidpoint 6551 and thethird tip 6508 of not greater than about 80%, such as not greater than about 75%, not greater than about 70%, or even not greater than about 65% of the total length of theside surface 6554 as a straight line between thefirst tip 6506 and thethird tip 6508. It will be appreciated that the length of thesecond side section 6559 can be within a range between any of the minimum and maximum percentages noted above. - The
body 6501 can further include a fracturedregion 6570 on at least a portion of one side surface. For example, thebody 6501 can have a fracturedregion 6570 on a portion of theside surface 6554 between themidpoint 6551 and thethird tip 6508. Thefracture region 6570 can be intersecting at least a portion of an edge defining thebase surface 6511. Alternatively, or additionally, thefracture region 6570 can be intersecting at least a portion of an edge defining theupper surface 6510. The fractured region can be characterized by having a surface roughness greater than a surface roughness of at least theupper surface 6510 or thebase surface 6511 of thebody 6501. The fracturedregion 6570 can define a portion of the body extending from thebase surface 6511. In certain instances, the fracturedregion 6570 can be characterized by irregularly shaped protrusions and grooves extending from thebase surface 6511 along thefirst side surface 6554. In certain instances, the fracturedregion 6570 can appear as and define a serrated edge. Afracture region 6583 is also illustrated on theside surface 6582 of the shaped abrasive particle ofFIG. 65C . - In certain instances, the
fracture region 6570 can be preferentially located at or near the tips of the arms of the body. The fracturedregion 6570 can extend from the bottom surface 1703 and extend vertically for a fraction of the entire height of the side surface or even for the entire height of the side surface. - While the foregoing
body 6501 of the three-pointed star has been shown to have anupper surface 6510 having a two-dimensional shape, as viewed in the plane of the length and width of the body, that is substantially the same as the two-dimensional shape of thebase surface 6511 of thebody 6501, other shapes are contemplated. For example, in one embodiment, the cross-sectional shape of the body at the base surface can define a base surface shape from the group consisting of a three-pointed star, a four-pointed star, a cross-shape, a polygon, ellipsoids, numerals, Greek alphabet characters, Latin alphabet characters, Russian alphabet characters, complex shapes having a combination of polygonal shapes, and a combination thereof. Moreover, the cross-sectional shape of the body at the upper surface can define an upper surface shape, which can be different than the base surface shape and selected from the group of a three-pointed star, a four-pointed star, a cross-shape, a polygon, ellipsoids, numerals, Greek alphabet characters, Latin alphabet characters, Russian alphabet characters, complex shapes having a combination of polygonal shapes, and a combination thereof. - In particular instances, the upper surface shape can have an arcuate form of the base surface shape. For example, the upper surface shape can define an arcuate three-pointed two-dimensional shape, wherein the arcuate three-pointed two-dimensional shape defines arms having rounded ends. In particular, the arms as defined at the base surface can have a smaller radius of curvature at the tip as compared to the radius of curvature of the corresponding tip at the upper surface.
- As described in other embodiments herein, it will be appreciated that at least one of the arms of the
body 6501 may be formed to have a twist, such that the arm twists around a central axis. For example, thefirst arm 6503 may twist around theaxis 6560. Moreover, thebody 6501 can be formed such that at least one arm extends in an arcuate path from the central region. -
FIG. 66A includes a top view image of a shaped abrasive particle formed according to a particular embodiment. As illustrated, the shapedabrasive particle 6600 can define a star-shaped body, as viewed in a plane defined by the two dimensions of length and width. In particular, the shapedabrasive particle 6600 can include abody 6601 having acentral portion 6602 and afirst arm 6603, asecond arm 6604, athird arm 6605, and afourth arm 6606 extending from thecentral portion 6602. Thebody 6601 can have a length (l), measured as the longest dimension along a side of the particle and a width (w), and measured as the longest dimension of the particle between two points of opposite arms and through themidpoint 6609 of thebody 6601. The width can extend in a direction perpendicular to the dimension of the length. Thebody 6601 can have a height (h), extending in a direction perpendicular to theupper surface 6610 of thebody 6601 defining thethird side surface 6656 between the upper surface and the base surface 6611 as illustrated inFIG. 66B . Notably, thebody 6601 can have more than one height as will be described in more detail herein. - The shaped
abrasive particle 6600 can have abody 6601 in the form of a four-pointed star defined by thefirst arm 6603, asecond arm 6604, athird arm 6605, and thefourth arm 6606 extending from thecentral portion 6602. Thebody 6601 can have any of the features described in the embodiments herein. For example, according to one particular embodiment, at least one of the arms, including for example, thefirst arm 6603, can have a midpoint width that is less than a central portion width, as described in accordance with the embodiment ofFIG. 65A . Moreover, thebody 6601 can have at least one arm, such as thefirst arm 6603, having a tip width at the tip of the first arm that is less than a midpoint width as described in accordance with the embodiment ofFIG. 65A . - In one aspect, the
body 6601 can have afirst arm 6603 including afirst tip 6607 defining afirst tip angle 6621 between thefirst side surface 6654 and thesecond side surface 6655. According to an embodiment, the first tip angle can be less than about 60 degrees, such as not greater than about 55 degrees, not greater than about 50 degrees, not greater than about 45 degrees, or even not greater than about 40 degrees. Still, thefirst tip angle 6621 can be at least about 5 degrees, such as at least about 8 degrees, at least about 10 degrees, at least about 15 degrees, or even at least about 20 degrees. Thefirst tip angle 6621 can be within a range between any of the minimum and maximum values noted above. Likewise, any of the other tips, including thesecond tip 6608 of thesecond arm 6604, thethird tip 6609 of thethird arm 6605, orfourth tip 6610 of thefourth arm 6606 can have a tip angle having the same features described in accordance with thefirst tip angle 6621 above. - According to one embodiment the
second tip 6608 can define a second tip angle that is substantially the same as thefirst tip angle 6621, such as within 5% of the angle numerical value. Alternatively, the second tip angle can be substantially different relative to thefirst tip angle 6621. Thethird tip 6609 can define a third tip angle that is substantially the same as thefirst tip angle 6621, such as within 5% of the angle numerical value. Alternatively, the third tip angle can be substantially different relative to thefirst tip angle 6621. Thefourth tip 6610 can define a fourth tip angle that is substantially the same as thefirst tip angle 6621, such as within 5% of the angle numerical value. Alternatively, the fourth tip angle can be substantially different relative to thefirst tip angle 6621. - According to one embodiment, the
body 6601 can include afirst arm 6603,second arm 6604,third arm 6605, andfourth arm 6606 that are substantially evenly spaced apart with respect to each other. As illustrated, the arms 6603-6606 can be spaced substantially evenly around thecentral portion 6602. In one particular embodiment, the arms 6603-6606 can be spaced apart from each other at substantially orthogonal angles relative to each other. In other embodiments, thefirst arm 6603 andsecond arm 6604 can be spaced apart from each other based on thespacing angle 6631 defined by the angle between theaxis 6690 extending betweenopposite tips midpoint 6609 relative to theaxis 6691 extending betweentips midpoint 6609. Thefirst arm 6603 andsecond arm 6604 can be spaced apart from each other as define by thespacing angle 6631 by at least about 45 degrees, such as at least about 60 degrees, or even at least about 70 degrees. Still, in other embodiments, thespacing angle 6631 can be not greater than about 120 degrees, such as not greater than about 110 degrees, or even approximately 90 degrees. Thespacing angle 6631 can be within a range between any of the minimum and maximum values noted above. - In certain instances, the
body 6601 can be formed such that at least one side surface, such as thefirst side surface 6654 can have an arcuate contour. In more particular embodiments, at least one side surface can have a concave curvature for at least a portion of the length of the entire side surface. - In still another embodiment, at least one side surface of the
body 6601, such as thefirst side surface 6654, can have afirst section 6625 and asecond section 6626, which can be joined together at a first side surface midpoint 6627 and defining a firstinterior angle 6628. According to one embodiment, the first interior angle can be greater than about 90 degrees, such as greater than about 95 degrees, greater than about 100 degrees, greater than about 130 degrees, greater than about 160 degrees, greater than about 180 degrees, or even greater than about 210 degrees. Still, in one non-limiting embodiment, the first interior angle can be not greater than about 320 degrees, not greater than about 300 degrees, or even not greater than about 270 degrees. The first interior angle can be within a range between any of the minimum and maximum values noted above. Moreover, the body can include a secondinterior angle 6629 at thesecond side surface 6655, a thirdinterior angle 6632 at thethird side surface 6656, and a fourthinterior angle 6633 at thefourth side surface 6657. Each of the interior angles can have the features described with respect to the firstinterior angle 6628. Moreover, each and any of thesecond side surface 6655, thethird side surface 6656, and thefourth side surface 6657 can have any of the features of thefirst side surface 6654. - The
body 6601 can have afirst arm 6603 and thethird arm 6605 extending in opposite directions from thecentral portion 6602 of thebody 6601 relative to each other. Moreover, thesecond arm 6604 and thefourth arm 6606 can extend in opposite directions relative to each other. According to one embodiment, thesecond arm 6604 can have a length, as measured between from the boundary of thecentral portion 6602 to thetip 6608 along theaxis 6691 that can be substantially the same as a length of thefourth arm 6606. In yet another instance, thesecond arm 6604 can have a length that is substantially different than (e.g., less than or greater than) a length of thefirst arm 6603 orthird arm 6605. - While the foregoing
body 6601 of the four-pointed star has been shown to have anupper surface 6640 having a two-dimensional shape, as viewed in the plane of the length and width of the body, that is substantially the same as the two-dimensional shape of the base surface 6641 of thebody 6501, other shapes are contemplated. For example, in one embodiment, the cross-sectional shape of the body at the base surface can define a base surface shape from the group consisting of a three-pointed star, a four-pointed star, a cross-shape, a polygon, ellipsoids, numerals, Greek alphabet characters, Latin alphabet characters, Russian alphabet characters, complex shapes having a combination of polygonal shapes, and a combination thereof. Moreover, the cross-sectional shape of the body at the upper surface can define an upper surface shape, which can be different than the base surface shape and selected from the group of a three-pointed star, a four-pointed star, a cross-shape, a polygon, ellipsoids, numerals, Greek alphabet characters, Latin alphabet characters, Russian alphabet characters, complex shapes having a combination of polygonal shapes, and a combination thereof. - In particular instances, the upper surface shape can have an arcuate form of the base surface shape. For example, the upper surface shape can define an arcuate four-pointed two-dimensional shape, wherein the arcuate four-pointed two-dimensional shape defines arms having rounded ends. In particular, the arms as defined at the base surface can have a smaller radius of curvature at the tip as compared to the radius of curvature of the corresponding tip at the upper surface.
- According to one particular aspect, the body can be formed to have limited deformation or warping of the body. For example, the body can have a curling factor (ht/hi) of not greater than about 10, wherein the curling factor is defined as a ratio between the greatest height of the body at one tip of an arm (ht) as compared to a smallest dimension of height of the body at the interior (hi) (e.g., within the central portion 6602). For example, turning to a side-view illustration of a shaped abrasive particle of
FIG. 66B , thebody 6601 can have an interior height, which represents the smallest height of the particle as viewed from the side. The greatest height (ht) of the body is represented by the distance between the bottom surface (or plane of the bottom surface) and the highest point of thebody 6601 as viewed from the side, which can be tip of a curled up arm. The shaped abrasive particles of the embodiments herein demonstrate limited warping, having a curling factor of not greater than about 5, not greater than about 3, not greater than about 2, not greater than about 1.8, not greater than about 1.7, not greater than about 1.6, not greater than about 1.5, not greater than about 1.3, not greater than about 1.2, not greater than about 1.14, or even not greater than about 1.10. Suitable computer programs, such as ImageJ software, may be used to conduct an accurate analysis from images of the shaped abrasive particles to measure curling factor. -
FIG. 67 includes a top view image of a shaped abrasive particle formed according to a particular embodiment. As illustrated, the shapedabrasive particle 6700 can define a cross-shaped body, as viewed in a plane defined by the two dimensions of length and width. In particular, the shapedabrasive particle 6700 can include abody 6701 having acentral portion 6702 and afirst arm 6703, asecond arm 6704, athird arm 6705, and afourth arm 6706 extending from thecentral portion 6702. Thebody 6701 can have a length (l), measured as the longest dimension along a side of the particle and a width (w), and measured as the longest dimension of the particle between two points of opposite arms and through themidpoint 6709 of thebody 6701. The width can extend in a direction perpendicular to the dimension of the length. Thebody 6701 can have a height (h), extending in a direction perpendicular to theupper surface 6710 of thebody 6701 defining a side surface between theupper surface 6710 and thebase surface 6711. Thebody 6701 can have any one or a combination of features described in any of the embodiments herein. - The
body 6701 can have at least one arm, such as thefirst arm 6703 having amidpoint width 6714 that is substantially the same as acentral portion width 6712 of thefirst arm 6703. Moreover, the length of the arm betweenpoints 6715 and 6716 on theaxis 6790 defining the width of thebody 6701 can be less than the width of thefirst arm 6703. In particular instances, the length can be not greater than about 90% of the width, such as not greater than about 80%, not greater than about 70%, not greater than about 60%. Still, in one non-limiting embodiment, the length of thefirst arm 6703 can be at least about 10%, such as at least about 20% of the width of thefirst arm 6703. The length can have a dimension relative to the width within a range between any of the minimum and maximum percentages noted above. Reference to the width of thefirst arm 6703 can be reference to thecentral portion width 6712, ormidpoint width 6714. Any of the arms of thebody 6701 can have the same features of thefirst arm 6703. -
FIG. 68 includes a top view image of a shaped abrasive particle according to an embodiment. As shown, the shapedabrasive particle 6800 can define a generally cross-shaped body, as viewed in a plane defined by the two dimensions of length and width. In particular, the shapedabrasive particle 6800 can include abody 6801 having acentral portion 6802 and afirst arm 6803, asecond arm 6804, athird arm 6805, and afourth arm 6806 extending from thecentral portion 6802. Thebody 6801 can have a length (l), measured as the longest dimension along a side of the particle and a width (w), and measured as the longest dimension of the particle between two points of opposite arms and through the midpoint 6809 of thebody 6801. The width can extend in a direction perpendicular to the dimension of the length. Thebody 6801 can have a height (h), extending in a direction perpendicular to theupper surface 6810 of thebody 6801 defining a side surface between theupper surface 6810 and thebase surface 6811. Thebody 6801 can have any one or a combination of features described in any of the embodiments herein. - In the particular embodiment of
FIG. 68 , the body can have a particular combination of two-dimensional shapes of thebase surface 6811 and theupper surface 6810. For example, the body can have a two-dimensional shape (i.e., cross-sectional shape) of the body at the base surface defining a base surface shape, and a two-dimensional shape of the body at the upper surface defining an upper surface shape, and in particular, the base surface shape can be a generally cross-shaped the upper surface shape can be a rounded quadrilateral shape. The rounded quadrilateral shape can be defined by an upper surface 6810 (edges shown by the dotted line) that has four sides joined by rounded corners, wherein the corners generally correspond to the arms of the cross-shape defined by the base surface. Notably, the upper surface may not define arm portions separated by a side surface having at least two side surface sections angled with respect to each other, which are shown by the cross-shaped contour of the base surface shape. -
FIG. 69A includes an illustration of a side view of a shaped abrasive particle according to an embodiment. As illustrated, the shapedabrasive particle 6900 can include abody 6901 including afirst layer 6902 and asecond layer 6903 overlying thefirst layer 6902. According to an embodiment, thebody 6901 can havelayers plateau region 6920 on anupper surface 6910 of thefirst layer 6902 between aside surface 6904 of thefirst layer 6902 and aside surface 6905 of thesecond layer 6903. The size and shape of theplateau region 6920 may be controlled or predetermined by one or more processing parameters and may facilitate an improved deployment of the abrasive particles into an abrasive article and performance of the abrasive article. - In one embodiment, the
plateau region 6902 can have alateral distance 6921, which can be defined as the greatest distance between anedge 6907 between theupper surface 6910 of thefirst layer 6902 and aside surface 6904 of the first layer to theside surface 6905 of the second layer. Analysis of thelateral distance 6921 may be facilitated by a top-view image of thebody 6901, such as shown inFIG. 69B . As illustrated, thelateral distance 6921 can be the greatest distance of theplateau region 6902. In one embodiment, thelateral distance 6921 may have a length that is less than thelength 6910 of the first layer 6902 (i.e., larger layer). In particular, thelateral distance 6921 can be not greater than about 90%, such as not greater than about 80%, not greater than about 70%, not greater than about 60%, not greater than about 50%, not greater than about 40%, not greater than about 30%, or even not greater than about 20% of thelength 6910 of thefirst layer 6902 of thebody 6901. Still, in one non-limiting embodiment, thelateral distance 6921 can have a length that is at least about 2%, at least about 5%, at least about 8%, at least about 10%, at least about 20%, at least about 25%, at least about 30%, or even at least about 50% of the length of thefirst layer 6902 of thebody 6901. It will be appreciated that thelateral distance 6921 can have a length within a range between any of the minimum and maximum percentages noted above. - The
second layer 6903 can have aparticular length 6909, which is the longest dimension of a side, such as shown inFIG. 69B , relative to alength 6910 of thefirst layer 6902 that may facilitate improved deployment of the abrasive particles into an abrasive article and/or performance of the abrasive article. For example, thelength 6909 of thesecond layer 6903 can be not greater than about 90%, such as not greater than about 80%, not greater than about 70%, not greater than about 60%, not greater than about 50%, not greater than about 40%, not greater than about 30%, or even not greater than about 20% of thelength 6910 of thefirst layer 6902 of thebody 6901. Still, in one non-limiting embodiment, thesecond layer 6903 can have a length 69909 that can be at least about 2%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, or even at least about 70% of thelength 6910 of thefirst layer 6902 of thebody 6901. It will be appreciated that thelength 6909 of thesecond layer 6903 relative to thelength 6910 of thefirst layer 6902 can be within a range between any of the minimum and maximum percentages noted above. - The foregoing shaped abrasive particle of
FIGS. 69A and 69B can be formed using multiple sheets of material, multiple screens, and/or multiple molding blanks. For example, one process can include the use of a first screen, which is completely or partially filled with a first mixture, and provision of a second screen, which can be different in size, shape or orientation with respect to the first screen, and provision of a second mixture within the openings of the second screen. The second screen can be placed over the first screen or over precursor-shaped abrasive particles formed from the first screen. The second mixture can be provided on the precursor-shaped abrasive particles of the first mixture to form precursor-shaped abrasive particles having the stepped and layered configuration. Notably, the openings of the second screen can be smaller than the openings of the first screen. It will be appreciated that the first screen and second screen can have, but need not necessarily utilize, different size openings, different two-dimensional shapes of openings, and a combination thereof. - Moreover, in certain instances, the first screen and second screen can be used at the same time as a composite screen to shape the mixture. In such instances, the first screen and second screen may be affixed to each other to facilitate proper and continuous alignment between the openings of the first screen and second screen. The second screen can be oriented on the first screen to facilitate alignment between the openings in the first screen and openings in the second screens to facilitate suitable delivery of the mixture into the openings of the first screen and second screen.
- Still, the first screen and second screen may be used in separate processes. For example, wherein the first mixture is provided in the first screen at a first time and the second mixture is provided in the second screen at a second time. More particularly, the first mixture can be provided in the openings of the first screen, and after the first mixture has been formed in the openings of the first screen, the second mixture can be provided on the first mixture. Such a process may be conducted while the first mixture is contained in the first openings of the first screen. In another instance, the first mixture may be removed from the openings of the first screen to create precursor-shaped abrasive particles of the first mixture. Thereafter, the precursor shaped abrasive particles of the first mixture can be oriented with respect to openings of the second screen, and the second mixture can be placed in the openings of the second screen and onto the precursor shaped abrasive particles of the first mixture to facilitate formation of composite precursor shaped abrasive particles including the first mixture and the second mixture. The same process may be used with one mold and one screen. Moreover, the same process may be completed using first and second molds to form the first and second layers, respectively.
- It will be appreciated that any of the characteristics of the embodiments herein can be attributed to a batch of shaped abrasive particles. A batch of shaped abrasive particles can include, but need not necessarily include, a group of shaped abrasive particles made through the same forming process. In yet another instance, a batch of shaped abrasive particles can be a group of shaped abrasive particles of an abrasive article, such as a fixed abrasive article, and more particularly, a coated abrasive article, which may be independent of a particular forming method, but having one or more defining features present in a particular population of the particles. For example, a batch of particles may include an amount of shaped abrasive particles suitable for forming a commercial grade abrasive product, such as at least about 20 lbs. of particles.
- Moreover, any of the features of the embodiments herein (e.g., aspect ratio, multiple portions, number of arms, midpoint width to central portion width, two-dimensional shape, curling factor, etc.) can be a characteristic of a single particle, a median value from a sampling of particles of a batch, or an average value derived from analysis of a sampling of particles from a batch. Unless stated explicitly, reference herein to the characteristics can be considered reference to a median value that is a based on a statistically significant value derived from a random sampling of a suitable number of particles of a batch. Notably, for certain embodiments herein, the sample size can include at least 10, and more typically, at least 40 randomly selected particles from a batch of particles.
- Any of the features described in the embodiments herein can represent features that are present in at least a portion of a batch of shaped abrasive particles. The portion may be a minority portion (e.g., less than 50% and any whole number integer between 1% and 49%) of the total number of particles in a batch, a majority portion (e.g., 50% or greater and any whole number integer between 50% and 99%) of the total number of particles of the batch, or even essentially all of the particles of a batch (e.g., between 99% and 100%). The provision of one or more features of any shaped abrasive particle of a batch may facilitate alternative or improved deployment of the particles in an abrasive article and may further facilitate improved performance or use of the abrasive article.
- A batch of particulate material can include a first portion including a first type of shaped abrasive particle and a second portion including a second type of shaped abrasive particle. The content of the first portion and second portion within the batch may be controlled at least in part based upon certain processing parameters. Provision of a batch having a first portion and a second portion may facilitate alternative or improved deployment of the particles in an abrasive article and may further facilitate improved performance or use of the abrasive article.
- The first portion may include a plurality of shaped abrasive particles, wherein each of the particles of the first portion can have substantially the same features, including for example, but not limited to, the same two-dimensional shape of a major surface. The batch may include various contents of the first portion. For example, the first portion may be present in a minority amount or majority amount. In particular instances, the first portion may be present in an amount of at least about 1%, such as at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, or even at least about 70% for the total content of portions within the batch. Still, in another embodiment, the batch may include not greater than about 99%, such as not greater than about 90%, not greater than about 80%, not greater than about 70%, not greater than about 60%, not greater than about 50%, not greater than about 40%, not greater than about 30%, not greater than about 20%, not greater than about 10%, not greater than about 8%, not greater than about 6%, or even not greater than about 4% of the total portions within the batch. The batch can include a content of the first portion within a range between any of the minimum and maximum percentages noted above.
- The second portion of the batch can include a plurality of shaped abrasive particles, wherein each of the shaped abrasive particles of the second portion can have substantially the same feature, including for example, but not limited to, the same two-dimensional shape of a major surface. The second portion can have one or more features of the embodiments herein, which can be distinct compared to the plurality of shaped abrasive particles of the first portion. In certain instances, the batch may include a lesser content of the second portion relative to the first portion, and more particularly, may include a minority content of the second portion relative to the total content of particles in the batch. For example, the batch may contain a particular content of the second portion, including for example, not greater than about 40%, such as not greater than about 30%, not greater than about 20%, not greater than about 10%, not greater than about 8%, not greater than about 6%, or even not greater than about 4%. Still, in at least on non-limiting embodiment, the batch may contain at least about 0.5%, such as at least about 1%, at least about 2%, at least about 3%, at least about 4%, at least about 10%, at least about 15%, or even at least about 20% of the second portion for the total content of portions within the batch. It will be appreciated that the batch can contain a content of the second portion within a range between any of the minimum and maximum percentages noted above.
- Still, in an alternative embodiment, the batch may include a greater content of the second portion relative to the first portion, and more particularly, can include a majority content of the second portion for the total content of particles in the batch. For example, in at least one embodiment, the batch may contain at least about 55%, such as at least about 60% of the second portion for the total portions of the batch.
- It will be appreciated that the batch can include other portions, including for example a third portion, comprising a plurality of shaped abrasive particles having a third feature that can be distinct from the features of the particles of the first and second portions. The batch may include various contents of the third portion relative to the second portion and first portion. The third portion may be present in a minority amount or majority amount. In particular instances, the third portion may be present in an amount of not greater than about 40%, such as not greater than about 30%, not greater than about 20%, not greater than about 10%, not greater than about 8%, not greater than about 6%, or even not greater than about 4% of the total portions within the batch. Still, in other embodiments the batch may include a minimum content of the third portion, such as at least about 1%, such as at least about 5%, at least about 10%, at least about 20%, at least about 30%, at least about 40%, or even at least about 50%. The batch can include a content of the third portion within a range between any of the minimum and maximum percentages noted above. Moreover, the batch may include a content of diluent, randomly shaped abrasive particles, which may be present in an amount the same as any of the portions of the embodiments herein.
- A mixture in the form of a gel is obtained having approximately 42% solids loading of boehmite commercially available as Catapal B from Sasol Corp. combined with 58 wt % water containing a minority content of nitric acid and organic additives. The gel has a viscosity of approximately 3×103 to 4×104 Pa. and a storage modulus of 3×104 to 2×105 Pa.
- The gel is extruded from a die using a pressure of up to 80 psi (552 kPa) onto a mold blank of polycarbonate and into a plurality of openings, wherein each of the openings are in the shape of a three-pointed star. The surfaces of the openings within the mold blank have been coated with canola oil. The openings define three-pointed star two-dimensional shapes having a length of approximately 5-7 mm, a width of 3-5 mm, and a depth of approximately 0.8 mm. The openings have tip angles of approximately 35 degrees, and an interior angle between the three arms of approximately 225 degrees.
- The gel is extruded into the openings and the gel is then dried for approximately 24-48 hours in air under atmospheric conditions and within the mold to form precursor-shaped abrasive particles. The precursor-shaped abrasive particles were calcined in a box furnace at approximately 600° C. for 1 hour and then, the precursors shaped abrasive particles were sintered in a tube furnace up to 1320° C. for 3 to 20 minutes.
FIG. 65A is an image of a representative particle formed Example 1. The body has a curling factor of less than 5. - The process of Example 1 was used with the exception that the mold blank utilized openings defining a four-point star-shaped two-dimensional shape having a length of approximately 7-9 mm, a width of 7-9 mm, and a depth of approximately 0.8 mm. The openings have tip angles of approximately 25 degrees, and an interior angle between the three arms of approximately 250 degrees.
FIG. 66A is an image of a representative particle formed from Example 2. The body has a curling factor of less than 5. - The process of Example 1 was used with the exception that the mold blank utilized openings defining a cross-shaped two-dimensional shape having a length of approximately 5-6 mm, a width of 5-6 mm, and a depth of approximately 0.8 mm. The arms have a width of approximately 2 mm and a length of approximately 1 mm.
FIG. 67 is an image of a representative particle formed from Example 3. The body has a curling factor of less than 5. - The present application represents a departure from the state of the art. While the industry has recognized that shaped abrasive particles may be formed through processes such as molding and screen printing, the processes of the embodiments herein are distinct from such processes. Moreover, the resulting shaped abrasive particles have one or a combination of distinct features from particles formed according to conventional approaches. The shaped abrasive particles of the embodiments herein can have a particular combination of features distinct from other conventional particles including, but not limited to, aspect ratio, composition, additives, two-dimensional shape, three-dimensional shape, stepped configuration, curling factor, tip angles, interior angles, and the like. Notably, the embodiments herein include a combination of features facilitating the formation of batches of shaped abrasive particle having particular features. And in fact, one or more such features facilitate alternative deployment of the particles in abrasive articles, and further, may facilitate improved performance in the context of fixed abrasives, such as bonded abrasives or coated abrasives.
- The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
- The Abstract of the Disclosure is provided to comply with Patent Law and is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, various features may be grouped together or described in a single embodiment for the purpose of streamlining the disclosure. This disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter may be directed to less than all features of any of the disclosed embodiments. Thus, the following claims are incorporated into the Detailed Description, with each claim standing on its own as defining separately claimed subject matter.
Claims (20)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/447,078 US11859120B2 (en) | 2012-01-10 | 2021-09-08 | Abrasive particles having an elongated body comprising a twist along an axis of the body |
US18/314,055 US20230272254A1 (en) | 2012-01-10 | 2023-05-08 | Abrasive particles having complex shapes and methods of forming same |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261584998P | 2012-01-10 | 2012-01-10 | |
US13/738,890 US8753742B2 (en) | 2012-01-10 | 2013-01-10 | Abrasive particles having complex shapes and methods of forming same |
US14/201,436 US9238768B2 (en) | 2012-01-10 | 2014-03-07 | Abrasive particles having complex shapes and methods of forming same |
US14/964,229 US9567505B2 (en) | 2012-01-10 | 2015-12-09 | Abrasive particles having complex shapes and methods of forming same |
US15/402,860 US9771506B2 (en) | 2012-01-10 | 2017-01-10 | Abrasive particles having complex shapes and methods of forming same |
US15/681,796 US10106715B2 (en) | 2012-01-10 | 2017-08-21 | Abrasive particles having complex shapes and methods of forming same |
US15/962,838 US10364383B2 (en) | 2012-01-10 | 2018-04-25 | Abrasive particles having complex shapes and methods of forming same |
US16/459,044 US11142673B2 (en) | 2012-01-10 | 2019-07-01 | Abrasive particles having complex shapes and methods of forming same |
US17/130,089 US11649388B2 (en) | 2012-01-10 | 2020-12-22 | Abrasive particles having complex shapes and methods of forming same |
US17/447,078 US11859120B2 (en) | 2012-01-10 | 2021-09-08 | Abrasive particles having an elongated body comprising a twist along an axis of the body |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/459,044 Continuation US11142673B2 (en) | 2012-01-10 | 2019-07-01 | Abrasive particles having complex shapes and methods of forming same |
US17/130,089 Continuation US11649388B2 (en) | 2012-01-10 | 2020-12-22 | Abrasive particles having complex shapes and methods of forming same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/314,055 Continuation US20230272254A1 (en) | 2012-01-10 | 2023-05-08 | Abrasive particles having complex shapes and methods of forming same |
Publications (3)
Publication Number | Publication Date |
---|---|
US20210395587A1 US20210395587A1 (en) | 2021-12-23 |
US20230357617A9 true US20230357617A9 (en) | 2023-11-09 |
US11859120B2 US11859120B2 (en) | 2024-01-02 |
Family
ID=48781912
Family Applications (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/738,890 Active US8753742B2 (en) | 2012-01-10 | 2013-01-10 | Abrasive particles having complex shapes and methods of forming same |
US14/201,436 Active US9238768B2 (en) | 2012-01-10 | 2014-03-07 | Abrasive particles having complex shapes and methods of forming same |
US14/964,229 Active US9567505B2 (en) | 2012-01-10 | 2015-12-09 | Abrasive particles having complex shapes and methods of forming same |
US15/402,860 Active US9771506B2 (en) | 2012-01-10 | 2017-01-10 | Abrasive particles having complex shapes and methods of forming same |
US15/681,796 Active US10106715B2 (en) | 2012-01-10 | 2017-08-21 | Abrasive particles having complex shapes and methods of forming same |
US15/962,838 Active 2033-01-12 US10364383B2 (en) | 2012-01-10 | 2018-04-25 | Abrasive particles having complex shapes and methods of forming same |
US16/459,044 Active US11142673B2 (en) | 2012-01-10 | 2019-07-01 | Abrasive particles having complex shapes and methods of forming same |
US17/130,089 Active US11649388B2 (en) | 2012-01-10 | 2020-12-22 | Abrasive particles having complex shapes and methods of forming same |
US17/447,078 Active US11859120B2 (en) | 2012-01-10 | 2021-09-08 | Abrasive particles having an elongated body comprising a twist along an axis of the body |
US18/314,055 Pending US20230272254A1 (en) | 2012-01-10 | 2023-05-08 | Abrasive particles having complex shapes and methods of forming same |
Family Applications Before (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/738,890 Active US8753742B2 (en) | 2012-01-10 | 2013-01-10 | Abrasive particles having complex shapes and methods of forming same |
US14/201,436 Active US9238768B2 (en) | 2012-01-10 | 2014-03-07 | Abrasive particles having complex shapes and methods of forming same |
US14/964,229 Active US9567505B2 (en) | 2012-01-10 | 2015-12-09 | Abrasive particles having complex shapes and methods of forming same |
US15/402,860 Active US9771506B2 (en) | 2012-01-10 | 2017-01-10 | Abrasive particles having complex shapes and methods of forming same |
US15/681,796 Active US10106715B2 (en) | 2012-01-10 | 2017-08-21 | Abrasive particles having complex shapes and methods of forming same |
US15/962,838 Active 2033-01-12 US10364383B2 (en) | 2012-01-10 | 2018-04-25 | Abrasive particles having complex shapes and methods of forming same |
US16/459,044 Active US11142673B2 (en) | 2012-01-10 | 2019-07-01 | Abrasive particles having complex shapes and methods of forming same |
US17/130,089 Active US11649388B2 (en) | 2012-01-10 | 2020-12-22 | Abrasive particles having complex shapes and methods of forming same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/314,055 Pending US20230272254A1 (en) | 2012-01-10 | 2023-05-08 | Abrasive particles having complex shapes and methods of forming same |
Country Status (10)
Country | Link |
---|---|
US (10) | US8753742B2 (en) |
EP (2) | EP3705177A1 (en) |
JP (2) | JP5966019B2 (en) |
KR (1) | KR101667943B1 (en) |
CN (1) | CN104136172B (en) |
AU (1) | AU2013207946B2 (en) |
BR (1) | BR112014017050B1 (en) |
CA (4) | CA2987793C (en) |
RU (1) | RU2602581C2 (en) |
WO (1) | WO2013106597A1 (en) |
Families Citing this family (67)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2013135445A (en) | 2010-12-31 | 2015-02-10 | Сэнт-Гобэн Керамикс Энд Пластикс, Инк. | ABRASIVE PRODUCT (OPTIONS) AND METHOD FOR ITS FORMING |
CN108262695A (en) | 2011-06-30 | 2018-07-10 | 圣戈本陶瓷及塑料股份有限公司 | Include the abrasive product of silicon nitride abrasive grain |
EP2726248B1 (en) | 2011-06-30 | 2019-06-19 | Saint-Gobain Ceramics & Plastics, Inc. | Liquid phase sintered silicon carbide abrasive particles |
US9517546B2 (en) | 2011-09-26 | 2016-12-13 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming |
WO2013102170A1 (en) | 2011-12-30 | 2013-07-04 | Saint-Gobain Ceramics & Plastics, Inc. | Composite shaped abrasive particles and method of forming same |
EP2797715A4 (en) | 2011-12-30 | 2016-04-20 | Saint Gobain Ceramics | Shaped abrasive particle and method of forming same |
KR20140106737A (en) | 2011-12-30 | 2014-09-03 | 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 | Forming shaped abrasive particles |
WO2013106602A1 (en) | 2012-01-10 | 2013-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
WO2013106597A1 (en) | 2012-01-10 | 2013-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
US9242346B2 (en) | 2012-03-30 | 2016-01-26 | Saint-Gobain Abrasives, Inc. | Abrasive products having fibrillated fibers |
BR112014024937B1 (en) | 2012-04-04 | 2021-01-12 | 3M Innovative Properties Company | ceramic shaped abrasive particle, plurality of abrasive particles, abrasive article and method for producing ceramic shaped abrasive particles |
WO2013177446A1 (en) | 2012-05-23 | 2013-11-28 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
EP2866977B8 (en) | 2012-06-29 | 2023-01-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
CN104736299A (en) | 2012-08-02 | 2015-06-24 | 3M创新有限公司 | Abrasive articles with precisely shaped features and method of making thereof |
EP2906392A4 (en) | 2012-10-15 | 2016-07-13 | Saint Gobain Abrasives Inc | Abrasive particles having particular shapes and methods of forming such particles |
WO2014106173A1 (en) | 2012-12-31 | 2014-07-03 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
PL2978566T3 (en) | 2013-03-29 | 2024-07-15 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
TW201502263A (en) | 2013-06-28 | 2015-01-16 | Saint Gobain Ceramics | Abrasive article including shaped abrasive particles |
EP2821469B1 (en) | 2013-07-02 | 2018-03-14 | The Procter & Gamble Company | Liquid cleaning and/or cleansing composition |
EP2821472B1 (en) | 2013-07-02 | 2018-08-29 | The Procter and Gamble Company | Liquid cleaning and/or cleansing composition |
RU2643004C2 (en) | 2013-09-30 | 2018-01-29 | Сен-Гобен Серэмикс Энд Пластикс, Инк. | Formed abrasive particles and methods of their production |
AT515229B1 (en) * | 2013-12-18 | 2016-08-15 | Tyrolit - Schleifmittelwerke Swarovski K G | Process for the production of abrasives |
AT515258B1 (en) * | 2013-12-18 | 2016-09-15 | Tyrolit - Schleifmittelwerke Swarovski K G | Process for producing abrasive bodies |
PL3083870T3 (en) * | 2013-12-19 | 2018-02-28 | Klingspor Ag | Method for producing multilayer abrasive particles |
US9566689B2 (en) | 2013-12-31 | 2017-02-14 | Saint-Gobain Abrasives, Inc. | Abrasive article including shaped abrasive particles |
EP3100994A4 (en) * | 2014-01-31 | 2017-08-30 | NGK Insulators, Ltd. | Porous plate-shaped filler |
US9771507B2 (en) | 2014-01-31 | 2017-09-26 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
KR20160145098A (en) * | 2014-04-14 | 2016-12-19 | 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 | Abrasive article including shaped abrasive particles |
EP3131705A4 (en) * | 2014-04-14 | 2017-12-06 | Saint-Gobain Ceramics and Plastics, Inc. | Abrasive article including shaped abrasive particles |
WO2015160854A1 (en) * | 2014-04-14 | 2015-10-22 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
WO2015163249A1 (en) * | 2014-04-23 | 2015-10-29 | 日本碍子株式会社 | Porous plate-shaped filler, method for producing same, and heat insulation film |
US9902045B2 (en) | 2014-05-30 | 2018-02-27 | Saint-Gobain Abrasives, Inc. | Method of using an abrasive article including shaped abrasive particles |
ES2798323T3 (en) * | 2014-06-18 | 2020-12-10 | Klingspor Ag | Multilayer abrasive particle |
US9914864B2 (en) | 2014-12-23 | 2018-03-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US20160177152A1 (en) * | 2014-12-23 | 2016-06-23 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle and method of forming same |
US9707529B2 (en) | 2014-12-23 | 2017-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Composite shaped abrasive particles and method of forming same |
US9676981B2 (en) * | 2014-12-24 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle fractions and method of forming same |
TW201821580A (en) | 2014-12-30 | 2018-06-16 | 美商聖高拜磨料有限公司 | Abrasive articles and methods for forming same |
WO2016109728A1 (en) | 2014-12-30 | 2016-07-07 | Saint-Gobain Abrasives, Inc. | Abrasive articles and methods for forming same |
US10196551B2 (en) | 2015-03-31 | 2019-02-05 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
TWI634200B (en) | 2015-03-31 | 2018-09-01 | 聖高拜磨料有限公司 | Fixed abrasive articles and methods of forming same |
CA2988012C (en) | 2015-06-11 | 2021-06-29 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US9957468B2 (en) | 2015-11-06 | 2018-05-01 | The Procter & Gamble Company | Shaped particles |
EP3436217B1 (en) | 2016-04-01 | 2022-02-23 | 3M Innovative Properties Company | Elongate shaped abrasive particles, and methods of making the same |
EP3455320A4 (en) | 2016-05-10 | 2019-11-20 | Saint-Gobain Ceramics&Plastics, Inc. | Abrasive particles and methods of forming same |
CN107350980B (en) | 2016-05-10 | 2021-02-26 | 圣戈班磨料磨具有限公司 | Abrasive article and method of forming the same |
EP4071224A3 (en) | 2016-05-10 | 2023-01-04 | Saint-Gobain Ceramics and Plastics, Inc. | Methods of forming abrasive articles |
DE102016113125A1 (en) * | 2016-07-15 | 2018-01-18 | Vsm-Vereinigte Schmirgel- Und Maschinen-Fabriken Ag | Method for producing an abrasive grain and abrasive grain |
EP3516006A4 (en) * | 2016-09-21 | 2020-03-18 | 3M Innovative Properties Company | Abrasive particle with enhanced retention features |
US11230653B2 (en) | 2016-09-29 | 2022-01-25 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
AT519483B1 (en) * | 2016-12-20 | 2018-12-15 | Tyrolit Schleifmittelwerke Swarovski Kg | PROCESS FOR PREPARING ABRASIVE PARTICLES |
US10563105B2 (en) | 2017-01-31 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10759024B2 (en) | 2017-01-31 | 2020-09-01 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10865148B2 (en) | 2017-06-21 | 2020-12-15 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
DE102017210799A1 (en) | 2017-06-27 | 2018-12-27 | Robert Bosch Gmbh | Shaped ceramic abrasive grain and method of making a shaped ceramic abrasive grain |
CN113174235A (en) | 2017-10-02 | 2021-07-27 | 3M创新有限公司 | Elongated abrasive particles, methods of making the same, and abrasive articles comprising the same |
US11648706B2 (en) | 2018-04-26 | 2023-05-16 | San Diego State University Research Foundation | Selective sinter-based fabrication of fully dense complexing shaped parts |
CN109485392A (en) * | 2018-10-12 | 2019-03-19 | 天津大学 | A kind of microcosmic sheet interlocking structure Ceramic corundum abrasive |
WO2020079902A1 (en) * | 2018-10-17 | 2020-04-23 | 株式会社ダイセル | Treatment granules, compounding unit equipped with treatment granules, and production method for treatment granules |
KR102608901B1 (en) | 2018-12-24 | 2023-12-01 | 삼성전자주식회사 | Wafer Grinding Wheel |
WO2020212788A1 (en) * | 2019-04-15 | 2020-10-22 | 3M Innovative Properties Company | Partially shaped abrasive particles, methods of manufacture and articles containing the same |
CN114630725A (en) * | 2019-10-23 | 2022-06-14 | 3M创新有限公司 | Shaped abrasive particles having concave voids in one of a plurality of sides |
AT523085B1 (en) * | 2019-10-30 | 2022-11-15 | Tyrolit Schleifmittelwerke Swarovski Kg | Method of making abrasive particles |
EP4081369A4 (en) | 2019-12-27 | 2024-04-10 | Saint-Gobain Ceramics & Plastics Inc. | Abrasive articles and methods of forming same |
AT523400B1 (en) * | 2020-03-11 | 2021-08-15 | Tyrolit Schleifmittelwerke Swarovski Kg | Process for making abrasive particles |
US20230211468A1 (en) * | 2021-12-30 | 2023-07-06 | Saint-Gobain Abrasives, Inc. | Abrasive articles and methods of forming same |
US20230211467A1 (en) * | 2021-12-30 | 2023-07-06 | Saint-Gobain Abrasives, Inc. | Abrasive articles and methods of forming same |
Family Cites Families (844)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US345604A (en) | 1886-07-13 | Process of making porous alum | ||
US3123948A (en) | 1964-03-10 | Reinforced | ||
CA743715A (en) | 1966-10-04 | The Carborundum Company | Manufacture of sintered abrasive grain of geometrical shape and controlled grit size | |
US1910444A (en) | 1931-02-13 | 1933-05-23 | Carborundum Co | Process of making abrasive materials |
US2248064A (en) | 1933-06-01 | 1941-07-08 | Minnesota Mining & Mfg | Coating, particularly for manufacture of abrasives |
US2049874A (en) | 1933-08-21 | 1936-08-04 | Miami Abrasive Products Inc | Slotted abrasive wheel |
US2036903A (en) | 1934-03-05 | 1936-04-07 | Norton Co | Cutting-off abrasive wheel |
US2033991A (en) | 1935-07-09 | 1936-03-17 | Carborundum Co | Coating apparatus |
US2148400A (en) | 1938-01-13 | 1939-02-21 | Norton Co | Grinding wheel |
US2248990A (en) | 1938-08-17 | 1941-07-15 | Heany John Allen | Process of making porous abrasive bodies |
US2290877A (en) | 1938-09-24 | 1942-07-28 | Heany Ind Ceramic Corp | Porous abrading material and process of making the same |
US2318360A (en) | 1941-05-05 | 1943-05-04 | Carborundum Co | Abrasive |
US2376343A (en) | 1942-07-28 | 1945-05-22 | Minnesota Mining & Mfg | Manufacture of abrasives |
US2563650A (en) | 1949-04-26 | 1951-08-07 | Porocel Corp | Method of hardening bauxite with colloidal silica |
US2880080A (en) | 1955-11-07 | 1959-03-31 | Minnesota Mining & Mfg | Reinforced abrasive articles and intermediate products |
US3067551A (en) | 1958-09-22 | 1962-12-11 | Bethlehem Steel Corp | Grinding method |
US3041156A (en) | 1959-07-22 | 1962-06-26 | Norton Co | Phenolic resin bonded grinding wheels |
US3079243A (en) | 1959-10-19 | 1963-02-26 | Norton Co | Abrasive grain |
US3079242A (en) | 1959-12-31 | 1963-02-26 | Nat Tank Co | Flame arrestor |
US3377660A (en) | 1961-04-20 | 1968-04-16 | Norton Co | Apparatus for making crystal abrasive |
GB986847A (en) | 1962-02-07 | 1965-03-24 | Charles Beck Rosenberg Brunswi | Improvements in or relating to abrasives |
US3141271A (en) | 1962-10-12 | 1964-07-21 | Herbert C Fischer | Grinding wheels with reinforcing elements |
US3276852A (en) | 1962-11-20 | 1966-10-04 | Jerome H Lemelson | Filament-reinforced composite abrasive articles |
US3379543A (en) | 1964-03-27 | 1968-04-23 | Corning Glass Works | Composition and method for making ceramic articles |
US3481723A (en) | 1965-03-02 | 1969-12-02 | Itt | Abrasive grinding wheel |
US3477180A (en) | 1965-06-14 | 1969-11-11 | Norton Co | Reinforced grinding wheels and reinforcement network therefor |
US3454385A (en) | 1965-08-04 | 1969-07-08 | Norton Co | Sintered alpha-alumina and zirconia abrasive product and process |
US3387957A (en) | 1966-04-04 | 1968-06-11 | Carborundum Co | Microcrystalline sintered bauxite abrasive grain |
US3536005A (en) | 1967-10-12 | 1970-10-27 | American Screen Process Equip | Vacuum screen printing method |
US3480395A (en) | 1967-12-05 | 1969-11-25 | Carborundum Co | Method of preparing extruded grains of silicon carbide |
US3491492A (en) | 1968-01-15 | 1970-01-27 | Us Industries Inc | Method of making alumina abrasive grains |
US3615308A (en) | 1968-02-09 | 1971-10-26 | Norton Co | Crystalline abrasive alumina |
US3590799A (en) | 1968-09-03 | 1971-07-06 | Gerszon Gluchowicz | Method of dressing the grinding wheel in a grinding machine |
US3495359A (en) | 1968-10-10 | 1970-02-17 | Norton Co | Core drill |
US3619151A (en) | 1968-10-16 | 1971-11-09 | Landis Tool Co | Phosphate bonded grinding wheel |
US3608134A (en) | 1969-02-10 | 1971-09-28 | Norton Co | Molding apparatus for orienting elongated particles |
US3637360A (en) | 1969-08-26 | 1972-01-25 | Us Industries Inc | Process for making cubical sintered aluminous abrasive grains |
US3608050A (en) | 1969-09-12 | 1971-09-21 | Union Carbide Corp | Production of single crystal sapphire by carefully controlled cooling from a melt of alumina |
US3874856A (en) | 1970-02-09 | 1975-04-01 | Ducommun Inc | Porous composite of abrasive particles in a pyrolytic carbon matrix and the method of making it |
US3670467A (en) | 1970-04-27 | 1972-06-20 | Robert H Walker | Method and apparatus for manufacturing tumbling media |
US3672934A (en) | 1970-05-01 | 1972-06-27 | Du Pont | Method of improving line resolution in screen printing |
US3808747A (en) | 1970-06-08 | 1974-05-07 | Wheelabrator Corp | Mechanical finishing and media therefor |
US3909991A (en) | 1970-09-22 | 1975-10-07 | Norton Co | Process for making sintered abrasive grains |
US3986885A (en) | 1971-07-06 | 1976-10-19 | Battelle Development Corporation | Flexural strength in fiber-containing concrete |
US3819785A (en) | 1972-02-02 | 1974-06-25 | Western Electric Co | Fine-grain alumina bodies |
US3859407A (en) | 1972-05-15 | 1975-01-07 | Corning Glass Works | Method of manufacturing particles of uniform size and shape |
US4261706A (en) | 1972-05-15 | 1981-04-14 | Corning Glass Works | Method of manufacturing connected particles of uniform size and shape with a backing |
IN142626B (en) | 1973-08-10 | 1977-08-06 | De Beers Ind Diamond | |
US4055451A (en) | 1973-08-31 | 1977-10-25 | Alan Gray Cockbain | Composite materials |
US3950148A (en) | 1973-10-09 | 1976-04-13 | Heijiro Fukuda | Laminated three-layer resinoid wheels having core layer of reinforcing material and method for producing same |
US4004934A (en) | 1973-10-24 | 1977-01-25 | General Electric Company | Sintered dense silicon carbide |
US3940276A (en) | 1973-11-01 | 1976-02-24 | Corning Glass Works | Spinel and aluminum-base metal cermet |
US3960577A (en) | 1974-01-08 | 1976-06-01 | General Electric Company | Dense polycrystalline silicon carbide |
ZA741477B (en) | 1974-03-07 | 1975-10-29 | Edenvale Eng Works | Abrasive tools |
JPS5236637B2 (en) | 1974-03-18 | 1977-09-17 | ||
US4045919A (en) | 1974-05-10 | 1977-09-06 | Seiko Seiki Kabushiki Kaisha | High speed grinding spindle |
US3991527A (en) | 1975-07-10 | 1976-11-16 | Bates Abrasive Products, Inc. | Coated abrasive disc |
US4028453A (en) | 1975-10-20 | 1977-06-07 | Lava Crucible Refractories Company | Process for making refractory shapes |
US4073096A (en) | 1975-12-01 | 1978-02-14 | U.S. Industries, Inc. | Process for the manufacture of abrasive material |
US4194887A (en) | 1975-12-01 | 1980-03-25 | U.S. Industries, Inc. | Fused alumina-zirconia abrasive material formed by an immersion process |
US4092573A (en) | 1975-12-22 | 1978-05-30 | Texas Instruments Incorporated | Motor starting and protecting apparatus |
US4037367A (en) | 1975-12-22 | 1977-07-26 | Kruse James A | Grinding tool |
US4131916A (en) | 1975-12-31 | 1978-12-26 | Logetronics, Inc. | Pneumatically actuated image scanning reader/writer |
DE2725704A1 (en) | 1976-06-11 | 1977-12-22 | Swarovski Tyrolit Schleif | PRODUCTION OF CORUNDUM-CONTAINING GRINDING GRAINS, FOR EXAMPLE FROM ZIRCONIUM CORUNDUM |
JPS5364890A (en) | 1976-11-19 | 1978-06-09 | Toshiba Corp | Method of producing silicon nitride grinding wheel |
US4114322A (en) | 1977-08-02 | 1978-09-19 | Harold Jack Greenspan | Abrasive member |
US4711750A (en) | 1977-12-19 | 1987-12-08 | Norton Company | Abrasive casting process |
JPS5524813A (en) | 1978-08-03 | 1980-02-22 | Showa Denko Kk | Alumina grinding grain |
JPS6016388B2 (en) | 1978-11-04 | 1985-04-25 | 日本特殊陶業株式会社 | Manufacturing method for high-toughness ceramic tools |
US4314827A (en) | 1979-06-29 | 1982-02-09 | Minnesota Mining And Manufacturing Company | Non-fused aluminum oxide-based abrasive mineral |
DE2935914A1 (en) | 1979-09-06 | 1981-04-02 | Kali-Chemie Ag, 3000 Hannover | METHOD FOR PRODUCING SPHERICAL SHAPED BODIES BASED ON AL (ARROW DOWN) 2 (ARROW DOWN) O (ARROW DOWN) 3 (ARROW DOWN) AND / OR SIO (ARROW DOWN) 2 (ARROW DOWN) |
US4286905A (en) | 1980-04-30 | 1981-09-01 | Ford Motor Company | Method of machining steel, malleable or nodular cast iron |
JPS622946Y2 (en) | 1980-11-13 | 1987-01-23 | ||
US4541842A (en) | 1980-12-29 | 1985-09-17 | Norton Company | Glass bonded abrasive agglomerates |
JPS57121469A (en) | 1981-01-13 | 1982-07-28 | Matsushita Electric Ind Co Ltd | Manufacture of electrodeposition grinder |
US4393021A (en) | 1981-06-09 | 1983-07-12 | Vereinigte Schmirgel Und Maschinen-Fabriken Ag | Method for the manufacture of granular grit for use as abrasives |
EP0078896A2 (en) | 1981-11-10 | 1983-05-18 | Norton Company | Abrasive bodies such as grinding wheels |
JPS5871938U (en) | 1981-11-10 | 1983-05-16 | セイコーエプソン株式会社 | Electronic clock switch structure |
US4728043A (en) | 1982-02-25 | 1988-03-01 | Norton Company | Mechanical sorting system for crude silicon carbide |
JPS58223564A (en) | 1982-05-10 | 1983-12-26 | Toshiba Corp | Whetstone and method for manufacture thereof |
US4548617A (en) | 1982-08-20 | 1985-10-22 | Tokyo Shibaura Denki Kabushiki Kaisha | Abrasive and method for manufacturing the same |
JPS5890466A (en) | 1982-11-04 | 1983-05-30 | Toshiba Corp | Grinding wheel |
US4469758A (en) | 1983-04-04 | 1984-09-04 | Norton Co. | Magnetic recording materials |
JPS606356U (en) | 1983-06-24 | 1985-01-17 | 神田通信工業株式会社 | mobile communication device |
US4505720A (en) | 1983-06-29 | 1985-03-19 | Minnesota Mining And Manufacturing Company | Granular silicon carbide abrasive grain coated with refractory material, method of making the same and articles made therewith |
US4452911A (en) | 1983-08-10 | 1984-06-05 | Hri, Inc. | Frangible catalyst pretreatment method for use in hydrocarbon hydrodemetallization process |
US4457767A (en) | 1983-09-29 | 1984-07-03 | Norton Company | Alumina-zirconia abrasive |
US4623364A (en) | 1984-03-23 | 1986-11-18 | Norton Company | Abrasive material and method for preparing the same |
US5383945A (en) | 1984-01-19 | 1995-01-24 | Norton Company | Abrasive material and method |
NZ210805A (en) | 1984-01-19 | 1988-04-29 | Norton Co | Aluminous abrasive grits or shaped bodies |
US5395407B1 (en) | 1984-01-19 | 1997-08-26 | Norton Co | Abrasive material and method |
US5227104A (en) | 1984-06-14 | 1993-07-13 | Norton Company | High solids content gels and a process for producing them |
US4570048A (en) | 1984-06-29 | 1986-02-11 | Plasma Materials, Inc. | Plasma jet torch having gas vortex in its nozzle for arc constriction |
JPS6114739A (en) | 1984-06-30 | 1986-01-22 | Sony Corp | Semiconductor device |
US4963012A (en) | 1984-07-20 | 1990-10-16 | The United States Of America As Represented By The United States Department Of Energy | Passivation coating for flexible substrate mirrors |
US4961757A (en) | 1985-03-14 | 1990-10-09 | Advanced Composite Materials Corporation | Reinforced ceramic cutting tools |
CA1254238A (en) | 1985-04-30 | 1989-05-16 | Alvin P. Gerk | Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products |
US4659341A (en) | 1985-05-23 | 1987-04-21 | Gte Products Corporation | Silicon nitride abrasive frit |
US4678560A (en) | 1985-08-15 | 1987-07-07 | Norton Company | Screening device and process |
US4657754A (en) | 1985-11-21 | 1987-04-14 | Norton Company | Aluminum oxide powders and process |
US4770671A (en) | 1985-12-30 | 1988-09-13 | Minnesota Mining And Manufacturing Company | Abrasive grits formed of ceramic containing oxides of aluminum and yttrium, method of making and using the same and products made therewith |
US5000185A (en) | 1986-02-28 | 1991-03-19 | Cardiovascular Imaging Systems, Inc. | Method for intravascular two-dimensional ultrasonography and recanalization |
AT389882B (en) | 1986-06-03 | 1990-02-12 | Treibacher Chemische Werke Ag | METHOD FOR PRODUCING A MICROCRYSTALLINE ABRASIVE MATERIAL |
DE3705540A1 (en) | 1986-06-13 | 1987-12-17 | Ruetgerswerke Ag | HIGH TEMPERATURE RESISTANT MOLDS |
JPH0753604B2 (en) | 1986-09-03 | 1995-06-07 | 株式会社豊田中央研究所 | Silicon Carbide Composite Ceramics |
US5053367A (en) | 1986-09-16 | 1991-10-01 | Lanxide Technology Company, Lp | Composite ceramic structures |
WO1988002299A1 (en) | 1986-09-24 | 1988-04-07 | Foseco International Limited | Abrasive media |
US5180630A (en) | 1986-10-14 | 1993-01-19 | American Cyanamid Company | Fibrillated fibers and articles made therefrom |
US5024795A (en) | 1986-12-22 | 1991-06-18 | Lanxide Technology Company, Lp | Method of making shaped ceramic composites |
US4829027A (en) | 1987-01-12 | 1989-05-09 | Ceramatec, Inc. | Liquid phase sintering of silicon carbide |
US4876226A (en) | 1987-01-12 | 1989-10-24 | Fuentes Ricardo I | Silicon carbide sintering |
GB8701553D0 (en) | 1987-01-24 | 1987-02-25 | Interface Developments Ltd | Abrasive article |
US4799939A (en) | 1987-02-26 | 1989-01-24 | Minnesota Mining And Manufacturing Company | Erodable agglomerates and abrasive products containing the same |
US5244849A (en) | 1987-05-06 | 1993-09-14 | Coors Porcelain Company | Method for producing transparent polycrystalline body with high ultraviolet transmittance |
US4960441A (en) | 1987-05-11 | 1990-10-02 | Norton Company | Sintered alumina-zirconia ceramic bodies |
US4881951A (en) | 1987-05-27 | 1989-11-21 | Minnesota Mining And Manufacturing Co. | Abrasive grits formed of ceramic containing oxides of aluminum and rare earth metal, method of making and products made therewith |
US5312789A (en) | 1987-05-27 | 1994-05-17 | Minnesota Mining And Manufacturing Company | Abrasive grits formed of ceramic, impregnation method of making the same and products made therewith |
AU604899B2 (en) | 1987-05-27 | 1991-01-03 | Minnesota Mining And Manufacturing Company | Abrasive grits formed of ceramic, impregnation method of making the same and products made therewith |
US4954462A (en) | 1987-06-05 | 1990-09-04 | Minnesota Mining And Manufacturing Company | Microcrystalline alumina-based ceramic articles |
US5185299A (en) | 1987-06-05 | 1993-02-09 | Minnesota Mining And Manufacturing Company | Microcrystalline alumina-based ceramic articles |
US4858527A (en) | 1987-07-22 | 1989-08-22 | Masanao Ozeki | Screen printer with screen length and snap-off angle control |
US4797139A (en) | 1987-08-11 | 1989-01-10 | Norton Company | Boehmite produced by a seeded hydyothermal process and ceramic bodies produced therefrom |
US5376598A (en) | 1987-10-08 | 1994-12-27 | The Boeing Company | Fiber reinforced ceramic matrix laminate |
US4848041A (en) | 1987-11-23 | 1989-07-18 | Minnesota Mining And Manufacturing Company | Abrasive grains in the shape of platelets |
US4797269A (en) | 1988-02-08 | 1989-01-10 | Norton Company | Production of beta alumina by seeding and beta alumina produced thereby |
US4930266A (en) | 1988-02-26 | 1990-06-05 | Minnesota Mining And Manufacturing Company | Abrasive sheeting having individually positioned abrasive granules |
JP2828986B2 (en) | 1988-03-31 | 1998-11-25 | 株式会社東芝 | Ceramic sintered body |
US5076991A (en) | 1988-04-29 | 1991-12-31 | Norton Company | Method and apparatus for rapid solidification |
US4917852A (en) | 1988-04-29 | 1990-04-17 | Norton Company | Method and apparatus for rapid solidification |
US4942011A (en) | 1988-05-03 | 1990-07-17 | E. I. Du Pont De Nemours And Company | Process for preparing silicon carbide fibers |
EP0347162A3 (en) | 1988-06-14 | 1990-09-12 | Tektronix, Inc. | Apparatus and methods for controlling data flow processes by generated instruction sequences |
CH675250A5 (en) | 1988-06-17 | 1990-09-14 | Lonza Ag | |
DE3923671C2 (en) | 1988-07-22 | 1998-02-19 | Showa Denko Kk | CBN abrasive grains made from cubic boron nitride and a process for their manufacture |
JP2601333B2 (en) | 1988-10-05 | 1997-04-16 | 三井金属鉱業株式会社 | Composite whetstone and method of manufacturing the same |
US5011508A (en) | 1988-10-14 | 1991-04-30 | Minnesota Mining And Manufacturing Company | Shelling-resistant abrasive grain, a method of making the same, and abrasive products |
US5053369A (en) | 1988-11-02 | 1991-10-01 | Treibacher Chemische Werke Aktiengesellschaft | Sintered microcrystalline ceramic material |
US4964883A (en) | 1988-12-12 | 1990-10-23 | Minnesota Mining And Manufacturing Company | Ceramic alumina abrasive grains seeded with iron oxide |
US5098740A (en) | 1989-12-13 | 1992-03-24 | Norton Company | Uniformly-coated ceramic particles |
US4925457B1 (en) | 1989-01-30 | 1995-09-26 | Ultimate Abrasive Syst Inc | Method for making an abrasive tool |
US5049165B1 (en) * | 1989-01-30 | 1995-09-26 | Ultimate Abrasive Syst Inc | Composite material |
US5190568B1 (en) | 1989-01-30 | 1996-03-12 | Ultimate Abrasive Syst Inc | Abrasive tool with contoured surface |
US5108963A (en) | 1989-02-01 | 1992-04-28 | Industrial Technology Research Institute | Silicon carbide whisker reinforced alumina ceramic composites |
EP0381524B1 (en) | 1989-02-02 | 1995-05-10 | Sumitomo Special Metals Company Limited | Method of manufacturing transparent high density ceramic material |
DE69015509T2 (en) | 1989-02-22 | 1995-05-11 | Kobe Steel Ltd | ALUMINUM OXIDE CERAMICS, THEIR PRODUCTION AND DISPOSABLE PIECE THEREOF. |
US5224970A (en) | 1989-03-01 | 1993-07-06 | Sumitomo Chemical Co., Ltd. | Abrasive material |
YU32490A (en) | 1989-03-13 | 1991-10-31 | Lonza Ag | Hydrophobic layered grinding particles |
JPH0320317A (en) | 1989-03-14 | 1991-01-29 | Mitsui Toatsu Chem Inc | Production of fine amino resin particle having narrow particle diameter distribution |
US5094986A (en) | 1989-04-11 | 1992-03-10 | Hercules Incorporated | Wear resistant ceramic with a high alpha-content silicon nitride phase |
US5009676A (en) | 1989-04-28 | 1991-04-23 | Norton Company | Sintered sol gel alumina abrasive filaments |
US5103598A (en) | 1989-04-28 | 1992-04-14 | Norton Company | Coated abrasive material containing abrasive filaments |
US4970057A (en) | 1989-04-28 | 1990-11-13 | Norton Company | Silicon nitride vacuum furnace process |
US5035723A (en) | 1989-04-28 | 1991-07-30 | Norton Company | Bonded abrasive products containing sintered sol gel alumina abrasive filaments |
US5244477A (en) | 1989-04-28 | 1993-09-14 | Norton Company | Sintered sol gel alumina abrasive filaments |
US5014468A (en) | 1989-05-05 | 1991-05-14 | Norton Company | Patterned coated abrasive for fine surface finishing |
JPH0330861A (en) * | 1989-06-28 | 1991-02-08 | Kawasaki Steel Corp | Apparatus for feeding object to be coated of flow coater |
JPH078474B2 (en) | 1989-08-22 | 1995-02-01 | 瑞穂研磨砥石株式会社 | Carbide abrasive wheel for high speed grinding |
US5431967A (en) | 1989-09-05 | 1995-07-11 | Board Of Regents, The University Of Texas System | Selective laser sintering using nanocomposite materials |
US4997461A (en) | 1989-09-11 | 1991-03-05 | Norton Company | Nitrified bonded sol gel sintered aluminous abrasive bodies |
ATE122801T1 (en) | 1989-11-22 | 1995-06-15 | Johnson Matthey Plc | IMPROVED PASTE COMPOSITIONS. |
JPH03194269A (en) | 1989-12-20 | 1991-08-23 | Seiko Electronic Components Ltd | All-metal diaphragm valve |
US5081082A (en) | 1990-01-17 | 1992-01-14 | Korean Institute Of Machinery And Metals | Production of alumina ceramics reinforced with β'"-alumina |
US5049166A (en) | 1990-02-27 | 1991-09-17 | Washington Mills Ceramics Corporation | Light weight abrasive tumbling media and method of making same |
CA2036247A1 (en) | 1990-03-29 | 1991-09-30 | Jeffrey L. Berger | Nonwoven surface finishing articles reinforced with a polymer backing layer and method of making same |
JP2779252B2 (en) | 1990-04-04 | 1998-07-23 | 株式会社ノリタケカンパニーリミテド | Silicon nitride sintered abrasive and its manufacturing method |
US5129919A (en) | 1990-05-02 | 1992-07-14 | Norton Company | Bonded abrasive products containing sintered sol gel alumina abrasive filaments |
US5085671A (en) | 1990-05-02 | 1992-02-04 | Minnesota Mining And Manufacturing Company | Method of coating alumina particles with refractory material, abrasive particles made by the method and abrasive products containing the same |
US5035724A (en) | 1990-05-09 | 1991-07-30 | Norton Company | Sol-gel alumina shaped bodies |
ATE151064T1 (en) | 1990-05-25 | 1997-04-15 | Univ Australian | ABRASIVE BOARD COMPLETE MADE OF CUBIC BORON NITRIDE AND METHOD FOR THE PRODUCTION THEREOF |
US7022179B1 (en) | 1990-06-19 | 2006-04-04 | Dry Carolyn M | Self-repairing, reinforced matrix materials |
JP3094300B2 (en) | 1990-06-29 | 2000-10-03 | 株式会社日立製作所 | Thermal transfer recording device |
US5139978A (en) | 1990-07-16 | 1992-08-18 | Minnesota Mining And Manufacturing Company | Impregnation method for transformation of transition alumina to a alpha alumina |
US5219806A (en) | 1990-07-16 | 1993-06-15 | Minnesota Mining And Manufacturing Company | Alpha phase seeding of transition alumina using chromium oxide-based nucleating agents |
US5078753A (en) | 1990-10-09 | 1992-01-07 | Minnesota Mining And Manufacturing Company | Coated abrasive containing erodable agglomerates |
CA2043261A1 (en) | 1990-10-09 | 1992-04-10 | Muni S. Ramakrishnan | Dry grinding wheel |
EP0480538B1 (en) | 1990-10-12 | 1998-09-02 | UNION CARBIDE CHEMICALS & PLASTICS TECHNOLOGY CORPORATION, Three Cristina Centre | Alkylene oxide catalysts having enhanced activity and/or stability |
US5114438A (en) | 1990-10-29 | 1992-05-19 | Ppg Industries, Inc. | Abrasive article |
US5132984A (en) | 1990-11-01 | 1992-07-21 | Norton Company | Segmented electric furnace |
JP3030861B2 (en) * | 1990-12-21 | 2000-04-10 | 栗田工業株式会社 | Concrete contact liquid additive and application for muddy water method |
US5090968A (en) | 1991-01-08 | 1992-02-25 | Norton Company | Process for the manufacture of filamentary abrasive particles |
DE69225440T2 (en) | 1991-02-04 | 1998-10-01 | Seiko Epson Corp | INK FLOW CHANNEL WITH HYDROPHILIC PROPERTIES |
US5152917B1 (en) | 1991-02-06 | 1998-01-13 | Minnesota Mining & Mfg | Structured abrasive article |
US5236472A (en) | 1991-02-22 | 1993-08-17 | Minnesota Mining And Manufacturing Company | Abrasive product having a binder comprising an aminoplast binder |
US5120327A (en) | 1991-03-05 | 1992-06-09 | Diamant-Boart Stratabit (Usa) Inc. | Cutting composite formed of cemented carbide substrate and diamond layer |
US5131926A (en) | 1991-03-15 | 1992-07-21 | Norton Company | Vitrified bonded finely milled sol gel aluminous bodies |
US5178849A (en) | 1991-03-22 | 1993-01-12 | Norton Company | Process for manufacturing alpha alumina from dispersible boehmite |
US5221294A (en) | 1991-05-22 | 1993-06-22 | Norton Company | Process of producing self-bonded ceramic abrasive wheels |
US5160509A (en) | 1991-05-22 | 1992-11-03 | Norton Company | Self-bonded ceramic abrasive wheels |
US5641469A (en) | 1991-05-28 | 1997-06-24 | Norton Company | Production of alpha alumina |
US5817204A (en) | 1991-06-10 | 1998-10-06 | Ultimate Abrasive Systems, L.L.C. | Method for making patterned abrasive material |
US5273558A (en) | 1991-08-30 | 1993-12-28 | Minnesota Mining And Manufacturing Company | Abrasive composition and articles incorporating same |
US5203886A (en) | 1991-08-12 | 1993-04-20 | Norton Company | High porosity vitrified bonded grinding wheels |
US5316812A (en) | 1991-12-20 | 1994-05-31 | Minnesota Mining And Manufacturing Company | Coated abrasive backing |
RU2116186C1 (en) | 1991-12-20 | 1998-07-27 | Миннесота Майнинг Энд Мэнюфекчуринг Компани | Band with abrasive coating |
US5219462A (en) | 1992-01-13 | 1993-06-15 | Minnesota Mining And Manufacturing Company | Abrasive article having abrasive composite members positioned in recesses |
US5437754A (en) | 1992-01-13 | 1995-08-01 | Minnesota Mining And Manufacturing Company | Abrasive article having precise lateral spacing between abrasive composite members |
US6258137B1 (en) | 1992-02-05 | 2001-07-10 | Saint-Gobain Industrial Ceramics, Inc. | CMP products |
AU650382B2 (en) | 1992-02-05 | 1994-06-16 | Norton Company | Nano-sized alpha alumina particles |
US5215552A (en) | 1992-02-26 | 1993-06-01 | Norton Company | Sol-gel alumina abrasive grain |
US5314513A (en) | 1992-03-03 | 1994-05-24 | Minnesota Mining And Manufacturing Company | Abrasive product having a binder comprising a maleimide binder |
US5282875A (en) | 1992-03-18 | 1994-02-01 | Cincinnati Milacron Inc. | High density sol-gel alumina-based abrasive vitreous bonded grinding wheel |
JPH05285833A (en) | 1992-04-14 | 1993-11-02 | Nippon Steel Corp | Dresser for grinding wheel |
KR100277320B1 (en) | 1992-06-03 | 2001-01-15 | 가나이 쓰도무 | Rolling mill and rolling method with on-line roll grinding device and grinding wheel |
JPH05338370A (en) | 1992-06-10 | 1993-12-21 | Dainippon Screen Mfg Co Ltd | Metal mask plate for screen printing |
JPH06773A (en) | 1992-06-22 | 1994-01-11 | Fuji Photo Film Co Ltd | Manufacture of abrasive tape |
CA2099734A1 (en) | 1992-07-01 | 1994-01-02 | Akihiko Takahashi | Process for preparing polyhedral alpha-alumina particles |
US5304331A (en) | 1992-07-23 | 1994-04-19 | Minnesota Mining And Manufacturing Company | Method and apparatus for extruding bingham plastic-type materials |
US5366523A (en) | 1992-07-23 | 1994-11-22 | Minnesota Mining And Manufacturing Company | Abrasive article containing shaped abrasive particles |
WO1994002559A1 (en) | 1992-07-23 | 1994-02-03 | Minnesota Mining And Manufacturing Company | Shaped abrasive particles and method of making same |
RU95105160A (en) | 1992-07-23 | 1997-01-10 | Миннесота Майнинг энд Мануфакчуринг Компани (US) | Method of preparing abrasive particles, abrasive articles and articles with abrasive coating |
US5201916A (en) | 1992-07-23 | 1993-04-13 | Minnesota Mining And Manufacturing Company | Shaped abrasive particles and method of making same |
JP3160084B2 (en) | 1992-07-24 | 2001-04-23 | 株式会社ムラカミ | Manufacturing method of metal mask for screen printing |
BR9306810A (en) | 1992-07-28 | 1998-12-08 | Minnesota Mining & Mfg | Abrasive grain plurality of abrasive grains abrasive article and production process of an abrasive grain and an abrasive article |
US5213591A (en) | 1992-07-28 | 1993-05-25 | Ahmet Celikkaya | Abrasive grain, method of making same and abrasive products |
US5312791A (en) | 1992-08-21 | 1994-05-17 | Saint Gobain/Norton Industrial Ceramics Corp. | Process for the preparation of ceramic flakes, fibers, and grains from ceramic sols |
JP3560341B2 (en) | 1992-09-25 | 2004-09-02 | ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー | Abrasives containing alumina and zirconia |
WO1994007969A1 (en) | 1992-09-25 | 1994-04-14 | Minnesota Mining And Manufacturing Company | Abrasive grain including rare earth oxide therein |
DE69231839D1 (en) | 1992-10-01 | 2001-06-28 | Taiheiyo Cement Corp | Process for the production of sintered ceramics from titanium dioxide or aluminum oxide. |
JPH06114739A (en) | 1992-10-09 | 1994-04-26 | Mitsubishi Materials Corp | Electrodeposition grinding wheel |
CA2102656A1 (en) | 1992-12-14 | 1994-06-15 | Dwight D. Erickson | Abrasive grain comprising calcium oxide and/or strontium oxide |
US5435816A (en) | 1993-01-14 | 1995-07-25 | Minnesota Mining And Manufacturing Company | Method of making an abrasive article |
CA2114571A1 (en) | 1993-02-04 | 1994-08-05 | Franciscus Van Dijen | Silicon carbide sintered abrasive grain and process for producing same |
US5277702A (en) | 1993-03-08 | 1994-01-11 | St. Gobain/Norton Industrial Ceramics Corp. | Plately alumina |
CA2115889A1 (en) * | 1993-03-18 | 1994-09-19 | David E. Broberg | Coated abrasive article having diluent particles and shaped abrasive particles |
CH685051A5 (en) | 1993-04-15 | 1995-03-15 | Lonza Ag | Silicon nitride sintered abrasive grain and process for its production |
US5441549A (en) | 1993-04-19 | 1995-08-15 | Minnesota Mining And Manufacturing Company | Abrasive articles comprising a grinding aid dispersed in a polymeric blend binder |
US5681612A (en) | 1993-06-17 | 1997-10-28 | Minnesota Mining And Manufacturing Company | Coated abrasives and methods of preparation |
JPH08511733A (en) | 1993-06-17 | 1996-12-10 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | Patterned abrasive products and methods of making and using |
US5549962A (en) * | 1993-06-30 | 1996-08-27 | Minnesota Mining And Manufacturing Company | Precisely shaped particles and method of making the same |
WO1995003370A1 (en) | 1993-07-22 | 1995-02-02 | Saint-Gobain/Norton Industrial Ceramics Corporation | Silicon carbide grain |
US5300130A (en) | 1993-07-26 | 1994-04-05 | Saint Gobain/Norton Industrial Ceramics Corp. | Polishing material |
HU215748B (en) | 1993-07-27 | 1999-02-01 | Sumitomo Chemical Co. | Alumina composition, alumina molded article, alumina ceramics process for producing ceramics and using alumina-oxide particles for oxid-ceramic products |
SG64333A1 (en) | 1993-09-13 | 1999-04-27 | Minnesota Mining & Mfg | Abrasive article method of manufacture of same method of using same for finishing and a production tool |
JP3194269B2 (en) | 1993-09-17 | 2001-07-30 | 旭化成株式会社 | Polishing monofilament |
US5470806A (en) | 1993-09-20 | 1995-11-28 | Krstic; Vladimir D. | Making of sintered silicon carbide bodies |
US5429648A (en) | 1993-09-23 | 1995-07-04 | Norton Company | Process for inducing porosity in an abrasive article |
US5453106A (en) | 1993-10-27 | 1995-09-26 | Roberts; Ellis E. | Oriented particles in hard surfaces |
US5454844A (en) | 1993-10-29 | 1995-10-03 | Minnesota Mining And Manufacturing Company | Abrasive article, a process of making same, and a method of using same to finish a workpiece surface |
DE4339031C1 (en) | 1993-11-15 | 1995-01-12 | Treibacher Chemische Werke Ag | Process and device for the production of a corundum-based abrasive |
US5372620A (en) | 1993-12-13 | 1994-12-13 | Saint Gobain/Norton Industrial Ceramics Corporation | Modified sol-gel alumina abrasive filaments |
US6136288A (en) | 1993-12-16 | 2000-10-24 | Norton Company | Firing fines |
US5409645A (en) | 1993-12-20 | 1995-04-25 | Saint Gobain/Norton Industrial Ceramics Corp. | Molding shaped articles |
US5376602A (en) | 1993-12-23 | 1994-12-27 | The Dow Chemical Company | Low temperature, pressureless sintering of silicon nitride |
JPH0829975B2 (en) | 1993-12-24 | 1996-03-27 | 工業技術院長 | Alumina-based ceramics sintered body |
BR9408462A (en) | 1993-12-28 | 1997-08-26 | Minnesota Mining & Mfg | Specified nominal type of abrasive grain and abrasive article |
US5489204A (en) | 1993-12-28 | 1996-02-06 | Minnesota Mining And Manufacturing Company | Apparatus for sintering abrasive grain |
AU685205B2 (en) | 1993-12-28 | 1998-01-15 | Minnesota Mining And Manufacturing Company | Alpha alumina-based abrasive grain |
US5443603A (en) | 1994-01-11 | 1995-08-22 | Washington Mills Ceramics Corporation | Light weight ceramic abrasive media |
US5505747A (en) | 1994-01-13 | 1996-04-09 | Minnesota Mining And Manufacturing Company | Method of making an abrasive article |
JP2750499B2 (en) | 1994-01-25 | 1998-05-13 | オークマ株式会社 | Method for confirming dressing of superabrasive grindstone in NC grinder |
CA2180435A1 (en) | 1994-01-28 | 1995-08-03 | John J. Gagliardi | Coated abrasive containing erodible agglomerates |
EP0667405B1 (en) | 1994-02-14 | 1998-09-23 | Toyota Jidosha Kabushiki Kaisha | Method of manufacturing aluminum borate whiskers having a reformed surface based upon gamma alumina |
AU1735295A (en) | 1994-02-22 | 1995-09-04 | Minnesota Mining And Manufacturing Company | Method for making an endless coated abrasive article and the product thereof |
US5498268A (en) | 1994-03-16 | 1996-03-12 | Minnesota Mining And Manufacturing Company | Abrasive articles and method of making abrasive articles |
JPH07299708A (en) | 1994-04-26 | 1995-11-14 | Sumitomo Electric Ind Ltd | Manufacture of silicon nitride system ceramics part |
US5486496A (en) | 1994-06-10 | 1996-01-23 | Alumina Ceramics Co. (Aci) | Graphite-loaded silicon carbide |
US5567251A (en) | 1994-08-01 | 1996-10-22 | Amorphous Alloys Corp. | Amorphous metal/reinforcement composite material |
US5656217A (en) | 1994-09-13 | 1997-08-12 | Advanced Composite Materials Corporation | Pressureless sintering of whisker reinforced alumina composites |
US5759481A (en) | 1994-10-18 | 1998-06-02 | Saint-Gobain/Norton Industrial Ceramics Corp. | Silicon nitride having a high tensile strength |
US6054093A (en) | 1994-10-19 | 2000-04-25 | Saint Gobain-Norton Industrial Ceramics Corporation | Screen printing shaped articles |
US5525100A (en) | 1994-11-09 | 1996-06-11 | Norton Company | Abrasive products |
US5527369A (en) | 1994-11-17 | 1996-06-18 | Saint-Gobain/Norton Industrial Ceramics Corp. | Modified sol-gel alumina |
US5578095A (en) | 1994-11-21 | 1996-11-26 | Minnesota Mining And Manufacturing Company | Coated abrasive article |
WO1996027189A1 (en) | 1995-03-02 | 1996-09-06 | Minnesota Mining And Manufacturing Company | Method of texturing a substrate using a structured abrasive article |
JP2671945B2 (en) | 1995-03-03 | 1997-11-05 | 科学技術庁無機材質研究所長 | Superplastic silicon carbide sintered body and method for producing the same |
US5516347A (en) | 1995-04-05 | 1996-05-14 | Saint-Gobain/Norton Industrial Ceramics Corp. | Modified alpha alumina particles |
US5725162A (en) | 1995-04-05 | 1998-03-10 | Saint Gobain/Norton Industrial Ceramics Corporation | Firing sol-gel alumina particles |
US5736619A (en) | 1995-04-21 | 1998-04-07 | Ameron International Corporation | Phenolic resin compositions with improved impact resistance |
US5567214A (en) | 1995-05-03 | 1996-10-22 | Saint-Gobain/Norton Industrial Ceramics Corporation | Process for production of alumina/zirconia materials |
US5582625A (en) | 1995-06-01 | 1996-12-10 | Norton Company | Curl-resistant coated abrasives |
US5571297A (en) | 1995-06-06 | 1996-11-05 | Norton Company | Dual-cure binder system |
JP3260764B2 (en) | 1995-06-07 | 2002-02-25 | サン‐ゴバン アブレイシブズ,インコーポレイティド | Cutting tools with patterned cutting surfaces |
US5611829A (en) | 1995-06-20 | 1997-03-18 | Minnesota Mining And Manufacturing Company | Alpha alumina-based abrasive grain containing silica and iron oxide |
WO1997000836A1 (en) | 1995-06-20 | 1997-01-09 | Minnesota Mining And Manufacturing Company | Alpha alumina-based abrasive grain containing silica and iron oxide |
US5645619A (en) | 1995-06-20 | 1997-07-08 | Minnesota Mining And Manufacturing Company | Method of making alpha alumina-based abrasive grain containing silica and iron oxide |
US5593468A (en) | 1995-07-26 | 1997-01-14 | Saint-Gobain/Norton Industrial Ceramics Corporation | Sol-gel alumina abrasives |
US5578096A (en) | 1995-08-10 | 1996-11-26 | Minnesota Mining And Manufacturing Company | Method for making a spliceless coated abrasive belt and the product thereof |
WO1997006926A1 (en) | 1995-08-11 | 1997-02-27 | Minnesota Mining And Manufacturing Company | Method of making a coated abrasive article having multiple abrasive natures |
US5576409B1 (en) | 1995-08-25 | 1998-09-22 | Ici Plc | Internal mold release compositions |
US5958794A (en) | 1995-09-22 | 1999-09-28 | Minnesota Mining And Manufacturing Company | Method of modifying an exposed surface of a semiconductor wafer |
US5683844A (en) | 1995-09-28 | 1997-11-04 | Xerox Corporation | Fibrillated carrier compositions and processes for making and using |
US5975987A (en) | 1995-10-05 | 1999-11-02 | 3M Innovative Properties Company | Method and apparatus for knurling a workpiece, method of molding an article with such workpiece, and such molded article |
US5702811A (en) | 1995-10-20 | 1997-12-30 | Ho; Kwok-Lun | High performance abrasive articles containing abrasive grains and nonabrasive composite grains |
CA2189516A1 (en) | 1995-11-06 | 1997-05-07 | Timothy Edward Easler | Sintering alpha silicon carbide powder with multiple sintering aids |
JP2686248B2 (en) | 1995-11-16 | 1997-12-08 | 住友電気工業株式会社 | Si3N4 ceramics, Si-based composition for producing the same, and method for producing the same |
US5651925A (en) | 1995-11-29 | 1997-07-29 | Saint-Gobain/Norton Industrial Ceramics Corporation | Process for quenching molten ceramic material |
US5578222A (en) | 1995-12-20 | 1996-11-26 | Saint-Gobain/Norton Industrial Ceramics Corp. | Reclamation of abrasive grain |
US5669941A (en) | 1996-01-05 | 1997-09-23 | Minnesota Mining And Manufacturing Company | Coated abrasive article |
US5855997A (en) | 1996-02-14 | 1999-01-05 | The Penn State Research Foundation | Laminated ceramic cutting tool |
US5876793A (en) | 1996-02-21 | 1999-03-02 | Ultramet | Fine powders and method for manufacturing |
JP2957492B2 (en) | 1996-03-26 | 1999-10-04 | 合資会社亀井鉄工所 | Work surface grinding method |
US6083622A (en) | 1996-03-27 | 2000-07-04 | Saint-Gobain Industrial Ceramics, Inc. | Firing sol-gel alumina particles |
JP3030861U (en) * | 1996-05-02 | 1996-11-12 | ベニス株式会社 | Eraser for eraser holder |
US5667542A (en) | 1996-05-08 | 1997-09-16 | Minnesota Mining And Manufacturing Company | Antiloading components for abrasive articles |
US5810587A (en) | 1996-05-13 | 1998-09-22 | Danville Engineering | Friable abrasive media |
US5738696A (en) | 1996-07-26 | 1998-04-14 | Norton Company | Method for making high permeability grinding wheels |
US5738697A (en) | 1996-07-26 | 1998-04-14 | Norton Company | High permeability grinding wheels |
US6080215A (en) | 1996-08-12 | 2000-06-27 | 3M Innovative Properties Company | Abrasive article and method of making such article |
US6475253B2 (en) | 1996-09-11 | 2002-11-05 | 3M Innovative Properties Company | Abrasive article and method of making |
WO1998012151A1 (en) | 1996-09-18 | 1998-03-26 | Minnesota Mining And Manufacturing Company | Method for making abrasive grain using impregnation, and abrasive articles |
US5893935A (en) | 1997-01-09 | 1999-04-13 | Minnesota Mining And Manufacturing Company | Method for making abrasive grain using impregnation, and abrasive articles |
US5776214A (en) | 1996-09-18 | 1998-07-07 | Minnesota Mining And Manufacturing Company | Method for making abrasive grain and abrasive articles |
US5779743A (en) | 1996-09-18 | 1998-07-14 | Minnesota Mining And Manufacturing Company | Method for making abrasive grain and abrasive articles |
US6206942B1 (en) | 1997-01-09 | 2001-03-27 | Minnesota Mining & Manufacturing Company | Method for making abrasive grain using impregnation, and abrasive articles |
WO1998014307A1 (en) | 1996-09-30 | 1998-04-09 | Osaka Diamond Industrial Co. | Superabrasive tool and method of its manufacture |
JPH10113875A (en) | 1996-10-08 | 1998-05-06 | Noritake Co Ltd | Super abrasive grain abrasive grindstone |
US5919549A (en) | 1996-11-27 | 1999-07-06 | Minnesota Mining And Manufacturing Company | Abrasive articles and method for the manufacture of same |
US5902647A (en) | 1996-12-03 | 1999-05-11 | General Electric Company | Method for protecting passage holes in a metal-based substrate from becoming obstructed, and related compositions |
US5863306A (en) | 1997-01-07 | 1999-01-26 | Norton Company | Production of patterned abrasive surfaces |
US7124753B2 (en) | 1997-04-04 | 2006-10-24 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US6524681B1 (en) | 1997-04-08 | 2003-02-25 | 3M Innovative Properties Company | Patterned surface friction materials, clutch plate members and methods of making and using same |
US6537140B1 (en) | 1997-05-14 | 2003-03-25 | Saint-Gobain Abrasives Technology Company | Patterned abrasive tools |
JPH10315142A (en) | 1997-05-19 | 1998-12-02 | Japan Vilene Co Ltd | Polishing sheet |
JPH10330734A (en) | 1997-06-03 | 1998-12-15 | Noritake Co Ltd | Silicon carbide composited silicon nitride abrasive and its preparation |
US5885311A (en) | 1997-06-05 | 1999-03-23 | Norton Company | Abrasive products |
US5908477A (en) | 1997-06-24 | 1999-06-01 | Minnesota Mining & Manufacturing Company | Abrasive articles including an antiloading composition |
US6024824A (en) | 1997-07-17 | 2000-02-15 | 3M Innovative Properties Company | Method of making articles in sheet form, particularly abrasive articles |
US5876470A (en) | 1997-08-01 | 1999-03-02 | Minnesota Mining And Manufacturing Company | Abrasive articles comprising a blend of abrasive particles |
US5946991A (en) | 1997-09-03 | 1999-09-07 | 3M Innovative Properties Company | Method for knurling a workpiece |
US5942015A (en) | 1997-09-16 | 1999-08-24 | 3M Innovative Properties Company | Abrasive slurries and abrasive articles comprising multiple abrasive particle grades |
US6027326A (en) | 1997-10-28 | 2000-02-22 | Sandia Corporation | Freeforming objects with low-binder slurry |
US6401795B1 (en) | 1997-10-28 | 2002-06-11 | Sandia Corporation | Method for freeforming objects with low-binder slurry |
US6039775A (en) | 1997-11-03 | 2000-03-21 | 3M Innovative Properties Company | Abrasive article containing a grinding aid and method of making the same |
US6696258B1 (en) | 1998-01-20 | 2004-02-24 | Drexel University | Mesoporous materials and methods of making the same |
WO1999038817A1 (en) | 1998-01-28 | 1999-08-05 | Minnesota Mining And Manufacturing Company | Method for making abrasive grain using impregnation and abrasive articles |
US6358133B1 (en) | 1998-02-06 | 2002-03-19 | 3M Innovative Properties Company | Grinding wheel |
US5989301A (en) | 1998-02-18 | 1999-11-23 | Saint-Gobain Industrial Ceramics, Inc. | Optical polishing formulation |
US5997597A (en) | 1998-02-24 | 1999-12-07 | Norton Company | Abrasive tool with knurled surface |
DE69924169T2 (en) | 1998-02-27 | 2006-02-02 | Sandvik Intellectual Property Hb | Method and device for drop-shaped application of flowable masses on a conveyor belt |
US6228134B1 (en) | 1998-04-22 | 2001-05-08 | 3M Innovative Properties Company | Extruded alumina-based abrasive grit, abrasive products, and methods |
US6080216A (en) | 1998-04-22 | 2000-06-27 | 3M Innovative Properties Company | Layered alumina-based abrasive grit, abrasive products, and methods |
US6019805A (en) | 1998-05-01 | 2000-02-01 | Norton Company | Abrasive filaments in coated abrasives |
US6016660A (en) | 1998-05-14 | 2000-01-25 | Saint-Gobain Industrial Ceramics, Inc. | Cryo-sedimentation process |
US6053956A (en) | 1998-05-19 | 2000-04-25 | 3M Innovative Properties Company | Method for making abrasive grain using impregnation and abrasive articles |
US6261682B1 (en) | 1998-06-30 | 2001-07-17 | 3M Innovative Properties | Abrasive articles including an antiloading composition |
JP2000091280A (en) | 1998-09-16 | 2000-03-31 | Toshiba Corp | Semiconductor polishing apparatus and polishing of semiconductor substrate |
US6283997B1 (en) | 1998-11-13 | 2001-09-04 | The Trustees Of Princeton University | Controlled architecture ceramic composites by stereolithography |
US6179887B1 (en) | 1999-02-17 | 2001-01-30 | 3M Innovative Properties Company | Method for making an abrasive article and abrasive articles thereof |
US6428392B1 (en) | 1999-03-23 | 2002-08-06 | Seimi Chemical Co., Ltd. | Abrasive |
JP2000336344A (en) | 1999-03-23 | 2000-12-05 | Seimi Chem Co Ltd | Abrasive |
KR20060101791A (en) | 1999-04-23 | 2006-09-26 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | Method for grinding glass |
US6331343B1 (en) | 1999-05-07 | 2001-12-18 | 3M Innovative Properties Company | Films having a fibrillated surface and method of making |
DE19925588A1 (en) | 1999-06-04 | 2000-12-07 | Deutsch Zentr Luft & Raumfahrt | Thread for connecting fibers of a semifinished fiber product and semifinished fiber product, and method for producing fiber composite materials |
JP4456691B2 (en) | 1999-06-09 | 2010-04-28 | 旭ダイヤモンド工業株式会社 | Conditioner manufacturing method |
US6238450B1 (en) | 1999-06-16 | 2001-05-29 | Saint-Gobain Industrial Ceramics, Inc. | Ceria powder |
US6391812B1 (en) | 1999-06-23 | 2002-05-21 | Ngk Insulators, Ltd. | Silicon nitride sintered body and method of producing the same |
JP2003520283A (en) | 1999-07-07 | 2003-07-02 | キャボット マイクロエレクトロニクス コーポレイション | CMP composition containing silane-modified abrasive |
US6319108B1 (en) | 1999-07-09 | 2001-11-20 | 3M Innovative Properties Company | Metal bond abrasive article comprising porous ceramic abrasive composites and method of using same to abrade a workpiece |
DE19933194A1 (en) | 1999-07-15 | 2001-01-18 | Kempten Elektroschmelz Gmbh | Liquid phase sintered SiC moldings with improved fracture toughness and high electrical resistance and process for their production |
TW550141B (en) | 1999-07-29 | 2003-09-01 | Saint Gobain Abrasives Inc | Depressed center abrasive wheel assembly and abrasive wheel assembly |
US6110241A (en) | 1999-08-06 | 2000-08-29 | Saint-Gobain Industrial Ceramics, Inc. | Abrasive grain with improved projectability |
US6258141B1 (en) | 1999-08-20 | 2001-07-10 | Saint-Gobain Industrial Ceramics, Inc. | Sol-gel alumina abrasive grain |
FR2797638B1 (en) | 1999-08-20 | 2001-09-21 | Pem Abrasifs Refractaires | ABRASIVE GRAINS FOR GRINDING WHEELS WITH IMPROVED ANCHORING CAPACITY |
US6277161B1 (en) | 1999-09-28 | 2001-08-21 | 3M Innovative Properties Company | Abrasive grain, abrasive articles, and methods of making and using the same |
US6287353B1 (en) | 1999-09-28 | 2001-09-11 | 3M Innovative Properties Company | Abrasive grain, abrasive articles, and methods of making and using the same |
AU765410B2 (en) | 1999-10-07 | 2003-09-18 | Saint-Gobain Abrasives, Inc. | Electrostatic deposition formulations |
JP3376334B2 (en) | 1999-11-19 | 2003-02-10 | 株式会社 ヤマシタワークス | Abrasive and polishing method using the abrasive |
JP2001162541A (en) | 1999-12-13 | 2001-06-19 | Noritake Co Ltd | Rotary grinding wheel for plunge grinding |
JP3694627B2 (en) | 1999-12-28 | 2005-09-14 | キンセイマテック株式会社 | Method for producing flaky boehmite particles |
US6096107A (en) | 2000-01-03 | 2000-08-01 | Norton Company | Superabrasive products |
US6596041B2 (en) | 2000-02-02 | 2003-07-22 | 3M Innovative Properties Company | Fused AL2O3-MgO-rare earth oxide eutectic abrasive particles, abrasive articles, and methods of making and using the same |
JP4536943B2 (en) | 2000-03-22 | 2010-09-01 | 日本碍子株式会社 | Method for producing powder compact |
DE10019184A1 (en) * | 2000-04-17 | 2001-10-25 | Treibacher Schleifmittel Gmbh | Production of sintered microcrystalline molded body used as an abrasive body comprises mixing alpha-alumina with a binder and a solvent to form a mixture, extruding the mixture to an extrudate, processing to molded bodies, and sintering |
US6413286B1 (en) | 2000-05-03 | 2002-07-02 | Saint-Gobain Abrasives Technology Company | Production tool process |
WO2001085393A1 (en) | 2000-05-09 | 2001-11-15 | 3M Innovative Properties Company | Porous abrasive article having ceramic abrasive composites, methods of making, and methods of use |
US6468451B1 (en) | 2000-06-23 | 2002-10-22 | 3M Innovative Properties Company | Method of making a fibrillated article |
US6583080B1 (en) | 2000-07-19 | 2003-06-24 | 3M Innovative Properties Company | Fused aluminum oxycarbide/nitride-Al2O3·rare earth oxide eutectic materials |
JP3563017B2 (en) | 2000-07-19 | 2004-09-08 | ロデール・ニッタ株式会社 | Polishing composition, method for producing polishing composition and polishing method |
US6776699B2 (en) | 2000-08-14 | 2004-08-17 | 3M Innovative Properties Company | Abrasive pad for CMP |
US6579819B2 (en) | 2000-08-29 | 2003-06-17 | National Institute For Research In Inorganic Materials | Silicon nitride sintered products and processes for their production |
JP2004510021A (en) | 2000-09-29 | 2004-04-02 | トレクセル・インコーポレーテッド | Fiber filler molding products |
AU2002213054A1 (en) | 2000-10-06 | 2002-04-15 | 3M Innovative Properties Company | Ceramic aggregate particles |
US6913633B2 (en) * | 2000-10-12 | 2005-07-05 | Robert Fries | Polycrystalline abrasive grit |
ATE462774T1 (en) | 2000-10-16 | 2010-04-15 | 3M Innovative Properties Co | METHOD FOR PRODUCING CERAMIC AGGLOMERA PARTICLES |
AU2002211508A1 (en) | 2000-10-16 | 2002-04-29 | 3M Innovative Properties Company | Method of making an agglomerate particles |
US6652361B1 (en) | 2000-10-26 | 2003-11-25 | Ronald Gash | Abrasives distribution method |
EP1201741A1 (en) | 2000-10-31 | 2002-05-02 | The Procter & Gamble Company | Detergent compositions |
US20020090901A1 (en) | 2000-11-03 | 2002-07-11 | 3M Innovative Properties Company | Flexible abrasive product and method of making and using the same |
WO2002038280A2 (en) | 2000-11-10 | 2002-05-16 | Therics, Inc. | A wetting-resistant nozzle for dispensing small volumes of liquid and a method for manufacturing a wetting-resistant nozzle |
US6645624B2 (en) | 2000-11-10 | 2003-11-11 | 3M Innovative Properties Company | Composite abrasive particles and method of manufacture |
US8545583B2 (en) | 2000-11-17 | 2013-10-01 | Wayne O. Duescher | Method of forming a flexible abrasive sheet article |
EP1207015A3 (en) | 2000-11-17 | 2003-07-30 | Keltech Engineering, Inc. | Raised island abrasive, method of use and lapping apparatus |
US7632434B2 (en) | 2000-11-17 | 2009-12-15 | Wayne O. Duescher | Abrasive agglomerate coated raised island articles |
US8062098B2 (en) | 2000-11-17 | 2011-11-22 | Duescher Wayne O | High speed flat lapping platen |
US8256091B2 (en) | 2000-11-17 | 2012-09-04 | Duescher Wayne O | Equal sized spherical beads |
JP2002210659A (en) | 2000-12-22 | 2002-07-30 | Chugoku Sarin Kigyo Kofun Yugenkoshi | Finishing tool of chemical/mechanical flatting technology pad of grid-like diamond array |
US6863933B2 (en) | 2001-01-30 | 2005-03-08 | The Procter And Gamble Company | Method of hydrophilizing materials |
US6669745B2 (en) | 2001-02-21 | 2003-12-30 | 3M Innovative Properties Company | Abrasive article with optimally oriented abrasive particles and method of making the same |
US6605128B2 (en) | 2001-03-20 | 2003-08-12 | 3M Innovative Properties Company | Abrasive article having projections attached to a major surface thereof |
US20030022961A1 (en) | 2001-03-23 | 2003-01-30 | Satoshi Kusaka | Friction material and method of mix-fibrillating fibers |
KR100567289B1 (en) | 2001-05-21 | 2006-04-04 | 쇼와 덴코 가부시키가이샤 | Method for Producing Cubic Boron Nitride Abrasive Grains |
US6863596B2 (en) | 2001-05-25 | 2005-03-08 | 3M Innovative Properties Company | Abrasive article |
US20020174935A1 (en) | 2001-05-25 | 2002-11-28 | Motorola, Inc. | Methods for manufacturing patterned ceramic green-sheets and multilayered ceramic packages |
GB2375725A (en) | 2001-05-26 | 2002-11-27 | Siemens Ag | Blasting metallic surfaces |
US6451076B1 (en) | 2001-06-21 | 2002-09-17 | Saint-Gobain Abrasives Technology Company | Engineered abrasives |
US6599177B2 (en) | 2001-06-25 | 2003-07-29 | Saint-Gobain Abrasives Technology Company | Coated abrasives with indicia |
US20030022783A1 (en) | 2001-07-30 | 2003-01-30 | Dichiara Robert A. | Oxide based ceramic matrix composites |
KR100885328B1 (en) | 2001-08-02 | 2009-02-26 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Alumina-Yttria-Zirconium Oxide/Hafnium Oxide Materials, and Methods of Making and Using the Same |
CA2454068A1 (en) | 2001-08-02 | 2003-02-13 | 3M Innovative Properties Company | Al2o3-rare earth oxide-zro2/hfo2 materials, and methods of making and using the same |
US7147544B2 (en) | 2001-08-02 | 2006-12-12 | 3M Innovative Properties Company | Glass-ceramics |
JP2003049158A (en) | 2001-08-09 | 2003-02-21 | Hitachi Maxell Ltd | Abrasive particle and abrasive body |
GB2396157B (en) | 2001-08-09 | 2005-07-20 | Hitachi Maxell | Non-magnetic particles having a plate shape and method for production thereof,abrasive material,polishing article and abrasive fluid comprising such particles |
US6762140B2 (en) | 2001-08-20 | 2004-07-13 | Saint-Gobain Ceramics & Plastics, Inc. | Silicon carbide ceramic composition and method of making |
NL1018906C2 (en) | 2001-09-07 | 2003-03-11 | Jense Systemen B V | Laser scanner. |
US6593699B2 (en) | 2001-11-07 | 2003-07-15 | Axcelis Technologies, Inc. | Method for molding a polymer surface that reduces particle generation and surface adhesion forces while maintaining a high heat transfer coefficient |
JP2005509586A (en) | 2001-11-19 | 2005-04-14 | スタントン アドバンスト セラミックス エルエルシー | Thermal shock resistant ceramic hybrid material |
US6685755B2 (en) | 2001-11-21 | 2004-02-03 | Saint-Gobain Abrasives Technology Company | Porous abrasive tool and method for making the same |
US6706319B2 (en) | 2001-12-05 | 2004-03-16 | Siemens Westinghouse Power Corporation | Mixed powder deposition of components for wear, erosion and abrasion resistant applications |
US6878456B2 (en) | 2001-12-28 | 2005-04-12 | 3M Innovative Properties Co. | Polycrystalline translucent alumina-based ceramic material, uses, and methods |
US6949128B2 (en) | 2001-12-28 | 2005-09-27 | 3M Innovative Properties Company | Method of making an abrasive product |
US6949267B2 (en) | 2002-04-08 | 2005-09-27 | Engelhard Corporation | Combinatorial synthesis |
US6750173B2 (en) | 2002-04-08 | 2004-06-15 | Scientific Design Company, Inc. | Ethylene oxide catalyst |
US6833186B2 (en) | 2002-04-10 | 2004-12-21 | Ppg Industries Ohio, Inc. | Mineral-filled coatings having enhanced abrasion resistance and wear clarity and methods for using the same |
US6811471B2 (en) * | 2002-06-05 | 2004-11-02 | Arizona Board Of Regents | Abrasive particles to clean semiconductor wafers during chemical mechanical planarization |
US6811579B1 (en) | 2002-06-14 | 2004-11-02 | Diamond Innovations, Inc. | Abrasive tools with precisely controlled abrasive array and method of fabrication |
US7297170B2 (en) | 2002-07-26 | 2007-11-20 | 3M Innovative Properties Company | Method of using abrasive product |
US6833014B2 (en) | 2002-07-26 | 2004-12-21 | 3M Innovative Properties Company | Abrasive product, method of making and using the same, and apparatus for making the same |
US7044989B2 (en) | 2002-07-26 | 2006-05-16 | 3M Innovative Properties Company | Abrasive product, method of making and using the same, and apparatus for making the same |
US8056370B2 (en) | 2002-08-02 | 2011-11-15 | 3M Innovative Properties Company | Method of making amorphous and ceramics via melt spinning |
US20040115477A1 (en) | 2002-12-12 | 2004-06-17 | Bruce Nesbitt | Coating reinforcing underlayment and method of manufacturing same |
FR2848889B1 (en) | 2002-12-23 | 2005-10-21 | Pem Abrasifs Refractaires | ABRASIVE GRAINS BASED ON ALUMINUM AND ZIRCONIUM OXYNITRIDE |
JP2004209624A (en) | 2003-01-07 | 2004-07-29 | Akimichi Koide | Manufacture of abrasive grain-containing fiber and its manufacturing method |
US6821196B2 (en) | 2003-01-21 | 2004-11-23 | L.R. Oliver & Co., Inc. | Pyramidal molded tooth structure |
US20040148868A1 (en) | 2003-02-05 | 2004-08-05 | 3M Innovative Properties Company | Methods of making ceramics |
US7811496B2 (en) | 2003-02-05 | 2010-10-12 | 3M Innovative Properties Company | Methods of making ceramic particles |
WO2005021147A2 (en) | 2003-02-06 | 2005-03-10 | William Marsh Rice University | High strength polycrystalline ceramic spheres |
US6951504B2 (en) | 2003-03-20 | 2005-10-04 | 3M Innovative Properties Company | Abrasive article with agglomerates and method of use |
US7070908B2 (en) | 2003-04-14 | 2006-07-04 | Agilent Technologies, Inc. | Feature formation in thick-film inks |
US6802878B1 (en) | 2003-04-17 | 2004-10-12 | 3M Innovative Properties Company | Abrasive particles, abrasive articles, and methods of making and using the same |
US20040220627A1 (en) | 2003-04-30 | 2004-11-04 | Crespi Ann M. | Complex-shaped ceramic capacitors for implantable cardioverter defibrillators and method of manufacture |
JP2005026593A (en) | 2003-05-08 | 2005-01-27 | Ngk Insulators Ltd | Ceramic product, corrosion-resistant member, and method of manufacturing ceramic product |
TWI415926B (en) * | 2003-07-11 | 2013-11-21 | Grace W R & Co | Abrasive particles for chemical mechanical polishing |
FR2857660B1 (en) | 2003-07-18 | 2006-03-03 | Snecma Propulsion Solide | THERMOSTRUCTURAL COMPOSITE STRUCTURE HAVING A COMPOSITION GRADIENT AND METHOD OF MANUFACTURING THE SAME |
US6843815B1 (en) | 2003-09-04 | 2005-01-18 | 3M Innovative Properties Company | Coated abrasive articles and method of abrading |
US7141522B2 (en) | 2003-09-18 | 2006-11-28 | 3M Innovative Properties Company | Ceramics comprising Al2O3, Y2O3, ZrO2 and/or HfO2, and Nb2O5 and/or Ta2O5 and methods of making the same |
US20050060941A1 (en) | 2003-09-23 | 2005-03-24 | 3M Innovative Properties Company | Abrasive article and methods of making the same |
US7267700B2 (en) | 2003-09-23 | 2007-09-11 | 3M Innovative Properties Company | Structured abrasive with parabolic sides |
US7300479B2 (en) | 2003-09-23 | 2007-11-27 | 3M Innovative Properties Company | Compositions for abrasive articles |
US20050064805A1 (en) | 2003-09-23 | 2005-03-24 | 3M Innovative Properties Company | Structured abrasive article |
US7312274B2 (en) | 2003-11-24 | 2007-12-25 | General Electric Company | Composition and method for use with ceramic matrix composite T-sections |
JP4186810B2 (en) | 2003-12-08 | 2008-11-26 | トヨタ自動車株式会社 | Fuel cell manufacturing method and fuel cell |
US20050132655A1 (en) | 2003-12-18 | 2005-06-23 | 3M Innovative Properties Company | Method of making abrasive particles |
ATE381391T1 (en) | 2003-12-23 | 2008-01-15 | Diamond Innovations Inc | POLISHING WHEEL AND METHOD FOR GRINDING ROLLS |
WO2005080624A1 (en) | 2004-02-13 | 2005-09-01 | Nv Bekaert Sa | Steel wire with metal layer and roughnesses |
US6888360B1 (en) | 2004-02-20 | 2005-05-03 | Research In Motion Limited | Surface mount technology evaluation board having varied board pad characteristics |
JP4311247B2 (en) | 2004-03-19 | 2009-08-12 | 日立電線株式会社 | Polishing abrasive, polishing agent, and method for producing polishing liquid |
US7674706B2 (en) | 2004-04-13 | 2010-03-09 | Fei Company | System for modifying small structures using localized charge transfer mechanism to remove or deposit material |
US7393371B2 (en) | 2004-04-13 | 2008-07-01 | 3M Innovative Properties Company | Nonwoven abrasive articles and methods |
US7297402B2 (en) * | 2004-04-15 | 2007-11-20 | Shell Oil Company | Shaped particle having an asymmetrical cross sectional geometry |
CN1960835A (en) | 2004-05-03 | 2007-05-09 | 3M创新有限公司 | Backup back plane for microfinishing and methods |
CN100577363C (en) * | 2004-05-17 | 2010-01-06 | 安东尼·戴维·波拉斯凯 | Abrasive material |
US20050255801A1 (en) | 2004-05-17 | 2005-11-17 | Pollasky Anthony D | Abrasive material and method of forming same |
US7581906B2 (en) | 2004-05-19 | 2009-09-01 | Tdy Industries, Inc. | Al2O3 ceramic tools with diffusion bonding enhanced layer |
US20050266221A1 (en) | 2004-05-28 | 2005-12-01 | Panolam Industries International, Inc. | Fiber-reinforced decorative laminate |
US7794557B2 (en) | 2004-06-15 | 2010-09-14 | Inframat Corporation | Tape casting method and tape cast materials |
US7560062B2 (en) | 2004-07-12 | 2009-07-14 | Aspen Aerogels, Inc. | High strength, nanoporous bodies reinforced with fibrous materials |
US20080286590A1 (en) | 2004-08-24 | 2008-11-20 | Albright & Wilson (Australia) Limited | Ceramic and Metallic Components and Methods for Their Production from Flexible Gelled Materials |
US20070060026A1 (en) * | 2005-09-09 | 2007-03-15 | Chien-Min Sung | Methods of bonding superabrasive particles in an organic matrix |
GB2417921A (en) | 2004-09-10 | 2006-03-15 | Dytech Corp Ltd | A method of fabricating a catalyst carrier |
JP2006130586A (en) | 2004-11-04 | 2006-05-25 | Mitsubishi Materials Corp | Cmp conditioner and manufacturing method thereof |
JP4471816B2 (en) | 2004-11-09 | 2010-06-02 | 株式会社ノリタケスーパーアブレーシブ | Wire saw manufacturing method |
JP4901184B2 (en) | 2004-11-11 | 2012-03-21 | 株式会社不二製作所 | Abrasive material, method for producing the abrasive material, and blasting method using the abrasive material |
US20060118989A1 (en) | 2004-12-07 | 2006-06-08 | 3M Innovative Properties Company | Method of making composite material |
US7666475B2 (en) | 2004-12-14 | 2010-02-23 | Siemens Energy, Inc. | Method for forming interphase layers in ceramic matrix composites |
US7169029B2 (en) | 2004-12-16 | 2007-01-30 | 3M Innovative Properties Company | Resilient structured sanding article |
JP2006192540A (en) | 2005-01-14 | 2006-07-27 | Tmp Co Ltd | Polishing film for liquid crystal color filter |
ATE438330T1 (en) | 2005-02-07 | 2009-08-15 | Procter & Gamble | CLOTH TO TREAT A SURFACE |
US7524345B2 (en) | 2005-02-22 | 2009-04-28 | Saint-Gobain Abrasives, Inc. | Rapid tooling system and methods for manufacturing abrasive articles |
US7875091B2 (en) | 2005-02-22 | 2011-01-25 | Saint-Gobain Abrasives, Inc. | Rapid tooling system and methods for manufacturing abrasive articles |
US7867302B2 (en) | 2005-02-22 | 2011-01-11 | Saint-Gobain Abrasives, Inc. | Rapid tooling system and methods for manufacturing abrasive articles |
US20080121124A1 (en) | 2005-04-24 | 2008-05-29 | Produce Co., Ltd. | Screen Printer |
JP4917278B2 (en) | 2005-06-17 | 2012-04-18 | 信越半導体株式会社 | Screen printing plate and screen printing device |
NZ564192A (en) | 2005-06-29 | 2011-02-25 | Saint Gobain Abrasives Inc | High performance resin for abrasive products |
US7906057B2 (en) | 2005-07-14 | 2011-03-15 | 3M Innovative Properties Company | Nanostructured article and method of making the same |
DE102005033392B4 (en) | 2005-07-16 | 2008-08-14 | Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh | Nanocrystalline sintered bodies based on alpha alumina, process for their preparation and their use |
US20070020457A1 (en) | 2005-07-21 | 2007-01-25 | 3M Innovative Properties Company | Composite particle comprising an abrasive grit |
US7556558B2 (en) | 2005-09-27 | 2009-07-07 | 3M Innovative Properties Company | Shape controlled abrasive article and method |
US7722691B2 (en) | 2005-09-30 | 2010-05-25 | Saint-Gobain Abrasives, Inc. | Abrasive tools having a permeable structure |
US7491251B2 (en) | 2005-10-05 | 2009-02-17 | 3M Innovative Properties Company | Method of making a structured abrasive article |
EP1974422A4 (en) | 2005-12-15 | 2011-12-07 | Laser Abrasive Technologies Llc | Method and apparatus for treatment of solid material including hard tissue |
WO2007110770A2 (en) | 2006-03-29 | 2007-10-04 | Element Six (Production) (Pty) Ltd | Polycrystalline abrasive compacts |
DE102006015014B4 (en) | 2006-03-31 | 2008-07-24 | Uibel, Krishna, Dipl.-Ing. | Process for producing three-dimensional ceramic shaped bodies |
US7410413B2 (en) | 2006-04-27 | 2008-08-12 | 3M Innovative Properties Company | Structured abrasive article and method of making and using the same |
US7670679B2 (en) | 2006-05-30 | 2010-03-02 | General Electric Company | Core-shell ceramic particulate and method of making |
US7373887B2 (en) | 2006-07-01 | 2008-05-20 | Jason Stewart Jackson | Expanding projectile |
JP5374810B2 (en) | 2006-07-18 | 2013-12-25 | 株式会社リコー | Screen printing version |
US20080236635A1 (en) | 2006-07-31 | 2008-10-02 | Maximilian Rosenzweig | Steam mop |
US8808412B2 (en) | 2006-09-15 | 2014-08-19 | Saint-Gobain Abrasives, Inc. | Microfiber reinforcement for abrasive tools |
US20080271384A1 (en) | 2006-09-22 | 2008-11-06 | Saint-Gobain Ceramics & Plastics, Inc. | Conditioning tools and techniques for chemical mechanical planarization |
US20080098659A1 (en) | 2006-10-26 | 2008-05-01 | Chien-Min Sung | Methods for securing individual abrasive particles to a substrate in a predetermined pattern |
CA2925267A1 (en) | 2006-11-01 | 2008-05-08 | Sten Wallin | Shaped porous bodies of alpha-alumina and methods for the preparation thereof |
JP2008132560A (en) | 2006-11-28 | 2008-06-12 | Allied Material Corp | Single crystal superabrasive grain and superabrasive grain tool using single crystal superabrasive grain |
ES2635721T3 (en) | 2006-11-30 | 2017-10-04 | Longyear Tm, Inc. | Diamond impregnated cutting tools containing fibers |
US8083820B2 (en) | 2006-12-22 | 2011-12-27 | 3M Innovative Properties Company | Structured fixed abrasive articles including surface treated nano-ceria filler, and method for making and using the same |
US20080176075A1 (en) | 2007-01-15 | 2008-07-24 | Saint-Gobain Ceramics & Plastics, Inc. | Ceramic particulate material and processes for forming same |
CN101668825B (en) | 2007-01-23 | 2013-10-16 | 圣戈本磨料股份有限公司 | Coated abrasive products containing aggregates |
US20080179783A1 (en) | 2007-01-31 | 2008-07-31 | Geo2 Technologies, Inc. | Extruded Fibrous Silicon Carbide Substrate and Methods for Producing the Same |
JP2008194761A (en) | 2007-02-08 | 2008-08-28 | Roki Techno Co Ltd | Grinding sheet and manufacturing method therefor |
EP1964817B1 (en) | 2007-02-28 | 2010-08-11 | Corning Incorporated | Method for making microfluidic devices |
US7628829B2 (en) | 2007-03-20 | 2009-12-08 | 3M Innovative Properties Company | Abrasive article and method of making and using the same |
US20080233850A1 (en) | 2007-03-20 | 2008-09-25 | 3M Innovative Properties Company | Abrasive article and method of making and using the same |
US20080233845A1 (en) | 2007-03-21 | 2008-09-25 | 3M Innovative Properties Company | Abrasive articles, rotationally reciprocating tools, and methods |
DE102007026978A1 (en) | 2007-06-06 | 2008-12-11 | Thieme Gmbh & Co. Kg | Process and device for printing on solar cells by screen printing |
US20090017736A1 (en) | 2007-07-10 | 2009-01-15 | Saint-Gobain Abrasives, Inc. | Single-use edging wheel for finishing glass |
FI20075533L (en) | 2007-07-10 | 2009-01-11 | Kwh Mirka Ab Oy | Abrasive product and method for making the same |
US8038750B2 (en) | 2007-07-13 | 2011-10-18 | 3M Innovative Properties Company | Structured abrasive with overlayer, and method of making and using the same |
US8562702B2 (en) | 2007-07-23 | 2013-10-22 | Element Six Abrasives S.A. | Abrasive compact |
JP5291307B2 (en) | 2007-08-03 | 2013-09-18 | 株式会社不二製作所 | Manufacturing method of metal mask for screen printing |
CN101376234B (en) | 2007-08-28 | 2013-05-29 | 侯家祥 | Ordered arrangement method for abrading agent granule on abrading tool and abrading tool |
US8258251B2 (en) | 2007-11-30 | 2012-09-04 | The United States Of America, As Represented By The Administrator Of The National Aeronautics And Space Administration | Highly porous ceramic oxide aerogels having improved flexibility |
US8080073B2 (en) | 2007-12-20 | 2011-12-20 | 3M Innovative Properties Company | Abrasive article having a plurality of precisely-shaped abrasive composites |
JP5414694B2 (en) | 2007-12-27 | 2014-02-12 | スリーエム イノベイティブ プロパティズ カンパニー | Shaped and torn abrasive particles, abrasive articles using the abrasive particles, and methods for producing them |
US8123828B2 (en) | 2007-12-27 | 2012-02-28 | 3M Innovative Properties Company | Method of making abrasive shards, shaped abrasive particles with an opening, or dish-shaped abrasive particles |
ES2626637T3 (en) | 2008-01-18 | 2017-07-25 | Lifescan Scotland Limited | Method of manufacturing batches of test strips that have a predetermined calibration characteristic |
KR20100121636A (en) | 2008-02-08 | 2010-11-18 | 유미코르 | Doped ceria abrasives with controlled morphology and preparation thereof |
JP5527937B2 (en) | 2008-03-26 | 2014-06-25 | 京セラ株式会社 | Silicon nitride sintered body |
EP2105256A1 (en) | 2008-03-28 | 2009-09-30 | Cedric Sheridan | Method and apparatus for forming aggregate abrasive grains for use in the production of abrading or cutting tools |
AU2009236192B2 (en) | 2008-04-18 | 2011-09-22 | Saint-Gobain Abrasifs | Hydrophilic and hydrophobic silane surface modification of abrasive grains |
US8513154B2 (en) | 2008-04-30 | 2013-08-20 | Dow Technology Investments, Llc | Porous body precursors, shaped porous bodies, processes for making them, and end-use products based upon the same |
US8481438B2 (en) | 2008-06-13 | 2013-07-09 | Washington Mills Management, Inc. | Very low packing density ceramic abrasive grits and methods of producing and using the same |
JP5475761B2 (en) | 2008-06-20 | 2014-04-16 | スリーエム イノベイティブ プロパティズ カンパニー | Polymer mold |
JP2010012530A (en) | 2008-07-01 | 2010-01-21 | Showa Denko Kk | Polishing tape, its manufacturing method and burnishing method |
US8882868B2 (en) | 2008-07-02 | 2014-11-11 | Saint-Gobain Abrasives, Inc. | Abrasive slicing tool for electronics industry |
JP5555453B2 (en) * | 2008-07-24 | 2014-07-23 | スリーエム イノベイティブ プロパティズ カンパニー | Abrasive product, method for producing and using the same |
WO2010025003A2 (en) | 2008-08-28 | 2010-03-04 | 3M Innovative Properties Company | Structured abrasive article, method of making the same, and use in wafer planarization |
US20120100366A1 (en) | 2008-09-16 | 2012-04-26 | Diamond Innovations, Inc. | Wear resistant coatings containing particles having a unique morphology |
US8927101B2 (en) * | 2008-09-16 | 2015-01-06 | Diamond Innovations, Inc | Abrasive particles having a unique morphology |
CN102245730A (en) * | 2008-09-16 | 2011-11-16 | 戴蒙得创新股份有限公司 | Abrasive particles having a unique morphology |
US8591613B2 (en) * | 2008-09-16 | 2013-11-26 | Diamond Innovations, Inc. | Abrasive grains having unique features |
SI2174717T1 (en) | 2008-10-09 | 2020-08-31 | Imertech Sas | Grinding method |
US8142532B2 (en) | 2008-12-17 | 2012-03-27 | 3M Innovative Properties Company | Shaped abrasive particles with an opening |
US10137556B2 (en) | 2009-06-22 | 2018-11-27 | 3M Innovative Properties Company | Shaped abrasive particles with low roundness factor |
US8142891B2 (en) | 2008-12-17 | 2012-03-27 | 3M Innovative Properties Company | Dish-shaped abrasive particles with a recessed surface |
CN102317038B (en) | 2008-12-17 | 2014-02-05 | 3M创新有限公司 | Shaped abrasive particles with grooves |
US8142531B2 (en) | 2008-12-17 | 2012-03-27 | 3M Innovative Properties Company | Shaped abrasive particles with a sloping sidewall |
GB0823086D0 (en) | 2008-12-18 | 2009-01-28 | Univ Nottingham | Abrasive Tools |
BRPI0923722A2 (en) | 2008-12-30 | 2017-07-11 | Saint Gobain Abrasives Inc | REINFORCED GLUED ABRASIVE TOOLS |
WO2010079729A1 (en) | 2009-01-06 | 2010-07-15 | 日本碍子株式会社 | Moulding die and method for producing a moulding using said moulding die |
BRPI1009360A2 (en) | 2009-03-11 | 2016-03-08 | Saint Gobain Abrasifs Sa | abrasive articles including fused zirconia alumina grains having an improved shape |
WO2010141464A2 (en) | 2009-06-02 | 2010-12-09 | Saint-Gobain Abrasives, Inc. | Corrosion-resistant cmp conditioning tools and methods for making and using same |
SE0900838A1 (en) | 2009-06-22 | 2010-04-20 | Gsab Glasmaesteribranschens Se | Device for a hinged profile fixable in a carrier profile |
US8628597B2 (en) | 2009-06-25 | 2014-01-14 | 3M Innovative Properties Company | Method of sorting abrasive particles, abrasive particle distributions, and abrasive articles including the same |
US8906522B2 (en) | 2009-07-07 | 2014-12-09 | Morgan Advanced Materials And Technology Inc. | Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid article |
KR101686913B1 (en) | 2009-08-13 | 2016-12-16 | 삼성전자주식회사 | Apparatus and method for providing of event service in a electronic machine |
US8348723B2 (en) * | 2009-09-16 | 2013-01-08 | 3M Innovative Properties Company | Structured abrasive article and method of using the same |
US20110081848A1 (en) | 2009-10-05 | 2011-04-07 | Chia-Pei Chen | Grinding tool and method of manufacturing the grinding tool |
JP5551568B2 (en) | 2009-11-12 | 2014-07-16 | 日東電工株式会社 | Resin-sealing adhesive tape and method for manufacturing resin-sealed semiconductor device using the same |
US8168291B2 (en) | 2009-11-23 | 2012-05-01 | Applied Nanostructured Solutions, Llc | Ceramic composite materials containing carbon nanotube-infused fiber materials and methods for production thereof |
CN102666022B (en) | 2009-12-02 | 2015-05-20 | 3M创新有限公司 | Method of making a coated abrasive article having shaped abrasive particles and resulting product |
JP5651190B2 (en) * | 2009-12-02 | 2015-01-07 | スリーエム イノベイティブ プロパティズ カンパニー | Dual taper shaped abrasive particles |
MX2012007043A (en) | 2009-12-17 | 2012-07-20 | Scient Design Co | Process for epoxidation start-up. |
EP2516609B1 (en) | 2009-12-22 | 2013-11-27 | The Procter and Gamble Company | Liquid cleaning and/or cleansing composition |
US8480772B2 (en) * | 2009-12-22 | 2013-07-09 | 3M Innovative Properties Company | Transfer assisted screen printing method of making shaped abrasive particles and the resulting shaped abrasive particles |
US8680036B2 (en) | 2009-12-22 | 2014-03-25 | The Procter & Gamble Company | Liquid cleaning composition comprising color-stable polyurethane abrasive particles |
CA2785464C (en) | 2009-12-31 | 2019-08-13 | Oxane Materials, Inc. | Ceramic particles with controlled pore and/or microsphere placement and/or size and method of making same |
CA2791475C (en) | 2010-03-03 | 2018-05-15 | 3M Innovative Properties Company | Bonded abrasive wheel |
CN101944853B (en) | 2010-03-19 | 2013-06-19 | 郁百超 | Green power inverter |
JP5902669B2 (en) * | 2010-04-21 | 2016-04-13 | ザ プロクター アンド ギャンブル カンパニー | Liquid cleaning and / or cleansing composition |
CN102232949A (en) | 2010-04-27 | 2011-11-09 | 孙远 | Drug dissolution increasing composition and preparation method thereof |
RU2539246C2 (en) | 2010-04-27 | 2015-01-20 | 3М Инновейтив Пропертиз Компани | Shaped ceramic abrasive particles, methods for their obtaining and abrasive items containing them |
US8551577B2 (en) | 2010-05-25 | 2013-10-08 | 3M Innovative Properties Company | Layered particle electrostatic deposition process for making a coated abrasive article |
FI20105606A (en) | 2010-05-28 | 2010-11-25 | Kwh Mirka Ab Oy | Abrasive product and method for making such |
PT2588275T (en) | 2010-07-02 | 2018-03-13 | 3M Innovative Properties Co | Coated abrasive articles |
US9527806B2 (en) | 2010-07-13 | 2016-12-27 | Stc.Unm | Structure, synthesis, and applications for poly (phenylene) ethynylenes (PPEs) |
CN103025490B (en) | 2010-08-04 | 2016-05-11 | 3M创新有限公司 | Intersect plate forming abrasive particle |
AU2011285540B2 (en) | 2010-08-06 | 2014-11-27 | Saint-Gobain Abrasifs | Abrasive tool and a method for finishing complex shapes in workpieces |
TWI544064B (en) | 2010-09-03 | 2016-08-01 | 聖高拜磨料有限公司 | Bonded abrasive article and method of forming |
JP5702469B2 (en) | 2010-09-21 | 2015-04-15 | ザ プロクター アンド ギャンブルカンパニー | Liquid cleaning composition |
EP2621736A4 (en) | 2010-10-01 | 2016-03-02 | Intelligent Material Solutions Inc | Morphologically and size uniform monodisperse particles and their shape-directed self-assembly |
DE102010047690A1 (en) | 2010-10-06 | 2012-04-12 | Vsm-Vereinigte Schmirgel- Und Maschinen-Fabriken Ag | A method of making zirconia reinforced alumina abrasive grains and abrasive grains produced thereby |
WO2012061033A2 (en) | 2010-11-01 | 2012-05-10 | 3M Innovative Properties Company | Laser method for making shaped ceramic abrasive particles, shaped ceramic abrasive particles, and abrasive articles |
KR101863393B1 (en) | 2010-11-01 | 2018-05-31 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Shaped abrasive particles and method of making |
BR112013016948A2 (en) | 2010-12-30 | 2019-09-24 | Saint Gobain Abrasives Inc | method for producing abrasive particles and abrasive grains |
RU2013135445A (en) | 2010-12-31 | 2015-02-10 | Сэнт-Гобэн Керамикс Энд Пластикс, Инк. | ABRASIVE PRODUCT (OPTIONS) AND METHOD FOR ITS FORMING |
BR112013019401B1 (en) | 2011-02-16 | 2021-09-28 | 3M Innovative Properties Company | COATED ABRASIVE ARTICLES |
US8771801B2 (en) | 2011-02-16 | 2014-07-08 | 3M Innovative Properties Company | Electrostatic abrasive particle coating apparatus and method |
JP6000333B2 (en) | 2011-04-14 | 2016-09-28 | スリーエム イノベイティブ プロパティズ カンパニー | Nonwoven abrasive articles containing elastomer-bonded agglomerates of molded abrasive grains |
EP2696973A4 (en) | 2011-04-14 | 2014-12-10 | Basf Se | Catalyst for the production of ethylene oxide |
JP5757777B2 (en) | 2011-04-15 | 2015-07-29 | パナソニック株式会社 | Substrate coating method, substrate coating apparatus, and organic electroluminescent device manufacturing method using the same |
EP2529694B1 (en) | 2011-05-31 | 2017-11-15 | Ivoclar Vivadent AG | Method for generative production of ceramic forms by means of 3D jet printing |
CN103582524B (en) | 2011-06-06 | 2017-06-23 | 陶氏技术投资有限责任公司 | Produce the method for epoxidation catalyst and utilize their epoxidizing method |
EP2537917A1 (en) | 2011-06-20 | 2012-12-26 | The Procter & Gamble Company | Liquid detergent composition with abrasive particles |
EP2721136A1 (en) | 2011-06-20 | 2014-04-23 | The Procter and Gamble Company | Liquid cleaning and/or cleansing composition |
US8852643B2 (en) | 2011-06-20 | 2014-10-07 | The Procter & Gamble Company | Liquid cleaning and/or cleansing composition |
RU2566750C2 (en) | 2011-06-20 | 2015-10-27 | Дзе Проктер Энд Гэмбл Компани | Liquid composition for cleaning and/or fine purification |
US20120321567A1 (en) | 2011-06-20 | 2012-12-20 | Denis Alfred Gonzales | Liquid cleaning and/or cleansing composition |
CN108262695A (en) | 2011-06-30 | 2018-07-10 | 圣戈本陶瓷及塑料股份有限公司 | Include the abrasive product of silicon nitride abrasive grain |
EP2726248B1 (en) | 2011-06-30 | 2019-06-19 | Saint-Gobain Ceramics & Plastics, Inc. | Liquid phase sintered silicon carbide abrasive particles |
WO2013009484A2 (en) | 2011-07-12 | 2013-01-17 | 3M Innovative Properties Company | Method of making ceramic shaped abrasive particles, sol-gel composition, and ceramic shaped abrasive particles |
US9038055B2 (en) | 2011-08-05 | 2015-05-19 | Microsoft Technology Licensing, Llc | Using virtual machines to manage software builds |
US8921687B1 (en) | 2011-08-19 | 2014-12-30 | Magnolia Solar, Inc. | High efficiency quantum well waveguide solar cells and methods for constructing the same |
US9662766B2 (en) | 2011-09-07 | 2017-05-30 | 3M Innovative Properties Company | Method of abrading a workpiece |
EP2567784B1 (en) | 2011-09-08 | 2019-07-31 | 3M Innovative Properties Co. | Bonded abrasive article |
BR112014005361A2 (en) | 2011-09-07 | 2017-03-28 | 3M Innovative Properties Co | bonded abrasive article |
US9375826B2 (en) | 2011-09-16 | 2016-06-28 | Saint-Gobain Abrasives, Inc. | Abrasive article and method of forming |
EP2573157A1 (en) | 2011-09-20 | 2013-03-27 | The Procter and Gamble Company | Liquid detergent composition with abrasive particles |
EP2573156A1 (en) | 2011-09-20 | 2013-03-27 | The Procter & Gamble Company | Liquid cleaning composition |
US9517546B2 (en) | 2011-09-26 | 2016-12-13 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming |
WO2013049204A2 (en) | 2011-09-29 | 2013-04-04 | Saint-Gobain Abrasives, Inc. | Abrasive articles including abrasive particles bonded to an elongated substrate body having a barrier layer, and methods of forming thereof |
PL2776210T3 (en) | 2011-11-09 | 2017-07-31 | 3M Innovative Properties Company | Composite abrasive wheel |
US9630297B2 (en) | 2011-12-29 | 2017-04-25 | 3M Innovative Properties Company | Coated abrasive article and method of making the same |
WO2013102170A1 (en) | 2011-12-30 | 2013-07-04 | Saint-Gobain Ceramics & Plastics, Inc. | Composite shaped abrasive particles and method of forming same |
KR20140106737A (en) | 2011-12-30 | 2014-09-03 | 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 | Forming shaped abrasive particles |
EP2797715A4 (en) | 2011-12-30 | 2016-04-20 | Saint Gobain Ceramics | Shaped abrasive particle and method of forming same |
CN104125876B (en) | 2011-12-31 | 2018-07-20 | 圣戈班磨料磨具有限公司 | The abrasive article of uneven distribution with opening |
WO2013106597A1 (en) | 2012-01-10 | 2013-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having complex shapes and methods of forming same |
WO2013106602A1 (en) | 2012-01-10 | 2013-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
EP2631286A1 (en) | 2012-02-23 | 2013-08-28 | The Procter & Gamble Company | Liquid cleaning composition |
IN2014DN07828A (en) | 2012-02-29 | 2015-05-15 | Bridgestone Corp | |
US9242346B2 (en) | 2012-03-30 | 2016-01-26 | Saint-Gobain Abrasives, Inc. | Abrasive products having fibrillated fibers |
BR112014024937B1 (en) * | 2012-04-04 | 2021-01-12 | 3M Innovative Properties Company | ceramic shaped abrasive particle, plurality of abrasive particles, abrasive article and method for producing ceramic shaped abrasive particles |
US9079154B2 (en) | 2012-05-04 | 2015-07-14 | Basf Se | Catalyst for the epoxidation of alkenes |
WO2013177446A1 (en) * | 2012-05-23 | 2013-11-28 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
GB201210230D0 (en) | 2012-06-11 | 2012-07-25 | Element Six Ltd | Method for making tool elements and tools comprising same |
US20130337725A1 (en) | 2012-06-13 | 2013-12-19 | 3M Innovative Property Company | Abrasive particles, abrasive articles, and methods of making and using the same |
EP2866977B8 (en) | 2012-06-29 | 2023-01-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
CN104428105A (en) | 2012-07-06 | 2015-03-18 | 3M创新有限公司 | Coated abrasive article |
EP2692815A1 (en) | 2012-08-02 | 2014-02-05 | Robert Bosch Gmbh | Abrasive grit with concave section |
EP2692819A1 (en) | 2012-08-02 | 2014-02-05 | Robert Bosch GmbH | Abrasive grit with base surface and ridges |
EP2692813A1 (en) | 2012-08-02 | 2014-02-05 | Robert Bosch Gmbh | Abrasive grit with ridges of varying heights |
CN104736299A (en) | 2012-08-02 | 2015-06-24 | 3M创新有限公司 | Abrasive articles with precisely shaped features and method of making thereof |
EP2692816A1 (en) | 2012-08-02 | 2014-02-05 | Robert Bosch Gmbh | Abrasive grit with flat bodies penetrating each other |
EP2692814A1 (en) | 2012-08-02 | 2014-02-05 | Robert Bosch Gmbh | Abrasive grit comprising first surface without corner and second surface with corner |
EP2692817A1 (en) | 2012-08-02 | 2014-02-05 | Robert Bosch Gmbh | Abrasive grit with panels arranged under an angle |
US9771505B2 (en) | 2012-08-02 | 2017-09-26 | Robert Bosch Gmbh | Abrasive grain containing a first face without vertices and a second face with vertices |
CN104520401A (en) * | 2012-08-02 | 2015-04-15 | 罗伯特·博世有限公司 | Abrasive particle with at most three surfaces and one corner |
SG11201500713PA (en) | 2012-08-02 | 2015-02-27 | 3M Innovative Properties Co | Abrasive elements with precisely shaped features, abrasive articles fabricated therefrom and methods of making thereof |
EP2692821A1 (en) | 2012-08-02 | 2014-02-05 | Robert Bosch Gmbh | Abrasive grit with base body and top body |
EP2692818A1 (en) | 2012-08-02 | 2014-02-05 | Robert Bosch Gmbh | Abrasive grit with main surfaces and secondary surfaces |
EP2692820A1 (en) | 2012-08-02 | 2014-02-05 | Robert Bosch Gmbh | Abrasive grit with base surface, ridge and opening |
US9956664B2 (en) | 2012-08-02 | 2018-05-01 | 3M Innovative Properties Company | Abrasive element precursor with precisely shaped features and methods of making thereof |
GB201218125D0 (en) | 2012-10-10 | 2012-11-21 | Imerys Minerals Ltd | Method for grinding a particulate inorganic material |
DE102012023688A1 (en) | 2012-10-14 | 2014-04-17 | Dronco Ag | Abrasive grain with geometrically defined shape useful e.g. for producing abrasive wheel comprises three potentially acting cutting edges, and edge defining surface of abrasive grain and additional cutting edge formed in grain surface |
EP2719752B1 (en) | 2012-10-15 | 2016-03-16 | The Procter and Gamble Company | Liquid detergent composition with abrasive particles |
EP2906392A4 (en) | 2012-10-15 | 2016-07-13 | Saint Gobain Abrasives Inc | Abrasive particles having particular shapes and methods of forming such particles |
CA2888733A1 (en) | 2012-10-31 | 2014-05-08 | 3M Innovative Properties Company | Shaped abrasive particles, methods of making, and abrasive articles including the same |
WO2014106211A1 (en) | 2012-12-31 | 2014-07-03 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive blasting media and methods of forming and using same |
WO2014106173A1 (en) | 2012-12-31 | 2014-07-03 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
DE102013202204A1 (en) | 2013-02-11 | 2014-08-14 | Robert Bosch Gmbh | Grinding element for use in grinding disk for sharpening workpiece, has base body whose one base surface is arranged parallel to another base surface, where former base surface comprises partially concave curved side edge |
WO2014124554A1 (en) | 2013-02-13 | 2014-08-21 | Shengguo Wang | Abrasive grain with controlled aspect ratio |
CA2903967A1 (en) | 2013-03-04 | 2014-09-12 | 3M Innovative Properties Company | Nonwoven abrasive article containing formed abrasive particles |
WO2014140689A1 (en) | 2013-03-12 | 2014-09-18 | 3M Innovative Properties Company | Bonded abrasive article |
PL2978566T3 (en) | 2013-03-29 | 2024-07-15 | Saint-Gobain Abrasives, Inc. | Abrasive particles having particular shapes and methods of forming such particles |
JP6550374B2 (en) | 2013-04-05 | 2019-07-24 | スリーエム イノベイティブ プロパティズ カンパニー | Sintered abrasive particles, method of making the same, and abrasive articles comprising the same |
CN205497246U (en) | 2013-04-24 | 2016-08-24 | 3M创新有限公司 | Coating abrasive material area |
US20140352721A1 (en) | 2013-05-29 | 2014-12-04 | The Procter & Gamble Company | Liquid cleaning and/or cleansing composition |
EP2808379A1 (en) | 2013-05-29 | 2014-12-03 | The Procter & Gamble Company | Liquid cleaning and/or cleansing composition |
US20140352722A1 (en) | 2013-05-29 | 2014-12-04 | The Procter & Gamble Company | Liquid cleaning and/or cleansing composition |
DE102013210158A1 (en) | 2013-05-31 | 2014-12-18 | Robert Bosch Gmbh | Roll-shaped wire brush |
DE102013210716A1 (en) | 2013-06-10 | 2014-12-11 | Robert Bosch Gmbh | Method for producing abrasive bodies for a grinding tool |
EP3013526A4 (en) | 2013-06-24 | 2017-03-08 | 3M Innovative Properties Company | Abrasive particles, method of making abrasive particles, and abrasive articles |
WO2014210160A1 (en) | 2013-06-25 | 2014-12-31 | Saint-Gobain Abrasives, Inc. | Abrasive article and method of making same |
DE102013212528A1 (en) | 2013-06-27 | 2014-12-31 | Robert Bosch Gmbh | Process for producing a steel shaped body |
DE102013212687A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | grinding element |
WO2014206967A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | Abrasive means |
DE102013212639A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | grinding tool |
DE102013212634A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | abrasive |
DE102013212677A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | Process for producing an abrasive grain |
DE102014210836A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | grinding unit |
DE102013212661A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | abrasive grain |
DE102013212700A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | Method for producing a grinding unit |
DE102013212653A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | grinding element |
DE102013212598A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | Holding device for an abrasive |
TWI527886B (en) | 2013-06-28 | 2016-04-01 | 聖高拜陶器塑膠公司 | Abrasive article including shaped abrasive particles |
DE102013212680A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | Abrasive transport device |
DE102013212654A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | grinding element |
DE102013212666A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | Process for producing an abrasive |
DE102013212690A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | abrasive grain |
DE102013212622A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | Method for applying abrasive elements to at least one base body |
TW201502263A (en) | 2013-06-28 | 2015-01-16 | Saint Gobain Ceramics | Abrasive article including shaped abrasive particles |
DE102013212644A1 (en) | 2013-06-28 | 2014-12-31 | Robert Bosch Gmbh | Process for producing an abrasive |
TWI527887B (en) | 2013-06-28 | 2016-04-01 | 聖高拜陶器塑膠公司 | Abrasive article including shaped abrasive particles |
EP2821472B1 (en) | 2013-07-02 | 2018-08-29 | The Procter and Gamble Company | Liquid cleaning and/or cleansing composition |
EP2821469B1 (en) | 2013-07-02 | 2018-03-14 | The Procter & Gamble Company | Liquid cleaning and/or cleansing composition |
US9878954B2 (en) | 2013-09-13 | 2018-01-30 | 3M Innovative Properties Company | Vacuum glazing pillars for insulated glass units |
RU2643004C2 (en) | 2013-09-30 | 2018-01-29 | Сен-Гобен Серэмикс Энд Пластикс, Инк. | Formed abrasive particles and methods of their production |
CN105592982B (en) | 2013-10-04 | 2019-03-15 | 3M创新有限公司 | Bonded abrasive article and method |
US10785900B2 (en) | 2013-11-15 | 2020-09-22 | 3M Innovative Properties Company | Electrically conductive article containing shaped particles and methods of making same |
WO2015088953A1 (en) | 2013-12-09 | 2015-06-18 | 3M Innovative Properties Company | Conglomerate abrasive particles, abrasive articles including the same, and methods of making the same |
AT515223B1 (en) | 2013-12-18 | 2016-06-15 | Tyrolit - Schleifmittelwerke Swarovski K G | Process for the production of abrasives |
AT515229B1 (en) | 2013-12-18 | 2016-08-15 | Tyrolit - Schleifmittelwerke Swarovski K G | Process for the production of abrasives |
AT515258B1 (en) | 2013-12-18 | 2016-09-15 | Tyrolit - Schleifmittelwerke Swarovski K G | Process for producing abrasive bodies |
PL3083870T3 (en) | 2013-12-19 | 2018-02-28 | Klingspor Ag | Method for producing multilayer abrasive particles |
US10308851B2 (en) | 2013-12-19 | 2019-06-04 | Klingspor Ag | Abrasive particle and abrasive exhibiting high grinding performance |
EP3086904B1 (en) | 2013-12-23 | 2021-10-27 | 3M Innovative Properties Company | Method of making a coated abrasive article |
WO2015100220A1 (en) | 2013-12-23 | 2015-07-02 | 3M Innovative Properties Company | A coated abrasive article maker apparatus |
WO2015100018A1 (en) | 2013-12-23 | 2015-07-02 | 3M Innovative Properties Company | Abrasive particle positioning systems and production tools therefor |
US9566689B2 (en) | 2013-12-31 | 2017-02-14 | Saint-Gobain Abrasives, Inc. | Abrasive article including shaped abrasive particles |
WO2015112379A1 (en) | 2014-01-22 | 2015-07-30 | United Technologies Corporation | Apparatuses, systems and methods for aligned abrasive grains |
US9771507B2 (en) | 2014-01-31 | 2017-09-26 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
CN106062122B (en) | 2014-02-27 | 2018-12-07 | 3M创新有限公司 | Abrasive grain, abrasive product and its preparation and application |
JP6452295B2 (en) | 2014-03-19 | 2019-01-16 | スリーエム イノベイティブ プロパティズ カンパニー | Polishing pad and glass substrate polishing method |
AT515587B1 (en) | 2014-03-25 | 2017-05-15 | Tyrolit - Schleifmittelwerke Swarovski K G | Schleifteilchenagglomerat |
DE202014101739U1 (en) | 2014-04-11 | 2014-05-09 | Robert Bosch Gmbh | Abrasive grain with knots and extensions |
DE202014101741U1 (en) | 2014-04-11 | 2014-05-09 | Robert Bosch Gmbh | Partially coated abrasive grain |
WO2015160854A1 (en) | 2014-04-14 | 2015-10-22 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
EP3131705A4 (en) | 2014-04-14 | 2017-12-06 | Saint-Gobain Ceramics and Plastics, Inc. | Abrasive article including shaped abrasive particles |
KR20160145098A (en) | 2014-04-14 | 2016-12-19 | 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 | Abrasive article including shaped abrasive particles |
WO2015158009A1 (en) | 2014-04-19 | 2015-10-22 | Shengguo Wang | Alumina zirconia abrasive grain especially designed for light duty grinding applications |
US10150900B2 (en) | 2014-04-21 | 2018-12-11 | 3M Innovative Properties Company | Abrasive particles and abrasive articles including the same |
BR112016006779A2 (en) | 2014-05-01 | 2017-08-01 | 3M Innovative Properties Co | Flexible abrasive articles and one-piece abrasion method |
EP3137433A4 (en) | 2014-05-02 | 2017-10-18 | Shengguo Wang | Drying, sizing and shaping process to manufacture ceramic abrasive grain |
KR102292300B1 (en) | 2014-05-20 | 2021-08-24 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Abrasive material with different sets of plurality of abrasive elements |
US20170088759A1 (en) | 2014-05-25 | 2017-03-30 | Shengguo WANG | Method and apparatus for producing alumina monohydrate and sol gel abrasive grain |
US9902045B2 (en) | 2014-05-30 | 2018-02-27 | Saint-Gobain Abrasives, Inc. | Method of using an abrasive article including shaped abrasive particles |
ES2798323T3 (en) | 2014-06-18 | 2020-12-10 | Klingspor Ag | Multilayer abrasive particle |
CN106794570B (en) | 2014-08-21 | 2020-07-10 | 3M创新有限公司 | Coated abrasive article having a multiplexed abrasive grain structure and method of making |
WO2016044158A1 (en) | 2014-09-15 | 2016-03-24 | 3M Innovative Properties Company | Methods of making abrasive articles and bonded abrasive wheel preparable thereby |
US9873180B2 (en) | 2014-10-17 | 2018-01-23 | Applied Materials, Inc. | CMP pad construction with composite material properties using additive manufacturing processes |
EP3209461A4 (en) | 2014-10-21 | 2018-08-22 | 3M Innovative Properties Company | Abrasive preforms, method of making an abrasive article, and bonded abrasive article |
KR20170093167A (en) | 2014-12-04 | 2017-08-14 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Abrasive belt with angled shaped abrasive particles |
US9914864B2 (en) | 2014-12-23 | 2018-03-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
US9707529B2 (en) | 2014-12-23 | 2017-07-18 | Saint-Gobain Ceramics & Plastics, Inc. | Composite shaped abrasive particles and method of forming same |
SI3237147T1 (en) | 2014-12-23 | 2021-01-29 | Saint-Gobain Ceramics&Plastics, Inc. | Shaped abrasive particles and method of forming same |
US20160177152A1 (en) | 2014-12-23 | 2016-06-23 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle and method of forming same |
US9676981B2 (en) | 2014-12-24 | 2017-06-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle fractions and method of forming same |
TW201821580A (en) | 2014-12-30 | 2018-06-16 | 美商聖高拜磨料有限公司 | Abrasive articles and methods for forming same |
BR112017020767B1 (en) | 2015-03-30 | 2021-11-16 | 3M Innovative Properties Company | METHOD FOR MANUFACTURING A COATED ABRASIVE ARTICLE |
US10196551B2 (en) | 2015-03-31 | 2019-02-05 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
TWI634200B (en) | 2015-03-31 | 2018-09-01 | 聖高拜磨料有限公司 | Fixed abrasive articles and methods of forming same |
WO2016167967A1 (en) | 2015-04-14 | 2016-10-20 | 3M Innovative Properties Company | Nonwoven abrasive article and method of making the same |
TWI609742B (en) | 2015-04-20 | 2018-01-01 | 中國砂輪企業股份有限公司 | Grinding tool |
TWI603813B (en) | 2015-04-20 | 2017-11-01 | 中國砂輪企業股份有限公司 | Grinding tool and method of manufacturing the same |
TWI621590B (en) | 2015-05-21 | 2018-04-21 | 聖高拜陶器塑膠公司 | Abrasive particles and method of forming same |
EP3304581B1 (en) | 2015-06-02 | 2022-09-14 | 3M Innovative Properties Company | Method of transferring particles to a substrate |
US10245703B2 (en) | 2015-06-02 | 2019-04-02 | 3M Innovative Properties Company | Latterally-stretched netting bearing abrasive particles, and method for making |
DE102015108812B4 (en) | 2015-06-03 | 2024-10-17 | Imertech Sas | Platelet-shaped, randomly shaped, sintered abrasive particles and a process for their production |
CA2988012C (en) | 2015-06-11 | 2021-06-29 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
JP6913637B2 (en) | 2015-06-19 | 2021-08-04 | スリーエム イノベイティブ プロパティズ カンパニー | Systems and methods for manufacturing polished articles |
WO2016205133A1 (en) | 2015-06-19 | 2016-12-22 | 3M Innovative Properties Company | Abrasive article with abrasive particles having random rotational orientation within a range |
JP7458693B2 (en) | 2015-06-25 | 2024-04-01 | スリーエム イノベイティブ プロパティズ カンパニー | Glassy bond abrasive article and method for manufacturing the same |
US10773360B2 (en) | 2015-07-08 | 2020-09-15 | 3M Innovative Properties Company | Systems and methods for making abrasive articles |
EP3319757B1 (en) | 2015-07-08 | 2020-09-02 | 3M Innovative Properties Company | Systems and methods for making abrasive articles |
JP6865216B2 (en) | 2015-10-07 | 2021-04-28 | スリーエム イノベイティブ プロパティズ カンパニー | Epoxy functional silane coupling agents, surface-modified abrasive particles, and bonded abrasive articles |
US9849563B2 (en) | 2015-11-05 | 2017-12-26 | 3M Innovative Properties Company | Abrasive article and method of making the same |
JP6983155B2 (en) | 2015-11-13 | 2021-12-17 | スリーエム イノベイティブ プロパティズ カンパニー | Bonded polished article and its manufacturing method |
US10350642B2 (en) | 2015-11-13 | 2019-07-16 | 3M Innovative Properties Company | Method of shape sorting crushed abrasive particles |
CN105622071A (en) | 2015-12-23 | 2016-06-01 | 山东大学 | Alpha-Al2O3 ceramic particles containing lamellar microcrystals as well as preparation method for ceramic particles and application of ceramic particles |
EP4011923B1 (en) | 2016-01-21 | 2024-08-28 | 3M Innovative Properties Company | Methods of making metal bond and vitreous bond abrasive articles |
US20190030684A1 (en) | 2016-03-03 | 2019-01-31 | 3M Innovative Properties Company | Depressed center grinding wheel |
US9717674B1 (en) | 2016-04-06 | 2017-08-01 | The Procter & Gamble Company | Skin cleansing compositions comprising biodegradable abrasive particles |
EP3238879A1 (en) | 2016-04-25 | 2017-11-01 | 3M Innovative Properties Company | Resin bonded cut-off tool |
EP4071224A3 (en) | 2016-05-10 | 2023-01-04 | Saint-Gobain Ceramics and Plastics, Inc. | Methods of forming abrasive articles |
FR3052993B1 (en) | 2016-06-22 | 2019-01-25 | Imerys Fused Minerals Beyrede Sas | SINTERED ABRASIVE PARTICLE BASED ON OXIDES PRESENT IN BAUXITE |
DE102016113125A1 (en) | 2016-07-15 | 2018-01-18 | Vsm-Vereinigte Schmirgel- Und Maschinen-Fabriken Ag | Method for producing an abrasive grain and abrasive grain |
US20190233693A1 (en) | 2016-08-01 | 2019-08-01 | 3M Innovative Properties Company | Shaped abrasive particles with sharp tips |
EP3516006A4 (en) | 2016-09-21 | 2020-03-18 | 3M Innovative Properties Company | Abrasive particle with enhanced retention features |
US11351653B2 (en) | 2016-09-26 | 2022-06-07 | 3M Innovative Properties Company | Nonwoven abrasive articles having electrostatically-oriented abrasive particles and methods of making same |
KR102450209B1 (en) | 2016-09-27 | 2022-09-30 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Open Coat Abrasive Articles and Abrasive Methods |
US11230653B2 (en) | 2016-09-29 | 2022-01-25 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
CN109789535B (en) | 2016-09-30 | 2020-10-02 | 3M创新有限公司 | Method of transferring shaped particles to a matrix or moving matrix web and abrasive article |
KR20190055224A (en) | 2016-09-30 | 2019-05-22 | 쓰리엠 이노베이티브 프로퍼티즈 캄파니 | Abrasive article manufacturing system |
WO2018063960A1 (en) | 2016-09-30 | 2018-04-05 | 3M Innovative Properties Company | Abrasive article and method of making the same |
CN109890566B (en) | 2016-10-25 | 2021-11-19 | 3M创新有限公司 | Bonded grinding wheel and preparation method thereof |
WO2018081246A1 (en) | 2016-10-25 | 2018-05-03 | 3M Innovative Properties Company | Shaped vitrified abrasive agglomerate with shaped abrasive particles, abrasive articles, and related methods |
US11253972B2 (en) | 2016-10-25 | 2022-02-22 | 3M Innovative Properties Company | Structured abrasive articles and methods of making the same |
WO2018080705A1 (en) | 2016-10-25 | 2018-05-03 | 3M Innovative Properties Company | Magnetizable agglomerate abrasive particles, abrasive articles, and methods of making the same |
US20200016725A1 (en) | 2016-10-25 | 2020-01-16 | 3M Innovative Properties Company | Bonded Abrasive Articles Including Oriented Abrasive Particles, and Methods of Making Same |
CN109890931B (en) | 2016-10-25 | 2021-03-16 | 3M创新有限公司 | Magnetizable abrasive particles and abrasive articles comprising magnetizable abrasive particles |
EP3533075A4 (en) | 2016-10-25 | 2020-07-01 | 3M Innovative Properties Company | Method of making magnetizable abrasive particles |
WO2018080756A1 (en) | 2016-10-25 | 2018-05-03 | 3M Innovative Properties Company | Functional abrasive particles, abrasive articles, and methods of making the same |
CN109862999B (en) | 2016-10-25 | 2022-05-10 | 3M创新有限公司 | Bonded grinding wheel and preparation method thereof |
JP7008474B2 (en) | 2016-11-30 | 2022-01-25 | 東京エレクトロン株式会社 | Plasma etching method |
AT519483B1 (en) | 2016-12-20 | 2018-12-15 | Tyrolit Schleifmittelwerke Swarovski Kg | PROCESS FOR PREPARING ABRASIVE PARTICLES |
WO2018118690A1 (en) | 2016-12-21 | 2018-06-28 | 3M Innovative Properties Company | Systems, methods and tools for distributing different pluralities of abrasive particles to make abrasive articles |
WO2018118688A1 (en) | 2016-12-21 | 2018-06-28 | 3M Innovative Properties Company | Abrasive article with different pluralities of abrasive particles |
WO2018118699A1 (en) | 2016-12-21 | 2018-06-28 | 3M Innovative Properties Company | Systems and methods for making abrasive articles |
CN114393523A (en) | 2016-12-22 | 2022-04-26 | 3M创新有限公司 | Apparatus for forming abrasive particle layer and method of forming abrasive article |
CN110087833A (en) | 2016-12-22 | 2019-08-02 | 3M创新有限公司 | Resin-bonded abrasive product with multiple color |
EP3571012A4 (en) | 2017-01-19 | 2020-11-04 | 3M Innovative Properties Company | Manipulation of magnetizable abrasive particles with modulation of magnetic field angle or strength |
EP3571013A4 (en) | 2017-01-19 | 2020-10-07 | 3M Innovative Properties Company | Use of magnetics with magnetizable abrasive particles, methods, apparatuses and systems using magnetics to make abrasive articles |
CN110198810A (en) | 2017-01-19 | 2019-09-03 | 3M创新有限公司 | The magnetic secondary transfer of magnetisable abrasive grain and its relevant methods, devices and systems |
WO2018136269A1 (en) | 2017-01-23 | 2018-07-26 | 3M Innovative Properties Company | Magnetically assisted disposition of magnetizable abrasive particles |
US10563105B2 (en) | 2017-01-31 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10759024B2 (en) | 2017-01-31 | 2020-09-01 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
DE102017204605A1 (en) | 2017-03-20 | 2018-09-20 | Robert Bosch Gmbh | Process for electrostatic scattering of an abrasive grain |
US11505730B2 (en) | 2017-05-12 | 2022-11-22 | 3M Innovative Properties Company | Tetrahedral abrasive particles in abrasive articles |
US10865148B2 (en) | 2017-06-21 | 2020-12-15 | Saint-Gobain Ceramics & Plastics, Inc. | Particulate materials and methods of forming same |
DE102017210799A1 (en) | 2017-06-27 | 2018-12-27 | Robert Bosch Gmbh | Shaped ceramic abrasive grain and method of making a shaped ceramic abrasive grain |
US20200156215A1 (en) | 2017-07-31 | 2020-05-21 | 3M Innovative Properties Company | Placement of abrasive particles for achieving orientation independent scratches and minimizing observable manufacturing defects |
CN113174235A (en) | 2017-10-02 | 2021-07-27 | 3M创新有限公司 | Elongated abrasive particles, methods of making the same, and abrasive articles comprising the same |
JP2021504168A (en) | 2017-11-21 | 2021-02-15 | スリーエム イノベイティブ プロパティズ カンパニー | Coated polishing disc and its manufacturing method and usage method |
US20200391352A1 (en) | 2017-11-21 | 2020-12-17 | 3M Innovative Properties Company | Coated abrasive disc and methods of making and using the same |
US20200398402A1 (en) | 2017-11-21 | 2020-12-24 | 3M Innovative Properties Company | Coated abrasive disc and methods of making and using the same |
JP6899490B2 (en) | 2017-11-21 | 2021-07-07 | スリーエム イノベイティブ プロパティズ カンパニー | Coated polishing disc and its manufacturing method and usage method |
US20200353594A1 (en) | 2017-11-27 | 2020-11-12 | 3M Innovative Properties Company | Abrasive article |
CN111433310A (en) | 2017-11-30 | 2020-07-17 | 圣戈班磨料磨具公司 | Abrasive article and method of forming the same |
USD849067S1 (en) | 2017-12-12 | 2019-05-21 | 3M Innovative Properties Company | Coated abrasive disc |
USD862538S1 (en) | 2017-12-12 | 2019-10-08 | 3M Innovative Properties Company | Coated abrasive disc |
USD849066S1 (en) | 2017-12-12 | 2019-05-21 | 3M Innovative Properties Company | Coated abrasive disc |
USD870782S1 (en) | 2017-12-12 | 2019-12-24 | 3M Innovative Properties Company | Coated abrasive disc |
WO2019167022A1 (en) | 2018-03-01 | 2019-09-06 | 3M Innovative Properties Company | Shaped siliceous abrasive agglomerate with shaped abrasive particles, abrasive articles, and related methods |
EP3775089A1 (en) | 2018-04-12 | 2021-02-17 | 3M Innovative Properties Company | Magnetizable abrasive particle and method of making the same |
WO2019207416A1 (en) | 2018-04-24 | 2019-10-31 | 3M Innovative Properties Company | Coated abrasive article and method of making the same |
JP2021522075A (en) | 2018-04-24 | 2021-08-30 | スリーエム イノベイティブ プロパティズ カンパニー | Abrasive particles with molded abrasive particles with a given rake angle |
CN112041119A (en) | 2018-04-24 | 2020-12-04 | 3M创新有限公司 | Method of making a coated abrasive article |
EP3784436A1 (en) | 2018-04-24 | 2021-03-03 | 3M Innovative Properties Company | Method of making a coated abrasive article |
US20210122959A1 (en) | 2018-05-10 | 2021-04-29 | 3M Innovative Properties Company | Abrasive articles including soft shaped abrasive particles |
DE102018212732A1 (en) | 2018-07-31 | 2020-02-06 | Robert Bosch Gmbh | Shaped ceramic abrasive grain, process for producing a shaped ceramic abrasive grain, and abrasive article |
EP3837086B1 (en) | 2018-08-13 | 2024-09-25 | 3M Innovative Properties Company | Structured abrasive article and method of making the same |
WO2020075005A1 (en) | 2018-10-11 | 2020-04-16 | 3M Innovative Properties Company | Supported abrasive particles, abrasive articles, and methods of making the same |
WO2020079522A1 (en) | 2018-10-15 | 2020-04-23 | 3M Innovative Properties Company | Abrasive articles having improved performance |
US20220016745A1 (en) | 2018-10-25 | 2022-01-20 | 3M Innovative Properties Company | Elongate abrasive article with orientationally aligned formed abrasive particles |
EP3870399A1 (en) | 2018-10-26 | 2021-09-01 | 3M Innovative Properties Company | Abrasive article including flexible web |
WO2020089741A1 (en) | 2018-11-01 | 2020-05-07 | 3M Innovative Properties Company | Tetrahedral shaped abrasive particles with predetermined rake angles |
WO2020115685A1 (en) | 2018-12-07 | 2020-06-11 | 3M Innovative Properties Company | Self-orienting shaped abrasive particles |
WO2020128838A1 (en) | 2018-12-18 | 2020-06-25 | 3M Innovative Properties Company | Multiple orientation cavities in tooling for abrasives |
EP3898089A1 (en) | 2018-12-18 | 2021-10-27 | 3M Innovative Properties Company | Coated abrasive articles and methods of making coated abrasive articles |
EP3898097A1 (en) | 2018-12-18 | 2021-10-27 | 3M Innovative Properties Company | Rapid curing bonded abrasive article precursor |
EP3898094B1 (en) | 2018-12-18 | 2023-01-25 | 3M Innovative Properties Company | Abrasive article maker with differential tooling speed |
WO2020128781A1 (en) | 2018-12-18 | 2020-06-25 | 3M Innovative Properties Company | Precision-shaped grain abrasive rail grinding tool and manufacturing method therefor |
WO2020128844A1 (en) | 2018-12-18 | 2020-06-25 | 3M Innovative Properties Company | Macro pattern for abrasive articles |
EP3898093B1 (en) | 2018-12-18 | 2024-08-21 | 3M Innovative Properties Company | Tooling splice accommodation for abrasive article production |
US12011807B2 (en) | 2018-12-18 | 2024-06-18 | 3M Innovative Properties Company | Shaped abrasive particle transfer assembly |
EP3898096B1 (en) | 2018-12-18 | 2024-10-23 | 3M Innovative Properties Company | Machine for the production of abrasive wheels and method for forming an abrasive weel |
WO2020128845A1 (en) | 2018-12-18 | 2020-06-25 | 3M Innovative Properties Company | Improved particle reception in abrasive article creation |
WO2020128787A1 (en) | 2018-12-18 | 2020-06-25 | 3M Innovative Properties Company | Bonded abrasive article precursor |
EP3898095A2 (en) | 2018-12-18 | 2021-10-27 | 3M Innovative Properties Company | Improved particle reception in abrasive article creation |
WO2020128717A1 (en) | 2018-12-18 | 2020-06-25 | 3M Innovative Properties Company | Patterned abrasive substrate and method |
CN113195162A (en) | 2018-12-18 | 2021-07-30 | 3M创新有限公司 | Patterned abrasive substrate and method |
CN113226643A (en) | 2018-12-18 | 2021-08-06 | 3M创新有限公司 | Abrasive article with differently shaped abrasive particles |
CN113260486A (en) | 2018-12-18 | 2021-08-13 | 3M创新有限公司 | Coated abrasive article with spacer particles and method and apparatus for making same |
WO2020128856A1 (en) | 2018-12-18 | 2020-06-25 | 3M Innovative Properties Company | Elastomer-derived ceramic structures and uses thereof |
CN113242779A (en) | 2018-12-18 | 2021-08-10 | 3M创新有限公司 | Method of depositing abrasive particles |
CN113195163B (en) | 2018-12-18 | 2024-01-26 | 3M创新有限公司 | Abrasive article having particulate coated abrasive particles |
WO2020128794A1 (en) | 2018-12-19 | 2020-06-25 | 3M Innovative Properties Company | Serrated shaped abrasive particles and method for manufacturing thereof |
WO2020212788A1 (en) | 2019-04-15 | 2020-10-22 | 3M Innovative Properties Company | Partially shaped abrasive particles, methods of manufacture and articles containing the same |
JP2022542018A (en) | 2019-07-18 | 2022-09-29 | スリーエム イノベイティブ プロパティズ カンパニー | Electrostatic particle alignment apparatus and method |
WO2021014271A1 (en) | 2019-07-23 | 2021-01-28 | 3M Innovative Properties Company | Shaped abrasive particles with sharp edges, methods of manufacturing and articles containing the same |
CN114556497A (en) | 2019-10-14 | 2022-05-27 | 3M创新有限公司 | Magnetizable abrasive particles and method for the production thereof |
CN114555296A (en) | 2019-10-17 | 2022-05-27 | 3M创新有限公司 | Coated abrasive article and method of making same |
CN114630725A (en) | 2019-10-23 | 2022-06-14 | 3M创新有限公司 | Shaped abrasive particles having concave voids in one of a plurality of sides |
AT523085B1 (en) * | 2019-10-30 | 2022-11-15 | Tyrolit Schleifmittelwerke Swarovski Kg | Method of making abrasive particles |
DE102019218560A1 (en) | 2019-11-29 | 2021-06-02 | Robert Bosch Gmbh | Foam abrasives and methods of making |
WO2021116883A1 (en) | 2019-12-09 | 2021-06-17 | 3M Innovative Properties Company | Coated abrasive articles and methods of making coated abrasive articles |
EP4081369A4 (en) | 2019-12-27 | 2024-04-10 | Saint-Gobain Ceramics & Plastics Inc. | Abrasive articles and methods of forming same |
KR20220120669A (en) | 2019-12-27 | 2022-08-30 | 세인트-고바인 세라믹스 앤드 플라스틱스, 인크. | Abrasive articles and methods of forming same |
EP4081370A4 (en) | 2019-12-27 | 2024-04-24 | Saint-Gobain Ceramics & Plastics Inc. | Abrasive articles and methods of forming same |
US20230038232A1 (en) | 2019-12-30 | 2023-02-09 | 3M Innovative Properties Company | Floor Finish Removal Pad Assembly and Method of Removing Floor Finish |
US20230059614A1 (en) | 2020-02-10 | 2023-02-23 | 3M Innovative Properties Company | Coated abrasive article and method of making the same |
AT523400B1 (en) | 2020-03-11 | 2021-08-15 | Tyrolit Schleifmittelwerke Swarovski Kg | Process for making abrasive particles |
WO2021186326A1 (en) | 2020-03-18 | 2021-09-23 | 3M Innovative Properties Company | Abrasive article |
WO2021214576A1 (en) | 2020-04-21 | 2021-10-28 | 3M Innovative Properties Company | Surface-modified nanoparticle additives in printable particle-containing compositions |
EP4139088A1 (en) | 2020-04-23 | 2023-03-01 | 3M Innovative Properties Company | Shaped abrasive particles |
WO2021234540A1 (en) | 2020-05-20 | 2021-11-25 | 3M Innovative Properties Company | Composite abrasive article, and method of making and using the same |
-
2013
- 2013-01-10 WO PCT/US2013/021065 patent/WO2013106597A1/en active Application Filing
- 2013-01-10 CN CN201380011078.7A patent/CN104136172B/en active Active
- 2013-01-10 JP JP2014551431A patent/JP5966019B2/en active Active
- 2013-01-10 EP EP19199306.2A patent/EP3705177A1/en active Pending
- 2013-01-10 CA CA2987793A patent/CA2987793C/en active Active
- 2013-01-10 CA CA3170246A patent/CA3170246A1/en active Pending
- 2013-01-10 US US13/738,890 patent/US8753742B2/en active Active
- 2013-01-10 RU RU2014131771/02A patent/RU2602581C2/en active
- 2013-01-10 CA CA3056658A patent/CA3056658C/en active Active
- 2013-01-10 AU AU2013207946A patent/AU2013207946B2/en active Active
- 2013-01-10 CA CA2860755A patent/CA2860755C/en active Active
- 2013-01-10 EP EP13735975.8A patent/EP2802436B1/en active Active
- 2013-01-10 BR BR112014017050-9A patent/BR112014017050B1/en active IP Right Grant
- 2013-01-10 KR KR1020147021801A patent/KR101667943B1/en active IP Right Grant
-
2014
- 2014-03-07 US US14/201,436 patent/US9238768B2/en active Active
-
2015
- 2015-12-09 US US14/964,229 patent/US9567505B2/en active Active
-
2016
- 2016-07-04 JP JP2016132739A patent/JP6235655B2/en active Active
-
2017
- 2017-01-10 US US15/402,860 patent/US9771506B2/en active Active
- 2017-08-21 US US15/681,796 patent/US10106715B2/en active Active
-
2018
- 2018-04-25 US US15/962,838 patent/US10364383B2/en active Active
-
2019
- 2019-07-01 US US16/459,044 patent/US11142673B2/en active Active
-
2020
- 2020-12-22 US US17/130,089 patent/US11649388B2/en active Active
-
2021
- 2021-09-08 US US17/447,078 patent/US11859120B2/en active Active
-
2023
- 2023-05-08 US US18/314,055 patent/US20230272254A1/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11859120B2 (en) | Abrasive particles having an elongated body comprising a twist along an axis of the body | |
US11590632B2 (en) | Abrasive particles having particular shapes and methods of forming such particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
FEPP | Fee payment procedure |
Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |