JP2006130586A - Cmp conditioner and manufacturing method thereof - Google Patents

Cmp conditioner and manufacturing method thereof Download PDF

Info

Publication number
JP2006130586A
JP2006130586A JP2004320764A JP2004320764A JP2006130586A JP 2006130586 A JP2006130586 A JP 2006130586A JP 2004320764 A JP2004320764 A JP 2004320764A JP 2004320764 A JP2004320764 A JP 2004320764A JP 2006130586 A JP2006130586 A JP 2006130586A
Authority
JP
Japan
Prior art keywords
abrasive grains
diamond abrasive
crystal orientation
plane
diamond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004320764A
Other languages
Japanese (ja)
Inventor
Tetsuji Yamashita
哲二 山下
Takashi Kimura
高志 木村
Naoki Rikita
直樹 力田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004320764A priority Critical patent/JP2006130586A/en
Publication of JP2006130586A publication Critical patent/JP2006130586A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain stable dressing performance over a long period of time while securing grinding performance to a polishing pad. <P>SOLUTION: Among a number of diamond abrasive grains, a group of diamond abrasive grains having a higher percentage content of diamond abrasive grains where the proportion of area occupied by crystal orientation 111 face is larger than that of the other faces is selected, and this group of diamond abrasive grains are dispersed in a plating liquid to be plated on the surface 2 of a base material 1 dipped in a plating solution, whereby among a number of diamond abrasive grains plated on the surface 2 of the base material 1, the proportion of diamond abrasive grains A1, A2, A4 to A6, A8, A9, the crystal orientation 111 faces (a) of which are oriented substantially parallel to the surface 2 of the base material 1 ranges from 65 to 95%, and the X-ray reflection intensity of the crystal orientation 111 face of the diamond abrasive grains is 2500 CPS or more. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体ウエハ等の研磨を行うCMP(化学機械的研磨)装置の研磨パッドのドレッシング(目立て)に用いられるCMPコンディショナおよびその製造方法に関するものである。   The present invention relates to a CMP conditioner used for dressing (sharpening) a polishing pad of a CMP (Chemical Mechanical Polishing) apparatus for polishing a semiconductor wafer or the like, and a method for manufacturing the same.

この種のCMPコンディショナとしては、例えば特許文献1に、CMPコンディショナの基材の表面に凸状突起を有するメッキ層が設けられ、この凸状突起にダイヤモンド砥粒が1つずつ、メッキによって固着すなわち鍍着されて分散配置されたものが提案されている。また、特許文献2には、シリコンウエハ等の研削そのものに用いるダイヤモンド砥石として、列状に同一の結晶方位を有する複数個の作用面が平坦な角柱ダイヤモンドチップまたはダイヤモンド原石をベース(基材)に鍍着したものも提案されており、さらに特許文献3には、研磨パッドに接触する複数のほぼ正八面体のダイヤモンド砥粒を、その各々の研磨パッドと対向する接触面が該研磨パッドと平行となるように配置したCMPコンディショナが提案されている。
特開2002−326165号公報 特開平11−156728号公報 特開2000−84831号公報
As this type of CMP conditioner, for example, in Patent Document 1, a plating layer having convex protrusions is provided on the surface of the base material of the CMP conditioner, and one diamond abrasive grain is plated on each of the convex protrusions by plating. There have been proposed ones that are fixed, that is, glued and distributed. Further, in Patent Document 2, as a diamond grindstone used for grinding itself of a silicon wafer or the like, a base (base material) is a prismatic diamond tip or a rough diamond with a plurality of flat working surfaces having the same crystal orientation in a row. In addition, Patent Document 3 discloses a plurality of substantially octahedral diamond abrasive grains in contact with the polishing pad, and contact surfaces facing each of the polishing pads are parallel to the polishing pad. A CMP conditioner arranged as described above has been proposed.
JP 2002-326165 A JP-A-11-156728 JP 2000-84831 A

ところが、上記特許文献1記載のCMPコンディショナにおいては、ダイヤモンド砥粒の切れ刃となる尖った先端がすべて上記メッキ層表側の作用面に垂直な方向を向くように鍍着されているので、ドレッシング当初は優れた切れ味を有して高いドレッシング性能が得られるものの、砥粒の摩耗によってこの尖った切れ刃の切れ味が早期に失われてしまうため、コンディショナ寿命は著しく短縮される結果となる。   However, in the CMP conditioner described in the above-mentioned Patent Document 1, since the sharp tips that become the cutting edges of the diamond abrasive grains are all attached so as to face the direction perpendicular to the action surface on the surface of the plating layer, dressing Although the dressing performance is high with excellent sharpness at the beginning, the sharpness of the sharp cutting edge is lost early due to wear of the abrasive grains, resulting in a significantly shortened conditioner life.

そこで、特に上述のようなCMPコンディショナにダイヤモンド砥粒を鍍着する際には、このダイヤモンド砥粒の結晶方位を上記特許文献2に記載のように揃えるようにするのが望ましく、取り分け特許文献3に記載のように正八面体のダイヤモンド砥粒の結晶面、すなわちダイヤモンド結晶の結晶方位111面が、研磨パッドと平行つまり基材表面と平行となるようにして、ドレッシングの際には研磨パッドに対向するこの結晶方位111面とその周りの他の面との稜線部を切刃として作用させることが、砥粒の摩耗による上記接触面の形状変化を抑えて長期に亙って安定したドレッシング性能を得る上で、より望ましいとされていた。ここで、このようなダイヤモンド砥粒の結晶方位を測定する方法としては、例えば極点測定法によってダイヤモンド砥粒の結晶面のX線反射強度を測定する方法が知られている。   Therefore, particularly when diamond abrasive grains are deposited on the above-described CMP conditioner, it is desirable to align the crystal orientation of the diamond abrasive grains as described in Patent Document 2 above. 3, the crystal plane of the octahedral diamond abrasive grains, that is, the crystal orientation 111 of the diamond crystal is parallel to the polishing pad, that is, parallel to the surface of the base material. Stable dressing performance over a long period of time by suppressing the shape change of the contact surface due to abrasive wear by allowing the ridgeline portion of this facing crystal orientation 111 plane and other surfaces around it to act as a cutting edge It was said that it was more desirable in obtaining. Here, as a method of measuring the crystal orientation of such diamond abrasive grains, for example, a method of measuring the X-ray reflection intensity of the crystal face of the diamond abrasive grains by a pole measurement method is known.

しかしながら、特許文献2のようにダイヤモンド砥粒の結晶方位を揃えて、特に特許文献3のようにほぼ正八面体のダイヤモンド砥粒各々の結晶方位111面を接触面として研磨パッドと平行となるように配置したCMPコンディショナでは、この結晶方位111面について高いX線反射強度が得られて上述のようにドレッシング性能の安定化が図られはするものの、すべての砥粒がドレッシング当初から常に上記接触面による面接触でしか研磨パッドに接触しなくなるとともに、砥粒の切刃として作用する上記稜線部が鈍角化して切れ味が損なわれてしまうため、得られるドレッシング性能自体は決して高いものとはならない。従って、そのようなCMPコンディショナでは、乏しいドレッシング性能で延々と研磨パッドをドレッシングするだけとなるため、パッドの研削性が損なわれてパッド洗浄不良すなわち目立て不足が生じ、CMP装置において研磨される半導体ウェハにスクラッチ等の不良が発生するおそれがある。   However, the crystal orientations of the diamond abrasive grains are aligned as in Patent Document 2, and in particular, as in Patent Document 3, the crystal orientation 111 plane of each of the approximately octahedral diamond abrasive grains is used as a contact surface so as to be parallel to the polishing pad. In the arranged CMP conditioner, high X-ray reflection intensity is obtained for the crystal orientation 111 plane and the dressing performance is stabilized as described above. However, all the abrasive grains always have the contact surface from the beginning of dressing. In addition to contact with the polishing pad only by surface contact due to the above, the above-mentioned ridge line portion acting as a cutting edge of the abrasive grains becomes obtuse and the sharpness is impaired, so that the obtained dressing performance itself is never high. Therefore, in such a CMP conditioner, since the polishing pad is only dressed endlessly with poor dressing performance, the pad grindability is impaired, resulting in poor pad cleaning, that is, lack of sharpness, and the semiconductor polished in the CMP apparatus. There is a possibility that defects such as scratches may occur on the wafer.

さらに、特許文献2では1mm〜2mm角の角柱ダイヤモンドチップや1.5mm〜2mmの三角形板状のダイヤモンド原石が砥粒として用いられ、また特許文献3でも500μm〜3000μmと粒径の大きなダイヤモンド砥粒が用いられている。ところが、このように粒径の大きな砥粒すべてを、その接触面が上述のように研磨パッドに平行となるように鍍着したCMPコンディショナでは、各砥粒の接触面自体の面積も大きくなるためにドレッシングの際に砥粒が研磨パッドを押圧する圧力が分散してしまい、パッド研削性が一層損なわれて洗浄不良によるスクラッチの発生が一層顕著となる。   Further, in Patent Document 2, 1 mm to 2 mm square prismatic diamond chips and 1.5 mm to 2 mm triangular triangular diamond stones are used as abrasive grains. In Patent Document 3, diamond abrasive grains having a large particle size of 500 μm to 3000 μm are used. Is used. However, in the CMP conditioner in which all the abrasive grains having such a large particle diameter are attached so that the contact surface thereof is parallel to the polishing pad as described above, the area of the contact surface itself of each abrasive grain also increases. For this reason, the pressure with which the abrasive grains press the polishing pad during dressing is dispersed, and the pad grindability is further impaired, and the occurrence of scratches due to poor cleaning becomes more prominent.

また、このように粒径の大きなダイヤモンド砥粒では、結晶が十分に成長しているために特許文献2のような角柱や三角形板状のチップあるいは原石や特許文献3のようなほぼ正八面体状の砥粒が比較的得られやすく、またそのような形状に加工するのも比較的容易であるのに対し、粒径の小さなダイヤモンド砥粒においては結晶の成長が不均一で、個々の砥粒の表面積のうち、例えば上述の結晶方位111面の占める面積の比率が大きい略正八面体に近い形状のものから、結晶方位100面の占める面積比率の大きい略正六面体に近いものまで、形状が様々である。   Further, in such diamond grains having a large grain size, the crystals are sufficiently grown, so that the prisms or triangular plate-like chips as in Patent Document 2 or the rough or octahedral shape as described in Patent Document 3 are used. However, it is relatively easy to obtain such an abrasive grain and it is relatively easy to process into such a shape. For example, the shape varies from a shape close to a regular octahedron having a large proportion of the area occupied by the above-described crystal orientation 111 plane to a shape close to a substantially regular hexahedron having a large area ratio occupied by the crystal orientation 100 plane. It is.

そして、市販の人工ダイヤモンド等にはこのような様々な形状のものが混在しているため、個々の砥粒の上記接触面の面積を小さくしようとして粒径の小さいダイヤモンド砥粒を用いると、これらのすべてを、例えば特許文献3のようにその結晶方位111面が研磨パッドと平行となるように結晶方位を揃えて鍍着するのは極めて困難となる。ちなみに、このような市販の人工ダイヤモンド砥粒をそのままメッキ液に分散して基材を浸漬し、その表面に電解メッキ等によりメッキ相を析出しつつダイヤモンド砥粒を固着することによって鍍着する、従来の一般的な電解メッキ法によるCMPコンディショナの製造方法では、上記結晶方位111面に関しては1500CPS程度のX線反射強度が得られるに過ぎない。   And, since commercially available artificial diamonds and the like have various shapes, if diamond abrasive grains having a small particle size are used in an attempt to reduce the area of the contact surface of each abrasive grain, For example, as in Patent Document 3, it is extremely difficult to attach all the crystal orientations such that the plane of the crystal orientation 111 is parallel to the polishing pad. Incidentally, such a commercially available artificial diamond abrasive is directly dispersed in the plating solution and immersed in the substrate, and adhered by fixing the diamond abrasive while depositing a plating phase on the surface by electrolytic plating, In a conventional CMP conditioner manufacturing method using a general electrolytic plating method, an X-ray reflection intensity of only about 1500 CPS can be obtained for the crystal orientation 111 plane.

また、特許文献2においては、まず接着剤を塗布した上記ベース上にピンセットまたは吸引式の保持具を用いてダイヤモンド砥粒を規則正しく並べることにより結晶方位を揃えて固着し、次いで余分な接着剤を除去した後に電気メッキによりメッキ被膜を成長させて鍍着するといった製造方法を採っている。しかしながら、こうして砥粒をピンセット等で1つずつベース上の固着するのは極めて非効率的であるうえ、上述のように1mm〜2mm程度の粒径の大きなダイヤモンドチップを並べる場合はまだしも、これより粒径の小さいダイヤモンド砥粒をこうして規則正しく並べることは極めて困難である。   In Patent Document 2, first, diamond abrasive grains are regularly arranged on the base coated with an adhesive by using tweezers or a suction-type holding tool so that the crystal orientation is aligned, and then an extra adhesive is attached. After removing, a manufacturing method is adopted in which a plating film is grown and adhered by electroplating. However, it is extremely inefficient to fix the abrasive grains on the base one by one with tweezers in this way, and when arranging diamond chips having a large particle size of about 1 mm to 2 mm as described above, It is extremely difficult to regularly arrange diamond abrasive grains having a small particle diameter in this way.

一方、引用文献3に記載の製造方法では、上記ほぼ正八面体をなすダイヤモンド砥粒をメッキ液に浸漬した反転型の固定面に充填して仮固定し、次いで電鋳法等によって固着層を形成して台座に接合した後に、反転型を除去して上記ダイヤモンド砥粒を露出させることにより、反転型の上記固定面に密着した砥粒の結晶方位111面が接触面として研磨パッドと平行となるようにしている。しかるに、粒径が500μm〜3000μmと大きくて正八面体に近い形状をなすダイヤモンド砥粒を用いたこの特許文献3では、上記結晶方位111面の面積も大きくなるため、比較的容易にこの結晶方位111面を反転型の固定面に密着するように仮固定して上記接触面として研磨パッドに平行とすることができるが、上述のように形状が様々な粒径の小さい市販のダイヤモンド砥粒をそのまま用いた場合には、上記従来の一般的なCMPコンディショナの製造方法と同様となって、結晶方位111面に関して高いX線反射強度を得ることはできない。   On the other hand, in the manufacturing method described in the cited document 3, the diamond-shaped grains forming the substantially octahedron are filled in an inversion-type fixing surface immersed in a plating solution and temporarily fixed, and then a fixing layer is formed by electroforming or the like. Then, after bonding to the pedestal, the inverted mold is removed to expose the diamond abrasive grains, so that the crystal orientation 111 plane of the abrasive grains in close contact with the fixed surface of the inverted mold is parallel to the polishing pad as a contact surface. I am doing so. However, in Patent Document 3 using diamond abrasive grains having a grain size as large as 500 μm to 3000 μm and having a shape close to a regular octahedron, the area of the crystal orientation 111 plane also increases, so this crystal orientation 111 is relatively easy. The surface can be temporarily fixed so as to be in close contact with the fixed surface of the inversion type, and the contact surface can be made parallel to the polishing pad. When used, it is not possible to obtain a high X-ray reflection intensity with respect to the crystal orientation 111 plane in the same manner as in the conventional method for manufacturing a conventional CMP conditioner.

本発明は、このような背景の下になされたもので、研磨パッドに対する研削性を確保しながらも、長期に亙って安定したドレッシング性能を得ることが可能なCMPコンディショナおよびその製造方法を提供することを目的としている。   The present invention has been made under such a background, and provides a CMP conditioner capable of obtaining stable dressing performance over a long period of time while ensuring grindability for a polishing pad, and a method for manufacturing the same. It is intended to provide.

上記課題を解決して、このような目的を達成するために、本発明のCMPコンディショナは、基材の表面に多数のダイヤモンド砥粒が鍍着されてなるCMPコンディショナであって、これらのダイヤモンド砥粒のうち、結晶方位111面が上記基材の表面と略平行に配向されたダイヤモンド砥粒の割合が65〜95%の範囲とされ、かつ上記ダイヤモンド砥粒の結晶方位111面のX線反射強度が2500CPS以上であることを特徴とする。また、本発明のCMPコンディショナの製造方法は、多数のダイヤモンド砥粒の中から、他の面よりも結晶方位111面の占める面積比率が大きいダイヤモンド砥粒(以下、主砥粒と称する。)の含有率が他の群よりも高い一群のダイヤモンド砥粒を選別し、この一群のダイヤモンド砥粒をメッキ液に分散して該メッキ液中に浸漬された基材の表面に鍍着することを特徴とする。   In order to solve the above problems and achieve such an object, the CMP conditioner of the present invention is a CMP conditioner in which a large number of diamond abrasive grains are deposited on the surface of a substrate, Among the diamond abrasive grains, the ratio of the diamond abrasive grains whose crystal orientation 111 plane is oriented substantially parallel to the surface of the substrate is in the range of 65 to 95%, and the X of the crystal orientation 111 plane of the diamond abrasive grains The line reflection intensity is 2500 CPS or more. Further, in the method for manufacturing a CMP conditioner of the present invention, among a large number of diamond abrasive grains, diamond abrasive grains in which the area ratio occupied by the crystal orientation 111 plane is larger than the other planes (hereinafter referred to as main abrasive grains). Selecting a group of diamond abrasive grains having a higher content than the other groups, dispersing the group of diamond abrasive grains in a plating solution, and depositing on the surface of the substrate immersed in the plating solution. Features.

まず、本発明のCMPコンディショナの製造方法において、多数のダイヤモンド砥粒から選別されてメッキ液中に分散される上記一群のダイヤモンド砥粒には、個々の砥粒においてその表面積全体に対し全ての結晶方位111面の占める面積の比率が結晶方位111面以外の他の面全ての占める面積比率よりも大きい上記主砥粒が、上記多数のダイヤモンド砥粒中の残りのダイヤモンド砥粒全てによって構成される他の群よりも高い含有率で含まれており、このような主砥粒が基材表面に接地して鍍着される際には、各主砥粒がより安定した姿勢をとろうとして、上記他の面よりも面積比率の大きい結晶方位111面の1つが基材表面に略平行に密着しようとする傾向が強くなる。ここで、ダイヤモンド結晶の結晶方位111面は上述のように正八面体の面構造をなすように配置されるので、このダイヤモンド砥粒の基材表面側に密着した上記結晶方位111面の反対側には、これと平行な他の1つの結晶方位111面が、やはり基材表面と略平行に基材表面表側を向いて配向されることとなる。   First, in the CMP conditioner manufacturing method of the present invention, the group of diamond abrasive grains selected from a large number of diamond abrasive grains and dispersed in the plating solution includes all the surface areas of the individual abrasive grains. The main abrasive grains in which the ratio of the area occupied by the crystal orientation 111 plane is larger than the area ratio occupied by all other surfaces other than the crystal orientation 111 plane is constituted by all the remaining diamond abrasive grains in the large number of diamond abrasive grains. When the main abrasive grains are grounded and bonded to the substrate surface, the main abrasive grains try to take a more stable posture. The tendency that one of the crystal orientation 111 planes having a larger area ratio than the other planes tends to adhere to the substrate surface substantially in parallel is increased. Here, since the crystal orientation 111 plane of the diamond crystal is arranged so as to form a regular octahedron plane structure as described above, the crystal orientation 111 plane in close contact with the substrate surface side of the diamond abrasive grain is opposite to the crystal orientation 111 plane. The other crystal orientation 111 plane parallel to this is oriented so as to face the base material surface substantially parallel to the base material surface.

ただし、市販の人工ダイヤモンド等においては様々な形状のものが混在しているのは上述した通りであり、上記一群のダイヤモンド砥粒の中にも、上記主砥粒以外の砥粒が、上記他の群よりは低い含有率であるものの混入する可能性はあり、そのような砥粒は、結晶方位111面以外の面積比率の大きい結晶面が基材表面側に密着して接地し、これとは反対側のやはり結晶方位111面以外の結晶面が表側を向くように配向される傾向が強くなる。また、メッキ液に分散された一群のダイヤモンド砥粒の中でも、一部の主砥粒は他の結晶面が基材表面表側に向けられて鍍着される一方で、主砥粒以外の砥粒でも結晶方位111面が表面表側に向けられて鍍着されるものもあり、そしてこのようにいずれかの結晶面が表側に向けられる以外に、結晶面同士の稜線部が表側に突き出すように向けられて鍍着される砥粒もある。   However, as described above, commercially available artificial diamond and the like are mixed in various shapes, and among the group of diamond abrasive grains, there are abrasive grains other than the main abrasive grains. Although the content rate is lower than that of the group, there is a possibility of mixing, such abrasive grains, the crystal surface having a large area ratio other than the crystal orientation 111 plane is in close contact with the substrate surface side, and is grounded. Tends to be oriented so that crystal planes other than the crystal orientation 111 plane on the opposite side face the front side. In addition, among a group of diamond abrasive grains dispersed in the plating solution, some main abrasive grains are adhered with other crystal faces directed toward the substrate surface, while abrasive grains other than the main abrasive grains. However, in some cases, the crystal orientation 111 plane is directed toward the surface side, and, in addition to any of the crystal surfaces directed to the front side as described above, the ridge line portion between the crystal faces is directed to the front side. There are also abrasive grains that are glued.

しかしながら、こうして鍍着される上記一群のダイヤモンド砥粒のうち、上述のように結晶方位111面が基材表面に略平行に表側に向けられるものと、結晶方位111面以外の他の結晶面が表側に向けられるものと、これら以外の上記稜線部が突き出されるものとの割合は、例えば上記一群のダイヤモンド砥粒中における主砥粒の含有率を選別の際に調整したりすることにより、概ね制御することが可能である。そして、少なくともこの一群のダイヤモンドにおける主砥粒の含有率が他の群より高いことから、市販人工ダイヤモンドを単にメッキ液に分散して鍍着しただけのものよりは、結晶方位111面が基材表面と略平行に配向されたダイヤモンド砥粒の割合を大きくすることができる。   However, among the group of diamond abrasive grains thus bonded, the crystal orientation 111 plane is directed to the front side substantially parallel to the substrate surface as described above, and other crystal planes other than the crystal orientation 111 plane are The ratio of the ones directed to the front side and the ones protruding from the ridge line portions other than these can be adjusted, for example, by adjusting the content of the main abrasive grains in the group of diamond abrasive grains, It can be generally controlled. And, since the content of main abrasive grains in at least this group of diamonds is higher than that in the other groups, the crystal orientation 111 plane is a base material rather than the one in which commercially available artificial diamond is simply dispersed and adhered in the plating solution. It is possible to increase the proportion of diamond abrasive grains that are oriented substantially parallel to the surface.

従って、例えばこのような製造方法によって製造される本発明のCMPコンディショナでは、上述のように基材の表面に鍍着される多数のダイヤモンド砥粒のうち、結晶方位111面が上記基材の表面と略平行に配向されたダイヤモンド砥粒の割合を65〜95%の範囲と、上記特許文献1や従来の一般的な製造方法によって製造されたものよりは十分に大きく、しかしながら特許文献2のようにすべての砥粒の結晶方位が揃えられて、特に特許文献3のように各々の結晶方位111面がすべて研磨パッドと平行となるように配置されたものよりは小さくすることができる。   Therefore, for example, in the CMP conditioner of the present invention manufactured by such a manufacturing method, among the many diamond abrasive grains adhered to the surface of the substrate as described above, the crystal orientation 111 plane is the surface of the substrate. The ratio of the diamond abrasive grains oriented substantially parallel to the surface is in the range of 65 to 95%, which is sufficiently larger than that produced by the above-mentioned Patent Document 1 and the conventional general production method. Thus, the crystal orientation of all the abrasive grains can be made uniform, and in particular, as in Patent Document 3, each crystal orientation 111 plane can be made smaller than that arranged so as to be all parallel to the polishing pad.

その一方で、残りの鍍着されたダイヤモンド砥粒は、他の結晶面が基材表面表側に向けられたものと、そして結晶面同士の稜線部が表側に突き出されたものとで構成されることとなるので、このうち後者のダイヤモンド砥粒の突き出た稜線部を切刃として作用させることができて研磨パッドの研削性を確保することができる。従って、本発明のCMPコンディショナによれば、上述のように大きな割合で鍍着された基材表面と略平行な結晶方位111面を有するダイヤモンド砥粒により、長期に亙って安定したドレッシング性能を得ることができてコンディショナ寿命の延長を図りながらも、上記稜線部を突き出して鍍着されたダイヤモンド砥粒によって高い研磨レートでCMP装置の研磨パッドをドレッシングすることができ、パッドの洗浄不良によるスクラッチ等が半導体ウェハに生じたりするのを確実に防止することが可能となる。   On the other hand, the remaining diamond abrasive grains are composed of those in which the other crystal faces are directed to the front surface side of the base material and those in which the ridge lines between the crystal faces are projected to the front side. Therefore, the ridge line portion from which the latter diamond abrasive grains protrude can be caused to act as a cutting blade, and the grindability of the polishing pad can be ensured. Therefore, according to the CMP conditioner of the present invention, stable dressing performance over a long period of time can be achieved by the diamond abrasive grains having the crystal orientation 111 plane substantially parallel to the base material surface that is deposited in a large proportion as described above. The polishing pad of the CMP apparatus can be dressed at a high polishing rate by the diamond abrasive grains protruding from the above ridge line portion and being attached while extending the life of the conditioner. It is possible to reliably prevent the occurrence of scratches or the like on the semiconductor wafer.

ここで、この結晶方位111面が基材表面と略平行に配向されたダイヤモンド砥粒の割合が上記範囲を下回ると、他の結晶面や上記稜線部が基材表面表側に向けられるダイヤモンド砥粒の割合が多くなって、ドレッシング性能の長期に亙る安定化を図ることができなくなるおそれが生じる。その一方で、逆に上記範囲を上回るほど結晶方位111面が基材表面と略平行とされて表側に配向されたダイヤモンド砥粒の割合が多くなりすぎると、ドレッシング性能は安定するものの高い研磨レートは得られず、研磨パッド研削性が損なわれてスクラッチ等が発生するおそれが生じるので、本発明のCMPコンディショナにおいては、上記結晶方位111面が基材表面と略平行に配向されて鍍着されるダイヤモンド砥粒の割合を65〜95%の範囲としている。さらに、こうして構成されたCMPコンディショナによれば、結晶方位111面が基材表面に略平行に配向されて表側を向く砥粒の割合が、特許文献1や従来のCMPコンディショナに比べて多いため、この結晶方位111面に関して高いX線反射強度を得ることができるが、上記と同様の理由から、このダイヤモンド砥粒の結晶方位111面のX線反射強度は2500CPS以上とされる。   Here, when the proportion of the diamond abrasive grains in which the crystal orientation 111 plane is oriented substantially parallel to the substrate surface is below the above range, the other crystal planes and the ridge line portions are directed to the substrate surface front side. This increases the ratio, and there is a risk that the dressing performance cannot be stabilized over a long period of time. On the other hand, if the ratio of the diamond abrasive grains whose crystal orientation 111 plane is substantially parallel to the substrate surface and is oriented on the front side becomes excessive as the above range is exceeded, the dressing performance becomes stable but the high polishing rate In the CMP conditioner of the present invention, the crystal orientation 111 plane is oriented substantially parallel to the surface of the base material, so that the polishing ability of the polishing pad is impaired and scratches may occur. The ratio of the diamond abrasive grains to be made is in the range of 65 to 95%. Further, according to the CMP conditioner thus configured, the ratio of the abrasive grains in which the crystal orientation 111 plane is oriented substantially parallel to the surface of the base material and faces the front side is larger than those in Patent Document 1 and the conventional CMP conditioner. Therefore, a high X-ray reflection intensity can be obtained with respect to the crystal orientation 111 plane, but for the same reason as described above, the X-ray reflection intensity of the crystal orientation 111 plane of the diamond abrasive grains is 2500 CPS or more.

なお、ドレッシング性能の一層の長期安定化を図りつつ研磨パッドの研削性の劣化を確実に防ぐには、このダイヤモンド砥粒の結晶方位111面のX線反射強度は、他の結晶面、例えば結晶方位110面のX線反射強度に対しては10〜230倍の範囲であることが望ましい。また、本発明のCMPコンディショナにおいて基材表面に鍍着される多数のダイヤモンド砥粒とは、そのうち結晶方位111面が基材表面と略平行に配向されるダイヤモンド砥粒の割合が上記範囲となりうる数の砥粒であって、理論上は、砥粒の粒度が#100の場合は25個/mm以上、砥粒の粒度が#200の場合は97個/mm以上、砥粒の粒度が#325の場合は201個/mm以上であればよいが、実際にはコンディショナの基材表面の大きさや研磨パッドの種類、必要とされるドレッシング性能等に応じて、これよりも多くのダイヤモンド砥粒が鍍着される。 In order to reliably prevent the deterioration of the grindability of the polishing pad while further stabilizing the dressing performance for a long period of time, the X-ray reflection intensity of the crystal orientation 111 plane of the diamond abrasive grains is different from that of other crystal planes such as crystal The X-ray reflection intensity on the azimuth 110 plane is preferably in the range of 10 to 230 times. Further, in the CMP conditioner of the present invention, the number of diamond abrasive grains adhered to the substrate surface is such that the ratio of the diamond abrasive grains whose crystal orientation 111 plane is oriented substantially parallel to the substrate surface is within the above range. a abrasive grains number that may, theoretically, 25 if abrasive grain size of # 100 / mm 2 or more, the abrasive grains of grain size in the case of # 200 97 / mm 2 or more, the abrasive grains If the particle size is # 325, it should be 201 pieces / mm 2 or more. Actually, depending on the size of the conditioner base material surface, the type of polishing pad, the required dressing performance, etc. Many diamond abrasive grains are deposited.

一方、本発明の製造方法においても、多数のダイヤモンド砥粒とは、例えば上記本発明のCMPコンディショナを製造する場合に、仮に選別前の多数のダイヤモンド砥粒が全て上記主砥粒であって、これらが全て上記一群のダイヤモンド砥粒として選別され、しかもこの一群のダイヤモンド砥粒全てが基材表面に鍍着されるとすれば、理論上は上記と同様の粒度に対する単位面積当たりの個数以上であればよいが、実際にはやはりこれよりも多くのダイヤモンド砥粒から上記一群のダイヤモンド砥粒が選別される。そして、この多数のダイヤモンド砥粒、特に市販の人工ダイヤモンドのような砥粒の中から、上述のように主砥粒の含有率が他の群よりも高い一群のダイヤモンド砥粒を選別するには、例えば砥粒1つ1つの形状等を拡大鏡や顕微鏡で確認しながら選り分けてゆくことも可能ではあるが非効率的であるので、上記多数のダイヤモンド砥粒を振動台上に分散して振動を与えることにより、上記一群のダイヤモンド砥粒を転動させて上記他の群のダイヤモンド砥粒から選別するのが望ましい。   On the other hand, also in the manufacturing method of the present invention, a large number of diamond abrasive grains means that, for example, when manufacturing the above-described CMP conditioner of the present invention, all of the numerous diamond abrasive grains before selection are the main abrasive grains. If these are all selected as the group of diamond abrasive grains, and all of the group of diamond abrasive grains are adhered to the substrate surface, theoretically, the number per unit area with respect to the same grain size as above However, in practice, the group of diamond abrasive grains is selected from more diamond abrasive grains. In order to select a group of diamond abrasive grains in which the content of the main abrasive grains is higher than that of the other groups as described above, from among such a large number of diamond abrasive grains, particularly abrasive grains such as commercially available artificial diamonds. For example, it is possible to select each abrasive grain while checking the shape of each abrasive grain with a magnifying glass or microscope, but this is inefficient. It is desirable to roll the one group of diamond abrasive grains and select from the other group of diamond abrasive grains.

すなわち、結晶方位111面以外の他の結晶面、例えば結晶方位100面は上述のように正六面体の面構造配置をとるため、このような他の面の占める面積比率が大きいダイヤモンド砥粒に振動を与えると、砥粒が転動してもこの他の面が振動台の上面に面接触したところで安定してそれ以上転がったりし難くなる。ところが、これに対して、結晶方位111面は正八面体の面構造の配置をとるために、粒径が同じならば個々の結晶方位111面の面積は小さく、砥粒自体も、面の数が無限大となる球形により近い形状となるので、このような結晶方位111面の占める面積比率が他の面より大きい主砥粒は、一旦この結晶方位111面が振動台上面に面接触しても振動を与え続けることによって転動し易い。従って、上記多数のダイヤモンド砥粒に振動を与えながら、転動して他の群から分離されたものを回収することにより、上記主砥粒を他の群よりも高い含有率となるように選別して、確実かつ容易に上記一群のダイヤモンド砥粒を得ることができる。   That is, other crystal planes other than the crystal orientation 111 plane, such as the crystal orientation 100 plane, take a regular hexahedron plane structure arrangement as described above, and thus vibrate in the diamond abrasive grains having a large area ratio. If the abrasive grain rolls, it will be difficult to stably roll when the other surface comes into surface contact with the upper surface of the vibration table. However, since the crystal orientation 111 plane has a regular octahedron plane structure arrangement, the area of each crystal orientation 111 plane is small if the grain size is the same, and the abrasive grains themselves have a number of faces. Since the shape becomes closer to an infinite sphere, the main abrasive grains having a larger area ratio of the crystal orientation 111 plane than the other planes are once in contact with the upper surface of the vibration table. It is easy to roll by continuing to give vibration. Therefore, the main abrasive grains are selected so as to have a higher content than the other groups by collecting those separated from other groups by rolling while applying vibration to the numerous diamond abrasive grains. Thus, the group of diamond abrasive grains can be obtained reliably and easily.

さらに、このように振動を与えて上記一群のダイヤモンド砥粒を選別する場合には、上記主砥粒がこの一群のダイヤモンド砥粒中に含まれる含有率を、砥粒の粒度あるいは粒径(平均粒径)と振動が与えられる時間とにより、上述のように概ね制御することができる。言い換えれば、粒径の小さな砥粒でも振動時間を調整することにより、一群のダイヤモンド砥粒中における主砥粒の含有率を他の群よりも高いほぼ所定の含有率に制御することができるので、これに伴い、かかる粒径の小さな一群のダイヤモンド砥粒を鍍着して製造されるCMPコンディショナにおいても、基材表面に結晶方位111面が略平行に配向されて鍍着されるダイヤモンド砥粒の割合を、上述のような範囲に制御することが可能となる。   Further, when the group of diamond abrasive grains is selected by applying vibration in this manner, the content of the main abrasive grains contained in the group of diamond abrasive grains is determined by the grain size or grain size (average of the abrasive grains). Depending on the particle size) and the time during which vibration is applied, it can be generally controlled as described above. In other words, it is possible to control the content of the main abrasive grains in one group of diamond abrasive grains to a substantially predetermined content ratio higher than that of the other groups by adjusting the vibration time even for abrasive grains having a small grain size. Accordingly, even in a CMP conditioner manufactured by depositing a group of diamond abrasive grains having such a small particle size, the diamond abrasive in which the crystal orientation 111 plane is oriented substantially parallel to the substrate surface It becomes possible to control the ratio of the grains within the above-described range.

従って、特にこのような製造方法によって製造される本発明のCMPコンディショナでは、砥粒の粒径を、例えば特許文献2の1mm〜2mmあるいは1.5mm〜2mmや特許文献3の500μm〜3000μmより小さくしても、上述のような効果を確実に奏功することができ、その上で粒径が小さくなることにより、結晶方位111面が基材表面と略平行された個々のダイヤモンド砥粒において、基材表面表側に向けられる結晶方位111面の面積も小さくなるので、ドレッシングの際に砥粒が研磨パッドを押圧する圧力が分散してしまうのを防ぐことが可能となる。このため、そのような本発明のCMPコンディショナによれば、この結晶方位111面が基材表面と略平行に表側に向けられたダイヤモンド砥粒によってもパッド研削性の向上が図られるので、より高いパッド研磨レートを長期に亙って維持することができ、実用上工具寿命に優れたコンディショナを提供することが可能となる。   Therefore, especially in the CMP conditioner of the present invention manufactured by such a manufacturing method, the grain size of the abrasive grains is, for example, from 1 mm to 2 mm or 1.5 mm to 2 mm in Patent Document 2 or from 500 μm to 3000 μm in Patent Document 3. Even if it is reduced, the above-described effects can be surely achieved, and by reducing the grain size, the individual diamond abrasive grains whose crystal orientation 111 plane is substantially parallel to the substrate surface, Since the area of the crystal orientation 111 face directed to the front surface of the base material is also reduced, it is possible to prevent the pressure with which the abrasive grains press the polishing pad during dressing from being dispersed. Therefore, according to such a CMP conditioner of the present invention, the pad grindability can be improved even by diamond abrasive grains whose crystal orientation 111 surface is directed to the front side substantially parallel to the substrate surface. A high pad polishing rate can be maintained over a long period of time, and a conditioner that is practically excellent in tool life can be provided.

なお、こうして砥粒の粒径を小さくする場合でも、これが例えば特許文献2、3の粒径などに比べて十分に小さくなければ、このような効果を確実に奏功することができなくなるおそれがある。ただし、その一方で、この砥粒の粒径が小さくなりすぎても、これに伴い基材表面表側に向けられる結晶方位111面の面積も小さくなることによって却って砥粒の摩耗による研削性の劣化が早期に生じてしまったり、あるいは砥粒自体が脱落しやすくなったりして、上述のような優れた工具寿命を必ずしも得ることができなくなるおそれが生じる。このため、上記砥粒の大きさは、ドレッシングされるパッドの種類等に応じた研磨レートなどにもよるが、粒度において#80〜#500の範囲、粒径(平均粒径)にして250〜30μmの範囲とされるのが望ましい。   Even when the grain size of the abrasive grains is reduced in this way, if this is not sufficiently smaller than the grain sizes of Patent Documents 2 and 3, for example, there is a possibility that such an effect cannot be reliably achieved. . However, on the other hand, even if the grain size of this abrasive grain becomes too small, the area of the crystal orientation 111 face directed to the surface side of the substrate surface is also reduced, thereby reducing the grindability due to abrasive wear. May occur at an early stage, or the abrasive grains may easily fall off, and the above-described excellent tool life may not necessarily be obtained. For this reason, the size of the abrasive grains depends on the polishing rate according to the type of pad to be dressed, etc., but the particle size ranges from # 80 to # 500, and the particle size (average particle size) is 250 to 250. The range of 30 μm is desirable.

一方、本発明の製造方法にあっては、上記基材表面に、上記一群のダイヤモンド砥粒を鍍着するのに先立って、互いに等しい大きさの複数の穴部を有するマスキングを被覆することにより、この穴部内には、その内径よりも小さな粒径のダイヤモンド砥粒しか鍍着されなくなるので、万一メッキ液に分散される上記一群のダイヤモンド砥粒中に粒径の極端に大きな砥粒が混入したとしても、かかる砥粒が基材表面に鍍着されるのを避けることができる。このため、このような粒径の大きな砥粒によって研磨パッドが徒に傷つけられてしまうような事態が生じるのを防ぐことができる。   On the other hand, in the production method of the present invention, the surface of the base material is coated with a mask having a plurality of holes of equal size prior to the deposition of the group of diamond abrasive grains. In this hole, only diamond abrasive grains having a particle size smaller than the inner diameter are adhered, so that in the above-mentioned group of diamond abrasive particles dispersed in the plating solution, abrasive grains having extremely large particle sizes are present. Even if it mixes, it can avoid that this abrasive grain adheres to the base-material surface. For this reason, it is possible to prevent a situation in which the polishing pad is damaged by the abrasive grains having such a large particle diameter.

そして、穴部内に鍍着される砥粒は、上述のように安定した姿勢をとろうとして面積比率の大きい結晶面を基材表面に密着させて接地する傾向が強いので、結果的に各穴部内には粒径に応じた略等しい数ずつのダイヤモンド砥粒が鍍着されることとなる。従って、このようにして製造されるCMPコンディショナにおいては、上記穴部に対応して基材表面に画成される互いに等しい大きさの複数の領域ごとに、上記ダイヤモンド砥粒が略等しい数ずつ鍍着されることとなり、すなわち穴部の大きさと砥粒の大きさとに基づいて上記各領域に鍍着される砥粒の数をも制御することが可能となるので、上述のような研磨パッドの種類等に応じた適正な研磨レートを確実に維持できるとともに、基材表面全体にわたって均一なドレッシング性能を得ることが可能となる。   And since the abrasive grains to be adhered in the hole portion tend to come into contact with the base material surface in close contact with the crystal surface having a large area ratio in order to take a stable posture as described above, as a result In the part, approximately equal numbers of diamond abrasive grains corresponding to the particle diameter are deposited. Therefore, in the CMP conditioner manufactured in this way, the diamond abrasive grains are approximately equal in number for each of a plurality of regions of the same size defined on the substrate surface corresponding to the holes. In other words, the number of abrasive grains to be adhered to each of the regions can be controlled based on the size of the hole and the size of the abrasive grains. It is possible to reliably maintain an appropriate polishing rate according to the type of the material and to obtain uniform dressing performance over the entire surface of the substrate.

なお、上記一群のダイヤモンド砥粒を電解メッキによって基材表面に鍍着する場合には、上記マスキングとして絶縁性のものを用いることにより、このマスキングの表面にメッキ相が析出したり砥粒が鍍着されたりすることはないので、マスキングで基材表面を被覆したままのCMPコンディショナによって研磨パッドのドレッシングを行うことも可能となる。勿論、こうして絶縁性のマスキングを基材表面に被覆してダイヤモンド砥粒を鍍着した後に、基材表面からマスキングを剥離してもよい。   When the group of diamond abrasive grains is adhered to the substrate surface by electrolytic plating, an insulating material is used as the masking, so that a plating phase is deposited on the surface of the masking or the abrasive grains are wrinkled. Therefore, the polishing pad can be dressed by a CMP conditioner whose surface is covered with a mask. Of course, the masking may be peeled off from the surface of the substrate after coating the insulating mask on the surface of the substrate and depositing the diamond abrasive grains.

さらに、上述のような穴部を有するマスキングで基材表面を被覆して砥粒を鍍着する本発明の製造方法では、このマスキングを被覆した基材表面に下地メッキを施した後に上記ダイヤモンド砥粒を鍍着することにより、この下地メッキの層の厚さ分だけダイヤモンド砥粒は穴部内で基材表面から一段突出した位置に鍍着されることとなる。従って、このようにして製造される本発明のCMPコンディショナでは、穴部によって画成される上記複数の領域が基材表面から一段突出させられて、その上に上記一群のダイヤモンド砥粒が鍍着されることとなるため、特に上述のようにマスキングを剥離して使用する場合には、この突出した領域の間の空間を介してドレッシングの際に発生する研削屑を円滑に排出するとともに基材表面全体に研削液を満遍なく行き渡らせることができ、一層効率的なドレッシングを促すことが可能となる。   Furthermore, in the manufacturing method of the present invention in which the surface of the base material is coated with the masking having the holes as described above and the abrasive grains are adhered, the diamond grinding is performed after the base surface is coated on the surface of the base material coated with this masking. By depositing the grains, the diamond abrasive grains are deposited at a position protruding one step from the surface of the substrate in the hole by the thickness of the layer of the base plating. Therefore, in the CMP conditioner of the present invention manufactured as described above, the plurality of regions defined by the holes are protruded one step from the surface of the base material, and the group of diamond abrasive grains are formed on the plurality of regions. In particular, when the masking is peeled off as described above, grinding waste generated during dressing is smoothly discharged through the space between the protruding regions and the base is used. The grinding liquid can be evenly distributed over the entire material surface, and more efficient dressing can be promoted.

図1ないし図5は、本発明のCMPコンディショナの製造方法の一実施形態を説明するものであり、このうち特に図4および図5は、それぞれこの実施形態の製造方法によって製造された本発明のCMPコンディショナの実施の形態を示すものである。本実施形態の製造方法においては、まずステンレス等の金属材料よりなる基材1を円盤状に加工し、その一方の円形面をこの基材1の表面2として機械加工により平滑に仕上げる。次いで、この表面2に、アクリル等の絶縁性材料よりなるマスク加工したドライフィルムを貼り付けるなどして、図1に示すように互いに等しい大きさの複数の穴部3が形成されたマスキング4を被覆する。ここで、上記穴部3は、マスキング4を貫通するように形成された例えば円形穴であって、格子状あるいは千鳥状等の配置をなして等間隔に形成されいる。   1 to 5 illustrate one embodiment of a CMP conditioner manufacturing method according to the present invention. Of these, FIGS. 4 and 5 show the present invention manufactured by the manufacturing method according to this embodiment. 1 shows an embodiment of a CMP conditioner. In the manufacturing method of the present embodiment, the base material 1 made of a metal material such as stainless steel is first processed into a disk shape, and one of the circular surfaces is smoothed as a surface 2 of the base material 1 by machining. Next, a mask 4 having a plurality of holes 3 of the same size as shown in FIG. 1 is formed on the surface 2 by attaching a masked dry film made of an insulating material such as acrylic. Cover. Here, the hole 3 is, for example, a circular hole formed so as to penetrate the masking 4, and is formed at equal intervals in a lattice or zigzag arrangement.

こうしてマスキング4が施された基材1には、前処理が施される。この前処理では、まず基材1を酸系の脱脂液槽に浸漬して洗浄し、次いで純水によって水洗を行い、さらに水切りをした後、Ni電着を可能とするためのシード形成となるストライクメッキを行う。このストライクメッキは、基材1をNiメッキ液中に浸漬して高電流密度で1μm〜5μm程度の薄いストライクメッキ層(図示略)を表面2に形成するものであり、ただしこのストライクメッキ層は、絶縁性のマスキング4によって被覆された部分には形成されずに、表面2のうちNiメッキ液中に露出する上記穴部3内の部分にのみ形成される。   Thus, the base material 1 to which the masking 4 has been applied is pretreated. In this pretreatment, the substrate 1 is first immersed and washed in an acid-based degreasing bath, then washed with pure water, drained, and then seeded to enable Ni electrodeposition. Perform strike plating. In this strike plating, the substrate 1 is immersed in a Ni plating solution to form a thin strike plating layer (not shown) having a high current density of about 1 μm to 5 μm on the surface 2, provided that the strike plating layer is It is not formed in the portion covered with the insulating masking 4 but only in the portion of the surface 2 in the hole 3 exposed in the Ni plating solution.

次いで、このように前処理が施された基材1は、再び純水によって洗浄された後に水切りされ、下地メッキが施される。すなわち、この下地メッキ処理では、基材1を陰極に接続して上記表面2が上向きとなるようにスルファミン酸Ni液(メッキ液)に浸漬し、同じくこのスルファミン酸Ni液液中に浸漬された陽極との間で電流を流すことにより、図2に示すように基材1の表面2のうち、やはり上記マスキング4で被覆された部分を除いて、穴部3内の表面2上に形成された上記ストライクメッキ層の上に下地Niメッキ層5が形成される。この下地Niメッキ層5は、その厚さが10μm〜20μmと上記ストライクメッキ層よりも厚く、マスキング4の厚さよりは薄くされたものであって、各穴部3内に形成される下地Niメッキ層5同士の厚さは互いに略等しくされ、またその上面は基材1の表面と略平行とされる。   Next, the base material 1 that has been pretreated in this manner is washed again with pure water, drained, and subjected to base plating. That is, in this base plating treatment, the substrate 1 was connected to the cathode and immersed in a sulfamic acid Ni solution (plating solution) so that the surface 2 faced up, and was similarly immersed in the sulfamic acid Ni solution. By passing an electric current between the anode and the anode, it is formed on the surface 2 in the hole 3 except for the portion covered with the masking 4 of the surface 2 of the substrate 1 as shown in FIG. A base Ni plating layer 5 is formed on the strike plating layer. The base Ni plating layer 5 has a thickness of 10 μm to 20 μm, which is thicker than the strike plating layer and thinner than the thickness of the masking 4, and is a base Ni plating formed in each hole 3. The thicknesses of the layers 5 are substantially equal to each other, and the upper surfaces thereof are substantially parallel to the surface of the substrate 1.

そして、所定の厚さの下地Niメッキ層5が形成されたなら、メッキ液としての上記スルファミン酸Ni液にダイヤモンド砥粒を分散して、該メッキ液に浸漬された基材1の表面2のうち、マスキング4で被覆された以外の上記下地Niメッキ層5の上にこのダイヤモンド砥粒を鍍着するのであるが、このとき本実施形態ではこのダイヤモンド砥粒として、多数のダイヤモンド砥粒の中から、上記主砥粒が他の群よりも高い含有率で含まれるように一群のダイヤモンド砥粒を選別し、この一群のダイヤモンド砥粒を上記メッキ液に分散して基材1の表面2に鍍着する。さらに本実施形態では、このような一群のダイヤモンド砥粒を選別するのに、上記多数のダイヤモンド砥粒を振動台上に分散して振動を与えることにより転動させ、この一群のダイヤモンド砥粒を他の群のダイヤモンド砥粒から選別するようにしている。   And if the foundation | substrate Ni plating layer 5 of predetermined thickness is formed, a diamond abrasive grain will be disperse | distributed to the said sulfamic-acid Ni liquid as a plating liquid, and the surface 2 of the base material 1 immersed in this plating liquid Of these, the diamond abrasive grains are deposited on the base Ni plating layer 5 other than the one coated with the masking 4. At this time, in the present embodiment, the diamond abrasive grains include a number of diamond abrasive grains. Then, a group of diamond abrasive grains is selected so that the main abrasive grains are contained at a higher content than the other groups, and this group of diamond abrasive grains is dispersed in the plating solution to form the surface 2 of the substrate 1. Wear it. Further, in the present embodiment, in order to select such a group of diamond abrasive grains, the above-described many diamond abrasive grains are dispersed on a vibrating table and are caused to roll by applying vibrations. A selection is made from another group of diamond abrasive grains.

この振動台は、例えば外周側から内周側に向かうに従い断面階段状をなして段階的に下方に落ち込んでゆく擂り鉢型の凹部を有して、水平振動が与えられるようになされたものであり、この凹部の上側の平坦な階段面に、所定の粒度の市販の人工ダイヤモンド砥粒を分散して振動を与える。すると、このような比較的粒径の小さい市販の人造ダイヤモンドに含まれる様々な形状の砥粒のうち、結晶方位111面以外の他の面が占める面積比率の大きいダイヤモンド砥粒、例えば結晶方位100面の面積比率の大きい砥粒は、この結晶方位100面が正六面体の面構造をとることからより正六面体に近い形状となるため、振動によって転動しても、いずれかの結晶方位100面が振動台の上記平坦な階段面に面接触して載置されたところでそれ以上は転がり難くなり、そのまま凹部上側に残されることになる。   This shaking table has, for example, a bowl-shaped concave portion that has a stepped cross section and gradually falls downward from the outer peripheral side toward the inner peripheral side, so that horizontal vibration is applied. Yes, commercially available artificial diamond abrasive grains having a predetermined particle size are dispersed on the flat stepped surface above the concave portion to give vibration. Then, among abrasive grains of various shapes included in such a commercially available artificial diamond having a relatively small grain size, diamond abrasive grains having a large area ratio occupied by other faces other than the crystal orientation 111 face, for example, crystal orientation 100 Abrasive grains having a large surface area ratio have a shape closer to a regular hexahedron since the crystal plane 100 has a regular hexahedron plane structure. However, when it is placed in surface contact with the flat step surface of the vibration table, it becomes difficult to roll any more and remains on the upper side of the recess.

ところが、これに対して、砥粒の表面積のうちこのような他の面よりも結晶方位111面の占める面積の比率が大きい主砥粒は、この結晶方位111面が正八面体の面構造をとるために、例えば上述のような正六面体の面構造をとる結晶方位100面の占める割合の大きい砥粒よりは振動によって転がり易く、すなわちいずれかの結晶方位111面が振動台の階段面に面接触して載置されても、さらに振動を与えることで比較的容易に転動してしまう。従って、このような主砥粒は、振動を与え続けることで凹部の外周上側の階段面から順次転がり落ちて内周下側の階段面へと降下してゆき、最終的に擂り鉢型の凹部の底に集められて凹部上側に残された砥粒から分けられるので、このような砥粒を回収することにより、多数のダイヤモンド砥粒の中から一群のダイヤモンド砥粒を他の群のダイヤモンド砥粒に対して選別し、かつ、この一群のダイヤモンド砥粒において主砥粒が含まれる含有率を、上記他の群よりも高くすることができるのである。   On the other hand, the main abrasive grains in which the ratio of the area occupied by the crystal orientation 111 plane is larger than that of other surfaces in the surface area of the abrasive grains, the crystal orientation 111 plane has a regular octahedral plane structure. Therefore, for example, it is easier to roll by vibration than abrasive grains having a large proportion of the crystal orientation 100 plane having the regular hexahedron plane structure as described above, that is, any crystal orientation 111 plane is in surface contact with the step surface of the vibration table. Even if it is mounted, it rolls relatively easily by giving further vibration. Therefore, such main abrasive grains roll down sequentially from the stepped surface on the outer periphery of the recess and continue to fall to the stepped surface on the lower side of the inner periphery by continuing to give vibration, and finally the bowl-shaped recess Therefore, by collecting such abrasive grains, one group of diamond abrasive grains can be removed from the other diamond abrasive grains by collecting such abrasive grains. The content of the main abrasive grains contained in this group of diamond abrasive grains can be made higher than that of the other groups.

さらに、こうして選別された一群のダイヤモンド砥粒中における主砥粒の含有率は、砥粒の粒度と該一群のダイヤモンド砥粒を選別する際の振動時間とによって概ね制御することができる。すなわち、与えられる振動の周期や振幅等にもよるが、同じ振動台で同じ振動を与えた場合には、粒度の小さい砥粒ほど主砥粒が転動し易くなり、また振動時間が長いほど主砥粒をより確実に転動させて他の砥粒から分離させることができるので、選別された一群のダイヤモンド砥粒中の主砥粒の含有率を高くすることができる。そして、このような粒度および振動時間と選別された一群のダイヤモンド砥粒中の主砥粒の含有率との関係は実験的に求めることが可能であるので、基材1の表面2に鍍着するダイヤモンド砥粒の粒度に応じて振動時間を調整することにより、主砥粒が略所定の含有率とされた一群のダイヤモンド砥粒を選別することが可能となるのである。なお、この砥粒の粒度は#80〜#500の範囲(平均粒径にして250〜30μmの範囲)内で所定の粒度に設定されるのが望ましい。   Furthermore, the content of the main abrasive grains in the group of diamond abrasive grains selected in this way can be generally controlled by the grain size of the abrasive grains and the vibration time for selecting the group of diamond abrasive grains. In other words, depending on the period and amplitude of vibration applied, when the same vibration is applied on the same vibration table, the smaller the grain size, the easier the main abrasive grains to roll and the longer the vibration time. Since the main abrasive grains can be more reliably rolled and separated from other abrasive grains, the content of the main abrasive grains in the selected group of diamond abrasive grains can be increased. Since the relationship between the grain size and the vibration time and the content of main abrasive grains in the selected group of diamond abrasive grains can be obtained experimentally, it adheres to the surface 2 of the substrate 1. By adjusting the vibration time according to the particle size of the diamond abrasive grains to be performed, it becomes possible to select a group of diamond abrasive grains in which the main abrasive grains have a substantially predetermined content. The grain size of the abrasive grains is desirably set to a predetermined grain size within a range of # 80 to # 500 (an average grain size of 250 to 30 μm).

こうして選別された一群のダイヤモンド砥粒を上記メッキ液に分散すると、砥粒はメッキ液中で浮遊しながら沈降し、図3に示すように基材1の表面2においてマスキング4の穴部3内に形成された下地Niメッキ層5上に接地するが、こうして接地するダイヤモンド砥粒中の主砥粒の割合は、一群のダイヤモンド砥粒中の主砥粒の上記含有率と略等しくなる。なお、図3では説明のため、他の面よりも結晶方位111面aの占める面積比率が大きい上記主砥粒A1〜A9全てを、この結晶方位111面aによる面構造がなす正八面体の側面視形状に基づいて、鈍角部を結ぶ対角線が引かれた菱形で示しているが、特に粒径の小さい市販人工ダイヤモンドにおいては、このように正八面体に近い形状のもの、すなわち該結晶方位111面が正三角形状をなすものから、この結晶方位111面の占める面積比率が大きくても、例えば互いに平行な一対の八角形の結晶方位111面を有してその周りに他の結晶面が配された算盤玉状のものなど、様々な形状に変形したものまでが上記主砥粒として含まれているのは上述した通りである。   When a group of diamond abrasive grains thus selected is dispersed in the plating solution, the abrasive grains settle while floating in the plating solution, and in the hole 3 of the masking 4 on the surface 2 of the substrate 1 as shown in FIG. The ratio of the main abrasive grains in the diamond abrasive grains to be grounded is substantially equal to the above-described content ratio of the main abrasive grains in the group of diamond abrasive grains. In FIG. 3, for the purpose of explanation, all of the main abrasive grains A1 to A9 having a larger area ratio occupied by the crystal orientation 111 plane a than other planes are side faces of the octahedron formed by the plane structure of the crystal orientation 111 plane a. Based on the visual shape, it is shown by a rhombus with a diagonal line connecting the obtuse angle part. Particularly, in a commercially available artificial diamond having a small particle size, a shape close to a regular octahedron, that is, the crystal orientation 111 plane Even if the area ratio occupied by this crystal orientation 111 plane is large, for example, it has a pair of octagonal crystal orientation 111 planes parallel to each other and other crystal planes are arranged around it. As described above, the main abrasive grains include those that are deformed into various shapes, such as abacus balls.

また、この図3では、下地Niメッキ層5上に接地した一群のダイヤモンド砥粒のうち上記主砥粒A1〜A9以外の他の砥粒B1〜B3全てを、結晶方位100面の占める面積比率の大きいもので代表して、この結晶方位100面bによる面構造がなす正六面体の側面視形状に基づき正方形で示してあるが、この主砥粒以外の他の砥粒についても、このように結晶方位100面の比率の大きい正六面体に近い形状のものから、これよりも変形したもの、そしてさらにこれら結晶方位111面や結晶方位100面以外の他の結晶面、例えば結晶方位110面が占める面積比率の大きいものなど、様々な形状の砥粒までが含まれることとなる。さらに、こうして砥粒をメッキ液に分散すると、基材1の表面2のうち上記下地Niメッキ層5以外のマスキング4上にも主砥粒や他の砥粒が接地して付着するが、これらの砥粒については、図3では図示を省略してある。   Further, in FIG. 3, the ratio of the area occupied by the crystal orientation 100 plane for all the abrasive grains B1 to B3 other than the main abrasive grains A1 to A9 among the group of diamond abrasive grains grounded on the base Ni plating layer 5. This is represented by a square based on the side view shape of a regular hexahedron formed by the plane structure of the crystal orientation 100 plane b, and other abrasive grains other than the main abrasive grains are represented in this way. From a shape close to a regular hexahedron having a large ratio of the crystal orientation 100 plane, a shape deformed more than this, and a crystal plane other than these crystal orientation 111 plane and crystal orientation 100 plane, for example, the crystal orientation 110 plane This includes abrasive grains of various shapes such as those having a large area ratio. Further, when the abrasive grains are dispersed in the plating solution in this way, the main abrasive grains and other abrasive grains are attached to the masking 4 other than the base Ni plating layer 5 on the surface 2 of the base material 1. These abrasive grains are not shown in FIG.

このような主砥粒A1〜A9および他の砥粒B1〜B3は、個々の砥粒が下地Niメッキ層5上に接地する際に安定した姿勢をとろうとするため、その大部分が面積比率の大きい結晶面を下地Niメッキ層5の上面に密着させるように、すなわち主砥粒は図3に示す主砥粒A1,A2,A4〜A6,A8,A9のように結晶方位111面aを下地Niメッキ層5上面に密着させ、また他の例えば結晶方位100面の占める面積比率の大きい砥粒は、図3に示す砥粒B1,B3のようにこの結晶方位100面bを下地Niメッキ層5上面に密着させて載置させられる。ところが、メッキ液中に分散される多数の砥粒のうち一部には、例えば図3の主砥粒A3,A7や他の砥粒B2のように、砥粒の結晶面同士の稜線部、すなわち結晶面以外の角部を基材1の表面2の表側(図1〜図5において上側)に向けるようにして接地するものもある。   Since the main abrasive grains A1 to A9 and the other abrasive grains B1 to B3 tend to take a stable posture when the individual abrasive grains are grounded on the underlying Ni plating layer 5, most of them are area ratios. The main abrasive grains have a crystal orientation 111 plane a as in the main abrasive grains A1, A2, A4 to A6, A8, A9 shown in FIG. For example, other abrasive grains having a large area ratio occupied by the crystal orientation 100 plane, such as the abrasive grains B1 and B3 shown in FIG. The layer 5 is placed in close contact with the upper surface. However, some of the many abrasive grains dispersed in the plating solution include, for example, ridges between crystal surfaces of the abrasive grains, such as the main abrasive grains A3 and A7 and other abrasive grains B2 in FIG. In other words, there are some which are grounded so that the corners other than the crystal face are directed to the front side (upper side in FIGS. 1 to 5) of the surface 2 of the substrate 1.

また、図示は略するが、主砥粒の中でも面積比率の大きい結晶方位111面以外の結晶面が下地Niメッキ層5の上面に接地してこれとは反対側の結晶方位111面以外の面が表面2表側に向けられるものもあれば、逆に主砥粒以外の砥粒でも面積比率が小さくなる結晶方位111面が下地Niメッキ層5上面に接地して反対側の結晶方位111面が表側向きとなるものもある。さらには、上述のように特に粒径の小さいダイヤモンド砥粒は様々な形状をとることから、いずれかの結晶面が下地Niメッキ層5上面に密着して接地した砥粒でも、この結晶面の反対側が結晶面同士の稜線部となって基材1の表面2表側に突き出すようにされるものもある。   Although not shown in the drawing, a crystal plane other than the crystal orientation 111 plane having a large area ratio among the main abrasive grains is grounded to the upper surface of the underlying Ni plating layer 5 and is a plane other than the crystal orientation 111 plane on the opposite side. May be directed to the surface 2 surface side, conversely, the crystal orientation 111 plane in which the area ratio is small even in abrasive grains other than the main abrasive grains is grounded to the upper surface of the underlying Ni plating layer 5 and the opposite crystal orientation 111 plane is Some are face up. Furthermore, as described above, diamond abrasive grains having a particularly small particle diameter take various shapes. Therefore, even if an abrasive grain in which any crystal face is in close contact with the upper surface of the underlying Ni plating layer 5 is grounded, In some cases, the opposite side becomes a ridge line portion between crystal faces and protrudes to the surface 2 front side of the substrate 1.

ただし、こうして基材1の表面2上(本実施形態では、さらにマスキング4の穴部3内の上記下地Niメッキ層5上)に接地する砥粒のうち、図3の主砥粒A1,A2,A4〜A6,A8,A9のように結晶方位111面aを基材1の表面2と平行に表側に向けたものと、砥粒B1,B3のように結晶方位100面b等の他の結晶面を表面2と平行に表側に向けたものと、さらに主砥粒A3,A7や砥粒B2のように結晶面同士の稜線部を表側に向けたものとの割合は、メッキ液に分散される上記一群のダイヤモンド砥粒が結晶方位111面の占める面積比率の大きい主砥粒の含有率の高いものとされ、かかる主砥粒は上述のような安定した姿勢を散りやすいことから、図3に示したように結晶方位111面aを基材1の表面2と略平行に表側に向けたものの割合が多くなる。しかも、これら3種の砥粒の割合は、上述のように一群のダイヤモンド砥粒中における主砥粒の含有率を制御することにより、この含有率に応じて概ね調整することが可能であり、本実施形態の製造方法ではこのうち結晶方位111面aが基材1の表面2と略平行とされたものの割合が65〜95%の範囲となるようにされている。   However, among the abrasive grains thus grounded on the surface 2 of the substrate 1 (in this embodiment, further on the underlying Ni plating layer 5 in the hole 3 of the masking 4), the main abrasive grains A1, A2 in FIG. , A4 to A6, A8, A9 and the like, with the crystal orientation 111 plane a facing the front side in parallel with the surface 2 of the substrate 1, and other crystal orientation 100 plane b such as abrasive grains B1 and B3 The ratio of the crystal surface facing the front side parallel to the surface 2 and the one having the ridge line portion between the crystal surfaces facing the front side like the main abrasive grains A3, A7 and abrasive grains B2 are dispersed in the plating solution. The above-mentioned group of diamond abrasive grains is assumed to have a high content of main abrasive grains with a large area ratio occupied by the crystal orientation 111 plane, and such main abrasive grains are likely to be scattered in a stable posture as described above. As shown in FIG. 3, the crystal orientation 111 plane a is substantially parallel to the surface 2 of the substrate 1. It becomes large proportion of those towards. Moreover, the ratio of these three kinds of abrasive grains can be generally adjusted according to the content ratio by controlling the content ratio of the main abrasive grains in the group of diamond abrasive grains as described above. In the manufacturing method of the present embodiment, the ratio of the crystal orientation 111 plane a that is substantially parallel to the surface 2 of the substrate 1 is in the range of 65 to 95%.

さらに、本実施形態では、互いに等しい大きさの複数の穴部3を有するマスキング4が基材1の表面2に被覆されて、この穴部3内に形成された下地Niメッキ層5上に所定の粒度の砥粒が接地することにより、各穴部3には略同数ずつの砥粒が収容されることとなる。すなわち、円形の穴部3の直径が、砥粒の平均粒径以上で2倍程度までの大きさなら穴部3内には砥粒が1つずつ収容されて上記下地Niメッキ層5に接地することとなり、平均粒径の2〜3倍程度までの大きさなら、図3に示すように略2つずつの砥粒が穴部3内に収容されて下地Niメッキ層5上に接地することとなる。ただし、たとえ穴部3の直径が砥粒の粒径の2倍以上でも、先に1つの砥粒が穴部3内の中央に接地してしまうと次の砥粒は接地し難くなる一方、粒径の小さい砥粒同士が1つの穴部3に集中すると3つ以上の砥粒が収容されることもあることから、必ずしも全ての穴部3に同数の砥粒が収容されていなくてもよい。   Furthermore, in the present embodiment, the masking 4 having a plurality of holes 3 of the same size is coated on the surface 2 of the base material 1, and a predetermined Ni plating layer 5 is formed on the base Ni plating layer 5 formed in the holes 3. When the abrasive grains having a particle size of 1 are grounded, approximately the same number of abrasive grains are accommodated in each hole 3. That is, if the diameter of the circular hole 3 is not less than the average grain size of the abrasive grains and is about twice as large, the abrasive grains are accommodated one by one in the hole 3 and are grounded to the base Ni plating layer 5. If the average particle size is about 2 to 3 times larger than the average particle size, approximately two abrasive grains are accommodated in the hole 3 and grounded on the underlying Ni plating layer 5 as shown in FIG. It will be. However, even if the diameter of the hole 3 is more than twice the grain size of the abrasive grains, if one abrasive grain contacts the center in the hole 3 first, the next abrasive grain becomes difficult to ground, Since three or more abrasive grains may be accommodated when abrasive grains having a small particle diameter are concentrated in one hole portion 3, the same number of abrasive grains may not necessarily be accommodated in all the hole portions 3. Good.

次に、こうしてメッキ液中に分散した上記一群の砥粒が基材1の表面2上に接地したなら、さらに基材1に電流を流すことにより、図4に示すように砥粒と下地Niメッキ層5との接触部周辺に10μm〜20μm程度の厚さのNiメッキ層6を成長させて砥粒を固定し、すなわち鍍着する。ただし、このとき絶縁性のマスキング4上にNiメッキ層6が成長することはなく、従ってこのマスキング4上に付着した砥粒が固定されることもない。そして、このようにNiメッキ層6で砥粒が固定された基材1は、上記メッキ液から引き上げられて純水洗浄されることにより、上記マスキング4上に付着していた砥粒等の余剰なダイヤモンド砥粒が取り除かれ、次いで砥粒を分散していないメッキ液(スルファミン酸Ni液)に浸漬されて電流を流すことにより、さらにNiメッキ層6が成長してこのNiメッキ層6に砥粒が埋め込まれる。   Next, when the group of abrasive grains dispersed in the plating solution is grounded on the surface 2 of the base material 1, the current is further passed through the base material 1, whereby the abrasive grains and the base Ni are shown in FIG. An Ni plating layer 6 having a thickness of about 10 μm to 20 μm is grown around the contact portion with the plating layer 5 to fix the abrasive grains, that is, adhere. However, at this time, the Ni plating layer 6 does not grow on the insulating masking 4, and therefore, the abrasive grains adhering to the masking 4 are not fixed. And the base material 1 to which the abrasive grains are fixed by the Ni plating layer 6 in this way is pulled up from the plating solution and washed with pure water, thereby surplus abrasive grains and the like adhering to the masking 4 The diamond abrasive grains are removed, and then immersed in a plating solution (sulfamic acid Ni solution) in which the abrasive grains are not dispersed, and an electric current is passed, so that a Ni plating layer 6 further grows and the Ni plating layer 6 is ground. Grain is embedded.

このようにしてNiメッキ層6が所定の厚さまで成長したところで、基材1をメッキ液から引き上げて水洗、乾燥することにより当該製造方法を終了とし、図4に示したままのCMPコンディショナを製造するようにしてもよいが、引き続き基材1を無電解メッキ槽に浸漬して、電解メッキよりもNiメッキの成長が早い無電解メッキにより上記Niメッキ層6の上にさらにNiメッキ層を成長させ、ダイヤモンド砥粒の突き出し量の調整を行うようにしてもよい。さらに、こうして突き出し量調整をしただけのものや、図4に示したところで製造を終了としたものでは、基材1の表面2がマスキング4で被覆されたままであるので、このマスキング4を剥離することにより、図5に示すようにマスキング4の上記穴部3が空けられた位置に対応して基材1の表面2に画成される互いに等しい大きさの複数の領域Lが下地Niメッキ層5によってこの表面2から一段突出させられ、各領域Lごとに、ダイヤモンド砥粒が略等しい数ずつ鍍着されたCMPコンディショナを製造するようにしてもよい。   When the Ni plating layer 6 has grown to a predetermined thickness in this way, the substrate 1 is lifted from the plating solution, washed with water, and dried to finish the manufacturing method, and the CMP conditioner as shown in FIG. Although the substrate 1 may be manufactured, the substrate 1 is subsequently immersed in an electroless plating tank, and an Ni plating layer is further formed on the Ni plating layer 6 by electroless plating in which the growth of Ni plating is faster than the electrolytic plating. It may be grown to adjust the protruding amount of diamond abrasive grains. Further, in the case where only the protrusion amount is adjusted in this way, or in the case where the production is finished as shown in FIG. 4, the surface 2 of the base material 1 remains covered with the masking 4. Thus, as shown in FIG. 5, a plurality of regions L of the same size defined on the surface 2 of the base material 1 corresponding to the positions where the holes 3 of the masking 4 are opened are the underlying Ni plating layer. The CMP conditioner may be manufactured so as to protrude one step from the surface 2 by 5 and to which a substantially equal number of diamond abrasive grains are deposited for each region L.

従って、このようにして製造された本発明の一実施形態のCMPコンディショナでは、図4に示したマスキング4が被覆されたままのもの、および図5に示したマスキング4を剥離したもののいずれにおいても、その基材1の表面2に鍍着されたダイヤモンド砥粒のうち、結晶方位111面がこの基材1の表面2と略平行に配向されたダイヤモンド砥粒の割合が65〜95%の範囲とされる。ここで、図6および図7は、このようにして製造された実施形態のCMPコンディショナと従来の一般的な製造方法により製造されたCMPコンディショナとで鍍着されたダイヤモンド砥粒のX線反射強度を測定したものであるが、本実施形態では図6に示すように結晶方位111面のX線反射強度が2500CPS以上で結晶方位110面のX線反射強度の約13倍とされていたのに対し、従来のCMPコンディショナでは図7に示すように結晶方位111面のX線反射強度が1700CPS程度で結晶方位110面に対しても約7倍程度でしかなかった。   Therefore, in the CMP conditioner according to the embodiment of the present invention manufactured as described above, either the mask 4 shown in FIG. 4 remains covered or the mask 4 shown in FIG. 5 is peeled off. Of the diamond abrasive grains adhered to the surface 2 of the substrate 1, the ratio of the diamond abrasive grains whose crystal orientation 111 plane is oriented substantially parallel to the surface 2 of the substrate 1 is 65 to 95%. Scope. Here, FIG. 6 and FIG. 7 show X-rays of diamond abrasive grains that are bonded by the CMP conditioner of the embodiment manufactured as described above and the CMP conditioner manufactured by a conventional general manufacturing method. The reflection intensity was measured, but in this embodiment, as shown in FIG. 6, the X-ray reflection intensity of the crystal orientation 111 plane was 2500 CPS or more and was about 13 times the X-ray reflection intensity of the crystal orientation 110 plane. On the other hand, in the conventional CMP conditioner, as shown in FIG. 7, the X-ray reflection intensity of the crystal orientation 111 plane is about 1700 CPS, which is only about 7 times that of the crystal orientation 110 plane.

このように、上記構成のCMPコンディショナにおいては、結晶方位111面が基材1の表面2と略平行に配向されるダイヤモンド砥粒の割合が65〜95%と、上記従来のCMPコンディショナよりも高く、しかも結晶方位111面のX線反射強度が2500CPS以上とされているため、長期に亙って安定したドレッシング性能を得ることができる一方、全ての砥粒の結晶方位111面が表面2と平行すなわちCMP装置の研磨パッドと平行とされたものではないので、この結晶方位111面が表面2と平行に鍍着された砥粒以外の砥粒のうち、結晶面同士の稜線部を表面2の表側に突き出して鍍着された砥粒により、この稜線部を切刃として作用させて、得られる上記ドレッシング性能自体の向上を図ることができる。すなわち、こうして得られた高いドレッシング性能を長期に亙って安定して維持することが可能となるので、コンディショナの長寿命化を図りながらも、CMP装置において研磨パッドの研削性を損なうことない高い研磨レートを維持することができ、パッドの洗浄不良によるスクラッチなどの発生を確実に防ぐことが可能となる。   Thus, in the CMP conditioner having the above-described configuration, the ratio of diamond abrasive grains in which the crystal orientation 111 plane is oriented substantially parallel to the surface 2 of the substrate 1 is 65 to 95%, which is higher than that of the conventional CMP conditioner. In addition, since the X-ray reflection intensity of the crystal orientation 111 plane is 2500 CPS or more, stable dressing performance can be obtained over a long period, while the crystal orientation 111 plane of all the abrasive grains is the surface 2 In other words, the ridge line portion between the crystal faces is the surface of the abrasive grains other than the abrasive grains in which the crystal orientation 111 plane is attached in parallel with the surface 2. The above-mentioned dressing performance itself can be improved by causing the ridge line portion to act as a cutting edge by the abrasive grains protruding and glued to the front side of No. 2. That is, since the high dressing performance obtained in this way can be stably maintained over a long period of time, the grindability of the polishing pad is not impaired in the CMP apparatus while extending the life of the conditioner. A high polishing rate can be maintained, and the occurrence of scratches due to poor cleaning of the pad can be reliably prevented.

ここで、結晶方位111面が基材1の表面2と略平行に配向されるダイヤモンド砥粒の割合が上記範囲を上回ると、切刃として作用する上記稜線部を表面2の表側に突き出して着される砥粒の割合が相対的に少なくなり、上述のような高い研磨レートおよびドレッシング性能を得ることができなくなる。その一方で、この割合が上記範囲を下回ったり、結晶方位111面のX線反射強度が2500CPSを下回ったりすると、逆に稜線部が表側に突き出した砥粒や寿命延長に寄与しない結晶方位100面や110面等の他の結晶面が表面2と平行とされた砥粒の割合が多くなり、短時間で研磨レートが極端に低下してコンディショナの交換を余儀なくされる。なお、より確実にこのような問題が生じるのを防いで上述の効果を奏功するには、この結晶方位111面が基材1の表面2と略平行とされた砥粒の割合は、上記範囲のうちでも70〜90%とされるのが望ましく、また結晶方位111面のX線反射強度は、結晶方位110面のX線反射強度に対し約10〜230倍とされるのが望ましい。   Here, when the ratio of the diamond abrasive grains in which the crystal orientation 111 plane is oriented substantially parallel to the surface 2 of the substrate 1 exceeds the above range, the ridge line portion acting as a cutting edge protrudes to the front side of the surface 2 and is attached. As a result, the proportion of abrasive grains is relatively reduced, and the high polishing rate and dressing performance as described above cannot be obtained. On the other hand, if this ratio falls below the above range, or the X-ray reflection intensity of the crystal orientation 111 plane is less than 2500 CPS, conversely, the ridge line portion protrudes to the front side and the crystal orientation 100 plane that does not contribute to life extension The ratio of abrasive grains in which other crystal planes such as the 110 plane and the like are parallel to the surface 2 increases, and the polishing rate is extremely lowered in a short time, so that the conditioner must be replaced. In order to prevent such a problem from occurring more reliably and achieve the above-described effect, the ratio of the abrasive grains in which the crystal orientation 111 plane is substantially parallel to the surface 2 of the substrate 1 is within the above range. Of these, the X-ray reflection intensity on the crystal orientation 111 plane is preferably about 10 to 230 times the X-ray reflection intensity on the crystal orientation 110 plane.

また、本実施形態では、こうして基材1の表面2に鍍着されるダイヤモンド砥粒の粒度が#80〜#500の範囲内とされており、従って結晶方位111面がこの表面2と略平行とされた砥粒の表面2表側を向いて研磨パッドに接触する結晶方位111面の面積自体を小さくすることができるので、ドレッシングの際にコンディショナがパッドを押圧する圧力が分散されるのを防ぐことができ、一層高い研磨レートを長期に亙って維持することが可能となる。ここで、この粒度が#80を下回って砥粒の粒径が大きくなるとこのような効果を得ることができず、逆に粒度が#500を上回るほど砥粒が微細になると、砥粒の研磨パッドに接触する部分が鋭くなりすぎて摩耗が生じ易くなったり、砥粒が脱落しやすくなったりして、却って研磨レートが早期に低下するおそれが生じる。   In the present embodiment, the grain size of the diamond abrasive grains thus attached to the surface 2 of the base material 1 is in the range of # 80 to # 500, and therefore the crystal orientation 111 plane is substantially parallel to the surface 2. Since the area itself of the crystal orientation 111 surface facing the surface 2 of the abrasive grain and contacting the polishing pad can be reduced, the pressure that the conditioner presses the pad during dressing is dispersed. Therefore, it is possible to maintain a higher polishing rate over a long period of time. Here, when the grain size is less than # 80 and the grain size of the abrasive grains is increased, such an effect cannot be obtained. Conversely, when the grain size becomes finer than # 500, the abrasive grains are polished. The portion in contact with the pad becomes too sharp and wear tends to occur, or the abrasive grains easily fall off, and the polishing rate may be lowered early.

一方、このようなCMPコンディショナを製造する上記製造方法では、多数のダイヤモンド砥粒の中から、この結晶方位111面の占める面積比率の大きい上記主砥粒を、より高い含有率となるように選別して一群のダイヤモンド砥粒とし、これをメッキ液中に分散して基材1の表面2に鍍着させているので、上述のような優れた効果を奏するCMPコンディショナを比較的容易に、しかしながら確実に製造することが可能となる。そして、さらに上記実施形態の製造方法では、こうして一群のダイヤモンド砥粒を選別するのに、上記多数のダイヤモンド砥粒に振動を与えることにより上記主砥粒を転動させて分離しており、この一群のダイヤモンド砥粒における主砥粒の含有率を制御して、引いてはCMPコンディショナにおける結晶方位111面が基材1の表面2と平行とされる砥粒の上記割合も一層確実に上記範囲となるように調整することが可能となるので、このような優れたCMPコンディショナを効率的に製造することもできる。   On the other hand, in the manufacturing method for manufacturing such a CMP conditioner, the main abrasive grains having a large area ratio occupied by the crystal orientation 111 plane are selected from a large number of diamond abrasive grains so as to have a higher content rate. Since a group of diamond abrasive grains is selected and dispersed in the plating solution and adhered to the surface 2 of the base material 1, a CMP conditioner that exhibits the above-described excellent effects can be obtained relatively easily. However, it can be reliably manufactured. Further, in the manufacturing method of the above embodiment, in order to select a group of diamond abrasive grains in this way, the main abrasive grains are rolled and separated by applying vibration to the large number of diamond abrasive grains. By controlling the content of the main abrasive grains in a group of diamond abrasive grains, the above ratio of the abrasive grains in which the crystal orientation 111 plane in the CMP conditioner is parallel to the surface 2 of the base material 1 is also more reliably described above. Such an excellent CMP conditioner can also be efficiently manufactured because it is possible to adjust the range.

また、本実施形態の製造方法では、互いに等しい大きさの複数の穴部3があけられたマスキング4を基材1の表面2に被覆した上で、上記一群のダイヤモンド砥粒を鍍着しており、こうして製造されたCMPコンディショナにおいては、この穴部3に対応した領域Lに、穴部3の大きさと粒度(粒径)とに応じた互いに略等しい数ずつの砥粒が鍍着されることとなる。すなわち、上記製造方法では、コンディショナの表面2において、所望の位置に所望の数の砥粒が、たとえ複数個ずつでもより確実に鍍着されるようにコントロールすることが可能となるので、こうして製造されたCMPコンディショナでは、本実施形態のように穴部3および領域Lが格子状や千鳥状に等間隔に配置されている場合には、研磨パッドに対して各砥粒を均等に作用させてパッド全面を満遍なく均一にドレッシングすることができる。これは、図4に示したマスキング4が被覆されたままのコンディショナを使用する場合でも同様である。なお、パッドの種類等によっては、逆に穴部3や領域Lを不等間隔に配置したりしてもよい。   Moreover, in the manufacturing method of this embodiment, after covering the surface 2 of the base material 1 with the masking 4 in which a plurality of holes 3 having the same size are formed, the group of diamond abrasive grains is adhered. In the CMP conditioner thus manufactured, approximately equal numbers of abrasive grains corresponding to the size and particle size (particle size) of the hole 3 are adhered to the region L corresponding to the hole 3. The Rukoto. That is, in the above-described manufacturing method, it is possible to control the surface 2 of the conditioner so that a desired number of abrasive grains can be more securely adhered to a desired position even if a plurality of them are provided. In the manufactured CMP conditioner, when the holes 3 and the regions L are arranged at equal intervals in a lattice shape or a zigzag manner as in this embodiment, each abrasive grain acts equally on the polishing pad. This makes it possible to dress the entire pad evenly and uniformly. This is the same even when the conditioner with the masking 4 shown in FIG. Depending on the type of pad and the like, the holes 3 and the regions L may be arranged at unequal intervals.

さらに、本実施形態では、こうして表面2を穴部3のあいたマスキング4で被覆した基材1に、まず下地メッキを施した後、メッキ液に砥粒を分散して鍍着するようにしており、この下地メッキによって穴部3内の表面2上には下地Niメッキ層5が形成されて砥粒はその上面に鍍着されることとなる。従って、このように製造されたCMPコンディショナでは、図4に示したようにマスキング4が被覆されたままで使用する場合でも、このマスキング4の表面から砥粒を確実に突出させてパッドの研磨を行うことが可能である一方、図5に示したようにマスキング4を剥離して使用する場合には、砥粒が鍍着された上記領域Lが基材1の表面2から一段突出することとなって、隣接する領域L同士の間に大きな空間を確保することができる。このため、ドレッシング時にはこの空間を介して研磨により発生した切屑を排出するとともに研削液を表面2内側の領域Lの砥粒に供給することが可能となり、さらに優れたドレッシング性能をより長期に亙って得ることができる。   Further, in the present embodiment, the substrate 1 whose surface 2 is covered with the masking 4 with the hole 3 is first subjected to the base plating, and then the abrasive particles are dispersed and adhered to the plating solution. By this base plating, a base Ni plating layer 5 is formed on the surface 2 in the hole 3, and the abrasive grains are adhered to the upper surface thereof. Therefore, in the CMP conditioner manufactured in this way, even when the masking 4 is used while being covered as shown in FIG. 4, the abrasive grains are reliably projected from the surface of the masking 4 to polish the pad. On the other hand, when the masking 4 is peeled and used as shown in FIG. 5, the region L on which the abrasive grains are attached protrudes one step from the surface 2 of the substrate 1. Thus, a large space can be secured between the adjacent regions L. For this reason, during dressing, chips generated by polishing can be discharged through this space and the grinding fluid can be supplied to the abrasive grains in the region L inside the surface 2, and further excellent dressing performance can be obtained for a long time. Can be obtained.

本発明のCMPコンディショナの製造方法の一実施形態を説明する、マスキング4が施された基材1の表面2の断面図である。It is sectional drawing of the surface 2 of the base material 1 to which the masking 4 was given explaining one Embodiment of the manufacturing method of the CMP conditioner of this invention. 図1に示す基材1に下地メッキを施した状態を示す図である。It is a figure which shows the state which gave the base plating to the base material 1 shown in FIG. 図2に示す基材1の表面2に一群のダイヤモンド砥粒が接地した状態を示す図である。FIG. 3 is a view showing a state in which a group of diamond abrasive grains are grounded on a surface 2 of a base material 1 shown in FIG. 2. 図3に示す状態からNiメッキ層6を成長させた、本発明のCMPコンディショナの一実施形態を示す図である。It is a figure which shows one Embodiment of the CMP conditioner of this invention which made the Ni plating layer 6 grow from the state shown in FIG. 図4に示す状態からマスキング4を剥離した、本発明のCMPコンディショナの他の実施形態を示す図である。It is a figure which shows other embodiment of the CMP conditioner of this invention which peeled the masking 4 from the state shown in FIG. 図5に示す実施形態のCMPコンディショナにおけるダイヤモンド砥粒のX線反射強度を測定した結果を示す図である。It is a figure which shows the result of having measured the X-ray reflection intensity of the diamond abrasive grain in the CMP conditioner of embodiment shown in FIG. 従来の一般的な方法によって製造されたCMPコンディショナにおけるダイヤモンド砥粒のX線反射強度を測定した結果を示す図である。It is a figure which shows the result of having measured the X-ray reflection intensity of the diamond abrasive grain in the CMP conditioner manufactured by the conventional general method.

符号の説明Explanation of symbols

1 基材
2 基材1の表面
3 穴部
4 マスキング
5 下地Niメッキ層
6 Niメッキ層
L 基材1の表面2に画成される領域
A1〜A9 他の面よりも結晶方位111面の占める面積比率が大きいダイヤモンド砥粒(主砥粒)
a 結晶方位111面
B1〜B3 他の面よりも結晶方位100面の占める面積比率が大きいダイヤモンド砥粒
b 結晶方位110面
DESCRIPTION OF SYMBOLS 1 Base material 2 Surface of the base material 3 Hole part 4 Masking 5 Base Ni plating layer 6 Ni plating layer L The area | region defined by the surface 2 of the base material A1-A9 The crystal orientation 111 surface occupies rather than another surface Diamond abrasive grains with a large area ratio (main abrasive grains)
a crystal orientation 111 plane B1 to B3 diamond grains having a larger area ratio of the crystal orientation 100 plane than other planes b crystal orientation 110 plane

Claims (9)

基材の表面に多数のダイヤモンド砥粒が鍍着されてなるCMPコンディショナであって、これらのダイヤモンド砥粒のうち、結晶方位111面が上記基材の表面と略平行に配向されたダイヤモンド砥粒の割合が65〜95%の範囲とされ、かつ上記ダイヤモンド砥粒の結晶方位111面のX線反射強度が2500CPS以上であることを特徴とするCMPコンディショナ。   A CMP conditioner in which a number of diamond abrasive grains are deposited on the surface of a substrate, and among these diamond abrasive grains, a diamond abrasive having a crystal orientation 111 plane oriented substantially parallel to the surface of the substrate. A CMP conditioner, wherein the proportion of grains is in the range of 65 to 95%, and the X-ray reflection intensity of the crystal orientation 111 plane of the diamond abrasive grains is 2500 CPS or more. 上記ダイヤモンド砥粒の結晶方位111面のX線反射強度が、結晶方位110面のX線反射強度に対して10〜230倍の範囲であることを特徴とする請求項1に記載のCMPコンディショナ。   2. The CMP conditioner according to claim 1, wherein the X-ray reflection intensity of the crystal orientation 111 plane of the diamond abrasive grains is in the range of 10 to 230 times the X-ray reflection intensity of the crystal orientation 110 plane. . 上記一群のダイヤモンド砥粒の粒度が#80〜#500の範囲とされていることを特徴とする請求項1または請求項2に記載のCMPコンディショナ。   The CMP conditioner according to claim 1 or 2, wherein a particle size of the group of diamond abrasive grains is in a range of # 80 to # 500. 上記基材表面に画成される互いに等しい大きさの複数の領域ごとに、上記ダイヤモンド砥粒が略等しい数ずつ鍍着されていることを特徴とする請求項1ないし請求項3のいずれかに記載のCMPコンディショナ。   4. The diamond abrasive grains are adhered in approximately equal numbers for each of a plurality of regions having the same size defined on the surface of the substrate. 5. A CMP conditioner as described. 上記複数の領域は、上記基材表面から一段突出させられていることを特徴とする請求項4に記載のCMPコンディショナ。   The CMP conditioner according to claim 4, wherein the plurality of regions are protruded from the surface of the base material by one step. 多数のダイヤモンド砥粒の中から、他の面よりも結晶方位111面の占める面積比率が大きいダイヤモンド砥粒の含有率が他の群よりも高い一群のダイヤモンド砥粒を選別し、この一群のダイヤモンド砥粒をメッキ液に分散して該メッキ液中に浸漬された基材の表面に鍍着することを特徴とするCMPコンディショナの製造方法。   From a large number of diamond abrasive grains, a group of diamond abrasive grains in which the content ratio of the diamond abrasive grains whose crystal orientation 111 plane is larger than the other planes is higher than the other groups is selected, and this group of diamonds is selected. A method for producing a CMP conditioner, characterized in that abrasive grains are dispersed in a plating solution and adhered to the surface of a substrate immersed in the plating solution. 上記多数のダイヤモンド砥粒を振動台上に分散して振動を与えることにより、上記一群のダイヤモンド砥粒を転動させて上記他の群のダイヤモンド砥粒から選別することを特徴とする請求項6に記載のCMPコンディショナの製造方法。   7. The plurality of diamond abrasive grains are dispersed on a vibrating table and given vibration, whereby the group of diamond abrasive grains is rolled and selected from the other group of diamond abrasive grains. A process for producing a CMP conditioner according to claim 1. 上記基材表面に、上記ダイヤモンド砥粒を鍍着するのに先立って、互いに等しい大きさの複数の穴部を有するマスキングを被覆することを特徴とする請求項6または請求項7に記載のCMPコンディショナの製造方法。   8. The CMP according to claim 6, wherein a mask having a plurality of holes of the same size is coated on the surface of the base material before the diamond abrasive grains are deposited. 9. Conditioner manufacturing method. 上記マスキングを被覆した上記基材表面に下地メッキを施した後に、上記ダイヤモンド砥粒を鍍着することを特徴とする請求項8に記載のCMPコンディショナの製造方法。
9. The method of manufacturing a CMP conditioner according to claim 8, wherein the diamond abrasive grains are adhered after applying a base plating to the surface of the base material coated with the masking.
JP2004320764A 2004-11-04 2004-11-04 Cmp conditioner and manufacturing method thereof Pending JP2006130586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320764A JP2006130586A (en) 2004-11-04 2004-11-04 Cmp conditioner and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320764A JP2006130586A (en) 2004-11-04 2004-11-04 Cmp conditioner and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006130586A true JP2006130586A (en) 2006-05-25

Family

ID=36724570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320764A Pending JP2006130586A (en) 2004-11-04 2004-11-04 Cmp conditioner and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2006130586A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100908273B1 (en) * 2007-09-20 2009-07-20 새솔다이아몬드공업 주식회사 Method of Making Diamond Grinding Tool
JP2015150683A (en) * 2014-02-18 2015-08-24 中国砂輪企業股▲ふん▼有限公司 Chemical mechanical polishing adjustor having high performance
JP2017007088A (en) * 2012-10-15 2017-01-12 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive particles having particular shapes and methods of forming such particles
KR20200099594A (en) * 2017-12-28 2020-08-24 엔테그리스, 아이엔씨. CMP polishing pad conditioner
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US11142673B2 (en) 2012-01-10 2021-10-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
CN113692332A (en) * 2019-07-31 2021-11-23 马尼株式会社 Diamond emery needle for dentistry
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11427740B2 (en) 2017-01-31 2022-08-30 Saint-Gobain Ceramics & Plastics, Inc. Method of making shaped abrasive particles and articles comprising forming a flange from overfilling
US11453811B2 (en) 2011-12-30 2022-09-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
CN115106936A (en) * 2022-06-24 2022-09-27 中国地质大学(武汉) Diamond dressing disc and preparation method thereof
US11472989B2 (en) 2015-03-31 2022-10-18 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11590632B2 (en) 2013-03-29 2023-02-28 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11608459B2 (en) 2014-12-23 2023-03-21 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US11643582B2 (en) 2015-03-31 2023-05-09 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11718774B2 (en) 2016-05-10 2023-08-08 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11879087B2 (en) 2015-06-11 2024-01-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11891559B2 (en) 2014-04-14 2024-02-06 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11926781B2 (en) 2014-01-31 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
US11959009B2 (en) 2016-05-10 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100908273B1 (en) * 2007-09-20 2009-07-20 새솔다이아몬드공업 주식회사 Method of Making Diamond Grinding Tool
US11453811B2 (en) 2011-12-30 2022-09-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US11859120B2 (en) 2012-01-10 2024-01-02 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having an elongated body comprising a twist along an axis of the body
US11142673B2 (en) 2012-01-10 2021-10-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11649388B2 (en) 2012-01-10 2023-05-16 Saint-Gobain Cermaics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
JP2017007088A (en) * 2012-10-15 2017-01-12 サンーゴバン アブレイシブズ,インコーポレイティド Abrasive particles having particular shapes and methods of forming such particles
US11154964B2 (en) 2012-10-15 2021-10-26 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US10286523B2 (en) 2012-10-15 2019-05-14 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11590632B2 (en) 2013-03-29 2023-02-28 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11926781B2 (en) 2014-01-31 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
JP2015150683A (en) * 2014-02-18 2015-08-24 中国砂輪企業股▲ふん▼有限公司 Chemical mechanical polishing adjustor having high performance
US11891559B2 (en) 2014-04-14 2024-02-06 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11926780B2 (en) 2014-12-23 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US11608459B2 (en) 2014-12-23 2023-03-21 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US11643582B2 (en) 2015-03-31 2023-05-09 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11472989B2 (en) 2015-03-31 2022-10-18 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11879087B2 (en) 2015-06-11 2024-01-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11959009B2 (en) 2016-05-10 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11718774B2 (en) 2016-05-10 2023-08-08 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11932802B2 (en) 2017-01-31 2024-03-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles comprising a particular toothed body
US11549040B2 (en) 2017-01-31 2023-01-10 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles having a tooth portion on a surface
US11427740B2 (en) 2017-01-31 2022-08-30 Saint-Gobain Ceramics & Plastics, Inc. Method of making shaped abrasive particles and articles comprising forming a flange from overfilling
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
KR102502899B1 (en) 2017-12-28 2023-02-24 엔테그리스, 아이엔씨. CMP Polishing Pad Conditioner
JP7079332B2 (en) 2017-12-28 2022-06-01 インテグリス・インコーポレーテッド CMP polishing pad conditioner
JP2021516624A (en) * 2017-12-28 2021-07-08 インテグリス・インコーポレーテッド CMP polishing pad conditioner
CN111655428A (en) * 2017-12-28 2020-09-11 恩特格里斯公司 CMP polishing pad conditioner
KR20200099594A (en) * 2017-12-28 2020-08-24 엔테그리스, 아이엔씨. CMP polishing pad conditioner
CN113692332A (en) * 2019-07-31 2021-11-23 马尼株式会社 Diamond emery needle for dentistry
CN113692332B (en) * 2019-07-31 2024-06-11 马尼株式会社 Diamond needle for dentistry
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
CN115106936A (en) * 2022-06-24 2022-09-27 中国地质大学(武汉) Diamond dressing disc and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2006130586A (en) Cmp conditioner and manufacturing method thereof
EP2845221B1 (en) Cmp conditioner pads with superabrasive grit enhancement
JP2896657B2 (en) Dresser and manufacturing method thereof
US6368198B1 (en) Diamond grid CMP pad dresser
TWI290337B (en) Pad conditioner for conditioning a CMP pad and method of making the same
TW200821092A (en) Conditioning disk having uniform structures
KR20010076403A (en) Electroplated grinding wheel and its production equipment and method
TW200914202A (en) Polishing pad conditioner and method for conditioning polishing pad
JP2007152493A (en) Polishing pad dresser and its manufacturing method
TW201505768A (en) Sapphire polishing pad trimmer having multiple trimmed grain combination
JP2001105326A (en) Reconditioning disk for chemical-mechanical polishing mat and method of manufacturing the same
KR101066237B1 (en) Diamond Grinder and the Manufacturing Method Thereof
JP2004358640A (en) Method for manufacturing electroplated tool and electroplated tool
JP2012232388A (en) Dresser for abrasive cloth
CN115106936A (en) Diamond dressing disc and preparation method thereof
JP3797948B2 (en) Diamond tools
JP3802884B2 (en) CMP conditioner
JP4281253B2 (en) Electrodeposition whetstone, manufacturing apparatus and manufacturing method thereof
JP2003080457A (en) Cutting tool and manufacturing method therefor
JP2010052080A (en) Cmp conditioner
KR20210038216A (en) Diamond Tip with Regular Array and Insert of Single Crystal Diamond
KR100558277B1 (en) Manufacturing method of a diamond grinding tool
JP3695842B2 (en) Wafer polishing apparatus and wafer polishing method
JPH11188634A (en) Electrocast thin blade grinding wheel and its manufacture
JP2006187847A (en) Cmp pad conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020