JP3797948B2 - Diamond tools - Google Patents

Diamond tools Download PDF

Info

Publication number
JP3797948B2
JP3797948B2 JP2002092021A JP2002092021A JP3797948B2 JP 3797948 B2 JP3797948 B2 JP 3797948B2 JP 2002092021 A JP2002092021 A JP 2002092021A JP 2002092021 A JP2002092021 A JP 2002092021A JP 3797948 B2 JP3797948 B2 JP 3797948B2
Authority
JP
Japan
Prior art keywords
abrasive grains
abrasive
octahedral
pad
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002092021A
Other languages
Japanese (ja)
Other versions
JP2003285271A (en
Inventor
和人 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Noritake Super Abrasive Co Ltd
Original Assignee
Noritake Co Ltd
Noritake Super Abrasive Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd, Noritake Super Abrasive Co Ltd filed Critical Noritake Co Ltd
Priority to JP2002092021A priority Critical patent/JP3797948B2/en
Publication of JP2003285271A publication Critical patent/JP2003285271A/en
Application granted granted Critical
Publication of JP3797948B2 publication Critical patent/JP3797948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、シリコンウエハなどの平坦化に用いられるポリッシングパッドのパッドコンディショナのような、砥粒の結晶構造、形状が研削性能に大きく関与するダイヤモンド工具に関する。
【0002】
【従来の技術】
電子部品や光学部品の超精密、高品位仕上げのために行われるポリッシングは、とくに半導体LSIデバイス製造工程においては、素材加工をはじめ各種積層膜の平坦化において重要な加工技術であり、半導体の高記憶容量化に対応して、その加工精度(面粗度、平坦度)、加工品位(無欠陥、無歪み)、加工性能はより高いものが求められている。ポリッシングは、ポリッシャのポリッシングパッド上に軟質砥粒を散布して被加工物を押しつけることにより実施され、軟質砥粒と被加工物間の化学的、機械的作用により材料除去を行う方法はCMP(Chemical & Mechanical Polishing)加工と称されている。
【0003】
このようなCMP加工装置によりシリコンウエハなどをポリッシングする場合、ポリッシャとしては一定の弾性率、繊維形状、形状パターンを持ったポリウレタン製のポリッシングパッドが使用される。ポリッシュは機械加工としては最終工程であり、平面度1μm前後、面粗度RMAX 10Åレベルが達成されなければならない。このポリッシング加工工程において、安定した加工性能を維持するためには、ポリッシングパッド表面の定期的修正が必要であり、ダイヤモンド砥粒を固着させて砥粒層を形成したパッドコンディショナを使用し、CMP加工と同時に、または定期的にポリッシングパッド表面の劣化層を除去するとともに、適正な面状態を得るようにしている。
【0004】
ところで、電着法やろう付け法により台金の表面に砥粒を単層に固着した工具は、砥粒を多層に固着した工具に比べて砥粒の突き出し量が大きく切れ味に優れ、また複雑な総型形状が創生しやすいという特徴があり、その反面、有効な砥粒が一層のみであるため、砥粒の配列状態や先端切れ刃状態がその研削性能に大きく影響を与える。とくにCMP加工用パッドコンディショナは、シリコンデバイスなどのポリッシングパッドのコンディショニングに使用されるため、ポリッシング条件に合った所定の切れ味を有したうえで、使用中における砥粒脱落、砥粒欠損によるポリッシングパッド上への硬質物質の付着がなく、かつパッドコンディショニング面の平坦性、均質性、安定性の確保が大きな課題となる。
【0005】
図4はパッドコンディショナの代表的な形状の例として電着パッドコンディショナの形状例を示す図で、(a)は母材に砥粒層を形成した複数個のセグメントをリング状の台金に連続配置したリングタイプのパッドコンディショナであり、(b)は母材に砥粒層を形成した多数個のペレットをリング状の台金に間隔をおいて配置したペレットタイプのパッドコンディショナであり、(c)は比較的小径の台金を母材としてこの母材の全面に砥粒層を形成したディスクタイプのパッドコンディショナである。
【0006】
図5は図4(c)のディスクタイプの電着パッドコンディショナの一例を示す斜視図であり、ダイヤモンド砥粒をNiメッキ層によって鉄製母材に電着させたプレート10をフランジ41に取り付け、裏面からネジで固定してパッドコンディショナ40としたものである。このパッドコンディショナ40を、図6に示すようなCMP加工装置のポリッシャ50表面のポリッシングパッド51に押し付けてコンディショニングを行う。なお図中、60はシリコンウエハなどの被研磨材の吸着盤であり、70は研磨スラリーの供給装置である。
【0007】
図7はパッドコンディショナのプレートの従来の製造工程の例を示す図で、同図(a)に示す母材11を同図(b)に示すように絶縁体21でマスキングした状態で、同図(c)に示すようにメッキ液31中に浸漬し、まず、Niメッキ層14aで砥粒13を保持する仮固定を行う。この仮固定工程の後に、浮いた砥粒13aを除去して所定の砥粒密度となるようにする。ついで同図(d)に示すように、砥粒粒径の60〜70%に相当する厚さのNiメッキ層14で砥粒13を固定する埋め込み固定を行い、この後、絶縁体21を剥がし、配線除去、母材磨きなどを施してプレート(図5のプレート10参照)とする。
【0008】
【発明が解決しようとする課題】
ところで、ダイヤモンド砥粒は合成条件によりその結晶形は異なり、{111}面を主体とする八面体、{100}面を主体とする六面体、{111}面と{100}面からなる六・八面体などがある。また、六面体および八面体においても完璧なものは存在が難しく、実際には砥粒の結晶形が整ったものとしては切頭八面体と六・八面体が一般的であり、通常ダイヤモンド工具に用いられている砥粒は、切頭八面体の砥粒または六・八面体の砥粒である。しかしながら、ダイヤモンド工具用の砥粒として切頭八面体の砥粒または六・八面体の砥粒を用いた場合、双方ともそれぞれ不具合な点を有している。
【0009】
たとえばダイヤモンド工具としてのCMP加工用パッドコンディショナにおいて切頭八面体の砥粒または六・八面体の砥粒を用いる場合、結晶の{111}面の垂線をパッドコンディショナ基体固定面に投影した線分がパッドコンディショナの研削方向とほぼ平行となる方向に揃えて配置したときに、ポリッシングパッドのコンディショニングが最も効果的に行われ、かつパッドコンディショナの砥粒の欠けが生じにくい配置となることを本出願人は先に特願2001−72996号で特許出願しているが、この場合の砥粒の姿勢は図8の(a)および(b)に示すようになる。
【0010】
この姿勢において、切頭八面体の砥粒(図8の(a))は、砥粒先端のフラット面が少なく、{100}面から形成される稜辺は相対的に鋭角であり切れ味に優れ、パッド表面の微小な気孔を押し潰すことなくスラリーの保持のよいパッド作用面を創生することができる。しかし切れ刃が小面積、鋭角であるために摩耗、摩滅により切れ味の持続が困難となり、パッドコンディショナの寿命としては短くなる。また六・八面体(図8の(b))は、砥粒先端にフラットな結晶面が存在し、また{111}面と{100}面が形成する稜辺が鈍角となり、切れ刃としては不充分となる。ただし、砥粒先端の摩耗は小さいため、コンディショニング性は安定する。
【0011】
パッドコンディショナの性能がCMP加工工程において製品であるウエハの研磨レートおよび平面度に与える影響は大きく、コンディショニング性の安定化、パッドコンディショナの長寿命化が強く望まれている。とくにパッドコンディショナの性能はダイヤモンド砥粒の特性に依存する面が大きく、従来のように単一種類の砥粒で今まで以上のコンディショニング性と寿命の向上を図ることは困難になってきている。
【0012】
このような問題はCMP加工用パッドコンディショナに限らず、他のダイヤモンド工具においても言えることである。
本発明において解決すべき課題は、CMP加工用パッドコンディショナのようなダイヤモンド工具において、異なる結晶構造の砥粒の使用によって、砥粒に依存するダイヤモンド工具の研削性能をより一層向上させることにある。
【0013】
【課題を解決するための手段】
本発明は、台金に単層のダイヤモンド砥粒を固着させたダイヤモンド工具において、ダイヤモンド砥粒として結晶構造が切頭八面体を基本とした砥粒と六・八面体を基本とした砥粒とを使用したダイヤモンド工具である。ここで、切頭八面体または六・八面体を基本とした砥粒という意味は、結晶形が完璧な形状に整ったものだけではなく、多少不整形なものも含むという意味である。
【0014】
ダイヤモンド工具の砥粒層を形成するのに切頭八面体を基本としたダイヤモンド砥粒(以下、たんに切頭八面体砥粒という)と六・八面体を基本としたダイヤモンド砥粒(以下、たんに六・八面体砥粒という)の両方を使用することで、それぞれの砥粒の特性が互いに作用して、両砥粒を単独に使用した場合の不具合を解消することができる。具体的には、ダイヤモンド工具がパッドコンディショナの場合、砥粒先端部に比較的広いフラットな面が存在する六・八面体砥粒の作用により、切頭八面体砥粒の先端面がポリッシングパッドに深く食い込むことを防止して、ポリッシングパッドの摩耗が抑えられる。また、切頭八面体砥粒の先端面がポリッシングパッドに深く食い込むことがなくなるため、砥粒の負荷が小さくなり、切頭八面体砥粒の先端の摩耗が抑えられ、コンディショニング性が安定し、パッドコンディショナの寿命が長くなる。一方、切れ味が劣る六・八面体砥粒の不具合は切頭八面体砥粒の切れ味の良さによって補われる。
【0015】
ここで、切頭八面体砥粒(Da)と六・八面体砥粒(Db)の混合比(Da/Db)は30/70〜70/30の範囲内とするのが好ましい。混合比がこの範囲内であれば、上記の両砥粒の相互作用が期待でき、ポリッシングパッドのコンディショニング性の安定化、パッドコンディショナの長寿命化、スクラッチレス化を達成することができる。また、この混合比を調整することで、コンディショニング性の強弱を調整することができる。たとえばポリッシングパッドの研磨スラリー保持性を良くし、高能率なポリッシング性を得たい場合は、Da/Dbを70/30とし、逆にポリッシングパッドの損耗量を少なくしかつパッドコンディショナの切れ味の持続性、寿命を長くするためには、Da/Dbを30/70とし、中間の性能が必要な場合は適宜その混合比を変化させる。
【0016】
Da/Dbが70/30より大きい場合は切頭八面体砥粒の単独使用の場合と大差なく、ポリッシングパッドの損耗が激しくかつパッドコンディショナの砥粒先端摩耗が激しく、安定したコンディショニング性能が得られない。またDa/Dbが30/70より小さい場合は六・八面体砥粒の単独使用の場合と大差なく、砥粒先端の切れ刃面がフラットなものの比率が大きくなり、コンディショニング性が悪くポリッシング性能に問題を生じる。
【0017】
上記のように切頭八面体砥粒と六・八面体砥粒の混合比を適正に設定し、かつ両砥粒を規則的に配列させることで、安定したコンディショニング性が得られる。しかし、砥粒の稜辺が作用面に立った姿勢で台金に固着された場合は、ポリッシングパッドの研削性が変化することとなり、砥粒の稜辺の方向性によりコンディショニング性が不安定になる傾向がある。この問題に対しては、砥粒先端の{100}面が台金基準面に平行になる姿勢で台金に固着させることで、ポリッシングパッドの研削性が安定し、さらにコンディショニング性が安定する。ただし、砥粒層の形成工程において使用される絶縁シートの各孔に砥粒を配設(後述の
【0018】参照)した場合、砥粒先端の{100}面が台金基準面に平行な姿勢で固着される砥粒の割合は40〜50%である。これは、絶縁シートの孔の壁に砥粒が接触することで傾いた姿勢で砥粒が固着されるためである。本発明者の実験研究によれば、コンディショニング性を安定化するためには、砥粒先端の{100}面が台金基準面と平行に固着されている砥粒の割合が全固着砥粒の50%以上あることが望ましく、更に安定性を増すためには80%以上あることが望ましい。このような状態にするためには、砥粒を絶縁シートの孔に配設した後、絶縁シートに振動を付与すれば絶縁シートの孔の壁に接触して傾いている姿勢の砥粒が確実に孔の中に配設でき、50%以上の砥粒が台金基準面に対して{100}面が平行な姿勢となる。また切頭八面体砥粒を配設する絶縁シートの孔径を砥粒平均粒径の80%として{100}面を基準に砥粒を配設し、絶縁シートに振動を付加することで、80%以上の砥粒が台金基準面に対して{100}面が平行な姿勢となる。
【0019】
さらに切れ味を必要とする場合は、六・八面体砥粒の粒径より大きい粒径の切頭八面体砥粒を使用するのが効果的である。逆に砥粒先端の摩耗を抑え、ポリッシングパッドの損耗を少なくしたいときは、切頭八面体砥粒の粒径より大きい粒径の六・八面体砥粒を使用するのが効果的である。
さらに使用条件に応じ、切頭八面体砥粒を砥粒層の外周側に配設し、六・八面体砥粒を砥粒層の内周側に配設したり、逆に、切頭八面体砥粒を砥粒層の内周側に配設し、六・八面体砥粒を砥粒層の外周側に配設したりすることも効果的である。
【0020】
【発明の実施の形態】
図1は本発明をCMP加工用パッドコンディショナに適用した実施形態におけるパッドコンディショナのプレートを模式的に示す図であり、(a)は平面図、(b)は(a)のA−A線断面図である。図2は図1のプレートの砥粒層の形成手順を示す説明図である。
【0021】
本実施形態のパッドコンディショナのプレート1は、円盤状の鉄製母材2と、母材2の一面側に形成された砥粒層3とで構成されており、母材2の外径は100mm、厚さは6mmである。ただし、図面は厚さを誇張して示している。
【0022】
砥粒層3は、平均粒径150μm(最大粒径165μm、最小粒径139μm)の切頭八面体砥粒4aと六・八面体砥粒4bと厚さ90μmのNiメッキ層5とにより構成されており、図2の(a)から(e)に示す手順により形成される。図2において、(a)は砥粒層形成前の母材2を示し、(b)は砥粒層を形成しない周面に絶縁体21をコーティングしてマスキングした状態を示し、(c)はステンレス鋼製の定盤6、(d)はポリイミド製の絶縁シート7をそれぞれ示す。
【0023】
定盤6は厚さ10mmで、電着後のすべての砥粒の先端高さの差が5μm以内の範囲となるように、定盤上面の平坦度を5μm以下としている。絶縁シート7は厚さ75μmで、面内に孔7aを多数形成している。孔7aは、六・八面体砥粒用として内径0.2mm、切頭八面体砥粒用として内径0.12mmで、隣り合う孔どうしの中心間隔は0.4mmである。孔どうしの中心間隔は、隣り合う砥粒の中心間隔を砥粒平均粒径の2〜10倍の範囲になるよう設定する。
【0024】
同図(e)に示すように、この絶縁シート7をメッキ槽30内の定盤6上に載置し、絶縁シート7の各孔7a内に切頭八面体砥粒4aと六・八面体砥粒4bを交互に1個づつ配設し、この上から母材2の電着面を下にし砥粒上に載置する。この状態でメッキ槽30にメッキ液31を充填し、電着により切頭八面体砥粒4aと六・八面体砥粒4bをNiメッキ層15により35μmの厚さで仮固定し、その後、定盤6と絶縁シート7を除いて再び電着により砥粒4を本固定して、図1に示すプレート1を得る。
【0025】
本実施形態のプレート1はこのように切頭八面体砥粒4aと六・八面体砥粒4bが交互に母材2上に1層に配設されているので、砥粒先端部に比較的広いフラットな面が存在する六・八面体砥粒4bの作用により、切頭八面体砥粒4aの先端面がポリッシングパッドに深く食い込むことを防止して、ポリッシングパッドの摩耗が抑えられる。また、切頭八面体砥粒4a先端面がポリッシングパッドに深く食い込むことがなくなるため、砥粒の負荷が小さくなり、切頭八面体砥粒4a先端の摩耗が抑えられ、コンディショニング性が安定し、パッドコンディショナの寿命が長くなる。一方、切れ味が劣る六・八面体砥粒4bの不具合は切頭八面体砥粒4aの切れ味の良さによって補われる。これにより、コンディショニング性の安定化、パッドコンディショナの長寿命化、スクラッチレス化を達成することができる。
【0026】
また、脱落しやすい砥粒が存在しないから、このプレート1をフランジに取り付け、ポリッシング用パッドコンディショナとして使用したとき、ドレッシング中に砥粒が脱落することがない。また、砥粒4の突出量がほぼ一定でかつ先端高さが揃っているので、ポリッシャのプロファイルを安定させ、CMP加工におけるウエハの平面度の向上に寄与する。
【0027】
【実施例】
図1に示した本発明実施形態のプレートと同じ形状寸法で、切頭八面体砥粒4aと六・八面体砥粒4bの混合比を表1に示すように種々変えたプレートを用いた電着パッドコンディショナを製作し、これらのパッドコンディショナでドレッシングしたポリッシャでウエハのポリッシング加工試験を行った。試験条件は以下の通りである。
【表1】

Figure 0003797948
〔ポリッシャ仕様〕
名称:IC1000/SUBA400
〔ウエハ〕
材質:シリコンウエハ(層間絶縁膜 SiO2
〔ドレッシング条件〕
使用機械:超精密片面ポリッシングマシン
荷重:50N
テーブル回転速度:30min−1
パッドコンディショナ回転速度:40min−1
加工時間:30時間
【0028】
試験結果を図3に示す。同図に示すように、従来例1は、使用初期からパッド研磨レートが低く、そのうえウエハにスクラッチが発生したために試験を中止した。従来例2は、使用初期はパッド研磨レートが高いが、時間経過とともに砥粒の摩耗が大きくなり、コンディショニング性が安定しなかった。実施例1〜3は、時間経過によるパッド研磨レートの変化が少なく、コンディショニング性が安定することが確認された。
【0029】
【発明の効果】
(1)ダイヤモンド工具の砥粒層を形成するのに結晶構造が切頭八面体のダイヤモンド砥粒と六・八面体のダイヤモンド砥粒の両方を使用することで、六・八面体砥粒の作用により、切頭八面体砥粒先端面が被加工材に深く食い込むことを防止し、また、砥粒の負荷が小さくなり、切頭八面体砥粒先端の摩耗が抑えられて、研削性が安定し、工具の寿命が長くなる。切れ味が劣る六・八面体砥粒の不具合は切頭八面体砥粒の切れ味の良さによって補われる。
【0030】
(2)切頭八面体砥粒と六・八面体砥粒の混合比を30/70〜70/30の範囲内とすることにより、両砥粒の相互作用によって研削性の安定化、工具の長寿命化を達成することができる。また、この混合比を調整することで、研削性の程度を調整することができる。
【図面の簡単な説明】
【図1】 本発明の実施形態におけるパッドコンディショナのプレートを模式的に示す図であり、(a)は平面図、(b)は(a)のA−A線断面図である。
【図2】 図1のプレートの砥粒層の形成手順を示す説明図である。
【図3】 ポリッシング加工試験結果を示す図である。
【図4】 パッドコンディショナの代表的な形状の例を示す図である。
【図5】 パッドコンディショナの一例を示す斜視図である。
【図6】 パッドコンディショナの使用状態を示す斜視図である。
【図7】 パッドコンディショナの従来の製造方法の説明図である。
【図8】 砥粒の結晶構造を示す図である。
【符号の説明】
1 プレート
2 母材
3 砥粒層
4a 切頭八面体砥粒
4b 六・八面体砥粒
5 Niメッキ層
6 定盤
7 絶縁シート
7a 孔
15 Niメッキ層
21 絶縁体
30 メッキ槽
31 メッキ液[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diamond tool in which the crystal structure and shape of abrasive grains are greatly involved in grinding performance, such as a pad conditioner of a polishing pad used for planarizing a silicon wafer or the like.
[0002]
[Prior art]
Polishing performed for ultra-precision and high-quality finishing of electronic components and optical components is an important processing technology for flattening various laminated films including material processing, especially in the semiconductor LSI device manufacturing process. Corresponding to the increase in storage capacity, higher processing accuracy (surface roughness, flatness), processing quality (no defects, no distortion) and processing performance are required. Polishing is performed by spraying soft abrasive grains onto a polishing pad of a polisher and pressing the workpiece. A method of removing material by chemical and mechanical action between the soft abrasive grains and the workpiece is CMP ( (Chemical & Mechanical Polishing) processing.
[0003]
When polishing a silicon wafer or the like with such a CMP processing apparatus, a polishing pad made of polyurethane having a certain elastic modulus, fiber shape, and shape pattern is used as the polisher. Polishing is the final process for machining, and a flatness of around 1 μm and a surface roughness R MAX of 10 mm must be achieved. In this polishing process, in order to maintain stable processing performance, it is necessary to periodically modify the polishing pad surface, and a pad conditioner in which diamond abrasive grains are fixed to form an abrasive layer is used. Simultaneously with processing or periodically, a deteriorated layer on the surface of the polishing pad is removed, and an appropriate surface state is obtained.
[0004]
By the way, a tool in which abrasive grains are fixed to a single layer on the surface of a base metal by electrodeposition or brazing method has a larger abrasive protrusion and sharpness than a tool in which abrasive grains are fixed in multiple layers. However, since there is only one effective abrasive grain, the arrangement state of the abrasive grains and the state of the cutting edge greatly affect the grinding performance. In particular, a pad conditioner for CMP processing is used for conditioning polishing pads such as silicon devices, and therefore has a predetermined sharpness that matches the polishing conditions, and is a polishing pad due to abrasive grains falling off during use or abrasive grain defects. There is no adhesion of a hard substance on the top, and ensuring the flatness, homogeneity and stability of the pad conditioning surface is a major issue.
[0005]
FIG. 4 is a view showing a shape example of an electrodeposition pad conditioner as an example of a typical shape of a pad conditioner. FIG. 4A shows a ring-shaped base metal having a plurality of segments in which an abrasive layer is formed on a base material. (B) is a pellet type pad conditioner in which a large number of pellets having an abrasive layer formed on a base material are arranged at intervals on a ring-shaped base metal. (C) is a disk type pad conditioner in which a base metal having a relatively small diameter is used as a base material and an abrasive layer is formed on the entire surface of the base material.
[0006]
FIG. 5 is a perspective view showing an example of the disk-type electrodeposition pad conditioner of FIG. 4 (c). A plate 10 in which diamond abrasive grains are electrodeposited on an iron base material by a Ni plating layer is attached to a flange 41. The pad conditioner 40 is fixed by screws from the back side. Conditioning is performed by pressing the pad conditioner 40 against the polishing pad 51 on the surface of the polisher 50 of the CMP processing apparatus as shown in FIG. In the figure, reference numeral 60 denotes a suction disk for an object to be polished such as a silicon wafer, and reference numeral 70 denotes a polishing slurry supply device.
[0007]
FIG. 7 is a diagram showing an example of a conventional manufacturing process of a pad conditioner plate. In the state where the base material 11 shown in FIG. 7A is masked with an insulator 21 as shown in FIG. As shown in FIG. 2C, the substrate is immersed in the plating solution 31 and first, temporarily fixed to hold the abrasive grains 13 with the Ni plating layer 14a. After the temporary fixing step, the floating abrasive grains 13a are removed so that a predetermined abrasive density is obtained. Next, as shown in FIG. 4D, embedding fixation is performed in which the abrasive grains 13 are fixed with a Ni plating layer 14 having a thickness corresponding to 60 to 70% of the abrasive grain diameter, and then the insulator 21 is peeled off. Then, the wiring is removed and the base material is polished to obtain a plate (see plate 10 in FIG. 5).
[0008]
[Problems to be solved by the invention]
By the way, the crystal form of diamond abrasive grains varies depending on the synthesis conditions. The octahedron is mainly composed of {111} plane, hexahedron mainly composed of {100} plane, and six-eight composed of {111} plane and {100} plane. There are masks. In addition, perfect hexahedrons and octahedrons are difficult to exist, and in fact, truncated octahedrons and hexahedrons are commonly used as the crystal grains of the abrasive grains, and are usually used for diamond tools. The abrasive grains that are used are truncated octahedron abrasive grains or hexahedral octahedral abrasive grains. However, when a truncated octahedron abrasive grain or a hexahedral octahedron abrasive grain is used as an abrasive grain for a diamond tool, both have disadvantages.
[0009]
For example, when a truncated octahedron or hexahedron abradant is used in a CMP processing pad conditioner as a diamond tool, a line obtained by projecting a {111} plane perpendicular to the pad conditioner substrate fixed surface The polishing pad should be conditioned most effectively and the pad conditioner should be free from chipping of abrasive grains when the parts are aligned in a direction almost parallel to the grinding direction of the pad conditioner. The applicant previously filed a patent application in Japanese Patent Application No. 2001-72996, and the posture of the abrasive grains in this case is as shown in FIGS. 8 (a) and 8 (b).
[0010]
In this posture, the truncated octahedron abrasive grains ((a) in FIG. 8) have few flat surfaces at the tips of the abrasive grains, and the ridges formed from the {100} plane are relatively acute and excellent in sharpness. Thus, it is possible to create a pad working surface with good slurry retention without crushing minute pores on the pad surface. However, since the cutting edge has a small area and an acute angle, it becomes difficult to maintain the sharpness due to wear and abrasion, and the life of the pad conditioner is shortened. In addition, the hexahedron (FIG. 8B) has a flat crystal face at the tip of the abrasive grains, and the ridges formed by the {111} face and the {100} face have an obtuse angle. It becomes insufficient. However, since the wear of the abrasive grain tip is small, the conditioning property is stable.
[0011]
The performance of the pad conditioner has a great influence on the polishing rate and flatness of the wafer, which is a product, in the CMP processing process, and it is strongly desired to stabilize the conditioning and extend the life of the pad conditioner. In particular, the performance of the pad conditioner largely depends on the characteristics of the diamond abrasive grains, and it has become difficult to improve conditioning and service life with a single type of abrasive grains as before. .
[0012]
Such a problem is not limited to the pad conditioner for CMP processing, but can be applied to other diamond tools.
The problem to be solved in the present invention is to further improve the grinding performance of a diamond tool depending on the abrasive grains by using abrasive grains having different crystal structures in a diamond tool such as a pad conditioner for CMP processing. .
[0013]
[Means for Solving the Problems]
The present invention relates to a diamond tool in which a single layer of diamond abrasive grains is fixed to a base metal, and the diamond abrasive grains are based on a truncated octahedron and a hexahedron based abrasive. It is a diamond tool using. Here, the meaning of abrasive grains based on truncated octahedrons or hexahedrons means that not only those whose crystal forms are perfectly arranged but also those that are somewhat irregular.
[0014]
Diamond abrasive grains based on truncated octahedrons (hereinafter referred to simply as truncated octahedral abrasive grains) and diamond abrasive grains based on hexahedrons (hereinafter referred to as "the diamond abrasive grains") are used to form the abrasive layer of diamond tools. By using both hexagonal and octahedral abrasive grains, the characteristics of the respective abrasive grains interact with each other, and the problems associated with the use of both abrasive grains can be solved. Specifically, when the diamond tool is a pad conditioner, the tip surface of the truncated octahedral abrasive grains is a polishing pad due to the action of the hexahedral octahedral grains having a relatively wide flat surface at the abrasive grain tip. It is possible to prevent the polishing pad from being worn by preventing it from getting deep into the surface. In addition, since the tip surface of the truncated octahedral abrasive grains does not dig deeply into the polishing pad, the load on the abrasive grains is reduced, wear at the tips of the truncated octahedral abrasive grains is suppressed, and conditioning properties are stable, The life of the pad conditioner is extended. On the other hand, the defect of the hexahedral octahedral abrasive grains that are inferior in sharpness is compensated by the sharpness of the truncated octahedral abrasive grains.
[0015]
Here, the mixing ratio (Da / Db) between the truncated octahedral abrasive grains (Da) and the hexahedral octahedral abrasive grains (Db) is preferably in the range of 30/70 to 70/30. If the mixing ratio is within this range, the interaction between the two abrasive grains can be expected, and stabilization of the polishing pad conditioning, longer life of the pad conditioner, and less scratching can be achieved. In addition, by adjusting this mixing ratio, the strength of the conditioning can be adjusted. For example, to improve the polishing slurry retention of the polishing pad and to obtain highly efficient polishing performance, Da / Db is set to 70/30, conversely, the amount of wear of the polishing pad is reduced and the sharpness of the pad conditioner is maintained. In order to increase the property and life, Da / Db is set to 30/70, and the intermediate ratio is appropriately changed when intermediate performance is required.
[0016]
When Da / Db is greater than 70/30, there is no significant difference from the case of using truncated octahedral abrasive grains alone, and polishing pad wear and pad conditioner abrasive tip wear are severe, resulting in stable conditioning performance. I can't. Also, when Da / Db is smaller than 30/70, there is no great difference from the case of using hexahedral octahedral grains alone, and the ratio of those with a flat cutting edge at the tip of the abrasive grains becomes large, resulting in poor conditioning and polishing performance. Cause problems.
[0017]
As described above, a stable conditioning property can be obtained by appropriately setting the mixing ratio of the truncated octahedral abrasive grains and the hexahedral octahedral abrasive grains and regularly arranging both abrasive grains. However, if the edge of the abrasive grain is fixed to the base with the posture standing on the working surface, the grindability of the polishing pad will change, and the conditioning property will be unstable due to the directionality of the edge of the abrasive grain. Tend to be. To solve this problem, the grindability of the polishing pad is stabilized and the conditioning property is further stabilized by fixing the {100} surface of the abrasive grain tip to the base metal in a posture parallel to the base metal reference surface. However, when the abrasive grains are disposed in each hole of the insulating sheet used in the process of forming the abrasive grain layer (see [0018] described later), the {100} surface of the abrasive grain tip is parallel to the base metal reference plane. The ratio of the abrasive grains fixed in the posture is 40 to 50%. This is because the abrasive grains are fixed in an inclined posture by the abrasive grains coming into contact with the walls of the holes of the insulating sheet. According to the inventor's experimental research, in order to stabilize the conditioning property, the ratio of the abrasive grains in which the {100} surface at the tip of the abrasive grains is fixed parallel to the base metal reference surface is 50% or more is desirable, and 80% or more is desirable for further increasing the stability. In order to achieve such a state, after the abrasive grains are arranged in the holes of the insulating sheet, if the vibration is applied to the insulating sheets, the abrasive grains in a posture that is inclined in contact with the wall of the holes of the insulating sheet are surely obtained. In this case, 50% or more of the abrasive grains have a posture in which the {100} plane is parallel to the base metal reference plane. Further, by setting the hole diameter of the insulating sheet on which the truncated octahedral abrasive grains are arranged to be 80% of the average grain diameter of the abrasive grains, the abrasive grains are arranged on the basis of the {100} plane, and vibration is applied to the insulating sheet. % Or more of the abrasive grains have a posture in which the {100} plane is parallel to the base metal reference plane.
[0019]
Further, when sharpness is required, it is effective to use a truncated octahedral abrasive grain having a grain size larger than that of the hexahedral octahedral grain. On the other hand, when it is desired to suppress wear of the abrasive grain tip and reduce wear of the polishing pad, it is effective to use hexahedron abrasive grains having a grain size larger than that of the truncated octahedral abrasive grains.
Furthermore, depending on the usage conditions, truncated octahedral abrasive grains are arranged on the outer peripheral side of the abrasive layer, and hexahedral octahedral abrasive grains are arranged on the inner peripheral side of the abrasive layer, or conversely, truncated octahedral abrasive grains are arranged. It is also effective to arrange the face-piece abrasive grains on the inner peripheral side of the abrasive layer and arrange the hexahedron grains on the outer peripheral side of the abrasive layer.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B are diagrams schematically showing a plate of a pad conditioner in an embodiment in which the present invention is applied to a pad conditioner for CMP processing. FIG. 1A is a plan view, and FIG. It is line sectional drawing. FIG. 2 is an explanatory view showing a procedure for forming an abrasive layer of the plate of FIG.
[0021]
The plate 1 of the pad conditioner of the present embodiment is composed of a disk-shaped iron base material 2 and an abrasive layer 3 formed on one surface side of the base material 2, and the base material 2 has an outer diameter of 100 mm. The thickness is 6 mm. However, the drawings exaggerate the thickness.
[0022]
The abrasive grain layer 3 is constituted by a truncated octahedral abrasive grain 4a having an average grain size of 150 μm (maximum grain size 165 μm, minimum grain size 139 μm), a hexahedral octahedral abrasive grain 4b, and a Ni plating layer 5 having a thickness of 90 μm. It is formed by the procedure shown in FIGS. In FIG. 2, (a) shows the base material 2 before forming the abrasive layer, (b) shows a state where the peripheral surface where the abrasive layer is not formed is coated with an insulator 21 and masked, and (c) shows The stainless steel surface plate 6 and (d) indicate polyimide insulating sheets 7, respectively.
[0023]
The surface plate 6 has a thickness of 10 mm, and the flatness of the upper surface of the surface plate is set to 5 μm or less so that the difference in tip height between all abrasive grains after electrodeposition is within 5 μm. The insulating sheet 7 has a thickness of 75 μm and has a large number of holes 7a in the plane. The hole 7a has an inner diameter of 0.2 mm for hexahedral and octahedral abrasive grains and an inner diameter of 0.12 mm for truncated octahedral abrasive grains, and the center distance between adjacent holes is 0.4 mm. The center interval between the holes is set so that the center interval between adjacent abrasive grains is in the range of 2 to 10 times the average grain size of the abrasive grains.
[0024]
As shown in FIG. 4E, the insulating sheet 7 is placed on the surface plate 6 in the plating tank 30, and the truncated octahedral abrasive grains 4a and hexahedrons are placed in the holes 7a of the insulating sheet 7. The abrasive grains 4b are alternately arranged one by one, and the electrodeposition surface of the base material 2 is placed on the abrasive grains from above, and placed on the abrasive grains. In this state, the plating bath 30 is filled with a plating solution 31, and the truncated octahedral abrasive grains 4a and the hexahedral octahedral abrasive grains 4b are temporarily fixed by the Ni plating layer 15 to a thickness of 35 μm by electrodeposition. The plate 4 shown in FIG. 1 is obtained by excluding the board 6 and the insulating sheet 7 and fixing the abrasive grains 4 by electrodeposition again.
[0025]
In the plate 1 of this embodiment, the truncated octahedral abrasive grains 4a and the hexahedral octahedral abrasive grains 4b are alternately arranged in a single layer on the base material 2, so that the abrasive grain tip portion is relatively arranged. Due to the action of the hexahedral octahedral abrasive grains 4b having a wide flat surface, the tip surface of the truncated octahedral abrasive grains 4a is prevented from deeply biting into the polishing pad, and the abrasion of the polishing pad is suppressed. Also, since the truncated octahedral abrasive grain 4a tip surface does not dig deeply into the polishing pad, the load on the abrasive grain is reduced, wear at the truncated octahedral abrasive grain 4a tip is suppressed, and conditioning properties are stabilized. The life of the pad conditioner is extended. On the other hand, the defect of the hexahedral octahedral abrasive grains 4b that are inferior in sharpness is compensated by the good sharpness of the truncated octahedral abrasive grains 4a. As a result, stabilization of the conditioning property, extension of the life of the pad conditioner, and reduction of the scratch can be achieved.
[0026]
Further, since there are no abrasive grains that easily fall off, when this plate 1 is attached to the flange and used as a polishing pad conditioner, the abrasive grains do not fall off during dressing. In addition, since the protruding amount of the abrasive grains 4 is substantially constant and the tip height is uniform, the profile of the polisher is stabilized, contributing to improvement of the flatness of the wafer in CMP processing.
[0027]
【Example】
The same shape and dimensions as the plate of the embodiment of the present invention shown in FIG. 1, and the electric power using a plate in which the mixing ratio of the truncated octahedral abrasive grains 4a and the hexahedral octahedral abrasive grains 4b is variously changed as shown in Table 1. Wearing pad conditioners were manufactured, and a wafer polishing test was performed with a polisher dressed with these pad conditioners. The test conditions are as follows.
[Table 1]
Figure 0003797948
[Polisher specification]
Name: IC1000 / SUBA400
[Wafer]
Material: Silicon wafer (interlayer insulation film SiO 2 )
[Dressing conditions]
Machine used: Ultra-precision single-side polishing machine Load: 50N
Table rotation speed: 30 min -1
Pad conditioner rotation speed: 40 min -1
Processing time: 30 hours [0028]
The test results are shown in FIG. As shown in the figure, the test of Conventional Example 1 was stopped because the pad polishing rate was low from the beginning of use and scratches were generated on the wafer. In Conventional Example 2, the pad polishing rate was high in the initial stage of use, but the wear of the abrasive grains increased with time, and the conditioning properties were not stable. In Examples 1 to 3, it was confirmed that there was little change in the pad polishing rate over time, and the conditioning properties were stable.
[0029]
【The invention's effect】
(1) By using both a truncated octahedral diamond abrasive and a hexahedron diamond abrasive to form an abrasive layer of a diamond tool, the action of the hexahedral octahedron Prevents the truncated octahedron tip from getting deeper into the work piece, reduces the load on the abrasive, reduces wear on the truncated octahedron tip, and stabilizes the grindability In addition, the tool life is extended. The defect of the hexahedral octahedral abrasive grains that are inferior in sharpness is compensated by the sharpness of the truncated octahedral abrasive grains.
[0030]
(2) By making the mixing ratio of the truncated octahedral abrasive grains and the hexahedral octahedral abrasive grains within the range of 30/70 to 70/30, the grindability is stabilized by the interaction of both abrasive grains. Long life can be achieved. Moreover, the degree of grindability can be adjusted by adjusting the mixing ratio.
[Brief description of the drawings]
1A and 1B are diagrams schematically showing a plate of a pad conditioner according to an embodiment of the present invention, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line AA in FIG.
FIG. 2 is an explanatory view showing a procedure for forming an abrasive layer of the plate of FIG. 1;
FIG. 3 is a diagram showing a polishing processing test result.
FIG. 4 is a diagram showing an example of a typical shape of a pad conditioner.
FIG. 5 is a perspective view showing an example of a pad conditioner.
FIG. 6 is a perspective view showing a usage state of the pad conditioner.
FIG. 7 is an explanatory diagram of a conventional manufacturing method of a pad conditioner.
FIG. 8 is a diagram showing the crystal structure of abrasive grains.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plate 2 Base material 3 Abrasive grain layer 4a A truncated octahedron abrasive grain 4b Hexaoctahedron abrasive grain 5 Ni plating layer 6 Surface plate 7 Insulation sheet 7a Hole 15 Ni plating layer 21 Insulator 30 Plating tank 31 Plating liquid

Claims (1)

台金に単層のダイヤモンド砥粒を固着させたダイヤモンド工具において、ダイヤモンド砥粒として結晶構造が切頭八面体を基本とした砥粒と六・八面体を基本とした砥粒とを使用し、台金に固着させた砥粒の先端面が{100}面であり、前記{100}面が台金の基準面と平行に固着されている砥粒の割合が全固着砥粒の50%以上であり、前記切頭八面体を基本とした砥粒(Da)と前記六・八面体を基本とした砥粒(Db)の混合比(Da/Db)が30/70〜70/30であるダイヤモンド工具。In a diamond tool in which a single layer of diamond abrasive grains is fixed to a base metal, the abrasive grains based on a truncated octahedron and the abrasive grains based on a hexahedron are used as diamond abrasive grains , The tip surface of the abrasive grains fixed to the base metal is the {100} plane, and the ratio of the abrasive grains in which the {100} plane is fixed in parallel with the reference plane of the base metal is 50% or more of the total fixed abrasive grains. The mixing ratio (Da / Db) of the abrasive grains (Da) based on the truncated octahedron and the abrasive grains (Db) based on the hexahedron is 30/70 to 70/30. Diamond tool.
JP2002092021A 2002-03-28 2002-03-28 Diamond tools Expired - Fee Related JP3797948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002092021A JP3797948B2 (en) 2002-03-28 2002-03-28 Diamond tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092021A JP3797948B2 (en) 2002-03-28 2002-03-28 Diamond tools

Publications (2)

Publication Number Publication Date
JP2003285271A JP2003285271A (en) 2003-10-07
JP3797948B2 true JP3797948B2 (en) 2006-07-19

Family

ID=29236968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092021A Expired - Fee Related JP3797948B2 (en) 2002-03-28 2002-03-28 Diamond tools

Country Status (1)

Country Link
JP (1) JP3797948B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5364417B2 (en) * 2009-03-31 2013-12-11 本田技研工業株式会社 Grinding stone manufacturing method and manufacturing apparatus
US9233454B2 (en) 2009-03-31 2016-01-12 Honda Motor Co., Ltd. Grinding stone, manufacturing method of grinding stone, and manufacturing apparatus of grinding stone
JP5417014B2 (en) * 2009-03-31 2014-02-12 本田技研工業株式会社 Whetstone
JP6591237B2 (en) * 2015-09-02 2019-10-16 株式会社ノリタケカンパニーリミテド Diamond dresser
CN115106936B (en) * 2022-06-24 2023-03-28 中国地质大学(武汉) Diamond dressing disc and preparation method thereof

Also Published As

Publication number Publication date
JP2003285271A (en) 2003-10-07

Similar Documents

Publication Publication Date Title
KR101091030B1 (en) Method for producing pad conditioner having reduced friction
JP3295888B2 (en) Polishing dresser for polishing machine of chemical machine polisher
JP4904960B2 (en) Carrier for double-side polishing apparatus, double-side polishing apparatus and double-side polishing method using the same
US6402883B1 (en) Polishing pad conditioning surface having integral conditioning points
EP2845221B1 (en) Cmp conditioner pads with superabrasive grit enhancement
JP2896657B2 (en) Dresser and manufacturing method thereof
JP2003511255A (en) Conditioner for polishing pad and method of manufacturing the same
JPWO2002005337A1 (en) Mirror chamfering wafer, polishing cloth for mirror chamfering, mirror chamfering polishing apparatus and method
JP2014233830A (en) Abrasive pad dresser and production method thereof, abrasive pad dressing device, and polishing system
JP2006130586A (en) Cmp conditioner and manufacturing method thereof
JP3797948B2 (en) Diamond tools
JP2009136926A (en) Conditioner and conditioning method
KR20100110989A (en) Cmp pad conditioner and its manufacturing method
JP2006332322A (en) Dressing method of polishing pad, and polisher
JP3664691B2 (en) Dresser for CMP processing
CN112405337B (en) Polishing pad and method for manufacturing semiconductor device
JP2002273657A (en) Dresser for cmp machining
JP2012130995A (en) Dresser
TW466150B (en) Non-abrasive conditioning for polishing pads
JP2001121418A (en) Electrodeposition dresser for polishing
JP4281253B2 (en) Electrodeposition whetstone, manufacturing apparatus and manufacturing method thereof
JP2004050313A (en) Abrasive wheel and grinding method
WO2018193758A1 (en) Double-sided wafer polishing method and double-sided polishing apparatus
JP2004306220A (en) Chemical mechanical polishing conditioner
KR101555874B1 (en) Conditioner having dot portion for polishing cmp pad and method of manufaturing thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050621

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060418

R150 Certificate of patent or registration of utility model

Ref document number: 3797948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees