JP4456691B2 - Conditioner manufacturing method - Google Patents

Conditioner manufacturing method Download PDF

Info

Publication number
JP4456691B2
JP4456691B2 JP16282199A JP16282199A JP4456691B2 JP 4456691 B2 JP4456691 B2 JP 4456691B2 JP 16282199 A JP16282199 A JP 16282199A JP 16282199 A JP16282199 A JP 16282199A JP 4456691 B2 JP4456691 B2 JP 4456691B2
Authority
JP
Japan
Prior art keywords
abrasive grains
abrasive
conditioner
gas passage
mother die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16282199A
Other languages
Japanese (ja)
Other versions
JP2000354967A (en
Inventor
達夫 松本
智彦 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Diamond Industrial Co Ltd
Original Assignee
Asahi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Diamond Industrial Co Ltd filed Critical Asahi Diamond Industrial Co Ltd
Priority to JP16282199A priority Critical patent/JP4456691B2/en
Publication of JP2000354967A publication Critical patent/JP2000354967A/en
Application granted granted Critical
Publication of JP4456691B2 publication Critical patent/JP4456691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、コンディショナの製造方法に関する。さらに詳しくは、本発明は、砥粒の突出量を容易に調整することができ、砥粒の先端がすべて外方を向き、半導体デバイスの層間絶縁膜、金属配線などのケミカルメカニカルポリッシング用の研磨パッドのコンディショニングに際して、研磨パッドを金属分により汚染するおそれがなく、砥粒の脱落によりウェーハ表面を傷つけるおそれがない、コンディショニング効率の優れたコンディショナの製造方法に関する。
【0002】
【従来の技術】
超LSIの高集積化、高速化において多層配線はますます重要になり、この技術の中枢をなす層間絶縁膜及び金属配線の平坦化工程に対し、より一層の高度化が要求されつつある。一般に、半導体ウェーハの表面を研磨するウェーハ加工装置では、円盤状の定盤に研磨パッドを貼り付け、定盤上面に1枚又は複数枚のウェーハを載置し、これらのウェーハを研磨パッド上でキャリアにより強制回転させつつ、研磨パッドとウェーハの間に微細な研磨粒子を含む研磨液を供給して、界面の化学的及び機械的作用によるケミカルメカニカルポリッシング(CMP)が行われている。
研磨パッドとしては、ポリエステル不織布にポリウレタン樹脂を含浸させたベロアタイプパッド、ポリエステル不織布を基材としてその上に発泡ポリウレタン層を形成したスウェードタイプパッド、あるいは、独立気泡を有する発泡ポリウレタンのパッドなどが使用されている。また、研磨粒子としては、フェライト粉末、アルミナ粉末、炭酸バリウム、コロイダルシリカ、酸化セリウムなどが用いられ、研磨液には水酸化カリウム溶液、希塩酸、希硝酸、過酸化水素水、硝酸鉄水溶液などが使用される。このようなウェーハの研磨を繰り返すうちに、被削材の切り屑や研磨粒子などが研磨パッドの微細な孔に入り込んで目詰まりを起こしたり、研磨粒子とウェーハの化学反応熱によって研磨パッドの表面が鏡面化して、研磨速度が低下してしまう。このために、研磨パッドのコンディショニングを常時又は定期的に行う必要がある。
しかし、従来の電着法により砥粒を固着したコンディショナでは、砥粒は完全な一層ではなく、砥粒の間に挟まって浮き石となった砥粒が必ず存在し、これが脱落して研磨パッドに残存し、ウェーハ表面を傷つけるという問題があった。また、メタルボンドにより砥粒を固着したコンディショナでは銅などが、電着により砥粒を固着したコンディショナではニッケルなどが、反応性の高い研磨液によって溶出し、研磨パッドに残存し、最終的には被加工物であるウェーハ上に付着するために、ケミカルメカニカルポリッシング後のウェーハの洗浄工程に非常に手間がかかっていた。さらに、電着タイプ、メタルボンドタイプともに、ダイヤモンド砥粒の突出量の調整が非常に困難であり、ダイヤモンド砥粒の突出量を所望の値とするための加工時間が長くかかるという問題があった。
コンディショナからの砥粒の脱落や、金属の溶出を防止するために、さまざまな方法がとられている。例えば、特開平2−225827号公報には、反転型の内面に砥粒一層分を電着により仮固定し、仮固定した砥粒を金属又は樹脂で埋め込んで固着することにより砥粒層を形成し、砥粒層に台金を接合し、反転型を除去して製造される、砥粒の最突出部がすべて同一平面上にあって、砥粒の脱落のおそれのないコンディショナが提案されている。特開平10−15819号公報には、台金に砥粒一層分をメッキにより仮固定し、仮固定した砥粒の浮き石を砥石により除去し、さらに砥粒を埋め込むまでメッキを行ったのち、石出し加工を行うことにより砥粒の突出量が平均粒径の5〜30%になるように最突出部を露出させた、砥粒の脱落のおそれのないコンディショナが提案されている。また、特開平10−249708号公報には、砥粒を台金にロウ材より固着して砥粒層を形成したのち、砥粒層を合成樹脂層で覆って表面に金属が露出しないようにした、砥粒の脱落と金属の溶出のおそれのないコンディショナが提案されている。さらに、特開平11−33911号公報には、台金に砥粒をメッキにより固着して砥粒層を形成し、砥粒層を合成樹脂層で被覆したのち、合成樹脂層の表面部分を除去して砥粒の先端部が合成樹脂層より突出し、メッキされた金属が合成樹脂層に覆われて露出していない、砥粒の脱落と金属の溶出のおそれのないコンディショナが提案されている。
しかし、これらのコンディショナは、いずれも製造工程が長いためにコスト高となることは避けられず、また、たとえ合成樹脂層で被覆しても、金属材料を用いるかぎり、金属の溶出に対する一抹の不安は拭いきれなかった。さらに、石出し加工を行っても、コンディショニングに有効な砥粒の先端は必ずしも外方を向いているとは限らないので、さらにラップ加工を必要とする場合もあった。このために、砥粒の脱落と金属の溶出のおそれが全くなく、コンディショニング効率に優れ、しかも簡単かつ容易に製造することができるコンディショナが求められていた。
【0003】
【発明が解決しようとする課題】
本発明は、砥粒の突出量を容易に調整することができ、砥粒の先端がすべて外方を向き、半導体デバイスの層間絶縁膜、金属配線などのケミカルメカニカルポリッシング用の研磨パッドのコンディショニングに際して、研磨パッドを金属により汚染するおそれがなく、砥粒の脱落によりウェーハ表面を傷つけるおそれがない、コンディショニング効率の優れたコンディショナの製造方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、母型に砥粒を嵌装するための穴と、穴に連通する気体通路を設け、気体通路を減圧にすると砥粒は先端が気体通路に向いた状態で嵌装され、この状態で結合剤を用いて砥粒を固着することにより、先端がすべて外方を向いたコンディショナを製造し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)母型の表面に設けられ、母型の外部と連通する気体通路を有する穴に、気体通路を減圧にすることにより砥粒を嵌装し、母型に、金属粉末、セラミック粉末又は合成樹脂からなる結合剤を充填して焼結することにより、砥粒を固着して砥粒層を形成することを特徴とするコンディショナの製造方法、
(2)穴の深さが、砥粒の平均粒径の10〜50%である第(1)項記載のコンディショナの製造方法、及び、
(3)結合剤が、合成樹脂である第(1)項記載のコンディショナの製造方法、
を提供するものである。
【0005】
【発明の実施の形態】
本発明のコンディショナの製造方法は、母型の表面に設けられ、母型の外部と連通する気体通路を有する穴に、気体通路を減圧にすることにより砥粒を嵌装し、母型に結合剤を充填して焼結することにより、砥粒を固着して砥粒層を形成するものである。図1(a)は、本発明方法に用いる母型の一態様の平面図であり、図1(b)はその斜視図である。本態様の母型においては、母型1の外周近縁部に、2個の同心円に囲まれた環状部に砥粒層キャビティ2が設けられ、砥粒層キャビティは非連続状に6分割されている。砥粒層キャビティの底には、砥粒を嵌装するための穴3が設けられ、さらにそれぞれの穴から母型の裏面に連通する気体通路が設けられている。気体通路は、穴と接続し、砥粒の粒径より細い直径を有する細い通路と、母型の裏面に開口する太い通路から構成されている。穴の深さは、砥粒の平均粒径の10〜50%であることが好ましく、15〜35%であることがより好ましい。本発明のコンディショナの砥粒の突出量は、穴の深さとほぼ等しくなるので、穴の深さを一定にすることにより、コンディショナの砥粒の突出量をそろえることができる。穴の深さが砥粒の平均粒径の10%未満であると、砥粒の突出量が少なく、コンディショニング効率が低下するおそれがある。穴の深さが砥粒の平均粒径の50%を超えると、砥粒の保持力が小さくなって、コンディショニングの際に砥粒が脱落するおそれがある。穴の形状に特に制限はなく、例えば、球面の一部とした形状、円錐状、多角錐状、気体通路の面取りを兼ねる形状などとすることができる。本発明方法において、母型の材質に特に制限はなく、例えば、黒鉛型、金型などを用いることができる。
【0006】
図2及び図3は、本発明のコンディショナの製造方法の一態様の説明図である。本図は、母型の表面に設けられた4個の穴を通り中心軸に平行な面で切断した部分断面図である。図2(a)に示すように、母型1の表面の砥粒層キャビティ2に砥粒を嵌装するための穴3が設けられ、さらにそれぞれの穴から母型の裏面に連通する気体通路4が設けられている。気体通路は、穴と接続し、砥粒の粒径より細い直径を有する細い通路と、母型の裏面に開口する太い通路から構成されている。図2(b)に示すように、砥粒層キャビティに砥粒5を積載し、母型の裏面側から脱気して気体通路4を減圧にする。気体通路を減圧にすることにより、それぞれの穴に砥粒が引き込まれ、砥粒は先端を気体通路に向けて穴に嵌装される。減圧の程度に特に制限はないが、圧力1〜70kPaであることが好ましく、5〜50kPaであることがより好ましい。圧力が1kPa未満であると、砥粒が穴及び気体通路に強く引き込まれ過ぎて、母型に食い込むおそれがある。圧力が70kPaを超えると、砥粒を穴に引き込む力が弱く、砥粒の先端が気体通路に向かないおそれがある。気体通路を減圧にして、砥粒を先端が気体通路に向いた状態で穴に嵌装したのち、穴に嵌装されなかった余分の砥粒を除去して、図2(c)に示す状態とする。余分の砥粒を除去する方法に特に制限はなく、例えば、気体通路を減圧にしたまま母型を上下反転させて余分の砥粒を落下させることができ、気体通路に適用している減圧よりも弱い減圧で余分の砥粒を吸い上げることもでき、あるいは、砥粒層キャビティから余分の砥粒を拾い出すこともできる。本発明方法においては、図2(b)に示すように砥粒層キャビティに砥粒を載置する代わりに、それぞれの穴に砥粒を1個ずつ置き、気体通路を減圧にして砥粒の先端を気体通路に向け、直ちに図2(c)に示す状態とすることもできる。
【0007】
本発明方法においては、母型の表面に設けられた穴に砥粒を先端が気体通路に向いた状態で嵌装したのち、母型に結合剤を充填して焼結し、砥粒を固着する。図3(a)に示す態様においては、円筒形の外型6を嵌合することにより形成された空間に、結合剤7を充填し、押しパンチ8を用いて押圧する。押圧しつつ加熱することにより、結合剤を焼結し、図3(b)に示すように結合剤により形成された基板9に砥粒5を固着する。使用する結合剤に特に制限はなく、例えば、金属粉末、セラミック粉末、合成樹脂などを挙げることができる。焼結に際して、温度、圧力、時間などの条件は、使用する結合剤に応じて適宜選定することができる。結合剤の中で、合成樹脂を好適に用いることができ、熱硬化性樹脂を特に好適に用いることができる。合成樹脂は、焼結のための温度及び圧力が低いので、形状に歪みを生ずるおそれが少なく、コンディショニングに際して、金属が溶出するおそれが全くない。使用する熱硬化性樹脂としては、例えば、尿素樹脂、メラミン樹脂、フェノール樹脂、エポキシ樹脂、ジアリルフタレート樹脂、ポリエステル樹脂、ポリイミド樹脂などを挙げることができる。これらの中で、フェノール樹脂を好適に用いることができる。
【0008】
本発明方法に用いる砥粒に特に制限はなく、例えば、ダイヤモンド、CBN、酸化セリウム、サファイア、ルビー、ガーネット、炭化ケイ素、アルミナなどを挙げることができる。コンディショナをケミカルメカニカルポリッシングの研磨パッドのコンディショニングに用いる場合は、ダイヤモンド砥粒を用いることが好ましい。ダイヤモンド砥粒の粒度は#35〜#120であることが好ましく、#50〜#100であることがより好ましい。ダイヤモンド砥粒の粒度が#35を超えて粗くなると、天然ダイヤモンドが必要となってきわめて高価になる。ダイヤモンド砥粒の粒度が#120を超えて細かくなると、穴と気体通路の工作が困難になるおそれがある。
図3(b)に示すように、結合剤が焼結されて基板9が形成され、砥粒5が固着されたコンディショナが形成されたのち、母型をコンディショナとともに徐冷し、母型を外してコンディショナを取り出す。図4(a)は、図1に示す母型を用いて製造されたコンディショナの平面図であり、図4(b)は、その斜視図である。本発明方法により製造されたコンディショナは、図3(c)に示すように、砥粒の先端がすべて外方を向き、かつ、砥粒の突出量がすべて一定である。そのために、本発明方法により製造されたコンディショナは、石出し加工やラップ加工を行う必要がない。本発明方法により製造されたコンディショナを、ケミカルメカニカルポリッシングにおいて研磨パッドのコンディショニングに用いると、効率よく短時間でコンディショニングを行うことができ、かつ、コンディショニングされた研磨パッドの表面粗さが細かく、平坦性に優れている。
【0009】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例1
図1に示す形状の黒鉛型を用いて、コンディショナを製造した。
黒鉛型は直径100mmであり、外周近縁部に幅10mmの環状で6分割された砥粒層キャビティを有し、分割されたそれぞれの砥粒層キャビティには、ダイヤモンド砥粒を嵌装するための穴が27個ずつ設けられている。また、それぞれの穴から、黒鉛型の裏面に連通する直径100μmの細い通路と、直径1mmの太い通路で構成された気体通路が設けられている。
黒鉛型の砥粒層キャビティに粒度#60のダイヤモンド砥粒を載置し、黒鉛型の裏面に20kPaの減圧をかけてダイヤモンド砥粒を穴に嵌装し、嵌装されない余分のダイヤモンド砥粒を除去した。
黒鉛型に、内径100mm、外径140mm、高さ30mmの円筒形の黒鉛製の外型を嵌合し、100℃に予熱した。この母型にフェノール樹脂70gを充填し、上部から押しパンチで100kg/cm2の圧力をかけ、170℃に昇温して10分間加熱し、フェノール樹脂を硬化させた。次いで、室温まで徐冷したのち、押しパンチ、外型及び黒鉛型を取り外し、コンディショナを得た。
コンディショナのダイヤモンド砥粒を走査型電子顕微鏡を用いて観察すると、砥粒の先端はすべて砥粒層面に垂直に外方を向いており、かつ、その突出量は一定にそろっていた。
【0010】
【発明の効果】
本発明方法により製造されたコンディショナは、砥粒の先端がすべて外方を向き、かつ、砥粒の突出量がすべて一定である。そのために、本発明方法により製造されたコンディショナは、石出し加工やラップ加工を行う必要がない。本発明方法により製造されたコンディショナを、ケミカルメカニカルポリッシングにおいて研磨パッドのコンディショニングに用いると、効率よく短時間でコンディショニングを行うことができ、かつ、コンディショニングされた研磨パッドの表面粗さが細かく、平坦性に優れている。
【図面の簡単な説明】
【図1】図1は、本発明方法に用いる母型の一態様の平面図及び斜視図である。
【図2】図2は、本発明のコンディショナの製造方法の一態様の説明図である。
【図3】図3は、本発明のコンディショナの製造方法の一態様の説明図である。
【図4】図4は、図1の母型を用いて製造されたコンディショナの平面図及び斜視図である。
【符号の説明】
1 母型
2 砥粒層キャビティ
3 穴
4 気体通路
5 砥粒
6 外型
7 結合剤
8 押しパンチ
9 基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a conditioner. More specifically, the present invention can easily adjust the protruding amount of abrasive grains, and the tips of the abrasive grains are all facing outward, and polishing for chemical mechanical polishing such as interlayer insulating films of semiconductor devices, metal wirings, etc. The present invention relates to a method for manufacturing a conditioner having excellent conditioning efficiency, in which there is no possibility that the polishing pad is contaminated with metal during conditioning of the pad, and there is no possibility of damaging the wafer surface due to falling off of abrasive grains.
[0002]
[Prior art]
Multilayer interconnects are becoming increasingly important for high integration and high speed of VLSI, and there is a demand for further advancement in the flattening process of interlayer insulating films and metal interconnects that form the core of this technology. In general, in a wafer processing apparatus for polishing the surface of a semiconductor wafer, a polishing pad is attached to a disk-shaped surface plate, one or more wafers are placed on the upper surface of the surface plate, and these wafers are placed on the polishing pad. Chemical mechanical polishing (CMP) is performed by chemical and mechanical action of an interface by supplying a polishing liquid containing fine abrasive particles between a polishing pad and a wafer while forcibly rotating by a carrier.
As a polishing pad, a velor type pad in which a polyester nonwoven fabric is impregnated with polyurethane resin, a suede type pad in which a polyester nonwoven fabric is used as a base material and a foamed polyurethane layer is formed thereon, or a foamed polyurethane pad having closed cells is used. Has been. Also, as the abrasive particles, ferrite powder, alumina powder, barium carbonate, colloidal silica, cerium oxide, etc. are used, and as the polishing liquid, potassium hydroxide solution, dilute hydrochloric acid, dilute nitric acid, hydrogen peroxide solution, iron nitrate solution etc. are used. used. While such wafer polishing is repeated, chips or abrasive particles of the work material enter the fine holes of the polishing pad, causing clogging, or the surface of the polishing pad due to the chemical reaction heat between the abrasive particles and the wafer. Becomes a mirror surface, and the polishing rate decreases. For this reason, it is necessary to condition the polishing pad constantly or periodically.
However, in the conditioner with the abrasive grains fixed by the conventional electrodeposition method, the abrasive grains are not completely one layer, and there are always abrasive grains sandwiched between the abrasive grains, which fall off and are polished. There was a problem of remaining on the pad and damaging the wafer surface. In conditioners with metal grains fixed by metal bonds, copper and the like are eluted by highly reactive polishing liquids, and nickel and the like remain in the polishing pad. However, since it adheres on the wafer which is a workpiece, the cleaning process of the wafer after chemical mechanical polishing is very troublesome. Furthermore, in both the electrodeposition type and the metal bond type, it is very difficult to adjust the protruding amount of diamond abrasive grains, and there is a problem that it takes a long processing time to set the protruding amount of diamond abrasive grains to a desired value. .
Various methods have been taken to prevent the abrasive grains from falling from the conditioner and the elution of metal. For example, in Japanese Patent Laid-Open No. 2-225825, an abrasive layer is formed by temporarily fixing a single abrasive grain on the inner surface of an inversion type by electrodeposition, and embedding and fixing the temporarily fixed abrasive with metal or resin. In addition, a conditioner that is manufactured by joining a base metal to the abrasive layer and removing the reversal mold, where the most protruding parts of the abrasive grains are all on the same plane, has been proposed. ing. In Japanese Patent Laid-Open No. 10-15819, a single layer of abrasive grains is temporarily fixed to a base metal by plating, the floating stones of the temporarily fixed abrasive grains are removed with a grinding stone, and plating is performed until the abrasive grains are embedded. There has been proposed a conditioner in which the most protruding portion is exposed so that the protruding amount of the abrasive grains is 5 to 30% of the average particle diameter by performing the quarrying process, and there is no fear of dropping off the abrasive grains. Japanese Patent Laid-Open No. 10-249708 discloses that an abrasive grain is fixed to a base metal from a brazing material to form an abrasive grain layer, and then the abrasive grain layer is covered with a synthetic resin layer so that no metal is exposed on the surface. In addition, there has been proposed a conditioner that does not cause the abrasive grains to fall off and the metal to elute. Furthermore, JP-A-11-33911 discloses that an abrasive grain is fixed to a base metal by plating to form an abrasive grain layer, and the abrasive grain layer is covered with a synthetic resin layer, and then the surface portion of the synthetic resin layer is removed. Then, a conditioner has been proposed in which the tip of the abrasive grains protrudes from the synthetic resin layer and the plated metal is not exposed by being covered with the synthetic resin layer, and there is no risk of abrasive grains falling off and metal elution. .
However, all of these conditioners are inevitably costly due to the long manufacturing process, and even if they are covered with a synthetic resin layer, as long as a metal material is used, the conditioner is completely free from metal elution. Anxiety could not be wiped out. Furthermore, even if the quarrying process is performed, the tip of the abrasive grain effective for conditioning does not always face outward, and therefore, lapping may be required in some cases. For this reason, there has been a demand for a conditioner that has no fear of falling off of abrasive grains and elution of metal, is excellent in conditioning efficiency, and can be manufactured easily and easily.
[0003]
[Problems to be solved by the invention]
The present invention makes it possible to easily adjust the protruding amount of abrasive grains, and the tips of the abrasive grains are all directed outward, and during conditioning of polishing pads for chemical mechanical polishing such as interlayer insulating films of semiconductor devices and metal wirings. An object of the present invention is to provide a method for manufacturing a conditioner having excellent conditioning efficiency, in which there is no possibility that the polishing pad will be contaminated with metal and there is no possibility that the surface of the wafer will be damaged due to removal of abrasive grains.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have provided a hole for fitting abrasive grains in the mother die and a gas passage communicating with the hole. The grains are fitted with the tips facing the gas passage, and in this state, it is found that a conditioner with the tips all facing outwards can be produced by fixing the abrasive grains with a binder. The present invention has been completed based on the findings.
That is, the present invention
(1) Abrasive grains are fitted in a hole having a gas passage communicating with the outside of the mother die by reducing the gas passage, and the metal die , ceramic powder or A conditioner manufacturing method characterized by forming a grain layer by adhering abrasive grains by filling and sintering a binder made of synthetic resin ,
(2) The method for producing a conditioner according to item (1), wherein the depth of the hole is 10 to 50% of the average grain size of the abrasive grains, and
(3) The method for producing a conditioner according to item (1), wherein the binder is a synthetic resin;
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The conditioner manufacturing method of the present invention is provided on the surface of the mother die, and in the hole having the gas passage communicating with the outside of the mother die, the abrasive is fitted into the mother die by reducing the pressure of the gas passage. By filling and sintering the binder, the abrasive grains are fixed to form an abrasive grain layer. Fig.1 (a) is a top view of one aspect | mode of the mother die used for this invention method, FIG.1 (b) is the perspective view. In the mother die of this aspect, the abrasive grain layer cavity 2 is provided in the annular portion surrounded by two concentric circles at the peripheral edge of the mother die 1, and the abrasive grain layer cavity is divided into six parts in a discontinuous manner. ing. At the bottom of the abrasive layer cavity, holes 3 for fitting the abrasive grains are provided, and gas passages communicating from the respective holes to the back surface of the mother die are provided. The gas passage is composed of a narrow passage that is connected to the hole and has a diameter smaller than the grain size of the abrasive grains, and a thick passage that opens on the back surface of the mother die. The depth of the hole is preferably 10 to 50% of the average particle diameter of the abrasive grains, and more preferably 15 to 35%. Since the protruding amount of the abrasive grains of the conditioner of the present invention is substantially equal to the depth of the hole, the protruding amount of the abrasive grains of the conditioner can be made uniform by making the hole depth constant. When the depth of the hole is less than 10% of the average grain size of the abrasive grains, the protruding amount of the abrasive grains is small, and the conditioning efficiency may be reduced. If the depth of the hole exceeds 50% of the average grain size of the abrasive grains, the holding power of the abrasive grains becomes small, and the abrasive grains may fall off during conditioning. There is no restriction | limiting in particular in the shape of a hole, For example, it can be set as the shape used as a part of spherical surface, the shape of a cone, a polygonal pyramid, the shape which also serves as the chamfering of a gas passage. In the method of the present invention, the material of the mother die is not particularly limited, and for example, a graphite die, a die or the like can be used.
[0006]
FIG.2 and FIG.3 is explanatory drawing of the one aspect | mode of the manufacturing method of the conditioner of this invention. This figure is a partial cross-sectional view taken along a plane parallel to the central axis through four holes provided on the surface of the mother die. As shown in FIG. 2 (a), holes 3 for fitting abrasive grains are provided in the abrasive layer cavities 2 on the surface of the mother die 1, and gas passages communicating with the back surface of the mother die from the respective holes. 4 is provided. The gas passage is composed of a narrow passage that is connected to the hole and has a diameter smaller than the grain size of the abrasive grains, and a thick passage that opens on the back surface of the mother die. As shown in FIG. 2B, the abrasive grains 5 are loaded in the abrasive grain layer cavity, and the gas passage 4 is depressurized by deaeration from the back side of the mother die. By reducing the pressure of the gas passages, the abrasive grains are drawn into the respective holes, and the abrasive grains are fitted into the holes with their tips directed toward the gas passages. Although there is no restriction | limiting in particular in the grade of pressure reduction, It is preferable that it is 1-70 kPa of pressure, and it is more preferable that it is 5-50 kPa. When the pressure is less than 1 kPa, the abrasive grains are excessively drawn into the hole and the gas passage, and there is a possibility of biting into the mother die. When the pressure exceeds 70 kPa, the force for drawing the abrasive grains into the hole is weak, and the tip of the abrasive grains may not be directed to the gas passage. FIG. 2 (c) shows the state shown in FIG. 2 (c) after reducing the pressure of the gas passage and fitting the abrasive grains into the hole with the tip facing the gas passage. And There is no particular limitation on the method for removing the excess abrasive grains, for example, it is possible to drop the excess abrasive grains by inverting the master mold while the gas passage is kept under reduced pressure. The excess abrasive grains can be sucked up with a weak vacuum, or the excess abrasive grains can be picked up from the abrasive layer cavity. In the method of the present invention, instead of placing abrasive grains in the abrasive layer cavity as shown in FIG. 2 (b), one abrasive grain is placed in each hole and the gas passage is decompressed to reduce the abrasive grains. The tip can be directed to the gas passage, and the state shown in FIG.
[0007]
In the method of the present invention, after the abrasive grains are fitted in the holes provided on the surface of the mother die with the tips facing the gas passages, the mother die is filled with a binder and sintered to fix the abrasive particles. To do. In the embodiment shown in FIG. 3 (a), the space formed by fitting the cylindrical outer mold 6 is filled with the binder 7 and pressed using the push punch 8. By heating while pressing, the binder is sintered, and the abrasive grains 5 are fixed to the substrate 9 formed of the binder as shown in FIG. There is no restriction | limiting in particular in the binder to be used, For example, metal powder, ceramic powder, a synthetic resin etc. can be mentioned. In sintering, conditions such as temperature, pressure, and time can be appropriately selected according to the binder to be used. Among the binders, a synthetic resin can be preferably used, and a thermosetting resin can be particularly preferably used. Since the synthetic resin has a low temperature and pressure for sintering, there is little risk of distortion in the shape, and there is no possibility of metal elution during conditioning. Examples of the thermosetting resin to be used include urea resin, melamine resin, phenol resin, epoxy resin, diallyl phthalate resin, polyester resin, and polyimide resin. Among these, a phenol resin can be suitably used.
[0008]
There is no restriction | limiting in particular in the abrasive grain used for this invention method, For example, a diamond, CBN, a cerium oxide, a sapphire, a ruby, a garnet, a silicon carbide, an alumina etc. can be mentioned. When the conditioner is used for conditioning a polishing pad for chemical mechanical polishing, it is preferable to use diamond abrasive grains. The grain size of the diamond abrasive grains is preferably # 35 to # 120, and more preferably # 50 to # 100. When the grain size of the diamond abrasive grains becomes coarser than # 35, natural diamond is required and it becomes very expensive. If the grain size of the diamond abrasive grains is finer than # 120, it may be difficult to work the hole and the gas passage.
As shown in FIG. 3B, the binder is sintered to form the substrate 9, and after the conditioner to which the abrasive grains 5 are fixed is formed, the mother mold is slowly cooled together with the conditioner, and the mother mold Remove and remove the conditioner. FIG. 4A is a plan view of a conditioner manufactured using the matrix shown in FIG. 1, and FIG. 4B is a perspective view thereof. In the conditioner manufactured by the method of the present invention, as shown in FIG. 3 (c), the tips of the abrasive grains are all directed outward, and the protruding amounts of the abrasive grains are all constant. Therefore, the conditioner manufactured by the method of the present invention does not need to be stoned or lapped. When the conditioner manufactured by the method of the present invention is used for conditioning a polishing pad in chemical mechanical polishing, conditioning can be efficiently performed in a short time, and the surface roughness of the conditioned polishing pad is fine and flat. Excellent in properties.
[0009]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Example 1
A conditioner was manufactured using a graphite mold having the shape shown in FIG.
The graphite mold has a diameter of 100 mm and has an annular abrasive grain layer cavity of 10 mm width at the outer peripheral edge, and diamond abrasive grains are fitted into each of the divided abrasive layer cavities. There are 27 holes each. In addition, a gas passage composed of a narrow passage having a diameter of 100 μm and a thick passage having a diameter of 1 mm is provided from each hole to the back surface of the graphite mold.
Place diamond abrasive grains of grain size # 60 in the graphite type abrasive layer cavity, apply 20 kPa of reduced pressure to the back of the graphite mold, and insert the diamond abrasive grains into the holes. Removed.
The graphite mold was fitted with a cylindrical graphite outer mold having an inner diameter of 100 mm, an outer diameter of 140 mm, and a height of 30 mm, and preheated to 100 ° C. The mother mold was filled with 70 g of a phenol resin, and a pressure of 100 kg / cm 2 was applied from above by a punch, and the temperature was raised to 170 ° C. and heated for 10 minutes to cure the phenol resin. Next, after gradually cooling to room temperature, the press punch, outer mold and graphite mold were removed to obtain a conditioner.
When the diamond abrasive grains of the conditioner were observed using a scanning electron microscope, the tips of the abrasive grains were all directed outwardly perpendicular to the abrasive layer surface, and the amount of protrusion was uniform.
[0010]
【The invention's effect】
In the conditioner manufactured by the method of the present invention, the tips of the abrasive grains are all directed outward, and the protruding amount of the abrasive grains is all constant. Therefore, the conditioner manufactured by the method of the present invention does not need to be stoned or lapped. When the conditioner manufactured by the method of the present invention is used for conditioning a polishing pad in chemical mechanical polishing, conditioning can be efficiently performed in a short time, and the surface roughness of the conditioned polishing pad is fine and flat. Excellent in properties.
[Brief description of the drawings]
FIG. 1 is a plan view and a perspective view of an embodiment of a mother die used in the method of the present invention.
FIG. 2 is an explanatory view of an embodiment of a method for producing a conditioner of the present invention.
FIG. 3 is an explanatory diagram of an embodiment of a method for producing a conditioner according to the present invention.
4 is a plan view and a perspective view of a conditioner manufactured using the matrix of FIG. 1. FIG.
[Explanation of symbols]
1 Master 2 Abrasive Layer Cavity 3 Hole 4 Gas Passage 5 Abrasive Grain 6 Outer Mold 7 Binder 8 Push Punch 9 Substrate

Claims (3)

母型の表面に設けられ、母型の外部と連通する気体通路を有する穴に、気体通路を減圧にすることにより砥粒を嵌装し、母型に、金属粉末、セラミック粉末又は合成樹脂からなる結合剤を充填して焼結することにより、砥粒を固着して砥粒層を形成することを特徴とするコンディショナの製造方法。Abrasive grains are fitted into a hole provided on the surface of the mother die and having a gas passage communicating with the outside of the mother die by depressurizing the gas passage, and the mother die is made of metal powder, ceramic powder or synthetic resin. by sintering by filling comprising binders, conditioners manufacturing method characterized by forming the abrasive grain layer by fixing the abrasive grains. 穴の深さが、砥粒の平均粒径の10〜50%である請求項1記載のコンディショナの製造方法。  The method for producing a conditioner according to claim 1, wherein the depth of the hole is 10 to 50% of the average grain size of the abrasive grains. 結合剤が、合成樹脂である請求項1記載のコンディショナの製造方法。  The method for producing a conditioner according to claim 1, wherein the binder is a synthetic resin.
JP16282199A 1999-06-09 1999-06-09 Conditioner manufacturing method Expired - Fee Related JP4456691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16282199A JP4456691B2 (en) 1999-06-09 1999-06-09 Conditioner manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16282199A JP4456691B2 (en) 1999-06-09 1999-06-09 Conditioner manufacturing method

Publications (2)

Publication Number Publication Date
JP2000354967A JP2000354967A (en) 2000-12-26
JP4456691B2 true JP4456691B2 (en) 2010-04-28

Family

ID=15761879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16282199A Expired - Fee Related JP4456691B2 (en) 1999-06-09 1999-06-09 Conditioner manufacturing method

Country Status (1)

Country Link
JP (1) JP4456691B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6669745B2 (en) * 2001-02-21 2003-12-30 3M Innovative Properties Company Abrasive article with optimally oriented abrasive particles and method of making the same
JP4508514B2 (en) * 2001-03-02 2010-07-21 旭ダイヤモンド工業株式会社 CMP conditioner and method of manufacturing the same
JP2004255469A (en) * 2003-02-24 2004-09-16 Miyanaga:Kk Structure of grinding part in grinding tool
JP2005288685A (en) * 2004-03-10 2005-10-20 Read Co Ltd Dresser for polishing cloth, and manufacturing method thereof
KR102187425B1 (en) 2011-12-30 2020-12-09 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Shaped abrasive particle and method of forming same
BR112014017050B1 (en) 2012-01-10 2021-05-11 Saint-Gobain Ceramics & Plastics, Inc. molded abrasive particle
US9440332B2 (en) 2012-10-15 2016-09-13 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
WO2014161001A1 (en) 2013-03-29 2014-10-02 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
RU2643004C2 (en) 2013-09-30 2018-01-29 Сен-Гобен Серэмикс Энд Пластикс, Инк. Formed abrasive particles and methods of their production
EP3086904B1 (en) 2013-12-23 2021-10-27 3M Innovative Properties Company Method of making a coated abrasive article
KR101870617B1 (en) 2013-12-31 2018-06-26 생-고뱅 어브레이시브즈, 인코포레이티드 Abrasive article including shaped abrasive particles
US9771507B2 (en) 2014-01-31 2017-09-26 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
CN106457522B (en) 2014-04-14 2020-03-24 圣戈本陶瓷及塑料股份有限公司 Abrasive article including shaped abrasive particles
US9914864B2 (en) 2014-12-23 2018-03-13 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
EP3277459B1 (en) 2015-03-31 2023-08-16 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
TWI634200B (en) 2015-03-31 2018-09-01 聖高拜磨料有限公司 Fixed abrasive articles and methods of forming same
WO2016201104A1 (en) 2015-06-11 2016-12-15 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
WO2017197002A1 (en) 2016-05-10 2017-11-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
KR102243356B1 (en) 2016-05-10 2021-04-23 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Abrasive particles and their formation method
EP4349896A2 (en) 2016-09-29 2024-04-10 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US10759024B2 (en) 2017-01-31 2020-09-01 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10563105B2 (en) 2017-01-31 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
EP4081369A4 (en) 2019-12-27 2024-04-10 Saint Gobain Ceramics Abrasive articles and methods of forming same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925457B1 (en) * 1989-01-30 1995-09-26 Ultimate Abrasive Syst Inc Method for making an abrasive tool
EP0452618A1 (en) * 1990-04-17 1991-10-23 Delta Engineering Process and apparatus for preparing an abrasive body for grinding tools
JPH05277951A (en) * 1991-03-20 1993-10-26 Toyoda Mach Works Ltd Manufacture of diamond roll for correcting grinding wheel
JPH04336967A (en) * 1991-05-13 1992-11-25 Toyoda Mach Works Ltd Manufacture of carbide abrasive grain edger
JPH0663869A (en) * 1992-08-18 1994-03-08 Daikin Ind Ltd Grinding wheel and its manufacture

Also Published As

Publication number Publication date
JP2000354967A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
JP4456691B2 (en) Conditioner manufacturing method
JP2896657B2 (en) Dresser and manufacturing method thereof
KR100686605B1 (en) Dresser for polishing cloth and method for manufacturing thereof
JP3387858B2 (en) Polishing pad conditioner
JP2002305168A (en) Polishing method, polishing machine and method for manufacturing semiconductor device
JP2004098214A (en) Dresser for polishing cloth and dressing method for polishing cloth using the same
TW201101382A (en) Methods for producing and processing semiconductor wafers
US9180572B2 (en) Chemical mechanical polishing conditioner and manufacturing methods thereof
JP3975047B2 (en) Polishing method
CN202952159U (en) Chemical mechanical polishing dresser
JP4695236B2 (en) Manufacturing method of CMP conditioner
US10919125B2 (en) Grindstone
JP2001156030A (en) Grinding roller for semiconductor wafer and method for grinding semiconductor wafer using the same
JP2002127017A (en) Dresser for polishing cloth and its manufacture
JP2006218577A (en) Dresser for polishing cloth
JPH1158232A (en) Dressing tool and manufacture thereof
JP3678993B2 (en) Dresser for CMP processing
JP3609059B2 (en) Dresser for CMP processing
JPH10256201A (en) Manufacturing method of semiconductor
JP7187113B2 (en) Reclaimed wafer manufacturing method
TWI735795B (en) Polishing pad dresser and chemical mechanical planarization method
JP2000141204A (en) Dressing device, and polishing device and cmp device using the same
JP2004140130A (en) Semiconductor substrate polishing pad and polishing method
CN117415681A (en) Polishing method for small-size aluminum nitride wafer
JP2002127011A (en) Cmp conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees