JP2008132560A - Single crystal superabrasive grain and superabrasive grain tool using single crystal superabrasive grain - Google Patents

Single crystal superabrasive grain and superabrasive grain tool using single crystal superabrasive grain Download PDF

Info

Publication number
JP2008132560A
JP2008132560A JP2006319898A JP2006319898A JP2008132560A JP 2008132560 A JP2008132560 A JP 2008132560A JP 2006319898 A JP2006319898 A JP 2006319898A JP 2006319898 A JP2006319898 A JP 2006319898A JP 2008132560 A JP2008132560 A JP 2008132560A
Authority
JP
Japan
Prior art keywords
plane
superabrasive
crystal
grain
superabrasive grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006319898A
Other languages
Japanese (ja)
Inventor
Yasushi Matsumoto
寧 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Material Corp
Original Assignee
Allied Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Material Corp filed Critical Allied Material Corp
Priority to JP2006319898A priority Critical patent/JP2008132560A/en
Publication of JP2008132560A publication Critical patent/JP2008132560A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide superabrasive grains for forming a tool having strong abrasive grain holding force and excellent cutting ability and to provide the superabrasive grain tool. <P>SOLUTION: This single crystal superabrasive grain is constituted by a plurality of crystalline planes, minute projections are formed on 111 plane and 100 plane among a plurality of crystalline planes, respectively, and the crystalline plane forming the minute projection has surface roughness obtained by a PV value of 0.1-5 μm. The projection formed on the 111 plane among the crystalline planes is constituted by a trigonal pyramid-shaped growth trace or by laminating the trigonal pyramid-shaped growth traces, and the projection formed on the 100 plane among the crystalline planes is constituted by a square pyramid-shaped growth trace. A plurality of crystalline planes include the 111, 110, and 100 planes, the 111 and 100 planes have priority over the 110 plane to let them grow by a vapor phase composition process, and a distance between the ridge lines in the direction in which a distance between mutually opposing ridge lines among the ridge lines surrounding the 110 plane is smaller is 0.2D or less (D is diameter of the abrasive grain). This superabrasive grain tool is formed by using these superabrasive grains. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、研削加工用の超砥粒工具に使用されるダイヤモンドやCBNの超砥粒およびその超砥粒を用いた超砥粒工具に関するものであり、砥粒保持力を向上させ、加工性能も向上させることを可能とした単結晶超砥粒および単結晶超砥粒を使った超砥粒工具に関する。   The present invention relates to a diamond or CBN superabrasive grain used in a superabrasive tool for grinding and a superabrasive tool using the superabrasive grain. The present invention also relates to a single crystal superabrasive grain and a superabrasive tool using the single crystal superabrasive grain.

ダイヤモンドは天然・人工を問わず古くからその硬さ故に、宝石以外の工業用途に使われてきた。ダイヤモンドを使った例として超砥粒工具があり、その代表的な例として研削加工用の砥石がある。   Diamonds have been used for industrial purposes other than gemstones, both natural and artificial, because of their hardness. An example of using diamond is a superabrasive tool, and a typical example is a grinding wheel for grinding.

研削加工用の砥石は、ダイヤモンド砥粒をフェノール系樹脂、ポリイミド系樹脂を代表とする樹脂結合材と各種充填材で結合させたレジンボンド砥石、ダイヤモンド砥粒をブロンズ系、コバルト系などの金属粉末との焼結によって結合させたメタルボンド砥石、電解・無電解めっきによりNiなどの金属でダイヤモンド砥粒を結合させた電着砥石、さらにはガラスを主成分とし各種添加材を加えたセラミックボンドでダイヤモンド砥粒を結合させたビトリファイドボンド砥石に大別される。また、広義ではメタルボンドに分類されるが、台金にダイヤモンド砥粒をロー付けで固定した単層の研削砥石もある。   Grinding wheels are resin-bonded whetstones made by combining diamond abrasive grains with resin binders such as phenolic resins and polyimide resins and various fillers, and metal powders such as bronze-based and cobalt-based diamond abrasive grains. Metal bond whetstones bonded by sintering with, electrodeposited whetstones bonded with diamond abrasive grains with metals such as Ni by electrolytic and electroless plating, and ceramic bonds with glass as the main component and various additives added Vitrified bond grindstones with diamond abrasive grains are roughly classified. There is also a single-layer grinding wheel that is classified as a metal bond in a broad sense, but with diamond abrasive grains fixed to the base metal by brazing.

これらのダイヤモンド砥石を使い安定した加工性能や寿命を維持するためには、切れ味を如何に持続させるかが大きなポイントであり、砥石の仕様を決める際には砥粒自体の耐摩耗性、適度な発刃効果、砥粒の保持力、砥石の耐熱性などを考慮する必要がある。   In order to maintain stable processing performance and longevity using these diamond grinding wheels, how to maintain the sharpness is a big point. When determining the specifications of the grinding stone, the wear resistance of the abrasive grains themselves, moderate It is necessary to consider the cutting effect, the holding power of the abrasive grains, the heat resistance of the grindstone and the like.

上記のメタルボンド砥石のようなダイヤモンド砥粒を多層に結合したいわゆるインプリタイプのダイヤモンド砥石の場合、切れ味を維持・回復させる方法として、スティック状あるいは円盤状の在来砥石を用いてドレッシングすることにより性状を回復させる機械的ドレッシング方法、結合材に導電性を付加し、電気分解によって結合材を除去することで性状を回復させる化学的ドレッシング方法、あるいは、放電やレーザー等の熱によって結合材を除去するかあるいは砥粒自体に新たな切刃エッジを形成することにより性状を回復させる熱的ドレッシング方法などが一般的に使われてきた。   In the case of the so-called impregnated diamond grindstone in which diamond abrasive grains such as the above-mentioned metal bond grindstone are bonded in multiple layers, as a method for maintaining and recovering the sharpness, dressing with a conventional grindstone in the form of a stick or disk Mechanical dressing method that restores properties, chemical dressing method that restores properties by adding electrical conductivity to the binder and removing the binder by electrolysis, or removing the binder by heat such as discharge or laser Alternatively, a thermal dressing method or the like has been generally used in which the properties are restored by forming a new cutting edge on the abrasive itself.

一方、電着砥石やロー付けタイプ砥石の様な単層構造のダイヤモンド砥石の場合、インプリタイプのダイヤモンド砥石とは異なり、ドレッシングすることにより切れ味を回復させるのは、構造上不可能である。従って、単層構造のダイヤモンド砥石の場合、砥石を製造した時点での砥粒保持力や加工に寄与する砥粒の形状、チップポケットの容量が、砥石の切れ味の持続性を左右することになる。   On the other hand, in the case of a diamond grindstone having a single-layer structure such as an electrodeposited grindstone or a brazed grindstone, it is structurally impossible to restore the sharpness by dressing, unlike an impregnated diamond grindstone. Therefore, in the case of a diamond whetstone with a single-layer structure, the abrasive holding power at the time of manufacturing the whetstone, the shape of the abrasive grains that contribute to processing, and the capacity of the chip pocket influence the sustainability of the sharpness of the grindstone. .

単層構造のダイヤモンド砥石では、比較的耐熱性や耐摩耗性に有利と言われているブロッキーな形状のダイヤモンド砥粒が一般的に使われるが、このダイヤモンド砥粒は結晶の形状が明瞭なため砥粒保持力が低下するという不具合も同時に発生する。   In diamond whetstones with a single-layer structure, diamond grains with a blocky shape, which is said to be relatively advantageous for heat resistance and wear resistance, are generally used, but these diamond grains have a clear crystal shape. At the same time, a problem that the abrasive grain holding power is reduced occurs.

もともとダイヤモンドは、他の物質との濡れ性が極めて悪い材質であるため、砥粒保持力を向上させることはダイヤモンド砥石全般における課題であった。中でも、単層構造のダイヤモンド砥石は、インプリタイプの砥石よりも砥粒の突き出し量が大きいため、砥粒保持力を向上させる課題はダイヤモンド砥石全体の中でも高く位置付けられている。   Originally, diamond is a material that is extremely poor in wettability with other substances, and therefore, it has been a problem for diamond wheels in general to improve the retention of abrasive grains. Among them, the diamond whetstone having a single layer structure has a larger amount of abrasive grains than the impregnated type whetstone, and therefore, the problem of improving the holding power of the abrasive grains is positioned higher in the whole diamond grindstone.

一般的に、砥粒保持力を向上させるためには、各種結合材に合わせた砥粒の選択がなされたり、砥粒自体にチタン系やニッケル系などの金属被覆を行い、結合材との濡れ性を向上させたりアンカー効果を得ることで砥粒保持力の向上が試みられている。なお、各種結合材に合わせて砥粒を選択する場合は、砥粒の破砕性やボンドとの反応性を考慮した上でも行われるものであり、金属被覆を行う場合は、放熱性や熱から砥粒を保護するという点を考慮した上でも行われるのは公知の通りである。   In general, in order to improve the holding power of abrasive grains, the abrasive grains are selected according to various binders, or the abrasive grains themselves are coated with titanium or nickel metal to wet the binder. Attempts have been made to improve the retention of abrasive grains by improving the properties and obtaining the anchor effect. In addition, when selecting abrasive grains according to various binders, it is also performed in consideration of the friability of the abrasive grains and reactivity with the bond, and when performing metal coating, from heat dissipation and heat As is well known, it is also performed in consideration of the point of protecting the abrasive grains.

単層構造のダイヤモンド砥石に一般的に利用されるブロッキーな形状のダイヤモンド砥粒は結晶方位が明瞭であり、砥粒の結晶面である(111)面や(100)面は非常に平滑になっていて、砥粒保持力を向上させるアンカー効果は十分に期待出来ない。   The blocky diamond grains generally used for single-layer diamond wheels have clear crystal orientation, and the (111) and (100) planes, which are the crystal planes, are very smooth. Therefore, the anchor effect for improving the abrasive grain holding power cannot be sufficiently expected.

一方、切れ味の観点から考えると、単層構造のダイヤモンド砥石は切れ味が低下する不具合が生じやすくなると考えられる。この原因は以下のように説明できる。   On the other hand, from the standpoint of sharpness, it is considered that the diamond grindstone having a single layer structure is likely to have a problem that sharpness is lowered. This cause can be explained as follows.

ブロッキーな形状のダイヤモンド砥粒の場合、砥粒の対向する面は基本的には平行となり、(111)面に対向する面には平行に(111)面が存在し、(100)面に対向する面には平行に(100)面が存在する。本来、ダイヤモンド砥石による研削加工は、これらの各面の境界部に形成されるエッジが切刃となって被削材を除去し、良好な切れ味がもたらされるものであるが、上記のブロッキーな形状の砥粒を台金に固着した段階で、台金の面に結晶面が接するように固着されて被削材に対向する砥粒の部位がエッジではなく面となる確率が高くなる。   In the case of blocky shaped diamond abrasive grains, the opposing faces of the abrasive grains are basically parallel, the (111) face exists in parallel to the face facing the (111) face, and faces the (100) face. The (100) plane exists in parallel with the plane to be performed. Originally, grinding with a diamond grindstone has a cutting edge at the boundary between these surfaces to remove the work material, resulting in a good sharpness. At the stage where the abrasive grains are fixed to the base metal, the probability that the portion of the abrasive grains that are fixed so that the crystal face is in contact with the surface of the base metal and faces the work material becomes a surface instead of an edge increases.

また、仮に台金に砥粒を固着する段階で、効率的にエッジを配向させる手段があったとしても、砥粒自体の形状が(110)面を多く含む形状であった場合は、切れ味を向上させることが困難となる。従って、単層構造のダイヤモンド砥石にブロッキーな形状のダイヤモンド砥粒を使用した場合、切れ味が低下しやすくなると言える。   In addition, even if there is a means for efficiently orienting the edges at the stage where the abrasive grains are fixed to the base metal, if the shape of the abrasive grains itself is a shape including many (110) faces, the sharpness will be reduced. It becomes difficult to improve. Therefore, it can be said that the sharpness is likely to be lowered when blocky diamond grains are used for a single-layer diamond wheel.

砥粒保持力を向上させたダイヤモンド砥石として、特許文献1に記載のダイヤモンド電着砥石がある。この電着砥石は、砥粒保持力を向上させるために砥粒の表面に導電性被膜を形成し、この砥粒を基材に電着させたものであるが、砥粒から導電性被膜が剥がれにくくするために砥粒の表面にエッチング処理を行って微小な凹凸を付与している。
特開2002−166370号公報
As a diamond grindstone with improved abrasive grain holding power, there is a diamond electrodeposition grindstone described in Patent Document 1. In this electrodeposition grindstone, a conductive film is formed on the surface of the abrasive grains in order to improve the holding power of the abrasive grains, and the abrasive grains are electrodeposited on the base material. In order to make it difficult to peel off, the surface of the abrasive grains is etched to give minute irregularities.
JP 2002-166370 A

特許文献1の電着砥石では、導電性被膜が形成された砥粒を台金に電着することで砥粒保持力が向上し、砥粒と導電性被膜との密着強度も向上するため、砥石の使用中に砥粒が脱落しやすいという問題を解決できるものである。しかしながら、砥粒に導電性被膜を形成しているために、切刃として作用する砥粒のエッジは丸みを帯びてしまい切れ味が低下する恐れがある。しかも前述のように、電着砥石で単層の砥石とする場合は、ブロッキーな形状のダイヤモンド砥粒を使用するため、元々切れ味が低下しやすいという問題を有している。   In the electrodeposition grindstone of Patent Document 1, the abrasive holding power is improved by electrodepositing the abrasive grains on which the conductive film is formed on the base metal, and the adhesion strength between the abrasive grains and the conductive film is also improved. It is possible to solve the problem that the abrasive grains easily fall off during use of the grindstone. However, since the conductive film is formed on the abrasive grains, the edges of the abrasive grains acting as cutting edges may be rounded and the sharpness may be reduced. Moreover, as described above, when an electrodeposition grindstone is used as a single-layer grindstone, since the diamond abrasive grains having a blocky shape are used, there is a problem that the sharpness tends to be reduced originally.

以上のようなことから、本発明は超砥粒工具に使用した場合に砥粒保持力と切れ味に優れた工具にできる超砥粒および超砥粒工具を提案するものである。   From the above, the present invention proposes a superabrasive grain and a superabrasive tool that can be made into a tool having excellent abrasive grain retention and sharpness when used in a superabrasive tool.

本発明の単結晶超砥粒の第1の特徴は、複数の結晶面で構成される単結晶超砥粒であって、前記複数の結晶面のうち(111)面と(100)面に微小突起が形成され、前記微小突起が形成された結晶面はPV値が0.1〜5μmの表面粗さであることである。なお、PV(Peak to Volley)値とは、表面に存在する凹凸のうち凸部の頂点と凹部の底点との高低差の最大値を言い、本願においては、1つの結晶面全体における凹凸の高低差の最大値をPV値としている。   The first feature of the single crystal superabrasive grain of the present invention is a single crystal superabrasive grain composed of a plurality of crystal faces, and the (111) face and the (100) face among the plurality of crystal faces are minute. Projections are formed, and the crystal plane on which the microprojections are formed has a surface roughness with a PV value of 0.1 to 5 μm. The PV (Peak to Volley) value is the maximum height difference between the top of the convex part and the bottom point of the concave part among the concaves and convexes existing on the surface. The maximum value of the height difference is the PV value.

以上のような構成の単結晶超砥粒は、微小突起によって多数の凹凸が形成されているため超砥粒自身の表面積が広くなり、研削加工用超砥粒工具に使用した場合に砥粒保持力を高くすることができ、加工中の脱石などによる切れ味低下も防止できる。特に単層構造の超砥粒砥石においては、この効果が大きくなる。   The single crystal superabrasive grains with the above configuration have a large surface area due to the formation of many irregularities by microprojections, and the abrasive grains are retained when used in a superabrasive tool for grinding. The force can be increased, and a reduction in sharpness due to decalcification during processing can also be prevented. In particular, in a superabrasive grindstone having a single layer structure, this effect is increased.

第2の特徴は、前記結晶面のうち(111)面に形成された前記突起は三角錐状の成長痕または三角錐状の成長痕が積層されたものであることである。   The second feature is that the protrusion formed on the (111) plane of the crystal plane is a triangular pyramid-shaped growth trace or a stack of triangular pyramid-shaped growth traces.

第3の特徴は、前記結晶面のうち(100)面に形成された前記突起は四角錐状の成長痕であることである。   A third feature is that the projection formed on the (100) plane of the crystal plane is a growth pyramid-shaped trace.

このように、結晶面に形成された突起を三角錐状や四角錐状の成長痕とすれば、(111)面や(100)面などの結晶面が被削材に対向した場合でも、突起が加工に寄与するため砥石の切れ味は向上する。また、結晶面を成長させることで、本来研削能力を低下させる(110)面の構造を変えることができ、切刃としての作用を向上させるため、砥石の切れ味を向上させることが出来る。   Thus, if the projection formed on the crystal plane is a triangular pyramid-shaped or quadrangular pyramid-shaped growth trace, even if the crystal plane such as the (111) plane or the (100) plane faces the work material, the projection Contributes to processing and improves the sharpness of the grindstone. In addition, by growing the crystal plane, the structure of the (110) plane, which originally reduces the grinding ability, can be changed and the action as a cutting edge is improved, so that the sharpness of the grindstone can be improved.

さらに、結晶面に突起を形成すると、その高さは不規則になる。単層砥石の場合、上記0012に記載したように1つの結晶面が台金と平行に固着されると作用する側も同じ結晶面となり、この結晶面が被削材と対向することになってエッジが作用しにくくなるが、本発明の場合は高さの不規則な突起が結晶面に形成されているため、結晶面が台金と平行に固着される可能性が低くなり、従って砥粒のエッジが被削材と対向するように固着されて切れ味が向上する。   Furthermore, when protrusions are formed on the crystal plane, the height becomes irregular. In the case of a single-layer grindstone, as described in 0012 above, when one crystal face is fixed in parallel with the base metal, the acting side becomes the same crystal face, and this crystal face is opposed to the work material. Although the edge is less likely to act, in the case of the present invention, since the irregular projections are formed on the crystal surface, the possibility that the crystal surface is fixed in parallel with the base metal is reduced, and therefore the abrasive grains The edge is fixed so as to face the work material, and the sharpness is improved.

第4の特徴は、前記複数の結晶面は、(111)面、(110)面、(100)面であり、気相合成法により(111)面と(100)面が優先的に成長させられ、(110)面を取り囲む稜線のうちお互いに対向する稜線間距離の小さい方向の前記稜線間距離は0.2D以下(Dは砥粒径)であることである。   A fourth feature is that the plurality of crystal planes are a (111) plane, a (110) plane, and a (100) plane, and the (111) plane and the (100) plane are preferentially grown by a vapor phase synthesis method. The distance between the ridge lines in the direction in which the distance between the ridge lines facing each other among the ridge lines surrounding the (110) plane is 0.2 D or less (D is an abrasive grain size).

(111)面や(100)面を優先的に成長させることで、これらの面の間にある(110)面の長さあるいは幅が小さくなり、この大きさを0.2D以下とすれば極めて鋭い稜線のような形状に近づくことになる。従って、このような形状は切刃として作用するようになり、切れ味が向上する。   By preferentially growing the (111) plane and the (100) plane, the length or width of the (110) plane between these planes is reduced. It will approach a shape like a sharp ridgeline. Therefore, such a shape comes to act as a cutting blade, and sharpness is improved.

本発明の超砥粒工具は、上記の単結晶超砥粒を切刃としたことを特徴とし、これにより砥粒保持力や切れ味に優れた超砥粒工具とすることができる。   The superabrasive tool of the present invention is characterized in that the above-mentioned single crystal superabrasive grain is used as a cutting edge, and this makes it possible to obtain a superabrasive tool excellent in abrasive grain holding power and sharpness.

本発明の単結晶超砥粒は、超砥粒工具に使用した場合に砥粒保持力が向上し、同時に切れ味にも優れたものとすることができる。また、本発明の超砥粒工具は、砥粒保持力が高く切れ味に優れた工具とすることができる。   The single crystal superabrasive grains of the present invention can have improved abrasive grain retention when used in a superabrasive tool, and at the same time have excellent sharpness. In addition, the superabrasive tool of the present invention can be a tool having high abrasive grain holding power and excellent sharpness.

本発明の単結晶超砥粒の例を図2に示す。また、従来の単結晶超砥粒の例を図1に示す。本発明の単結晶超砥粒は、図2に示すように(111)面のみで構成された八面体構造になっており、(111)面には三角錐状の微小突起4が多数形成されている。この微小突起4が形成されることにより、(111)面はPV値が0.1〜5μmの表面粗さになっている。   An example of the single crystal superabrasive grain of the present invention is shown in FIG. Moreover, the example of the conventional single crystal superabrasive grain is shown in FIG. As shown in FIG. 2, the single crystal superabrasive grain of the present invention has an octahedral structure composed of only the (111) plane, and a large number of triangular pyramid-shaped projections 4 are formed on the (111) plane. ing. By forming the micro protrusions 4, the (111) plane has a surface roughness with a PV value of 0.1 to 5 μm.

次に、この単結晶超砥粒を製造する方法について説明する。図1は従来公知の八面体構造の超砥粒を示しており、図8は本発明の超砥粒を製造するための熱フィラメントCVD装置の概略を示している。図1を参照して、この超砥粒を構成する(111)面は凹凸がほとんど無い平滑な面になっている。本発明の単結晶超砥粒は、原料としてこのような超砥粒を使用する。この超砥粒16を図8の装置11にセットし、結晶を成長させる。結晶を成長させるために、原料ガス15として水素−メタンなどのガスを装置11内に流入し、装置11内の圧力を10〜20KPaとしてW線フィラメント12に電流を流しながら10〜20時間保持し、結晶を成長させる。超砥粒16は冷却テーブル14上に置かれたMoなどの板上に載置されており、結晶を成長させた時に結晶の成長は超砥粒16のW線フィラメント12と対向する側の面(図8では超砥粒16の上側の面)から一方向に優先的に進むため、超砥粒16に振動を与えるなどして定期的に超砥粒16の向きを変え、超砥粒16全体の面ができるだけ均一に成長するようにしておくことが必要である。このような結晶の成長を継続させると、図2に示すように結晶面の表面に三角錐状の成長痕4があらわれ、この成長痕4が徐々に成長する。さらに結晶を成長させると、図4に示すように成長痕4が積層されたように形成される。またこの例では原料として、(111)面のみからなる超砥粒を使用したが、図3に示すような(100)面を有する超砥粒を原料とした場合、(100)面には四角錐状の成長痕5が形成される。なお、図2、図3、図4において、本発明の超砥粒の特徴を理解しやすくするために、結晶面に形成された三角錐状の成長痕4や四角錐状の成長痕5を強調して表している。   Next, a method for producing this single crystal superabrasive grain will be described. FIG. 1 shows a conventionally known octahedral superabrasive grain, and FIG. 8 schematically shows a hot filament CVD apparatus for producing the superabrasive grain of the present invention. Referring to FIG. 1, the (111) surface constituting the superabrasive grain is a smooth surface with almost no irregularities. The single crystal superabrasive grains of the present invention use such superabrasive grains as a raw material. The superabrasive grains 16 are set in the apparatus 11 shown in FIG. 8 to grow crystals. In order to grow the crystal, a gas such as hydrogen-methane is flowed into the apparatus 11 as the raw material gas 15 and the pressure in the apparatus 11 is set to 10 to 20 KPa, and the current is passed through the W wire filament 12 and held for 10 to 20 hours. , Grow crystals. The superabrasive grains 16 are placed on a plate of Mo or the like placed on the cooling table 14. When the crystals are grown, the growth of the crystals is the surface of the superabrasive grains 16 on the side facing the W line filament 12. (The upper surface of the superabrasive grain 16 in FIG. 8) proceeds preferentially in one direction, so that the superabrasive grain 16 is periodically changed in direction, for example, by applying vibration to the superabrasive grain 16. It is necessary to grow the entire surface as uniformly as possible. When such crystal growth is continued, a triangular pyramid-shaped growth mark 4 appears on the surface of the crystal surface as shown in FIG. 2, and this growth mark 4 gradually grows. When the crystal is further grown, the growth marks 4 are formed as stacked as shown in FIG. In this example, superabrasive grains having only the (111) plane were used as raw materials. However, when superabrasive grains having the (100) plane as shown in FIG. A pyramid-shaped growth mark 5 is formed. 2, 3, and 4, in order to facilitate understanding of the characteristics of the superabrasive grains of the present invention, the triangular pyramid-shaped growth marks 4 and the quadrangular pyramid-shaped growth marks 5 formed on the crystal plane are shown. It is highlighted.

本発明の単結晶超砥粒の別の例を図6に示す。図6は、(111)面と(100)面と(110)面で構成される超砥粒のSEM像である。また、この超砥粒を製造するための原料になった超砥粒のSEM像を図5に示す。図6を参照して、この超砥粒も上記0028に記載のものと同様の方法により、図5の超砥粒の結晶を成長させたものである。(111)面には三角錐状の成長痕4が形成されており、(100)面には四角錐状の成長痕5が形成されている。また、(111)面や(100)面が成長することにより、これらの面の間にある(111)面は狭小化したり消失したりしている。稜線7の部分は、元々(110)面が存在していたが(111)面が成長したことにより消失してできたものである。この稜線7が切刃として作用するため、この超砥粒を工具に使用した場合、切れ味の良い工具とすることが可能になる。図7は、図6の超砥粒をさらに成長させたときの(111)面を示したSEM像である。三角錐状の成長痕4が形成された上にさらに新たな三角錐状の成長痕4が積層されるように形成されているのがわかる。   Another example of the single crystal superabrasive grain of the present invention is shown in FIG. FIG. 6 is an SEM image of superabrasive grains composed of the (111) plane, the (100) plane, and the (110) plane. Moreover, the SEM image of the superabrasive grain used as the raw material for manufacturing this superabrasive grain is shown in FIG. Referring to FIG. 6, this superabrasive grain is also obtained by growing crystals of the superabrasive grain of FIG. 5 by the same method as that described in 0028 above. A triangular pyramid-shaped growth mark 4 is formed on the (111) plane, and a quadrangular pyramid-shaped growth mark 5 is formed on the (100) plane. Further, as the (111) plane or the (100) plane grows, the (111) plane between these planes is narrowed or lost. The portion of the ridge line 7 was originally formed by the disappearance of the (111) plane, although the (110) plane originally existed. Since this ridgeline 7 acts as a cutting edge, when this superabrasive grain is used for a tool, it becomes possible to make a sharp tool. FIG. 7 is an SEM image showing the (111) plane when the superabrasive grains of FIG. 6 are further grown. It can be seen that a new triangular pyramid-shaped growth mark 4 is formed so as to be stacked on the triangular pyramid-shaped growth mark 4.

本発明の超砥粒の効果を確認するため、第1の実施例として、本発明および従来のダイヤモンド砥粒を使用した単層構造の軸付砥石を製作し、難削材である金属基複合材料の研削加工を行って砥粒保持力などの比較試験を行った。   In order to confirm the effect of the superabrasive grain of the present invention, as a first embodiment, a single-layered shaft grinding wheel using the present invention and a conventional diamond abrasive grain is manufactured, and a metal-based composite which is a difficult-to-cut material The materials were ground and subjected to comparative tests such as abrasive grain retention.

本発明の軸付砥石を製作するため、(111)面、(100)面、(110)面からなる平均粒径590μmのブロッキーな構造の合成ダイヤモンドを準備し、このダイヤモンド砥粒16を図8に示す熱フィラメントCVD装置11にセットして、表1の条件で結晶を成長させて本発明のダイヤモンド砥粒23を製作した。なお、ダイヤモンド砥粒23の全面にできるだけ均一な成長痕を形成するため、10Hおきに冷却テーブル14を振動させてダイヤモンド砥粒16の向きを強制的に変え、3回繰り返して結晶を成長させた。   In order to manufacture the wheel with a shaft of the present invention, a synthetic diamond having a blocky structure with an average particle diameter of 590 μm composed of (111), (100), and (110) planes was prepared. The diamond abrasive grain 23 of the present invention was manufactured by growing the crystal under the conditions shown in Table 1 and setting it in the hot filament CVD apparatus 11 shown in FIG. In order to form as uniform growth marks as possible on the entire surface of the diamond abrasive grains 23, the cooling table 14 was vibrated every 10H to forcibly change the direction of the diamond abrasive grains 16, and the crystal was grown three times repeatedly. .

結晶を成長させた後のダイヤモンド砥粒23を確認すると、図3に示すような構造になっており、(111)面および(100)面には多数の微小突起4および5が形成され、これらの面はPV値が平均約3μmの表面粗さになっていた。   When the diamond abrasive grain 23 after the crystal is grown is confirmed, it has a structure as shown in FIG. 3, and a large number of minute protrusions 4 and 5 are formed on the (111) plane and the (100) plane. This surface had a surface roughness with an average PV value of about 3 μm.

このようにして成長させたダイヤモンド砥粒23を使用し、図9に示す単層構造の軸付砥石21を製作した。この軸付砥石21はダイヤモンド砥粒23を台金に結合させるためにロー材を使用し、砥粒密度は0.05ct/cm、ダイヤモンド砥粒23の突出量(結合材24であるロー材からダイヤモンド砥粒23が突出している量)は粒径の約70%となるように固定した(以下、この砥石を本発明1とする)。なお、図9では軸付砥石のイメージを理解しやすくするためにダイヤモンド砥粒23を強調して表している。 Using the diamond abrasive grains 23 grown in this manner, a single-layered shaft-equipped grindstone 21 shown in FIG. 9 was produced. The shaft-equipped grindstone 21 uses a brazing material to bond the diamond abrasive grains 23 to the base metal, the abrasive density is 0.05 ct / cm 2 , and the protruding amount of the diamond abrasive grains 23 (the brazing material as the binding material 24). From which the diamond abrasive grains 23 protruded) was fixed to be about 70% of the particle diameter (hereinafter, this grindstone is referred to as the present invention 1). In FIG. 9, the diamond abrasive grains 23 are emphasized in order to facilitate understanding of the image of the shaft-equipped grindstone.

比較のために従来の軸付砥石も製作した。ダイヤモンド砥粒は本発明1の結晶を成長させる前のものと同じものを使用し、結晶を成長させずに軸付砥石を製作した。ダイヤモンド砥粒以外の点については、本発明1と同じである(以下、この砥石を比較例1とする)。   For comparison, a conventional whetstone with a shaft was also produced. The diamond abrasive grains were the same as those before the crystal of the present invention 1 was grown, and a shaft-mounted grindstone was manufactured without growing the crystal. About points other than a diamond abrasive grain, it is the same as this invention 1 (henceforth this grindstone is set as the comparative example 1).

これら2つの軸付砥石を使用し、表2に示す条件で板状の被削材の端面の研削加工を行った。   Using these two grindstones with a shaft, the end face of the plate-like work material was ground under the conditions shown in Table 2.

以上の研削加工を行った結果、研削加工量が400cm/cm(砥粒層の長さ1cmあたりの除去量)の時点で、本発明1の軸付砥石はダイヤモンド砥粒の摩耗は見られたものの脱落はしていなかったのに対し、比較例1の軸付砥石はダイヤモンド砥粒が摩滅したり摩耗しており、しかも約10%のダイヤモンド砥粒が脱落していた。このような結果になったのは、本発明1の軸付砥石に使用したダイヤモンド砥粒が図3に示すように結晶面に微小突起が多数形成されていたためアンカー効果が高まり、砥粒保持力が高くなったのと、(111)面や(100)面が成長したことで(110)面が狭小化したり消失し、鋭利な稜線が形成されたために切れ味が向上したことが原因と考えられる。 As a result of performing the above grinding process, when the grinding amount is 400 cm 3 / cm (removal amount per 1 cm of the length of the abrasive grain layer), the abrasive wheel with a shaft of the present invention 1 shows wear of diamond abrasive grains. However, the diamond abrasive grains were worn away or worn out, and about 10% of the diamond abrasive grains had fallen off. Such a result was obtained because the diamond abrasive grains used in the shaft-equipped grinding wheel of the present invention 1 had a large number of microprojections on the crystal plane as shown in FIG. It is thought that this is because the (110) plane narrowed or disappeared due to the growth of the (111) plane or the (100) plane, and the sharpness was improved because a sharp ridge was formed. .

第2の実施例として、本発明および従来のダイヤモンド砥粒を使用したCMPパッドコンディショナを製作し、研磨パッドのドレッシングを行って、砥粒保持力などの比較試験を行った。   As a second example, a CMP pad conditioner using the present invention and conventional diamond abrasive grains was manufactured, the polishing pad was dressed, and a comparative test such as abrasive grain retention was performed.

本発明のCMPパッドコンディショナを製作するため、(111)面、(100)面、(110)面からなる平均粒径約150μmのブロッキーな構造の合成ダイヤモンドを準備し、このダイヤモンド砥粒16を図8に示す熱フィラメントCVD装置11にセットして、前述の表1の条件で結晶を成長させて本発明のダイヤモンド砥粒33を製作した。なお、ダイヤモンド砥粒33の全面にできるだけ均一な成長痕を形成するため、10Hおきに冷却テーブル14を振動させてダイヤモンド砥粒16の向きを強制的に変え、3回繰り返して結晶を成長させた。   In order to produce the CMP pad conditioner of the present invention, a synthetic diamond having a blocky structure with an average particle diameter of about 150 μm consisting of (111), (100), and (110) planes was prepared. The diamond abrasive grain 33 of the present invention was manufactured by setting it in the hot filament CVD apparatus 11 shown in FIG. In order to form as uniform growth marks as possible on the entire surface of the diamond abrasive grains 33, the cooling table 14 was vibrated every 10H to forcibly change the direction of the diamond abrasive grains 16, and the crystal was grown three times repeatedly. .

結晶を成長させた後のダイヤモンド砥粒33を確認すると、図3に示すような構造になっており、(111)面および(100)面には多数の微小突起4および5が形成され、これらの面はPV値が平均約2μmの表面粗さになっていた。   When the diamond abrasive grain 33 after growing the crystal is confirmed, it has a structure as shown in FIG. 3, and a large number of minute protrusions 4 and 5 are formed on the (111) plane and the (100) plane. This surface had a surface roughness with an average PV value of about 2 μm.

このようにして成長させたダイヤモンド砥粒33を使用し、図10に示す単層構造のCMPパッドコンディショナ31を製作した。このCMPパッドコンディショナ31はSUS304のステンレス鋼を台金32とし、ダイヤモンド砥粒33を台金32に固定するためにNiメッキによる電着法を用いて製作した。CMPパッドコンディショナ31の仕様は、外径は100mm、高さは25mm、超砥粒層の幅は10mmである。砥粒密度は0.15ct/cm、ダイヤモンド砥粒33の突出量は粒径の約40%となるように固定した(以下、このCMPパッドコンディショナを本発明2とする)。なお、図10ではCMPパッドコンディショナのイメージを理解しやすくするためにダイヤモンド砥粒33や結合材(Niメッキ層)34を強調して表している。 Using the diamond abrasive grains 33 thus grown, a CMP pad conditioner 31 having a single layer structure shown in FIG. 10 was manufactured. The CMP pad conditioner 31 was manufactured by using an electrodeposition method by Ni plating in order to fix the diamond abrasive grains 33 to the base metal 32 using SUS304 stainless steel as the base metal 32. The specification of the CMP pad conditioner 31 is that the outer diameter is 100 mm, the height is 25 mm, and the width of the superabrasive layer is 10 mm. The abrasive density was 0.15 ct / cm 2 , and the protruding amount of the diamond abrasive grains 33 was fixed to be about 40% of the grain size (hereinafter, this CMP pad conditioner is referred to as the present invention 2). In FIG. 10, the diamond abrasive grains 33 and the binder (Ni plating layer) 34 are emphasized for easy understanding of the image of the CMP pad conditioner.

比較のために従来のCMPパッドコンディショナも製作した。ダイヤモンド砥粒は本発明2の結晶を成長させる前のものと同じものを使用し、結晶を成長させずにCMPパッドコンディショナを製作した。ダイヤモンド砥粒以外の点については、本発明2と同じである(以下、このCMPパッドコンディショナを比較例2とする)。   For comparison, a conventional CMP pad conditioner was also manufactured. The diamond abrasive grains were the same as those used before the crystal of the present invention 2 was grown, and a CMP pad conditioner was manufactured without growing the crystal. The points other than the diamond abrasive grains are the same as in the present invention 2 (hereinafter, this CMP pad conditioner is referred to as Comparative Example 2).

これら2つのCMPパッドコンディショナを使用し、表3に示す条件と図11に示す加工方法で研磨パッドのドレッシング加工を行った。   Using these two CMP pad conditioners, dressing of the polishing pad was performed under the conditions shown in Table 3 and the processing method shown in FIG.

ドレッシング加工の試験の結果、ドレッシング開始から5時間を経過した時点において、CMPパッドコンディショナの性能特に切れ味を示す指標である研磨パッドのドレスレート(研磨パッドを加工する速度)を比較すると、本発明2が121μm/hrであったのに対し、比較例2は106μm/hrであり、本発明2の方が14%高い値を示し、研磨パッドを加工する速度が速く、切れ味が良いことが確認された。このような結果になったのは、本発明2のCMPパッドコンディショナに使用したダイヤモンド砥粒が図3に示すように結晶面に微小突起が多数形成されて、これらの微小突起が切刃として作用したのに加え、(111)面や(100)面が成長したことで(110)面が狭小化したり消失し、鋭利な稜線が形成されたために切れ味が向上したことが原因と考えられる。   As a result of the dressing processing test, when 5 hours have elapsed from the start of dressing, the performance of the CMP pad conditioner, especially the polishing pad dress rate (speed for processing the polishing pad), which is an index indicating sharpness, is compared. 2 was 121 μm / hr, while Comparative Example 2 was 106 μm / hr, and the value of the present invention 2 was 14% higher, confirming that the polishing pad was processed faster and sharper. It was done. The result is that the diamond abrasive grains used in the CMP pad conditioner of the present invention 2 have a large number of microprojections formed on the crystal plane as shown in FIG. 3, and these microprojections serve as cutting edges. In addition to the action, the (111) plane and the (100) plane grew, and the (110) plane narrowed or disappeared, and the sharpness was improved because sharp edges were formed.

従来の(111)面のみで形成された八面体構造の超砥粒の例を示す模式図である。It is a schematic diagram which shows the example of the superabrasive grain of the octahedral structure formed only by the conventional (111) surface. 本発明の(111)面のみで形成された八面体構造の超砥粒の例を示す模式図である。It is a schematic diagram which shows the example of the superabrasive grain of the octahedral structure formed only by the (111) plane of this invention. 本発明の(111)面、(100)面、(110)面を有する超砥粒の例を示す模式図である。It is a schematic diagram which shows the example of the superabrasive grain which has the (111) surface, (100) surface, and (110) surface of this invention. 本発明の(111)面、(100)面、(110)面を有する超砥粒の別の例を示す模式図である。It is a schematic diagram which shows another example of the superabrasive grain which has the (111) plane, (100) plane, and (110) plane of this invention. 従来の(111)面、(100)面、(110)面を有する超砥粒の例を示すSEM像である。It is a SEM image which shows the example of the superabrasive grain which has the conventional (111) plane, (100) plane, and (110) plane. 本発明の(111)面、(100)面、(110)面を有する超砥粒の例を示すSEM像である。It is a SEM image which shows the example of the superabrasive grain which has the (111) surface, (100) surface, and (110) surface of this invention. 本発明の(111)面、(100)面、(110)面を有する超砥粒の別の例を示すSEM像である。It is a SEM image which shows another example of the superabrasive grain which has the (111) surface, (100) surface, and (110) surface of this invention. 熱フィラメントCVD装置を示す概念図である。It is a conceptual diagram which shows a hot filament CVD apparatus. 実施例1の軸付砥石を示す図で、(a)は正面図、(b)は側面図である。It is a figure which shows the grindstone with a shaft of Example 1, (a) is a front view, (b) is a side view. 実施例2のCMPパッドコンディショナを示す図で、(a)は底面図、(b)は(a)の断面図である。It is a figure which shows the CMP pad conditioner of Example 2, (a) is a bottom view, (b) is sectional drawing of (a). 実施例2の加工方法を示す概念図である。FIG. 6 is a conceptual diagram showing a processing method of Example 2.

符号の説明Explanation of symbols

1 (111)面
2 (100)面
3 (110)面
4 (111)面に形成された三角錐状の微小突起(成長痕)
5 (100)面に形成された四角錐状の微小突起(成長痕)
6 結晶の成長により狭小化した(110)面
7 稜線
11 熱フィラメントCVD装置
12 W線フィラメント
13 ベルジャー
14 冷却テーブル
15 原料ガスの流入方向
16 超砥粒
21 軸付砥石
22 軸状の台金
23 超砥粒
24 結合材
31 CMPパッドコンディショナ
32 円盤状の台金
33 超砥粒
34 結合材
35 研磨パッド
1 (111) plane 2 (100) plane 3 (110) plane 4 Triangular pyramidal microprotrusions (growth traces) formed on the (111) plane
5 Small pyramidal projections (growth traces) formed on the (100) plane
6 (110) plane narrowed by crystal growth 7 Ridge line 11 Hot filament CVD apparatus 12 W wire filament 13 Bell jar 14 Cooling table 15 Inflow direction 16 of raw material gas Super abrasive grain 21 Axial grindstone 22 Axial base metal 23 Super Abrasive grain 24 Binder 31 CMP pad conditioner 32 Disc-shaped base metal 33 Superabrasive grain 34 Binder 35 Polishing pad

Claims (5)

複数の結晶面で構成される単結晶超砥粒であって、前記複数の結晶面のうち(111)面と(100)面に微小突起が形成され、前記微小突起が形成された結晶面はPV値が0.1〜5μmの表面粗さである単結晶超砥粒。   A single crystal superabrasive grain composed of a plurality of crystal planes, wherein microprojections are formed on the (111) plane and the (100) plane among the plurality of crystal planes, and the crystal plane on which the microprojections are formed is Single crystal superabrasive grains having a PV value of 0.1 to 5 μm. 前記結晶面のうち(111)面に形成された前記突起は三角錐状の成長痕または三角錐状の成長痕が積層されたものである請求項1に記載の単結晶超砥粒。   2. The single crystal superabrasive grain according to claim 1, wherein the protrusion formed on the (111) plane of the crystal plane is a triangular pyramid-shaped growth mark or a stack of triangular pyramid-shaped growth marks. 前記結晶面のうち(100)面に形成された前記突起は四角錐状の成長痕である請求項1に記載の単結晶超砥粒。   2. The single crystal superabrasive grain according to claim 1, wherein the protrusion formed on the (100) plane of the crystal plane is a pyramid-shaped growth trace. 前記複数の結晶面は、(111)面、(110)面、(100)面であり、気相合成法により(111)面と(100)面が優先的に成長させられ、(110)面を取り囲む稜線のうちお互いに対向する稜線間距離の小さい方向の前記稜線間距離は0.2D以下(Dは砥粒径)である請求項1〜3のいずれかに記載の単結晶超砥粒。   The plurality of crystal planes are a (111) plane, a (110) plane, and a (100) plane, and the (111) plane and the (100) plane are preferentially grown by a vapor phase synthesis method, and the (110) plane The single-crystal superabrasive grain according to any one of claims 1 to 3, wherein the distance between the ridge lines in the direction in which the distance between the ridge lines facing each other is smaller than 0.2D (D is an abrasive grain size). . 請求項1〜4のいずれかに記載の単結晶超砥粒を切刃とした超砥粒工具。   The superabrasive tool which used the single crystal superabrasive grain in any one of Claims 1-4 as a cutting blade.
JP2006319898A 2006-11-28 2006-11-28 Single crystal superabrasive grain and superabrasive grain tool using single crystal superabrasive grain Pending JP2008132560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006319898A JP2008132560A (en) 2006-11-28 2006-11-28 Single crystal superabrasive grain and superabrasive grain tool using single crystal superabrasive grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006319898A JP2008132560A (en) 2006-11-28 2006-11-28 Single crystal superabrasive grain and superabrasive grain tool using single crystal superabrasive grain

Publications (1)

Publication Number Publication Date
JP2008132560A true JP2008132560A (en) 2008-06-12

Family

ID=39557766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006319898A Pending JP2008132560A (en) 2006-11-28 2006-11-28 Single crystal superabrasive grain and superabrasive grain tool using single crystal superabrasive grain

Country Status (1)

Country Link
JP (1) JP2008132560A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101073622B1 (en) * 2009-03-16 2011-10-14 배재규 Friction chip for washing
JP2012502811A (en) * 2008-09-16 2012-02-02 ダイヤモンド イノベイションズ インコーポレーテッド Abrasive grains with unique morphology
KR20160060745A (en) * 2013-09-30 2016-05-30 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Shaped abrasive particles and methods of forming same
CN111201103A (en) * 2017-10-12 2020-05-26 联合材料公司 Rotary cutting tool
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
US11091678B2 (en) 2013-12-31 2021-08-17 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US11142673B2 (en) 2012-01-10 2021-10-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11148254B2 (en) 2012-10-15 2021-10-19 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11427740B2 (en) 2017-01-31 2022-08-30 Saint-Gobain Ceramics & Plastics, Inc. Method of making shaped abrasive particles and articles comprising forming a flange from overfilling
US11453811B2 (en) 2011-12-30 2022-09-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US11472989B2 (en) 2015-03-31 2022-10-18 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11590632B2 (en) 2013-03-29 2023-02-28 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11608459B2 (en) 2014-12-23 2023-03-21 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US11643582B2 (en) 2015-03-31 2023-05-09 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11718774B2 (en) 2016-05-10 2023-08-08 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11879087B2 (en) 2015-06-11 2024-01-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11891559B2 (en) 2014-04-14 2024-02-06 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same
US11926781B2 (en) 2014-01-31 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US11959009B2 (en) 2016-05-10 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208560A (en) * 1990-01-10 1991-09-11 Nippon Seiko Kk Grindstone and manufacture thereof
JPH04269168A (en) * 1991-02-20 1992-09-25 Mitsubishi Heavy Ind Ltd Grinding tool manufacturing method and diamond particle for grinding tool
JP2002166370A (en) * 2000-12-04 2002-06-11 Noritake Diamond Ind Co Ltd Electrodeposited grinding wheel and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03208560A (en) * 1990-01-10 1991-09-11 Nippon Seiko Kk Grindstone and manufacture thereof
JPH04269168A (en) * 1991-02-20 1992-09-25 Mitsubishi Heavy Ind Ltd Grinding tool manufacturing method and diamond particle for grinding tool
JP2002166370A (en) * 2000-12-04 2002-06-11 Noritake Diamond Ind Co Ltd Electrodeposited grinding wheel and method of manufacturing the same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012502811A (en) * 2008-09-16 2012-02-02 ダイヤモンド イノベイションズ インコーポレーテッド Abrasive grains with unique morphology
KR101073622B1 (en) * 2009-03-16 2011-10-14 배재규 Friction chip for washing
US11453811B2 (en) 2011-12-30 2022-09-27 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle and method of forming same
US11142673B2 (en) 2012-01-10 2021-10-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11859120B2 (en) 2012-01-10 2024-01-02 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles having an elongated body comprising a twist along an axis of the body
US11649388B2 (en) 2012-01-10 2023-05-16 Saint-Gobain Cermaics & Plastics, Inc. Abrasive particles having complex shapes and methods of forming same
US11154964B2 (en) 2012-10-15 2021-10-26 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11148254B2 (en) 2012-10-15 2021-10-19 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
US11590632B2 (en) 2013-03-29 2023-02-28 Saint-Gobain Abrasives, Inc. Abrasive particles having particular shapes and methods of forming such particles
KR20160060745A (en) * 2013-09-30 2016-05-30 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Shaped abrasive particles and methods of forming same
US10563106B2 (en) 2013-09-30 2020-02-18 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
JP2016538149A (en) * 2013-09-30 2016-12-08 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Shaped abrasive particles and method for forming shaped abrasive particles
KR101889698B1 (en) * 2013-09-30 2018-08-21 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Shaped abrasive particles and methods of forming same
US9783718B2 (en) 2013-09-30 2017-10-10 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
US11091678B2 (en) 2013-12-31 2021-08-17 Saint-Gobain Abrasives, Inc. Abrasive article including shaped abrasive particles
US11926781B2 (en) 2014-01-31 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particle including dopant material and method of forming same
US11891559B2 (en) 2014-04-14 2024-02-06 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11926780B2 (en) 2014-12-23 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US11608459B2 (en) 2014-12-23 2023-03-21 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and method of forming same
US11472989B2 (en) 2015-03-31 2022-10-18 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11643582B2 (en) 2015-03-31 2023-05-09 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11879087B2 (en) 2015-06-11 2024-01-23 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles
US11718774B2 (en) 2016-05-10 2023-08-08 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11959009B2 (en) 2016-05-10 2024-04-16 Saint-Gobain Ceramics & Plastics, Inc. Abrasive particles and methods of forming same
US11230653B2 (en) 2016-09-29 2022-01-25 Saint-Gobain Abrasives, Inc. Fixed abrasive articles and methods of forming same
US11427740B2 (en) 2017-01-31 2022-08-30 Saint-Gobain Ceramics & Plastics, Inc. Method of making shaped abrasive particles and articles comprising forming a flange from overfilling
US11549040B2 (en) 2017-01-31 2023-01-10 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles having a tooth portion on a surface
US11932802B2 (en) 2017-01-31 2024-03-19 Saint-Gobain Ceramics & Plastics, Inc. Abrasive article including shaped abrasive particles comprising a particular toothed body
US10865148B2 (en) 2017-06-21 2020-12-15 Saint-Gobain Ceramics & Plastics, Inc. Particulate materials and methods of forming same
CN111201103A (en) * 2017-10-12 2020-05-26 联合材料公司 Rotary cutting tool
US11926019B2 (en) 2019-12-27 2024-03-12 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles and methods of forming same

Similar Documents

Publication Publication Date Title
JP2008132560A (en) Single crystal superabrasive grain and superabrasive grain tool using single crystal superabrasive grain
US9067301B2 (en) CMP pad dressers with hybridized abrasive surface and related methods
KR102022753B1 (en) Dicing blade
US8622787B2 (en) CMP pad dressers with hybridized abrasive surface and related methods
US8398466B2 (en) CMP pad conditioners with mosaic abrasive segments and associated methods
TWI355986B (en) Superhard cutters and associated methods
TW200837823A (en) CMP pad conditioners and associated methods
JPH11165261A (en) Porous abrasive grain grinding wheel and its manufacture
JP3791610B2 (en) Super abrasive wheel for mirror finishing
WO2009043058A2 (en) Cmp pad conditioners with mosaic abrasive segments and associated methods
US9724802B2 (en) CMP pad dressers having leveled tips and associated methods
KR20160021904A (en) Dicing device and dicing method
US8491358B2 (en) Thin film brazing of superabrasive tools
US20170232576A1 (en) Cmp pad conditioners with mosaic abrasive segments and associated methods
CN113329846B (en) Metal bond grindstone for high-hardness brittle material
US20150017884A1 (en) CMP Pad Dressers with Hybridized Abrasive Surface and Related Methods
JP3802884B2 (en) CMP conditioner
CN104136171A (en) Method of dressing an abrasive wheel using a polycrystalline cvd synthetic diamond dresser and method of fabricating the same
JP2005288614A (en) Ultra-thin blade grinding wheel and its manufacturing method
US20140120807A1 (en) Cmp pad conditioners with mosaic abrasive segments and associated methods
Sung et al. The Design Features of Ultimate Diamond Disks (UDD): W CMP with In-Situ Dressing of Metal Free Diamond Disks
JPH01146664A (en) Bridge-type metal bonded diamond grinding wheel and its manufacturing method
JPH10202529A (en) Ultra-abrasive grain grinding wheel and manufacture thereof
JP2884030B2 (en) Inner circumferential cutting wheel and method of manufacturing the same
JPH0398769A (en) Electrodeposition polishing sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20090716

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120301