US20220259873A1 - Insulating concrete form apparatus - Google Patents
Insulating concrete form apparatus Download PDFInfo
- Publication number
- US20220259873A1 US20220259873A1 US17/670,239 US202217670239A US2022259873A1 US 20220259873 A1 US20220259873 A1 US 20220259873A1 US 202217670239 A US202217670239 A US 202217670239A US 2022259873 A1 US2022259873 A1 US 2022259873A1
- Authority
- US
- United States
- Prior art keywords
- tie
- end portion
- web
- connector
- panel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G17/00—Connecting or other auxiliary members for forms, falsework structures, or shutterings
- E04G17/06—Tying means; Spacers ; Devices for extracting or inserting wall ties
- E04G17/075—Tying means, the tensional elements of which are fastened or tensioned by other means
- E04G17/0755—Tying means, the tensional elements of which are fastened or tensioned by other means the element consisting of several parts
- E04G17/0758—Tying means, the tensional elements of which are fastened or tensioned by other means the element consisting of several parts remaining completely or partially embedded in the cast material
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/16—Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material
- E04B1/167—Structures made from masses, e.g. of concrete, cast or similarly formed in situ with or without making use of additional elements, such as permanent forms, substructures to be coated with load-bearing material with permanent forms made of particular materials, e.g. layered products
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/84—Walls made by casting, pouring, or tamping in situ
- E04B2/86—Walls made by casting, pouring, or tamping in situ made in permanent forms
- E04B2/8635—Walls made by casting, pouring, or tamping in situ made in permanent forms with ties attached to the inner faces of the forms
- E04B2/8641—Walls made by casting, pouring, or tamping in situ made in permanent forms with ties attached to the inner faces of the forms using dovetail-type connections
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B2/00—Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
- E04B2/84—Walls made by casting, pouring, or tamping in situ
- E04B2/86—Walls made by casting, pouring, or tamping in situ made in permanent forms
- E04B2002/8694—Walls made by casting, pouring, or tamping in situ made in permanent forms with hinged spacers allowing the formwork to be collapsed for transport
Definitions
- the technology of the invention relates to insulating concrete form systems used in construction of poured concrete walls in building structures.
- insulating concrete form systems utilizing a stacked arrangement of foam panels to form a preferred shape of an interior cavity for receiving pourable concrete.
- the panels may be made from rigid foam insulation, or any other material used to insulate a building and capable of maintaining a form for concrete pouring.
- the panels are reversible, modular, and may be stacked in an offset manner to form any height wall.
- Traditional construction methods often attempt to form a similar finished wall product using fewer points of connectivity resulting in substantial difficulty during the construction process.
- Each individual panel in traditional methods did not attempt to connect to adjoining units with enough structure to withstand the pressures of shipping, pouring of the concrete, wear over time. In other prior art, individual units required too much force to disassemble where a section of the wall required revision.
- There is a need for an insulated concrete form which provides enough structure to withstand shipping and assembly while allowing for easy disassembly and correction of mistakes during construction.
- Sparkman in U.S. Pat. No. 5,459,971 shows an insulating concrete form system having a pair of foam panels connected together with a connector.
- the connector has a pair of elongated anchor members each embedded longitudinally inside a corresponding foam panel. Sparkman employs a substantially dissimilar cavity for accommodating concrete which results in heavier and thicker final walls.
- Cymbala et al in U.S. Pat. No. 5,896,714 shows an insulating concrete form system having a pair or parallel foam panels spaced using a plurality of plastic ties. Each tie has two laterally opposed supports connected together with a web. The ties and panels are formed in a molded-in configuration. Cymbala et al does not contemplate structure to overcome the forces present during shipping or handling which may warp or otherwise damage the web material prior to final assembly at the construction site.
- the insulating concrete form apparatus has a pair of panels with at least one web extending between the panels. Each panel is located in spaced relationship relative to each other.
- the panels each have a top surface and a bottom surface.
- First protrusions form a part of the top surface.
- Second protrusions form a part of the bottom surface.
- the first protrusions are aligned with the second protrusions such that the panels can be stacked either above or below additional pairs of panels.
- the first protrusions are in symmetry with the second protrusions.
- the web has an end portion. The end portion extends vertically along one of the panel.
- the end portion has an inner support and an outer support located in spaced relationship with the inner support.
- the end portion has a truss member extending between the inner support and the outer support.
- the web has one or more ties extending to the end portion.
- the tie is releasably connected to the end portion whereby the tie can be connected to the one end portion at any point on the end portion.
- the tie has a coupling having one or more pins releasably connecting the tie to the end portion and allowing the coupling to be moved vertically relative to the end portion.
- the coupling has a channel to allow said the tie to remain in lateral position relative to the end portion while the pin is being moved vertically relative to said the end portion.
- FIG. 1 is a perspective view of the insulating concrete form of the invention
- FIG. 2 is an elevated side view of the insulating concrete form of FIG. 1 ;
- FIG. 3 is a top plan view of the insulating concrete form of FIG. 1 ;
- FIG. 4 is a bottom plan view of the insulating concrete form of FIG. 1 ;
- FIG. 5 is an enlarged sectional view taken along line 5 - 5 of FIG. 3 ;
- FIG. 6 is an enlarged foreshortened front elevational view of a tie of the insulating concrete form of FIG. 1 ;
- FIG. 7 is an enlarged foreshortened perspective view of a connector assembly movably mounting a tie to an end portion of a web located in a foam panel of the insulating concrete form of FIG. 1 ;
- FIG. 8 is an enlarged foreshortened perspective view of a lower portion of a web of the insulating concrete form of FIG. 1 ;
- FIG. 9 is an enlarged foreshortened perspective view of a fastener for interlocking insulating concrete forms of FIG. 1 in stacked relation;
- FIG. 10 is a front elevational view of a first modification of the web of the insulating concrete form of FIG. 1 ;
- FIG. 11 is an enlarged foreshortened perspective view of the web of FIG. 10 ;
- FIG. 12 is an enlarged foreshortened perspective view of an upper portion of the web of FIG. 10 ;
- FIG. 13 is a front elevational view of a second modification of the web of the insulating concrete form of FIG. 1 ;
- FIG. 14 is an exploded front elevational view of a third modification of the web of the insulating concrete form of FIG. 1 ;
- FIG. 15 is an enlarged perspective view of the coupling of the web of FIG. 14 ;
- FIG. 16 is an enlarged foreshortened perspective view of an upper portion of the web of FIG. 14 ;
- FIG. 17 is an enlarged perspective view of a modification of the coupling of the web of FIG. 14 .
- a first embodiment of an insulating concrete form indicated generally at 20 , has a pair of panels 21 and 22 configured to receive pourable concrete to create a concrete wall in a building structure.
- a plurality of webs 23 extend between foam panels 21 and 22 to connect and hold panels 21 and 22 in parallel spaced relation.
- the panels may be set at any variable width relative to each other in order to create different desirable width walls.
- Webs 23 are semi-rigid molded plastic members. Webs 23 may be of any variable height or length to accommodate differing width or height walls.
- Panel 21 may sit at any variable distance from corresponding panel 22 to form curving walls, corner walls, walls of tapering or increasing thickness, or any desired variation of concrete wall. Other materials and methods can be used to make webs 23 or foam panels 21 and 22 .
- Panels 21 and 22 have top surfaces 24 and 26 and bottom surfaces 27 and 28 opposite from top surfaces 24 and 26 .
- Top surfaces 24 and 26 have a plurality of protrusions 29 and 31 which are aligned and in mirror symmetry to protrusions disposed on corresponding stacked upper and lower panels.
- Bottom surfaces 27 and 28 have a plurality of alternating protrusions 34 and 36 and intervals 37 and 38 .
- Intervals 32 and 33 are formed between protrusions 29 and 31 and are positioned to accommodate protrusions from panels stacked either above or below panels 21 and 22 .
- Protrusions 29 , 31 , 34 and 36 and intervals 32 , 33 , 37 and 38 are similarly sized and complementary in shape configured to cooperate with adjoining protrusions and intervals along opposite top and bottom surfaces 24 , 26 , 27 and 28 allowing insulating concrete form 20 to be reversible in use.
- Top surfaces 24 and 26 are in mirror symmetry with bottom surfaces 27 and 28 such that each individual foam panel may be inverted and still fit in cooperation with adjacent foam panels.
- web 23 has ties 42 and 43 extending between and connected to end portions 44 and 46 of web 23 .
- End portions 44 and 46 extend substantially the entire height of panel 21 such that each end portion 44 and 46 connect and support corresponding end portions from panels stacked above and below panel 21 .
- Tie 42 has one or more projecting members 49 to 54 , 70 and 71
- tie 43 has one or more projecting members 10 to 17 , adapted to receive and secure one or more reinforcing bars to strengthen and reinforce the concrete.
- Projecting members 49 to 54 , 70 and 71 project toward the top of web 23
- projecting members 10 to 17 project towards the bottom of web 23 allowing web 23 to be reversible.
- the reinforcing bar may be one or more cylindrical steel rebar which extend laterally across the length of the wall and attach to multiple webs, including web 23 , via projecting members to reinforce the concrete.
- projecting members 49 to 54 , 70 and 71 of tie 42 and projecting members 10 to 17 of tie 43 are in alignment with projecting members of additional ties in panel 21 and panel 22 such that a cylindrical reinforcing bar may be attached to each tie along the wall without bending or other interruption. Where a curving wall or corner is desired, each tie may sit in proportional alignment to allow reinforcing bar to follow the shape of the wall.
- tie 42 has a plurality of laterally spaced projecting members 49 , 50 , 51 , 52 , 53 and 54 that extend upwardly from the top 75 of tie 42 to define grooves 56 , 57 , 58 , 59 , 61 , 62 and 80 for receiving and holding reinforcing bar.
- the lateral spacing of projecting members 49 to 54 is varied whereby grooves 56 , 57 , 58 , 59 , 61 , 62 and 80 have varying widths to accommodate different sized reinforcing bar.
- Each groove 56 , 57 , 58 , 59 , 61 , 62 , and 80 has a bottom 60 to allow reinforcing bar to rest in grooves 56 , 57 , 58 , 61 , 62 and 80 .
- Grooves 56 , 57 , 58 , 61 , 62 and 80 and bottom 60 may be of any desired width, height, or size such that they may allow reinforcing bar to be held in place and rest in a groove.
- Projecting members 49 to 54 have a uniform height.
- Projecting members 70 , 71 may be slightly taller than projecting members 49 to 54 to allow easier application of reinforcing bar. The heights of projecting members 49 to 54 , 70 , 71 can be made to vary as desired.
- Projecting members 49 to 54 each have a body 55 , a base 65 and a head member 63 joined to a centrally located rib member 64 .
- Rib member 64 extends downwardly from head member 63 to top 75 of tie 42 .
- the outer ends of head member 63 extend towards adjacent grooves 56 , 57 , 58 , 59 , 61 , 62 and 80 .
- Head members 66 and 67 are located substantially centrally on and joined to rib member 64 where they curve downwardly away from rib member 64 in order to bias head member 66 and 67 against upward forces acting on reinforcing bar.
- the outer ends of head members 66 and 67 extend towards adjacent grooves 56 , 57 , 58 , 59 , 61 , 62 and 80 inwardly from the outer ends of head member 63 .
- the side walls of body 55 are adapted to change in shape and deform upon application of force such as when reinforcing bar is placed into grooves 56 , 57 , 58 , 59 , 61 , 62 and 80 .
- the outer ends of head member 63 and head members 66 and 67 and the deformation of the side walls of body 55 of projecting members 49 to 54 prevent the reinforcing bar from moving upward and out of grooves 56 , 57 , 58 , 59 , 61 , 62 and 80 .
- Projecting members 70 and 71 consist of only rib members 64 .
- projecting members 49 to 54 have a head member 63 attached to a rib member 64 and a body 55 with no additional head members. Body 55 deforms when reinforcing bar is placed in a corresponding groove such that body 55 takes on the shape and applies pressure to the reinforcing bar.
- projecting members 49 to 54 have a head member 63 and a rib member 64 with additional head members or body.
- head member 63 may project laterally from a rib member 64 towards one adjacent groove on tie 42 .
- Tie 43 may have projecting members 10 to 17 in vertical alignment with projecting members 49 to 54 of tie 42 such that web 23 is reversible.
- the projecting members 10 to 17 of tie 43 are laterally spaced and project downwardly from a bottom of tie 43 to define grooves substantially similar to grooves 56 , 57 , 58 , 59 , 61 , 62 and 80 for receiving and holding reinforcing bar.
- the projecting members 10 to 17 of tie 43 project upwardly from top of tie 43 to define grooves substantially similar to grooves 56 , 57 , 58 , 59 , 61 , 62 and 80 for receiving and holding reinforcing bar.
- Top 75 of tie 42 has depressions 68 and 69 for accommodating reinforcing cords used in construction.
- depressions 68 and 69 are located adjacent upright projecting members 70 and 71 .
- Projecting members 70 and 71 may facilitate placement of reinforcing cords in depressions 68 and 69 .
- Depressions 68 and 69 are in alignment with adjacent webs in panel 21 and 22 such that reinforcing cords may extend laterally the length of the wall without curvature or interruption.
- Reinforcing cords may be made of any flexible material such that they cooperate and are held in place by depressions 68 and 69 .
- reinforcing cords are placed before the addition of reinforcing bar to provide stability to webs to accommodate the placement of reinforcing bar.
- End portion 44 has an inner support 72 and an outer support 72 laterally spaced from and extending parallel to inner support 72 , as seen in FIG. 5 .
- Inner support 72 and outer support 73 are joined to a truss member 74 that extends between inner support 72 and outer support 73 .
- Truss member 74 may also extend through inner support 72 to connect and support face 90 of inner connector 95 .
- the portion of truss member 74 extending past inner support 72 is labeled truss member portion 109 .
- Truss member 74 and outer support 73 of end portion 44 are located within foam panel 21 .
- end portion 46 has an inner support 76 joined to an outer support 77 via truss member 78 extending between inner support 76 and outer support 77 .
- Truss member 78 and outer support 77 of end portion 46 are located within panel 22 .
- Ties 42 and 43 extend between, and are movably mounted on, inner support 72 and corresponding outer support 76 of end portions 44 and 46 .
- Truss member 74 may alternatively consist of several separate truss members oriented between outer support 77 and through inner support 76 to face 90 .
- Tie 42 has tab members 79 and 81 extending outwardly from tie 42 and oriented to separate tie 42 from adjacent ties during shipping.
- tab members 79 and 81 are cylindrical shaped members that extend sideways from side 82 of tie 42 .
- Side 82 may have a corresponding bore located opposite tab members 79 and 81 to receive tab members 79 and 81 .
- Tab members 79 and 81 function to preserve the shape of ties, prevent movement relative to one another, separate individual ties, or prevent warping of ties during shipping.
- Tab members 79 and 81 and their corresponding bores can be made to have other shapes.
- Tab members 79 and 81 may be of sufficient height to prevent tie 42 from coming in contact with adjacent stacked ties during shipping.
- Indicia 30 located on exterior face 39 of panel 21 are in alignment with webs 23 such that indicia 30 indicate the relative position and size of outer support 73 of web 23 .
- Indicia 30 are similar in shape and orientation to the outer face of end portion 44 in order to allow an observer to quickly and easily locate webs 23 for manipulation of the entire structure.
- indicia 30 are rectangular in shape and are located at spaced intervals corresponding to the location of each individual web.
- Truss members 74 and 78 have a plurality of longitudinal rectangular shaped access slots 111 adapted to accommodate a strip member 112 to laterally reinforce insulating concrete form 20 .
- Prong members 113 and 114 extend into and form access slot 111 and retain strip member 112 in slot 111 .
- Strip member 112 is placed through opening 84 adjacent access slot 111 and then moved over prong members 113 and 114 into slot 111 .
- Strip members 112 have grooves 86 that align with prong members 113 and 114 to allow strip member 112 to be moved into slot 111 with a friction fit to laterally reinforce insulating concrete form 20 and prevent separation of panels due to hydrostatic pressure during a concrete pour.
- Strip member 112 may extend between multiple ties, and may extend around corners to laterally reinforce multiple ties in insulated concrete form 20 .
- inner supports 72 and 76 have vertical fasteners 87 , 88 , 89 and 91 to connect end portions 44 and 46 of web 23 to adjacent end portions of webs of another insulating concrete form stacked on top of insulating concrete form 20 during wall construction.
- Vertical fasteners 87 , 88 , 89 and 91 have side portions 92 having teeth 93 for interlocking with the teeth of vertical fasteners of adjacent webs of another insulating concrete form when stacked on insulating concrete form 20 .
- Each vertical fastener 87 , 88 , 89 and 91 has a lower weak portion 94 located adjacent the outer ends of inner supports 72 and 76 , as seen in FIG. 9 .
- Vertical fasteners 87 , 88 , 89 and 91 are adapted to bend or fracture at weak portion 94 to allow interlocked insulating concrete forms to be easily separated as vertical fasteners 87 , 88 , 89 and 91 can be disengaged with a reduced force.
- Teeth 93 of vertical fasteners 87 and 88 extend in opposite lateral directions on the outer ends of inner support 72 of end portion 44 .
- Teeth 93 of vertical fasteners 89 and 91 extend in opposite lateral directions on the outer ends of inner support 76 of end portion 46 .
- Teeth 93 of vertical fasteners 88 and 89 extend in a lateral direction opposite from teeth 93 of fasteners 87 and 91 whereby insulating concrete form 20 is reversible and can be stacked in either orientation during construction.
- tie connectors 96 adapted to connect ties 42 and 43 to end portions 44 and 46 of web 23 .
- Tie connector 96 has a channel shaped body 97 adapted to extend over and around inner connector 95 of inner supports 72 and 76 of end portions 44 and 46 .
- Inner connector 95 has a face 90 attached to inner support 72 by truss member portion 109 such that body 97 may cooperate and wrap around face 90 .
- Truss member portion 109 is of sufficient length to allow body 97 free vertical movement relative to inner support 72 .
- Body 97 is movable along the length of inner connector 95 of inner supports 72 and 76 to adjust in infinite increments the vertical positions of ties 42 and 43 within insulating concrete form 20 from a vertical position adjacent the top of insulating concrete form 20 to a vertical position adjacent the bottom of form 20 , as needed.
- Ties 42 and 43 can be moved to positions within insulating concrete form 20 to allow additional ties to be connected to end portions 44 and 46 and located in form 20 , if desired.
- Ties 42 and 43 may be slid down past insulated concrete form 20 to connect to adjacent insulated concrete forms either above or below insulated concrete form 20 .
- Vertical fasteners 87 , 88 , 90 , 91 create an uninterrupted continuous structure of cooperating face 90 , and vertically adjacent faces, to allow for continuous movement of ties 42 and 43 to further insulated concrete forms.
- Inner connectors 95 on inner supports 72 and 76 have a series of vertically spaced indentations 98 .
- Indentations 98 have an inwardly curving shape.
- Indentations 98 can be made to have a rectangular channel shape or other shapes.
- a catch member 99 attached to body 97 has an extended portion 101 adapted to extend into a selected indentation 98 of inner connector 95 to maintain the vertical positions of ties 42 and 43 and lock ties 42 and 43 into measured increments within insulating concrete form 20 .
- Extended portion 101 has a complimentary shape to and a friction fit with indentations 98 .
- Catch member 99 has a resilient base portion 100 adapted to bias extended portion 101 into indentation 98 .
- Catch member 99 is moved outwardly away from inner connector 95 to move extended portion 101 out of indentation 98 to release catch member 99 .
- Catch member 99 can be made to have a flexible portion, or hinge, to allow catch member 99 to be released.
- End portions 42 and 46 have fasteners 102 , 103 , 104 and 106 extending outwardly from truss members 74 and 78 for securing a plurality of webs during shipping.
- Fasteners 102 , 103 , 104 and 106 have a pair of bar members 107 and 108 projecting outwardly from opposite sides of the lower and upper ends of truss members 74 and 78 .
- Bar members 107 and 108 are laterally spaced from outer supports 73 and 77 of end portions 42 and 46 to accommodate the outer edge portion of the outer support of another web whereby the outer edge portion of the outer support of an adjacent web can be inserted and held between bar members 107 and 108 and outer supports 73 and 77 of web 23 to secure the adjacent web to web 23 .
- FIGS. 10 to 12 a first modification of a web 123 used to connect and hold panels 21 and 22 of insulating concrete form 20 in parallel spaced relation configured to receive pourable concrete to create a concrete wall in a building structure is shown.
- Web 123 has a pair of ties 142 and 143 extending between end portions 124 and 126 .
- Ties 142 and 143 have one or more laterally spaced projecting members 149 , 150 , 151 , 152 , 153 and 154 defining grooves 156 , 157 , 158 , 159 , 160 , 161 and 162 adapted to receive and secure reinforcing bar to strengthen and hold concrete located in insulating concrete foam 20 in compression.
- Each projecting member 149 to 154 has a body 155 having a base 165 with a rib member 164 joined to a head member 164 and head members 166 and 167 .
- the side walls of body 155 are adapted to change in shape, indent and deform due to the application of force when reinforcing bar is moved into grooves 156 , 157 , 158 , 159 , 160 , 161 and 162 .
- the outer ends of head member 163 and head members 166 and 167 extend into grooves 156 to 162 .
- the outer ends of head member 163 and head members 166 and 167 and the deformation of body 155 prevents the reinforcing bar located in grooves 156 to 162 from moving upward and out of grooves 156 to 162 .
- Depressions 168 and 169 in the outer ends of top 172 of tie 142 are adapted to accommodate reinforcing cords used in construction of a concrete wall.
- Projecting members 170 and 171 extending upwardly from top 172 facilitate placement of reinforcing cords in depressions 168 and 169 .
- Tie 142 has tab members 173 and 174 that extend outwardly from a side 176 of tie 142 .
- Tab members 173 and 174 are adapted to separate ties and preventing warping of ties during shipping.
- End portion 124 of web 123 has an inner support 127 and an outer support 128 joined to a truss member 129 which extends between inner support 127 and outer support 128 .
- End portion 126 has an inner support 131 joined to an outer support 132 with a truss member 133 extending between inner support 131 and outer support 132 .
- Outer supports 128 and 132 and truss members 129 and 133 of end portions 124 and 126 are adapted to be located flush with the surfaces of or within foam panels 21 and 22 of insulating concrete form 20 whereby panels 21 and 21 may be laminated, if desired.
- Truss members 129 and 133 have a plurality of longitudinal access slots 192 adapted to accommodate a strip member to laterally reinforce insulating concrete form 20 .
- End portions 124 and 126 have transverse fasteners 182 , 183 , 184 and 185 extending outwardly from truss members 129 and 133 for securing multiple webs during shipping.
- Each transverse fasteners 182 , 183 , 184 and 185 has a pair of bar members 186 and 187 extending transversely from opposite sides of truss members 129 and 133 adjacent the top and bottoms of truss members 129 and 133 .
- Bar members 186 and 187 are spaced laterally from outer supports 128 and 132 whereby the outer edge portions of end portions of adjacent webs can be inserted and retained between bar members 186 and 187 and outer supports 128 and 132 of end portions 124 and 126 to secure the adjacent webs to web 123 .
- inner supports 127 and 131 have vertical fasteners 188 , 189 , 190 and 191 adapted to releasably affix end portions 124 and 126 of web 123 to adjacent webs of another insulating concrete form in a reversible manner.
- Web 223 has a pair of ties 242 and 243 extending between inner supports 227 and 231 .
- Ties 242 and 243 have laterally spaced projecting members 250 , 251 and 252 forming grooves for receiving reinforcing bar.
- Projecting members 250 , 251 and 252 have arms 253 extending into the grooves adapted to prevent movement of the reinforcing bar out of the grooves.
- Depressions 268 and 269 in the outer ends of ties 242 and 243 are used to accommodate and hold concrete wall construction reinforcing cords.
- Projecting members 270 and 271 extending adjacent projecting members 250 , 251 and 252 facilitate placement of reinforcing cords in depressions 268 and 269 .
- the end portions of web 223 have inner supports 227 and 231 joined to truss members 229 extending between inner supports 227 and 231 and outer supports 228 and 232 .
- the upper and lower ends of truss members 229 have vertical supports 292 .
- Outer supports 228 and 232 and truss members 229 are adapted to be located flush with the surfaces or within foam panels 21 and 22 of insulating concrete form 20 allowing for panels 21 and 22 to be laminated, if desired.
- the end portions of web 223 have fasteners 282 , 283 , 284 and 285 extending outwardly from truss members 229 for fastening multiple webs during shipping.
- inner supports 227 and 231 have fasteners 288 , 289 , 290 and 291 useable to releasably affix the end portions of web 223 to adjacent webs of other insulating concrete forms in a reversible manner.
- Web 301 has a pair of ties 342 and 343 extending between inner supports 327 and 331 .
- Ties 342 and 343 have laterally spaced projecting members 350 , 351 , 352 , 353 , 354 , 355 , 356 , 357 , 358 , 359 , 370 , 371 , 372 and 373 forming grooves for receiving reinforcing bar.
- Projecting members 350 to 359 have arms extending into the grooves adapted to prevent movement of the reinforcing bar out of the grooves.
- End portions 324 and 326 of web 301 have inner supports 327 and 331 joined to truss members 329 and 330 .
- Truss members 329 and 330 extend between inner supports 327 and 331 and outer supports 328 and 332 of end portions 324 and 326 of web.
- Outer supports 328 and 332 and truss members 329 and 330 are adapted to be located within or flush with the surfaces of foam panels 21 and 22 of insulating concrete form 20 .
- End portions 324 and 326 of web 301 have fasteners 382 , 383 , 384 and 385 extending outwardly from truss members 329 and 330 for fastening multiple webs during shipping.
- the outer ends of inner supports 327 and 331 have fasteners 388 , 389 , 390 and 391 for releasably affixing the end portions of web 301 to adjacent webs of other insulating concrete forms in a reversible manner.
- ties 342 and 343 have swivel members 338 , 339 , 378 and 379 connected to end portions 324 and 326 of web 301 with couplings 340 , 341 , 344 and 345 .
- Pivots 346 , 347 , 348 and 349 extending through bores 312 in swivel members 334 , 335 , 336 , 337 , 374 , 374 , 376 and 377 of couplings 340 , 341 , 344 and 345 and swivel members 338 , 339 , 378 and 379 of ties 342 and 343 pivotally connect ties 342 and 343 to couplings 340 , 341 , 344 and 345 allowing web 301 to collapse for shipping.
- Pivots 346 , 347 , 348 and 349 are held in position within and prevented from inadvertently falling out of bores 312 due to friction of additional material in bores 312 engageable with pivots 346 , 347 , 348 and 349 .
- Couplings 340 , 341 , 344 and 345 are movable along inner connectors 395 on inner supports 327 and 331 to adjust the vertical position of ties 342 and 343 in infinite increments within insulating concrete form 20 to positions ranging from the top of insulating concrete form 20 to the bottom of form 20 , as desired.
- Couplings 340 , 341 , 344 and 345 are identical in structure and function. The details of coupling 340 shown in FIG. 15 are included in couplings 341 , 344 and 345 . The following description is directed to coupling 340 .
- Coupling 340 has a channel shaped body 392 having an opening 393 for accommodating inner connector 395 of inner support 327 of end portion 324 .
- Pins 310 and 311 extending into opening 393 register in bores 396 of inner connector 395 to hold coupling 340 at selected vertical positions.
- Body 392 has a bore 333 adapted to receive a fastener for fastening coupling 340 to inner connector 395 to lock the position of ties 342 and 343 within insulating concrete form 20 , if desired.
- Swivel members 334 and 335 of coupling 340 have ribs 314 , 315 , 316 , 317 , 318 and 319 located adjacent bore 312 .
- Ribs 314 , 315 , 316 , 317 , 318 and 319 are fluted flange members extending outwardly from the top and bottom portions of body 392 .
- the fluting of body 392 reduces the amount of material required to construct coupling 340 while providing increased strength and durability of coupling 340 .
- Upper rib 314 has an outwardly extending projection 313 .
- Projection 313 is adapted to engage projecting members 370 , 371 , 372 and 373 to limit pivotal movement of ties 342 and 343 and lock ties 342 and 343 in an open fixed position.
- Projecting members 370 , 371 , 372 and 373 are semi-rigid members having the ability to bend and flex out of engagement with projection 313 and spring back to their original shapes and positions.
- the size of projection 313 and the distance of projection 313 to projecting members 370 , 371 , 372 and 373 is selected to balance the amount of force required to lock and unlock ties 342 and 343 .
- inner connector 395 has multiple series of vertically spaced indentations 398 .
- Indentations 398 have an inwardly curving shape. Indentations 398 can be made to have other shapes such as a rectangular channel shape.
- Inner connector 395 has a plurality of vertically spaced faces 399 located between indentations 398 at selected vertical positions to facilitate vertical arrangement of ties 342 and 343 within insulating concrete form 20 .
- Bores 396 extending through inner connector 395 adjacent faces 399 accommodate pins 310 and 311 to hold couplings 340 , 341 , 344 and 345 at selected vertical positions adjacent faces 399 and lock ties 342 and 343 into measured increments within insulating concrete form 20 .
- Truss members 329 and 330 have a plurality of longitudinal access slots 397 adapted to accommodate concrete reinforcing strip material. Fasteners 394 extend into and form access slots 397 and retain the strip material in access slots 397 .
- the upper and lower ends of truss members 329 and 330 have vertical supports 320 , 321 , 322 and 322 .
- Coupling 440 is movable along the length of inner connector 395 on inner supports 327 and 331 of end portions 324 and 326 to adjust the vertical height of ties 342 and 343 in infinite increments within insulating concrete form 20 , as desired.
- Coupling 440 has a channel shaped body 492 having an opening 493 for accommodating inner connector 395 .
- Body 492 has a pair of inwardly directed flanges 402 and 403 extending into opening 493 .
- flanges 402 and 403 have pins 410 and 411 adapted to register in bores 396 in inner connector 395 to hold coupling 440 at selected vertical positions on end portions 324 and 326 .
- Bores 396 extend through inner connector 395 adjacent vertically spaced faces 399 whereby coupling 440 is held at selected vertical positions adjacent faces 399 and ties 342 and 343 are locked into measured increments within insulating concrete form 20 .
- Pins 410 and 411 are centrally located on flanges 402 and 403 whereby the top and bottom portions of coupling 440 are in mirror symmetry and coupling 440 is reversible in assembly and use.
- Swivel members 434 and 435 of coupling 440 have ribs 414 , 415 , 416 , 417 , 418 and 419 surrounding bore 412 .
- Ribs 414 , 415 , 416 , 417 , 418 and 419 are fluted flange members extending outwardly from the top and bottom portions of body 492 .
- Pivots 346 , 347 , 348 and 349 are adapted to extend through bore 412 in swivel members 434 and 435 of connector 440 and swivel members 338 , 339 , 378 and 379 of ties 342 and 343 to pivotally connect ties 342 and 343 to coupling 440 thereby allowing web 301 to be collapsed for shipping and storage.
- Pivots 346 , 347 , 348 and 349 are held in position within bores 412 due to friction of additional material in bores 412 engaging pivots 346 , 347 , 348 and 349 .
- Upper rib 414 and lower rib 419 have outwardly extending projections 413 and 420 .
- Projections 413 and 420 are engageable with projecting members 370 , 371 , 372 and 373 to limit pivotal movement of ties 342 and 343 .
- Projecting members 370 , 371 , 372 and 373 are adapted to bend or flex and be moved out of engagement with projections 413 and 420 , if desired, and spring back to their original shapes and positions.
- the size of projections 413 and 420 and the distance projections 413 and 420 are located from projecting members 370 , 371 , 372 and 373 is predetermined to balance the force required to lock and unlock ties 342 and 343 .
- Fastening means 404 , 405 and 406 extending outwardly from the side of body 492 of connector 440 are useable to releasably affix connector 440 to other connectors for shipping and storage.
- ties 342 and 343 may incorporate the features of couplings 340 and 440 in place of separate couplings 340 and 440 .
- Ties 342 and 343 may also include a joint and projections to lock the joint in place.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Building Environments (AREA)
- Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)
Abstract
An insulating concrete form system uses a stacked arrangement of foam panels to receive pourable concrete to construct a concrete wall of a building structure. Webs located in the panels hold the panels in parallel spaced relation. The webs have laterally extending ties. The ties have one or more projecting members having arms extending into grooves adapted to receive rebar. Outwardly extending truss member are used to fasten multiple webs during shipping. Couplings releasably connect the ties to end portions of the web and allow the ties to be moved along the length of the end portions as desired.
Description
- This application is a division of U.S. patent application Ser. No. 16/577,841 filed Sep. 20, 2019. U.S. application Ser. No. 16/577,841 claims the priority of U.S. application Ser. No. 62/734,713 filed Sep. 21, 2018.
- The technology of the invention relates to insulating concrete form systems used in construction of poured concrete walls in building structures.
- Traditionally construction and fabrication of poured concrete walls have used insulating concrete form systems utilizing a stacked arrangement of foam panels to form a preferred shape of an interior cavity for receiving pourable concrete. The panels may be made from rigid foam insulation, or any other material used to insulate a building and capable of maintaining a form for concrete pouring. The panels are reversible, modular, and may be stacked in an offset manner to form any height wall. Traditional construction methods often attempt to form a similar finished wall product using fewer points of connectivity resulting in substantial difficulty during the construction process. Each individual panel in traditional methods did not attempt to connect to adjoining units with enough structure to withstand the pressures of shipping, pouring of the concrete, wear over time. In other prior art, individual units required too much force to disassemble where a section of the wall required revision. There is a need for an insulated concrete form which provides enough structure to withstand shipping and assembly while allowing for easy disassembly and correction of mistakes during construction.
- Sparkman in U.S. Pat. No. 5,459,971 shows an insulating concrete form system having a pair of foam panels connected together with a connector. The connector has a pair of elongated anchor members each embedded longitudinally inside a corresponding foam panel. Sparkman employs a substantially dissimilar cavity for accommodating concrete which results in heavier and thicker final walls.
- Philippe in U.S. Pat. No. 5,438,933 shows an insulating construction form having panels with top and bottom surfaces and interconnecting members comprising alternating protrusions and recesses on the top and bottom surfaces. Philippe does not allow for any variation to the size and placement of the ties along the length of the wall, and is therefore not able to accommodate differing pressures during the concrete pouring process.
- Cymbala et al in U.S. Pat. No. 5,896,714 shows an insulating concrete form system having a pair or parallel foam panels spaced using a plurality of plastic ties. Each tie has two laterally opposed supports connected together with a web. The ties and panels are formed in a molded-in configuration. Cymbala et al does not contemplate structure to overcome the forces present during shipping or handling which may warp or otherwise damage the web material prior to final assembly at the construction site.
- The insulating concrete form apparatus has a pair of panels with at least one web extending between the panels. Each panel is located in spaced relationship relative to each other. The panels each have a top surface and a bottom surface. First protrusions form a part of the top surface. Second protrusions form a part of the bottom surface. The first protrusions are aligned with the second protrusions such that the panels can be stacked either above or below additional pairs of panels. The first protrusions are in symmetry with the second protrusions. The web has an end portion. The end portion extends vertically along one of the panel. The end portion has an inner support and an outer support located in spaced relationship with the inner support. The end portion has a truss member extending between the inner support and the outer support. The web has one or more ties extending to the end portion. The tie is releasably connected to the end portion whereby the tie can be connected to the one end portion at any point on the end portion. The tie has a coupling having one or more pins releasably connecting the tie to the end portion and allowing the coupling to be moved vertically relative to the end portion. The coupling has a channel to allow said the tie to remain in lateral position relative to the end portion while the pin is being moved vertically relative to said the end portion.
-
FIG. 1 is a perspective view of the insulating concrete form of the invention; -
FIG. 2 is an elevated side view of the insulating concrete form ofFIG. 1 ; -
FIG. 3 is a top plan view of the insulating concrete form ofFIG. 1 ; -
FIG. 4 is a bottom plan view of the insulating concrete form ofFIG. 1 ; -
FIG. 5 is an enlarged sectional view taken along line 5-5 ofFIG. 3 ; -
FIG. 6 is an enlarged foreshortened front elevational view of a tie of the insulating concrete form ofFIG. 1 ; -
FIG. 7 is an enlarged foreshortened perspective view of a connector assembly movably mounting a tie to an end portion of a web located in a foam panel of the insulating concrete form ofFIG. 1 ; -
FIG. 8 is an enlarged foreshortened perspective view of a lower portion of a web of the insulating concrete form ofFIG. 1 ; -
FIG. 9 is an enlarged foreshortened perspective view of a fastener for interlocking insulating concrete forms ofFIG. 1 in stacked relation; -
FIG. 10 is a front elevational view of a first modification of the web of the insulating concrete form ofFIG. 1 ; -
FIG. 11 is an enlarged foreshortened perspective view of the web ofFIG. 10 ; -
FIG. 12 is an enlarged foreshortened perspective view of an upper portion of the web ofFIG. 10 ; -
FIG. 13 is a front elevational view of a second modification of the web of the insulating concrete form ofFIG. 1 ; -
FIG. 14 is an exploded front elevational view of a third modification of the web of the insulating concrete form ofFIG. 1 ; -
FIG. 15 is an enlarged perspective view of the coupling of the web ofFIG. 14 ; -
FIG. 16 is an enlarged foreshortened perspective view of an upper portion of the web ofFIG. 14 ; and -
FIG. 17 is an enlarged perspective view of a modification of the coupling of the web ofFIG. 14 . - The following description and drawing of the insulating concrete form apparatus are embodiments in which the invention may be used. Other embodiments of insulating concrete forms including structural changes can be made without departing from the invention. As shown in
FIGS. 1 to 5 , a first embodiment of an insulating concrete form, indicated generally at 20, has a pair ofpanels webs 23 extend betweenfoam panels panels Webs 23 are semi-rigid molded plastic members.Webs 23 may be of any variable height or length to accommodate differing width or height walls.Panel 21 may sit at any variable distance from correspondingpanel 22 to form curving walls, corner walls, walls of tapering or increasing thickness, or any desired variation of concrete wall. Other materials and methods can be used to makewebs 23 orfoam panels -
Panels top surfaces bottom surfaces 27 and 28 opposite fromtop surfaces Top surfaces protrusions protrusions intervals 37 and 38.Intervals protrusions panels Protrusions intervals bottom surfaces concrete form 20 to be reversible in use.Top surfaces bottom surfaces 27 and 28 such that each individual foam panel may be inverted and still fit in cooperation with adjacent foam panels. - In a first embodiment,
web 23 hasties portions web 23.End portions panel 21 such that eachend portion panel 21.Tie 42 has one or more projectingmembers 49 to 54, 70 and 71, and tie 43 has one or more projectingmembers 10 to 17, adapted to receive and secure one or more reinforcing bars to strengthen and reinforce the concrete. Projectingmembers 49 to 54, 70 and 71 project toward the top ofweb 23, and projectingmembers 10 to 17 project towards the bottom ofweb 23 allowingweb 23 to be reversible. In the preferred embodiment, the reinforcing bar may be one or more cylindrical steel rebar which extend laterally across the length of the wall and attach to multiple webs, includingweb 23, via projecting members to reinforce the concrete. - In the preferred embodiment, projecting
members 49 to 54, 70 and 71 oftie 42 and projectingmembers 10 to 17 oftie 43 are in alignment with projecting members of additional ties inpanel 21 andpanel 22 such that a cylindrical reinforcing bar may be attached to each tie along the wall without bending or other interruption. Where a curving wall or corner is desired, each tie may sit in proportional alignment to allow reinforcing bar to follow the shape of the wall. - Referring to
FIG. 6 ,tie 42 has a plurality of laterally spaced projectingmembers tie 42 to definegrooves members 49 to 54 is varied wherebygrooves groove grooves Grooves members 49 to 54 have a uniform height. Projectingmembers members 49 to 54 to allow easier application of reinforcing bar. The heights of projectingmembers 49 to 54, 70, 71 can be made to vary as desired. - Projecting
members 49 to 54 each have a body 55, abase 65 and ahead member 63 joined to a centrally located rib member 64. Rib member 64 extends downwardly fromhead member 63 to top 75 oftie 42. The outer ends ofhead member 63 extend towardsadjacent grooves Head members 66 and 67 are located substantially centrally on and joined to rib member 64 where they curve downwardly away from rib member 64 in order to biashead member 66 and 67 against upward forces acting on reinforcing bar. The outer ends ofhead members 66 and 67 extend towardsadjacent grooves head member 63. The side walls of body 55 are adapted to change in shape and deform upon application of force such as when reinforcing bar is placed intogrooves head member 63 andhead members 66 and 67 and the deformation of the side walls of body 55 of projectingmembers 49 to 54 prevent the reinforcing bar from moving upward and out ofgrooves members members 49 to 54 have ahead member 63 attached to a rib member 64 and a body 55 with no additional head members. Body 55 deforms when reinforcing bar is placed in a corresponding groove such that body 55 takes on the shape and applies pressure to the reinforcing bar. In an additional alternative embodiment, projectingmembers 49 to 54 have ahead member 63 and a rib member 64 with additional head members or body. In an additional alternative embodiment,head member 63 may project laterally from a rib member 64 towards one adjacent groove ontie 42. -
Tie 43 may have projectingmembers 10 to 17 in vertical alignment with projectingmembers 49 to 54 oftie 42 such thatweb 23 is reversible. The projectingmembers 10 to 17 oftie 43 are laterally spaced and project downwardly from a bottom oftie 43 to define grooves substantially similar togrooves web 23 is reversed, the projectingmembers 10 to 17 oftie 43 project upwardly from top oftie 43 to define grooves substantially similar togrooves -
Top 75 oftie 42 hasdepressions depressions members members depressions Depressions panel depressions -
End portion 44 has aninner support 72 and anouter support 72 laterally spaced from and extending parallel toinner support 72, as seen inFIG. 5 .Inner support 72 andouter support 73 are joined to a truss member 74 that extends betweeninner support 72 andouter support 73. Truss member 74 may also extend throughinner support 72 to connect and support face 90 ofinner connector 95. The portion of truss member 74 extending pastinner support 72 is labeled truss member portion 109. Truss member 74 andouter support 73 ofend portion 44 are located withinfoam panel 21. Similarly,end portion 46 has aninner support 76 joined to anouter support 77 viatruss member 78 extending betweeninner support 76 andouter support 77.Truss member 78 andouter support 77 ofend portion 46 are located withinpanel 22.Ties inner support 72 and correspondingouter support 76 ofend portions outer support 77 and throughinner support 76 to face 90. -
Tie 42 hastab members tie 42 and oriented toseparate tie 42 from adjacent ties during shipping. In the preferred embodiment,tab members side 82 oftie 42.Side 82 may have a corresponding bore locatedopposite tab members tab members Tab members Tab members Tab members tie 42 from coming in contact with adjacent stacked ties during shipping. -
Indicia 30 located onexterior face 39 ofpanel 21 are in alignment withwebs 23 such thatindicia 30 indicate the relative position and size ofouter support 73 ofweb 23.Indicia 30 are similar in shape and orientation to the outer face ofend portion 44 in order to allow an observer to quickly and easily locatewebs 23 for manipulation of the entire structure. In this embodiment indicia 30 are rectangular in shape and are located at spaced intervals corresponding to the location of each individual web. -
Truss members 74 and 78 have a plurality of longitudinal rectangular shapedaccess slots 111 adapted to accommodate astrip member 112 to laterally reinforce insulatingconcrete form 20.Prong members form access slot 111 and retainstrip member 112 inslot 111.Strip member 112 is placed through opening 84adjacent access slot 111 and then moved overprong members slot 111.Strip members 112 havegrooves 86 that align withprong members strip member 112 to be moved intoslot 111 with a friction fit to laterally reinforce insulatingconcrete form 20 and prevent separation of panels due to hydrostatic pressure during a concrete pour.Strip member 112 may extend between multiple ties, and may extend around corners to laterally reinforce multiple ties in insulatedconcrete form 20. - The outer ends of
inner supports vertical fasteners end portions web 23 to adjacent end portions of webs of another insulating concrete form stacked on top of insulatingconcrete form 20 during wall construction.Vertical fasteners side portions 92 having teeth 93 for interlocking with the teeth of vertical fasteners of adjacent webs of another insulating concrete form when stacked on insulatingconcrete form 20. Eachvertical fastener weak portion 94 located adjacent the outer ends ofinner supports FIG. 9 .Vertical fasteners weak portion 94 to allow interlocked insulating concrete forms to be easily separated asvertical fasteners - Teeth 93 of
vertical fasteners inner support 72 ofend portion 44. Teeth 93 ofvertical fasteners inner support 76 ofend portion 46. Teeth 93 ofvertical fasteners fasteners concrete form 20 is reversible and can be stacked in either orientation during construction. - Referring to
FIGS. 7 and 8 , the outer ends ofties tie connectors 96 adapted to connectties portions web 23.Tie connector 96 has a channel shapedbody 97 adapted to extend over and aroundinner connector 95 ofinner supports end portions Inner connector 95 has aface 90 attached toinner support 72 by truss member portion 109 such thatbody 97 may cooperate and wrap aroundface 90. Truss member portion 109 is of sufficient length to allowbody 97 free vertical movement relative toinner support 72.Body 97 is movable along the length ofinner connector 95 ofinner supports ties concrete form 20 from a vertical position adjacent the top of insulatingconcrete form 20 to a vertical position adjacent the bottom ofform 20, as needed.Ties concrete form 20 to allow additional ties to be connected to endportions form 20, if desired.Ties concrete form 20 to connect to adjacent insulated concrete forms either above or below insulatedconcrete form 20.Vertical fasteners face 90, and vertically adjacent faces, to allow for continuous movement ofties -
Inner connectors 95 oninner supports indentations 98.Indentations 98 have an inwardly curving shape.Indentations 98 can be made to have a rectangular channel shape or other shapes. Acatch member 99 attached tobody 97 has an extendedportion 101 adapted to extend into a selectedindentation 98 ofinner connector 95 to maintain the vertical positions ofties ties concrete form 20.Extended portion 101 has a complimentary shape to and a friction fit withindentations 98.Catch member 99 has aresilient base portion 100 adapted to biasextended portion 101 intoindentation 98.Catch member 99 is moved outwardly away frominner connector 95 to move extendedportion 101 out ofindentation 98 to releasecatch member 99.Catch member 99 can be made to have a flexible portion, or hinge, to allowcatch member 99 to be released. -
End portions fasteners truss members 74 and 78 for securing a plurality of webs during shipping.Fasteners bar members truss members 74 and 78.Bar members outer supports end portions bar members outer supports web 23 to secure the adjacent web toweb 23. - Referring to
FIGS. 10 to 12 , a first modification of aweb 123 used to connect and holdpanels concrete form 20 in parallel spaced relation configured to receive pourable concrete to create a concrete wall in a building structure is shown.Web 123 has a pair ofties end portions Ties members defining grooves concrete foam 20 in compression. - Each projecting
member 149 to 154 has abody 155 having a base 165 with arib member 164 joined to ahead member 164 andhead members 166 and 167. The side walls ofbody 155 are adapted to change in shape, indent and deform due to the application of force when reinforcing bar is moved intogrooves head members 166 and 167 extend into grooves 156 to 162. The outer ends of head member 163 andhead members 166 and 167 and the deformation ofbody 155 prevents the reinforcing bar located in grooves 156 to 162 from moving upward and out of grooves 156 to 162. -
Depressions tie 142 are adapted to accommodate reinforcing cords used in construction of a concrete wall. Projectingmembers depressions -
Tie 142 hastab members 173 and 174 that extend outwardly from aside 176 oftie 142.Tab members 173 and 174 are adapted to separate ties and preventing warping of ties during shipping. -
End portion 124 ofweb 123 has aninner support 127 and anouter support 128 joined to atruss member 129 which extends betweeninner support 127 andouter support 128.End portion 126 has aninner support 131 joined to anouter support 132 with atruss member 133 extending betweeninner support 131 andouter support 132. Outer supports 128 and 132 andtruss members end portions foam panels concrete form 20 wherebypanels ties inner supports end portions web 123.Truss members longitudinal access slots 192 adapted to accommodate a strip member to laterally reinforce insulatingconcrete form 20. -
End portions transverse fasteners truss members transverse fasteners truss members truss members outer supports outer supports end portions web 123. - The outer ends of
inner supports vertical fasteners end portions web 123 to adjacent webs of another insulating concrete form in a reversible manner. - Referring to
FIG. 13 , a second modification of aweb 223 connecting and holdingpanels concrete form 20 in parallel spaced relation is shown.Web 223 has a pair ofties inner supports Ties members members arms 253 extending into the grooves adapted to prevent movement of the reinforcing bar out of the grooves.Depressions ties members members depressions - The end portions of
web 223 haveinner supports truss members 229 extending betweeninner supports outer supports truss members 229 havevertical supports 292. Outer supports 228 and 232 andtruss members 229 are adapted to be located flush with the surfaces or withinfoam panels concrete form 20 allowing forpanels web 223 havefasteners truss members 229 for fastening multiple webs during shipping. The outer ends ofinner supports fasteners web 223 to adjacent webs of other insulating concrete forms in a reversible manner. - Referring to
FIGS. 14 to 16 , a second modification of aweb 301 connecting and holdingpanels concrete form 20 in parallel spaced relation is shown.Web 301 has a pair ofties inner supports Ties members members 350 to 359 have arms extending into the grooves adapted to prevent movement of the reinforcing bar out of the grooves. -
End portions web 301 haveinner supports truss members Truss members inner supports outer supports end portions truss members foam panels concrete form 20. -
End portions web 301 havefasteners truss members inner supports fasteners web 301 to adjacent webs of other insulating concrete forms in a reversible manner. - The outer ends of
ties members portions web 301 withcouplings Pivots bores 312 inswivel members couplings swivel members ties ties couplings web 301 to collapse for shipping.Pivots bores 312 due to friction of additional material inbores 312 engageable withpivots -
Couplings inner connectors 395 oninner supports ties concrete form 20 to positions ranging from the top of insulatingconcrete form 20 to the bottom ofform 20, as desired.Couplings coupling 340 shown inFIG. 15 are included incouplings coupling 340. Coupling 340 has a channel shapedbody 392 having anopening 393 for accommodatinginner connector 395 ofinner support 327 ofend portion 324.Pins opening 393 register inbores 396 ofinner connector 395 to holdcoupling 340 at selected vertical positions.Body 392 has abore 333 adapted to receive a fastener forfastening coupling 340 toinner connector 395 to lock the position ofties concrete form 20, if desired. Swivelmembers coupling 340 haveribs adjacent bore 312.Ribs body 392. The fluting ofbody 392 reduces the amount of material required to constructcoupling 340 while providing increased strength and durability ofcoupling 340.Upper rib 314 has an outwardly extendingprojection 313.Projection 313 is adapted to engage projectingmembers ties ties members projection 313 and spring back to their original shapes and positions. The size ofprojection 313 and the distance ofprojection 313 to projectingmembers ties - As shown in
FIG. 16 ,inner connector 395 has multiple series of vertically spacedindentations 398.Indentations 398 have an inwardly curving shape.Indentations 398 can be made to have other shapes such as a rectangular channel shape.Inner connector 395 has a plurality of vertically spaced faces 399 located betweenindentations 398 at selected vertical positions to facilitate vertical arrangement ofties concrete form 20.Bores 396 extending throughinner connector 395adjacent faces 399 accommodatepins couplings adjacent faces 399 and lockties concrete form 20.Truss members longitudinal access slots 397 adapted to accommodate concrete reinforcing strip material.Fasteners 394 extend into andform access slots 397 and retain the strip material inaccess slots 397. The upper and lower ends oftruss members vertical supports - Referring to
FIG. 17 , a modification of acoupling 440 useable to pivotally connectties portions web 301 is shown. Coupling 440 is movable along the length ofinner connector 395 oninner supports end portions ties concrete form 20, as desired. Coupling 440 has a channel shapedbody 492 having anopening 493 for accommodatinginner connector 395.Body 492 has a pair of inwardly directedflanges opening 493. The outer ends offlanges pins 410 and 411 adapted to register inbores 396 ininner connector 395 to holdcoupling 440 at selected vertical positions onend portions Bores 396 extend throughinner connector 395 adjacent vertically spaced faces 399 wherebycoupling 440 is held at selected vertical positionsadjacent faces 399 andties concrete form 20.Pins 410 and 411 are centrally located onflanges coupling 440 are in mirror symmetry andcoupling 440 is reversible in assembly and use. Swivelmembers coupling 440 haveribs surrounding bore 412.Ribs body 492.Pivots bore 412 inswivel members connector 440 andswivel members ties ties coupling 440 thereby allowingweb 301 to be collapsed for shipping and storage.Pivots bores 412 due to friction of additional material inbores 412engaging pivots Upper rib 414 andlower rib 419 have outwardly extendingprojections Projections members ties members projections projections distance projections members ties body 492 ofconnector 440 are useable to releasablyaffix connector 440 to other connectors for shipping and storage. - Alternatively,
ties couplings separate couplings Ties - There has been shown and described several embodiments of the insulating concrete form apparatus of the invention. It is understood that changes and modifications in the insulating concrete forms and webs can be made by persons skilled in the art without departing from the invention which is defined in the following claims.
Claims (35)
1. An insulating concrete form apparatus comprising:
a pair of panels with at least one web extending between the pair of panels,
each panel of the pair of panels located in spaced relationship to each other,
each panel of the pair of panels having a top surface and a bottom surface,
each panel of the pair of panels having at least one first protrusion forming part of the top surface,
each panel of the pair of panels having at least one second protrusion forming part of the bottom surface,
the at least one first protrusion being aligned with the at least one second protrusion whereby the pair of panels is adapted to be stacked either above or below additional pairs of panels,
the at least one first protrusion being in symmetry with the at least one second protrusion,
the at least one web having at least one end portion,
the at least one end portion extending along at least one panel of the pair of panels,
the at least one web having at least one tie extending to the at least one end portion,
the at least one end portion having an inner surface,
the at least one tie being releasably connected to the at least one end portion whereby the at least one tie is moveable along the inner surface of the at least one end portion to one or more selected positions between a top elevation and a bottom elevation of the at least one web,
the at least one tie having at least one tie connector,
the at least one tie connector having a channel shaped body extending over and around the inner surface of the at least one end portion to slidably connect the at least one tie to the at least one end portion whereby the at least one tie connector is movable along a length of the at least one end portion to selectively adjust the lateral position of the at least one tie between the pair of panels.
2. The insulating concrete form apparatus of claim 1 wherein:
the channel shaped body of the at least one tie connector has at least one channel to allow the at least one tie to remain in a lateral position relative to the at least one end portion while the at least one tie is being moved along the length of the at least one end portion.
3. The insulating concrete form apparatus of claim 1 wherein:
the at least one tie has at least one swivel member pivotally connected to the at least one tie connector allowing each panel of the pair of panels to move toward one another.
4. The insulating concrete form apparatus of claim 1 wherein:
the at least one tie has at least one body projecting from the at least one tie,
the at least one body adapted to receive a reinforcing bar,
the at least one body having a side wall adapted to deform when the reinforcing bar is received by the body.
5. The insulating concrete form apparatus of claim 1 wherein:
the at least one tie has at least one body projecting from the at least one tie,
the at least one body adapted to receive a reinforcing bar, .
the at least one body having at least one arm adapted to engage the reinforcing bar and prevent movement of the reinforcing bar.
6. The insulating concrete form apparatus of claim 1 wherein:
the at least one web has at least one prong member,
the at least one prong member adapted to receive a strip member.
7. The insulating concrete form apparatus of claim 1 wherein:
the at least one end portion has an inner support and an outer support located in spaced relationship with the inner support, and
at least one truss member extending between the inner support and the outer support.
8. The insulating concrete form apparatus of claim 1 wherein:
at least one panel of the pair of panels has at least one indicia orientated to indicate a position of the at least one web extending between the pair of panels.
9. The insulating concrete form apparatus of claim 1 wherein:
the at least one tie connector has at least one pin releasably connecting the at least one tie to the at least one end portion.
10. The insulating concrete form apparatus of claim 1 wherein:
the inner surface of the at least one end portion of the at least one web has an indentation,
the at least one tie connector having at least one pin,
the at least one pin adapted to extend into the indentation to releasably connect the at least one tie to the at least one end portion.
11. The insulating concrete form apparatus of claim 1 wherein:
the at least one tie connector has at least one pin,
the at least one pin being centrally located on the at least one tie connector.
12. The insulating concrete form apparatus of claim 1 wherein:
the at least one tie connector has at least one bore adapted to receive a fastener to prevent the at least one tie from moving relative to the at least one end portion of the at least one web.
13. The insulating concrete form apparatus of claim 1 wherein:
the at least one tie has at least one swivel member connected to the at least one tie connector,
the at least one swivel member having at least one projection,
the at least one tie having at least one projecting member,
the at least one projection engageable with the at least one projecting member to hold the pair of panels in an open position.
14. An insulating concrete form apparatus comprising:
a first panel and a second panel located in spaced relationship relative to the first panel,
the first panel and the second panel each having a top surface and a bottom surface,
the first panel and the second panel each having at least one first protrusion forming a part of the top surface,
the first panel and the second panel each having at least one second protrusion forming a part of the bottom surface,
the at least one first protrusion being aligned with the at least one second protrusion whereby the first panel and the second panel are adapted to be stacked either above or below additional panels,
the at least one first protrusion being in symmetry with the at least one second protrusion,
at least one web extending between the first panel and the second panel,
the at least one web having at least one end portion,
the at least one end portion having an inner surface,
the at least one end portion extending along at least one of the first panel and the second panel,
the at least one web having at least one tie extending to the at least one end portion,
the at least one tie being releasably connected to the at least one end portion whereby the at least one tie is moveable along the inner surface of the at least one end portion between a top elevation and a bottom elevation of the at least one web,
the at least one tie having at least one tie connector,
the at least one tie connector extending over and around the inner surface of the at least one end portion to connect the at least one tie to the at least one end portion,
the at least one tie connector being moveable along the inner surface of the at least one end portion to selectively adjust the lateral position of the at least one tie between the first panel and the second panel.
15. The insulating concrete form apparatus of claim 14 wherein:
the at least one tie connector has at least one channel member accommodating the at least one end portion adapted to allow the at least one tie to remain in lateral position relative to the at least one end portion while the at least one tie connector is being moved relative to the at least one end portion.
16. The insulating concrete form apparatus of claim 14 wherein:
the at least one tie connector has at least one pin releasably connecting the at least one tie to the at least one end portion.
17. The insulating concrete form apparatus of claim 14 wherein:
the at least one tie has at least one swivel member pivotally connected to the at least one tie connector to allow the first panel to be moved toward the second panel.
18. The insulating concrete form apparatus of claim 14 wherein:
the at least one tie has at least one swivel member connected to the at least one tie connector,
the at least one swivel member having at least one projection,
the at least one tie having at least one projecting member,
the at least one projection being engageable with the at least one projecting member to hold the first panel and the second panel in an open position.
19. The insulating concrete form apparatus of claim 14 wherein:
at least one of the first panel and the second panel has at least one indicia oriented to indicate a position of the at least one web extending between the first panel and the second panel.
20. The insulating concrete form apparatus of claim 14 wherein:
the at least one tie connector has at least one bore adapted to receive a fastener to prevent the at least one tie from moving relative to the at least one end portion of the at least one web.
21. The insulating concrete form apparatus of claim 14 wherein:
the at least one tie connector having at least one pin,
the at least one pin adapted to extend into an indentation in the at least one end portion to releasably connect the at least one tie to the at least one end portion of the at least one web.
22. The insulating concrete form apparatus of claim 14 wherein:
the at least one tie connector has at least one pin,
the at least one pin being centrally located on the at least one tie connector.
23. A web for an insulating concrete form apparatus comprising:
a semi-rigid molded plastic web member,
the web member having a first end portion and a second end portion opposite the first end portion,
a tie extending between the first end portion and the second end portion,
the tie being releasably connected to the first end portion and the second end portion whereby the tie is moveable along the first end portion and the second end portion,
the tie having a first tie connector attached to the first end potion and a second tie connector attached to the second end portion,
the first tie connector having a first channel shaped body extending over and around the first end portion to slideably connect the tie to the first end portion,
the second tie connector having a second channel shaped body extending over and around the second end portion to slideably connect the tie to the second end portion,
the first channel shaped body being movable along the first end portion and the second channel shaped body being movable along the second end portion to selectively adjust the lateral position of the tie between the first end portion and the second end portion of the web member.
24. The web of claim 23 wherein:
the first tie connector and the second tie connector are moveable in tandem along the first end portion and the second end portion of the web member.
25. The web of claim 23 wherein:
the first end portion and the second end portion each haves an inner support and an outer support located in a spaced relationship relative to the inner support, and
at least one truss member extending between the inner support and the outer support.
26. The web of claim 23 wherein:
the tie has at least one depression.
27. The web of claim 23 including:
at least one prong member adapted to receive a strip member.
28. The web of claim 23 wherein:
the tie has at least one body member projecting from the at least one tie,
the at least one body member adapted to receive a reinforcing bar.
29. The web of claim 23 wherein:
the first tie connector having at least one first pin,
the second tie connector having at least one second pin,
the at least one first pin adapted to releasably connect the tie to the first end portion,
the at least one second pin adapted to releasably connected the tie to the second end portion.
30. The web of claim 23 wherein:
the first tie connector having at least one first pin,
the second tie connector having at least one second pin,
the at least one first pin being centrally located on the first tie connector,
the at least one second pin being centrally located on the second tie connector.
31. A method of connecting a tie to an end portion of an insulating concrete form web comprising:
providing a tie connector,
releasably connecting the tie to the end portion with the tie connector whereby the tie is moveable along the end portion to one or more selected positions between a top elevation and a bottom elevation of the insulating concrete form web,
releasably connecting the tie to the end portion with the tie connector thereby allowing the tie connector to be moved along a length of the end portion,
providing the tie connector with a channel shaped body,
extending the channel shaped body over and around the end portion to slideably connect the tie to the end portion, and
locating the end portion of the tie in the channel shaped body whereby the tie is held in a lateral position relative to the end portion while the tie connector is being moved relative to the end portion.
32. The method of claim 31 including:
providing the tie connector with a pin, and
releasably connecting the tie to the end portion with the pin.
33. The method of claim 31 including:
providing the tie with a body projecting from the tie, and
adapting the body to receive a reinforcing bar.
34. The method of claim 31 including:
providing the tie with a prong member, and
adapting the prong member to receive a strip member.
35. The method of claim 31 including:
providing the tie connector with a swivel member,
pivotally connecting the swivel member to the tie thereby allowing the insulating concrete form web to move between a closed position and an open position, and
locking the insulating concrete form web in the open position.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/670,239 US20220259873A1 (en) | 2018-09-21 | 2022-02-11 | Insulating concrete form apparatus |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862734713P | 2018-09-21 | 2018-09-21 | |
US16/577,841 US11248383B2 (en) | 2018-09-21 | 2019-09-20 | Insulating concrete form apparatus |
US17/670,239 US20220259873A1 (en) | 2018-09-21 | 2022-02-11 | Insulating concrete form apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/577,841 Division US11248383B2 (en) | 2018-09-21 | 2019-09-20 | Insulating concrete form apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20220259873A1 true US20220259873A1 (en) | 2022-08-18 |
Family
ID=69891485
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/577,841 Active US11248383B2 (en) | 2018-09-21 | 2019-09-20 | Insulating concrete form apparatus |
US17/670,239 Abandoned US20220259873A1 (en) | 2018-09-21 | 2022-02-11 | Insulating concrete form apparatus |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/577,841 Active US11248383B2 (en) | 2018-09-21 | 2019-09-20 | Insulating concrete form apparatus |
Country Status (2)
Country | Link |
---|---|
US (2) | US11248383B2 (en) |
CA (1) | CA3056094A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11248383B2 (en) * | 2018-09-21 | 2022-02-15 | Cooper E. Stewart | Insulating concrete form apparatus |
USD1041037S1 (en) | 2023-09-15 | 2024-09-03 | Jack Huwar | Wall forming system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120023851A1 (en) * | 2006-06-14 | 2012-02-02 | Encon Environmental Construction Solutions Inc. | Insulated Concrete Form |
US20200102761A1 (en) * | 2018-09-21 | 2020-04-02 | Cooper E. Stewart | Insulating concrete form apparatus |
Family Cites Families (256)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1924724A (en) * | 1932-02-15 | 1933-08-29 | Charles M Read | Concrete wall and method of building and finishing same |
US3362120A (en) | 1965-10-18 | 1968-01-09 | Holland Plastics Company | Dry wall construction and method of assembly |
US3782049A (en) | 1972-05-10 | 1974-01-01 | M Sachs | Wall forming blocks |
US3922828A (en) | 1973-11-15 | 1975-12-02 | Tri International Corp | Structural member |
US3979867A (en) | 1975-06-20 | 1976-09-14 | National Gypsum Company | Nailable foam faced board |
DE3405736A1 (en) | 1984-02-17 | 1985-08-22 | Ipa-Isorast International S.A., Panama | FORMWORK ELEMENT FOR THE SHEATH CONCRETE CONSTRUCTION AND WARM INSULATION PANEL |
US4730422A (en) * | 1985-11-20 | 1988-03-15 | Young Rubber Company | Insulating non-removable type concrete wall forming structure and device and system for attaching wall coverings thereto |
US4860515A (en) | 1987-05-26 | 1989-08-29 | Browning Bruce E Jun | Self-supporting concrete form |
US4884382A (en) * | 1988-05-18 | 1989-12-05 | Horobin David D | Modular building-block form |
US5065561A (en) | 1988-10-19 | 1991-11-19 | American Construction Products, Inc. | Form work system |
CA1304952C (en) | 1988-12-16 | 1992-07-14 | Serge Meilleur | Insulating formwork for concrete wall |
US5255488A (en) | 1992-04-20 | 1993-10-26 | Kevin Johnson | Tie-wire for concrete form |
US5459971A (en) | 1994-03-04 | 1995-10-24 | Sparkman; Alan | Connecting member for concrete form |
CN1074491C (en) * | 1994-05-10 | 2001-11-07 | 奎德-洛克建筑系统有限公司 | Insulating concrete form utilizing interlocking foam panels |
US5657600A (en) | 1994-06-20 | 1997-08-19 | Aab Building Systems Inc. | Web member for concrete form walls |
US5454199A (en) | 1994-07-01 | 1995-10-03 | I.S.M., Inc. | Wall clip for concrete forming system |
DE19548440C2 (en) | 1995-10-25 | 1999-10-21 | Norbert Wolf | Wall element |
US6253523B1 (en) | 1995-12-29 | 2001-07-03 | Mckinnon Gordon | Mechanical support for foam building blocks |
USD378049S (en) | 1996-03-14 | 1997-02-18 | Boeshart Patrick E | Tie for concrete forming system |
JP3721649B2 (en) | 1996-07-23 | 2005-11-30 | 株式会社石山 | REINFORCED CONCRETE STRUCTURE USING FORMED BODY-CONTAINING CONCRETE FRAME USING SPLITABLE SPACER MEMBER, PROCESS FOR PRODUCING THE SAME, AND FORM FORM MATERIAL |
US6264035B1 (en) | 1997-01-20 | 2001-07-24 | Orange Plastics, Inc. | Dispenser for merchandise bags |
NZ330412A (en) | 1997-05-20 | 1999-03-29 | Watertight Products Aust Pty L | Dual wall drainage assembly comprising an elongate element formed as a channel |
CA2209251C (en) * | 1997-07-04 | 2001-10-02 | Frank B. Bentley | Form system |
IT1297654B1 (en) | 1997-09-02 | 1999-12-20 | Salvatore Trovato | SYSTEM FOR THE CONSTRUCTION OF LOAD-BEARING AND NON-LOADING WALLS, WITH VARIABLE THICKNESS, INSULATED AND WITH FINISHED PARAMENTS, BY ASSEMBLING A |
US6609340B2 (en) * | 1998-01-16 | 2003-08-26 | Eco-Block, Llc | Concrete structures and methods of forming the same using extenders |
JP3957108B2 (en) | 1998-04-22 | 2007-08-15 | 日鉄住金鋼板株式会社 | Metal construction material fixing structure |
USD435212S (en) | 1998-09-02 | 2000-12-19 | Phil-Insul Corporation | Spacer |
AUPP566798A0 (en) | 1998-09-02 | 1998-09-24 | James Hardie International Finance B.V. | Construction technique |
US6336301B1 (en) | 1998-11-05 | 2002-01-08 | James D. Moore, Jr. | Concrete form system ledge assembly and method |
US6314694B1 (en) * | 1998-12-17 | 2001-11-13 | Arxx Building Products Inc. | One-sided insulated formwork |
CA2292865C (en) | 1998-12-23 | 2005-04-12 | Polyform A.G.P. Inc. | Concrete wall form and connectors therefor |
CA2256091A1 (en) * | 1998-12-23 | 2000-06-23 | Jean-Louis Beliveau | Concrete wall form and connectors therefor |
US6314696B2 (en) | 1999-03-25 | 2001-11-13 | Fust, Iii John W. | Reinforced concrete walls having exposed attachment studs |
CA2367016C (en) | 1999-03-30 | 2010-06-15 | Arxx Building Products Inc. | Bridging member for concrete form walls |
US6668503B2 (en) * | 1999-04-16 | 2003-12-30 | Polyform A.G.P. Inc. | Concrete wall form and connectors therefor |
US6224031B1 (en) | 1999-05-13 | 2001-05-01 | Patrick E. Boeshart | Tie with hinged end plates |
US6240693B1 (en) | 1999-05-28 | 2001-06-05 | Gary L. Komasara | Interlocking and insulating form pattern assembly for creating a wall structure for receiving poured concrete and method for producing a form pattern assembly |
US6536172B1 (en) * | 1999-06-01 | 2003-03-25 | Victor A. Amend | Insulating construction form and manner of employment for same |
US6308484B1 (en) | 1999-08-05 | 2001-10-30 | Thermalite, Inc. | Insulated concrete forming system |
US6119432A (en) | 1999-09-03 | 2000-09-19 | Niemann; Michael H. | Concrete form wall building system |
DE19946320B4 (en) | 1999-09-28 | 2012-08-09 | Max Bögl Bauunternehmung GmbH & Co. KG | double wall |
US6253519B1 (en) | 1999-10-12 | 2001-07-03 | Aaron E. Daniel | Construction block |
US6318040B1 (en) | 1999-10-25 | 2001-11-20 | James D. Moore, Jr. | Concrete form system and method |
KR200179051Y1 (en) | 1999-11-24 | 2000-04-15 | 명화물산주식회사 | Concrete form |
CA2291331C (en) | 1999-11-30 | 2005-06-07 | Merle Unruh | Foamed-plastic concrete form corner component |
US6256962B1 (en) | 2000-01-12 | 2001-07-10 | Patrick E. Boeshart | Tie for reusable form panels |
CA2312158C (en) | 2000-02-11 | 2003-11-04 | Polyform A.G.P. Inc. | Stackable construction panel |
CA2298170A1 (en) * | 2000-02-11 | 2001-08-11 | Jean-Louis Beliveau | Stackable construction panel |
DE10007067C2 (en) | 2000-02-16 | 2002-11-21 | Heinz Von Doellen | At the vertical joint of cavity wall sections sealing strips that can be bridged |
KR200193218Y1 (en) | 2000-03-27 | 2000-08-16 | 강영희 | Supporting system for Permanent Formwork |
KR200196811Y1 (en) | 2000-04-17 | 2000-09-15 | 주식회사유신건축종합건축사사무소 | Apparatus For Clamping Steel Reinforcing Of Concrete Wall |
US6240692B1 (en) | 2000-05-26 | 2001-06-05 | Louis L. Yost | Concrete form assembly |
US6681539B2 (en) | 2000-05-26 | 2004-01-27 | Louis L. Yost | Concrete form panels, concrete wall and method of forming |
KR200203651Y1 (en) | 2000-06-28 | 2000-11-15 | 이재복 | Thermacell black |
US20030213198A1 (en) * | 2000-06-30 | 2003-11-20 | Bentley Frank B. | Form system |
DE10110798C2 (en) | 2000-07-11 | 2003-09-25 | Heinz Hartmann | Wooden building element to create a wooden climate wall and wooden climate wall using the wooden building elements |
US6378260B1 (en) | 2000-07-12 | 2002-04-30 | Phoenix Systems & Components, Inc. | Concrete forming system with brace ties |
DE10047283C1 (en) | 2000-09-23 | 2001-12-20 | Praeton Internat Gmbh | Building wall panel manufacturing method has foam panels fitted between hoops projecting from first reinforced concrete shell before embedding ends of hoops in second reinforced concrete shell |
US6820384B1 (en) * | 2000-10-19 | 2004-11-23 | Reward Wall Systems, Inc. | Prefabricated foam block concrete forms and ties molded therein |
CA2353305C (en) | 2001-02-08 | 2006-06-27 | Polyform A.G.P. Inc. | Ledger mould for building a ledger |
CA2334614A1 (en) | 2001-02-08 | 2002-08-08 | Polyform A.G.P. Inc. | Ledger mould for building a ledger |
US6647686B2 (en) | 2001-03-09 | 2003-11-18 | Daniel D. Dunn | System for constructing insulated concrete structures |
US6935081B2 (en) | 2001-03-09 | 2005-08-30 | Daniel D. Dunn | Reinforced composite system for constructing insulated concrete structures |
CA2346328A1 (en) * | 2001-05-04 | 2002-11-04 | Jean-Louis Beliveau | Improvements in a stackable construction panel system |
CA2358195C (en) | 2001-05-04 | 2007-12-18 | Polyform A.G.P. Inc. | Improvements in a stackable construction panel system |
US6568141B2 (en) | 2001-07-24 | 2003-05-27 | Dennis H. Kremers | Concrete footing and wall system |
US6691481B2 (en) | 2001-08-20 | 2004-02-17 | Donald L. Schmidt | Corner form for modular insulating concrete form system |
US6922962B2 (en) | 2001-08-20 | 2005-08-02 | Donald L. Schmidt | Modified flat wall modular insulated concrete form system |
US6886303B2 (en) | 2001-08-20 | 2005-05-03 | Donald L. Schmidt | Form bracing tie bracket for modular insulating concrete form system and form using the same |
US6634148B2 (en) | 2001-11-29 | 2003-10-21 | Edward C. Shidler | Insulated poured wall system |
US6735914B2 (en) | 2002-07-03 | 2004-05-18 | Peter J. Konopka | Load bearing wall |
US7082731B2 (en) | 2002-09-03 | 2006-08-01 | Murray Patz | Insulated concrete wall system |
US7415804B2 (en) | 2002-09-05 | 2008-08-26 | Coombs Jerry D | Isulated concrete form having welded wire form tie |
FR2845408B3 (en) | 2002-10-04 | 2005-03-04 | Leon Francois Aschero | METHOD AND PREPARATION OF PREFABRICATION OF MINI PANELS SYSTEM |
CA2502392C (en) | 2002-10-18 | 2010-04-27 | Polyone Corporation | Insert panel for concrete fillable wall formwork |
US6915613B2 (en) * | 2002-12-02 | 2005-07-12 | Cellox Llc | Collapsible concrete forms |
ES2235583B1 (en) | 2002-12-23 | 2006-03-16 | Jaime Enrique Jimenez Sanchez | FLOATING FOUNDATION BEAM ABOVE THE GROUND FOR SANITARY FORGINGS. |
ATE364763T1 (en) | 2002-12-30 | 2007-07-15 | Laszlo Mathe | CONSTRUCTION ELEMENT FOR SHEATH CONCRETE CONSTRUCTION |
GB2397589B (en) | 2003-01-25 | 2004-12-01 | Malcolm Charles Howorth | Floor ledger |
AT412295B (en) | 2003-03-03 | 2004-12-27 | Otto Ritzinger | HOLLOW WALL - CONNECTING SUPPORT FOR FULL APPLICATION OF THERMAL INSULATION PANELS ON THE INSIDE LOST FORMWORK |
DE10310401B3 (en) | 2003-03-07 | 2004-07-15 | Dieckhoff, Peter | Insulating plate made of foamed plastic for a multi-layered wall plate comprises a side wall having a profile dimensioned so that grid bars of a grid support can be pressed between the profile elements |
US6854230B2 (en) | 2003-03-13 | 2005-02-15 | Charles Starke | Continuous structural wall system |
KR200315449Y1 (en) | 2003-03-13 | 2003-06-02 | 동 섭 신 | An iron frame |
GB2400617B (en) | 2003-04-17 | 2005-04-27 | Icf Technologies Ltd | Insulating concrete form (ICF) |
KR200322018Y1 (en) | 2003-04-30 | 2003-07-31 | 문상렬 | concrete panel for form |
KR200322036Y1 (en) | 2003-05-12 | 2003-08-02 | 김병갑 | A belt installed mechanism for energy generation with a independent generation of electric power |
GB2402141B (en) | 2003-05-21 | 2006-05-03 | Graham Glasspool | Building block |
EP1482098B1 (en) | 2003-05-26 | 2008-01-09 | Glatthaar Fertigkeller GmbH | Water-impermeable cellar and method of its construction |
US6935079B1 (en) | 2003-06-06 | 2005-08-30 | Casey James Julian | Metal stud guard |
EP1486626A3 (en) | 2003-06-10 | 2006-05-10 | Peca Verbundtechnik GmbH | Sealing element |
CZ20032141A3 (en) * | 2003-08-06 | 2005-05-18 | Canstroy Cz, S. R. O. | Insulated concrete wall forming system with hinged bridging web |
KR200334215Y1 (en) | 2003-09-06 | 2003-11-21 | 동 섭 신 | An iron frame |
US8336269B1 (en) | 2003-10-17 | 2012-12-25 | Exterior Portfolio Llc | Siding having facing and backing portion with grooved and ribbed backing portion surface |
US8225568B1 (en) | 2003-10-17 | 2012-07-24 | Exterior Portfolio, Llc | Backed building structure panel having grooved and ribbed surface |
ES2276552B1 (en) | 2003-10-27 | 2008-06-16 | Orleg Orlov | PROCEDURE OF CONSTRUCTION OF BUILDINGS WITH FOAM PLASTIC MASS BLOCKS AND BLOCK FOR IMPLEMENTATION. |
OA13320A (en) | 2003-11-03 | 2007-04-13 | Polyfinance Coffor Holding Sa | High strength formwork for concrete wall. |
ES2246667B1 (en) | 2003-11-11 | 2007-05-01 | Jaime Enrique Jimenez Sanchez | METHOD OF MANUFACTURE OF PREFABRICATED WALL SANDWICH TYPE OF REINFORCED CONCRETE CONCRETE WITH EXPANDED POLYSTYRENE AND WALL OBTAINED BY SUCH METHOD. |
US7409801B2 (en) | 2004-03-16 | 2008-08-12 | Tritex Icf Products, Inc. | Prefabricated foam block concrete forms with open tooth connection means |
US20050223669A1 (en) * | 2004-03-25 | 2005-10-13 | Plasti-Fab Ltd. | Stackable block for insulating concrete form system |
KR200353777Y1 (en) | 2004-03-27 | 2004-06-22 | 김희용 | Prefabricated partition with outer and inner walls respectively |
KR200353778Y1 (en) | 2004-03-27 | 2004-06-22 | 김희용 | Prefabricated dividers with each wall |
KR200353779Y1 (en) | 2004-03-27 | 2004-06-22 | 김희용 | Prefabricated dividers with each wall |
AT414248B (en) | 2004-05-04 | 2006-10-15 | Polsterer Hansdieter | GROSS wallboard |
DE102005025037B4 (en) | 2004-05-28 | 2009-02-12 | Böck, Georg | Method for producing a wall component, in particular for the construction of buildings |
US7565777B2 (en) | 2004-07-21 | 2009-07-28 | East West Manufacturing, Llc | Z-bend, nestable ties |
FR2877025B1 (en) | 2004-10-25 | 2008-08-01 | Fehr Sa | WALL WITH LOST FORMWORK |
US8997420B2 (en) | 2004-11-29 | 2015-04-07 | Victor Amend | Reinforced insulated forms for constructing concrete walls and floors |
CA2585790C (en) | 2004-12-07 | 2011-06-14 | Buildblock Building Systems, L.L.C. | Insulating concrete block |
US20060151677A1 (en) * | 2005-01-12 | 2006-07-13 | Mcivor Michael W | Insulated concrete form |
US7861479B2 (en) | 2005-01-14 | 2011-01-04 | Airlite Plastics, Co. | Insulated foam panel forms |
KR200383306Y1 (en) | 2005-01-27 | 2005-05-03 | 주식회사 엘씨엠 | Non demolding permanent form with wood-wool boards for concrete |
CA2496704A1 (en) | 2005-02-07 | 2006-08-07 | Serge Meilleur | Prefabricated metal formwork module for concrete |
FR2881766B1 (en) | 2005-02-10 | 2008-09-19 | Didier Helmstetter | INTEGRATED FORMWORK WALL |
CA2598172C (en) | 2005-02-25 | 2014-05-20 | Nova Chemicals Inc. | Lightweight compositions and articles containing such |
MX2007010381A (en) | 2005-02-25 | 2007-12-12 | Nova Chem Inc | Composite pre-formed building panels, a building and a framing stud. |
BRPI0607916A2 (en) | 2005-02-25 | 2010-03-23 | Nova Chem Inc | composite panel, insulated concrete formwork, building, and method of building a building |
US7444789B1 (en) | 2005-03-14 | 2008-11-04 | Moore Daniel W | Insulated concrete form holder |
EP2364959A1 (en) | 2005-03-22 | 2011-09-14 | Nova Chemicals Inc. | Lightweight concrete compositions |
DE202005005924U1 (en) | 2005-04-12 | 2005-06-30 | Glatthaar-Fertigkeller Gmbh | Core insulated prefabricated wall with composite needles |
KR200390892Y1 (en) | 2005-04-19 | 2005-07-28 | 김희용 | Assemdling partition |
FR2885625B1 (en) | 2005-05-13 | 2012-06-15 | Spurgin | DEVICE FOR CONNECTING A FIRST AND A SECOND WALL OF A WALL, IN PARTICULAR A STRUCTURAL WALL WITH INTEGRATED FORMWORK, AND WALL COMPRISING AT LEAST ONE SUCH DEVICE |
ITTO20050393A1 (en) * | 2005-06-09 | 2006-12-10 | Pontarolo Engineering Spa | CASSERO TO LOSE FOR MASONRY ISOLATED IN REINFORCED CONCRETE. |
KR200397218Y1 (en) | 2005-06-30 | 2005-09-29 | 삼목정공주식회사 | A seulabeu install care of health butimjae of the mold |
US7757448B2 (en) | 2005-10-17 | 2010-07-20 | Zhu Qinjiang | Assemblage concrete forms and method for manufacturing thereof |
CN2863962Y (en) | 2005-12-21 | 2007-01-31 | 北京市燕兴隆新型墙体材料有限公司 | Multifunctional building blocks and wall |
US7827752B2 (en) | 2006-01-11 | 2010-11-09 | Aps Holdings, Llc | Insulating concrete form having locking mechanism engaging tie with anchor |
KR100732603B1 (en) | 2006-02-08 | 2007-06-27 | 김성모 | Block for building's wall |
CH698206B1 (en) | 2006-02-13 | 2009-06-15 | Fischer Rista Ag | Access basket for prefabricated double wall elements. |
US8555588B2 (en) | 2006-02-17 | 2013-10-15 | Jonathan D. Stokes | Insulating concrete form system with fire-break ties |
MX2008011077A (en) | 2006-02-28 | 2009-03-03 | All Terior Systems Llc | Systems and methods for finishing an edge of an insulated concrete form (icf) wall. |
KR200425791Y1 (en) | 2006-04-18 | 2006-09-08 | 이호영 | Assemble form tile and tile holder |
DE102006021781B4 (en) | 2006-05-09 | 2010-06-17 | Kappema Gmbh | element wall |
KR200427139Y1 (en) | 2006-05-15 | 2006-09-21 | 김희용 | A prefabricated construction material |
KR200424436Y1 (en) | 2006-05-29 | 2006-08-22 | 김희용 | A prefabricated construction material |
US7765765B1 (en) | 2006-06-30 | 2010-08-03 | Perronne Eugene R | Method of assembling polystyrene forms for building foundations |
US7700024B1 (en) | 2006-08-17 | 2010-04-20 | Jiangming Teng | Corrugated concrete wall panel form and method of construction thereof |
US8347581B2 (en) | 2006-10-18 | 2013-01-08 | Reward Wall Systems, Inc. | Adjustable masonry anchor assembly for use with insulating concrete form systems |
US8407954B2 (en) | 2006-11-29 | 2013-04-02 | Stala Integrated Assemblies, Llc | Method and devices for framing openings in cast-in-place walls |
US7730688B2 (en) | 2006-12-27 | 2010-06-08 | Reward Wall Systems, Inc. | Corner tie bracket for use with insulated concrete form systems |
FR2910916B1 (en) | 2006-12-28 | 2009-03-06 | Spurgin Soc Par Actions Simpli | INTEGRATED FORMWORK WALL HAVING A PROVISIONAL MEANS FOR SETTING UP A MEANS FOR CONNECTING THE WALL TO A LIFTING DEVICE |
PT1953303T (en) | 2007-01-24 | 2018-06-15 | Construction Systems Marketing Ltd | Wall construction element, method for manufacturing a wall construction element and an anchor element for a wall construction element |
GB2445943A (en) | 2007-01-25 | 2008-07-30 | Icf Tech Ltd | ICF web |
FR2912165B1 (en) | 2007-02-07 | 2013-06-07 | Spurgin | CONNECTOR FOR CONNECTING TWO PLATES OF AN INTEGRATED FORMWORK WALL |
AT504754B1 (en) | 2007-02-09 | 2008-11-15 | Huhhot Chi Che Euro Technic Gmbh | PLATE WHICH IS USED AS PART OF A BUILDING WALL |
FR2918399B1 (en) | 2007-05-04 | 2016-05-13 | Coffratherm | FORMWORK WITH INTERNAL FILTER ELEMENTS FOR REALIZING A HIGH THICK CONCRETE SAIL |
US20090013629A1 (en) | 2007-07-09 | 2009-01-15 | Boeshart Patrick E | Method and Apparatus for Using Foam Panels As Forms For Making Concrete Walls |
US8048219B2 (en) | 2007-09-20 | 2011-11-01 | Nova Chemicals Inc. | Method of placing concrete |
AT10444U1 (en) | 2007-10-15 | 2009-03-15 | Ggb Gmbh | SPACER AND COMPONENT FOR MANUFACTURING WALL CONSTRUCTION AND METHOD AND DEVICE |
US20090120027A1 (en) | 2007-11-08 | 2009-05-14 | Victor Amend | Concrete form tie with connector for finishing panel |
PL2060704T3 (en) | 2007-11-13 | 2013-02-28 | Bt Innovation Gmbh | Anchor device |
WO2009092158A1 (en) | 2008-01-21 | 2009-07-30 | Octaform Systems Inc. | Stay-in-place form systems for windows and other building openings |
FR2927105B1 (en) | 2008-02-05 | 2015-12-11 | Fehr | LOW FORMWORK WALL HAVING A MEANS FOR CONNECTING TO A HANDLING MACHINE |
GB2458317B (en) | 2008-03-14 | 2011-01-12 | Herman Funke | Improvements in or relating to ties |
US8424835B2 (en) | 2008-04-03 | 2013-04-23 | Paladin Industrial, Llc | Method of supporting panel structures over concrete footings utilizing tie system for forming poured concrete walls |
EP2276898B1 (en) | 2008-04-08 | 2013-02-13 | Erich Kastner | Prefabricated component with stabilization device |
PT104019B (en) | 2008-04-14 | 2010-07-05 | Antenio Vieira Fernandes De Lima | BLOCK FOR LOST COVERAGE WITH INSULATION AND REBATABLE CONNECTOR AND DEVICE CONNECTOR. |
FR2930959B1 (en) | 2008-05-06 | 2013-01-25 | Guidel | UNIVERSAL COMPLETE ELEMENT IN SOLID WOOD |
FR2931494A1 (en) | 2008-05-22 | 2009-11-27 | Spurgin Sarl | INTEGRATED FORMWORK WALL |
US7874112B2 (en) | 2008-06-20 | 2011-01-25 | Nova Chemicals Inc. | Footer cleat for insulating concrete form |
US8074419B1 (en) | 2008-07-07 | 2011-12-13 | Humphress David L | Unbonded non-masonry building block components |
US8161699B2 (en) | 2008-09-08 | 2012-04-24 | Leblang Dennis William | Building construction using structural insulating core |
US8800227B2 (en) | 2008-09-08 | 2014-08-12 | Dennis LeBlang | Connectors for concrete structure and structural insulating core |
US8763331B2 (en) | 2008-09-08 | 2014-07-01 | Dennis LeBlang | Wall molds for concrete structure with structural insulating core |
FR2936538B1 (en) | 2008-09-29 | 2010-10-08 | Holding Jousselin | METHOD FOR MANUFACTURING INTEGRATED FORMWORK INSULATED WALL COMPRISING TWO CONCRETE SKINS AND CONNECTORS, INCLUDING AN ULTRASONIC VIBRATION STEP, INSTALLATION AND CORRESPONDING CONNECTORS |
AU2009307016A1 (en) | 2008-10-24 | 2010-04-29 | 2158484 Ontario Inc. | Concrete form module and form panel structures |
US7992359B2 (en) | 2008-11-26 | 2011-08-09 | Sill Glenn E | Alignment brace for insulated concrete walls and method of construction |
FR2939815B1 (en) * | 2008-12-15 | 2012-03-09 | Gianfranco Ciccarelli | BANCHER BLOCK FOR WALL CONSTRUCTION |
US8904737B2 (en) | 2008-12-18 | 2014-12-09 | Composite Panel Systems, Llc | Building panel assemblies and methods of use in wall structures |
FR2942824B1 (en) | 2009-03-09 | 2016-07-01 | Fehr | INTEGRATED FORMWORK WALL WITH CONNECTION FRAME |
US9388561B2 (en) | 2009-07-15 | 2016-07-12 | Frank Johnson | Modular construction mold apparatus and method for constructing concrete buildings and structures |
FR2948139B1 (en) | 2009-07-15 | 2015-03-27 | Fehr | DEVICE FOR CONNECTING TWO SKINS OF A LOST FORMWORK WALL EQUIPPED WITH A HANDLING SLING. |
FR2949131B1 (en) | 2009-08-17 | 2016-02-05 | Spurgin | INTEGRATED FORMWORK WALL |
US8632332B2 (en) | 2009-09-10 | 2014-01-21 | Tf Forming Systems, Inc. | Vertical concrete form with removable forming panels |
IT1398843B1 (en) | 2009-10-02 | 2013-03-21 | Caboni | BUILDING STRUCTURE FOR THE CONSTRUCTION OF WALLS AND BREATHABLE FLOORS. |
US8359808B2 (en) | 2009-11-16 | 2013-01-29 | Solid Green Developments, LLC | Polystyrene wall, system, and method for use in an insulated foam building |
US8695299B2 (en) | 2010-01-20 | 2014-04-15 | Propst Family Limited Partnership | Building panel system |
DE102010005439A1 (en) | 2010-01-24 | 2011-07-28 | Redima Ag | Method for sealing a parting line and joint anchor of a device for sealing a parting line |
IT1398661B1 (en) | 2010-02-18 | 2013-03-08 | Rexpol Srl | CASSERO TO LOSE MODULAR WITH BLOCKING INSERTS |
US8555583B2 (en) | 2010-04-02 | 2013-10-15 | Romeo Ilarian Ciuperca | Reinforced insulated concrete form |
CA2795821C (en) | 2010-04-27 | 2017-01-03 | Buildblock Building Systems, Llc | Web structure for knockdown insulating concrete block |
EP2410100B1 (en) | 2010-07-19 | 2014-10-01 | FEHR Groupe | Integral formwork wall with connecting reinforcement |
EP2410101B1 (en) | 2010-07-22 | 2015-04-29 | Euromac 2 (Societe A Responsabilite Limitee) | Insulating formwork block |
AT510233B1 (en) | 2010-08-02 | 2012-07-15 | Redlberger Alfred | METHOD FOR PRODUCING FINISHED COMPONENTS |
US9091062B2 (en) | 2010-10-07 | 2015-07-28 | Airlite Plastics Co. | Hinged corner form for an insulating concrete form system |
FR2965829B1 (en) | 2010-10-07 | 2012-10-12 | Fehr Groupe | WALL WITH LOST FORMWORK WITH CONNECTING CABLE. |
FR2970490B1 (en) | 2011-01-19 | 2013-05-03 | Alain Chettah | THERMAL INSULATION SYSTEM ESPECIALLY FOR A HIGH THERMAL HOUSING BUILDING. |
FR2971803B1 (en) | 2011-02-18 | 2014-01-24 | Jean Pierre Theil | PREFABRICATED CONSTRUCTION ELEMENTS AND MANUFACTURING DEVICE |
FR2972208B1 (en) | 2011-03-02 | 2014-01-24 | H & H Technologies | INTEGRATED FORMWORK WALL WITH PIVOTING CONNECTION MOBILE ELEMENT. |
FR2972209B1 (en) | 2011-03-02 | 2014-01-24 | H & H Technologies | INTEGRATED FORMWORK TWO-WALL MOBILE CONNECTION MEMBER AND INTEGRATED FORMWORK WALL COMPRISING AT LEAST ONE MOBILE LINK ELEMENT |
DE102011014063B4 (en) | 2011-03-16 | 2015-07-02 | Syspro-Gruppe Betonbauteile E.V. | wall element |
FR2974588B1 (en) | 2011-04-27 | 2016-02-05 | Rhone Alpes Coffrage | INSULATING FORMWORK BLOCK |
US8800218B2 (en) | 2011-05-24 | 2014-08-12 | Edward Robak | Insulating construction panels, systems and methods |
US8875467B2 (en) | 2011-05-25 | 2014-11-04 | Leonard L. Anastasi | Adjustable bracket for the attachment of building cladding systems |
EP2535463B1 (en) | 2011-06-17 | 2016-07-13 | Joachim Glatthaar | Modular pre-fabricated retaining wall, concrete retaining wall comprising same and method for erecting the retaining wall |
US8555581B2 (en) | 2011-06-21 | 2013-10-15 | Victor Amend | Exterior wall finishing arrangement |
US8720160B1 (en) | 2011-09-14 | 2014-05-13 | Alan Brian Cooper | Process for forming concrete walls and other vertically positioned shapes |
US8756890B2 (en) | 2011-09-28 | 2014-06-24 | Romeo Ilarian Ciuperca | Insulated concrete form and method of using same |
CA2793668A1 (en) | 2011-10-31 | 2013-04-30 | Bradley J. Crosby | An apparatus and method for construction of structures utilizing insulated concrete forms |
DE102011119454B4 (en) | 2011-11-28 | 2016-10-20 | Manfred Bruer | Hard foam formwork element and method for its production |
CA2988025C (en) | 2012-01-05 | 2018-08-14 | Cfs Concrete Forming Systems Inc. | Systems for restoring, repairing, reinforcing, protecting, insulating and/or cladding structures with locatable stand-off components |
CA2859607C (en) | 2012-01-05 | 2016-10-11 | Cfs Concrete Forming Systems Inc. | Panel-to-panel connections for stay-in-place liners used to repair structures |
US8887465B2 (en) | 2012-01-13 | 2014-11-18 | Airlite Plastics Co. | Apparatus and method for construction of structures utilizing insulated concrete forms |
US8627629B2 (en) | 2012-01-31 | 2014-01-14 | Mark Tims | Assembly and method for a concrete wall |
RU2492299C1 (en) | 2012-03-26 | 2013-09-10 | Олег Анатольевич Шмелёв | Hollow construction block |
US9566742B2 (en) | 2012-04-03 | 2017-02-14 | Massachusetts Institute Of Technology | Methods and apparatus for computer-assisted spray foam fabrication |
KR101302520B1 (en) | 2012-04-05 | 2013-09-06 | 농업회사법인 주식회사 캬라반지에스 | Constuction structure of rc wall |
US8635826B2 (en) | 2012-04-10 | 2014-01-28 | Reward Wall Systems, Inc. | Insulation insert panel for use with insulating concrete form (ICF) systems |
US9388574B2 (en) | 2012-04-17 | 2016-07-12 | Kevin P. Ryan | Stay-in-place concrete form connector |
US8919057B1 (en) | 2012-05-28 | 2014-12-30 | Tracbeam, Llc | Stay-in-place insulated concrete forming system |
AT513020B1 (en) | 2012-05-31 | 2015-08-15 | Kappema Fertigteilindustrie Gmbh | Semi-finished component for building structures |
US8646236B2 (en) | 2012-06-06 | 2014-02-11 | William R. Hilliard, SR. | Interlocking web for insulated concrete forms |
FR2993290B1 (en) | 2012-07-10 | 2015-03-06 | A2C Prefa | METHOD FOR CONSTRUCTING HOUSING ELEMENT AND HOUSING ELEMENT |
US20140026504A1 (en) | 2012-07-24 | 2014-01-30 | Francis Bermejo Roma | Insert for insulated concrete forms |
US8532815B1 (en) | 2012-09-25 | 2013-09-10 | Romeo Ilarian Ciuperca | Method for electronic temperature controlled curing of concrete and accelerating concrete maturity or equivalent age of concrete structures and objects |
US9458637B2 (en) | 2012-09-25 | 2016-10-04 | Romeo Ilarian Ciuperca | Composite insulated plywood, insulated plywood concrete form and method of curing concrete using same |
US8877329B2 (en) | 2012-09-25 | 2014-11-04 | Romeo Ilarian Ciuperca | High performance, highly energy efficient precast composite insulated concrete panels |
US9234347B2 (en) | 2013-02-04 | 2016-01-12 | Andŕe Cossette | Crossed ties for construction block assembly |
US9422713B2 (en) | 2013-03-06 | 2016-08-23 | Jesse B. Trebil | In-situ fabricated wall framing and insulating system |
US9175486B2 (en) | 2013-03-12 | 2015-11-03 | Icf Mform Llc | Insulating concrete form (ICF) system with modular tie members and associated ICF tooling |
US9091089B2 (en) * | 2013-03-12 | 2015-07-28 | Icf Mform Llc | Insulating concrete form (ICF) system with tie member modularity |
US9074379B2 (en) | 2013-03-15 | 2015-07-07 | Romeo Ilarian Ciuperca | Hybrid insulated concrete form and method of making and using same |
FR3004200B1 (en) | 2013-04-09 | 2015-05-22 | Rector Lesage | INTEGRATED FORMWORK WALL, METHOD OF CONSTRUCTING A BUILDING THEREFROM, AND BUILDING OBTAINED |
GB2512882B8 (en) | 2013-04-10 | 2015-11-18 | Twinwall Icf Ltd | Formwork system |
AT514300B1 (en) | 2013-04-15 | 2015-10-15 | Kappema Fertigteilindustrie Gmbh | building |
FR3008115B1 (en) | 2013-07-05 | 2016-12-09 | Camille Jose Pothin | PREFABRICATED WALL METHOD WITH INTEGRATED INSULATION |
SE538828C2 (en) * | 2013-08-15 | 2016-12-20 | Incoform Ab | Concrete form for forming a wall or the like and a method for forming a said wall or the like and a support |
EP2873781B1 (en) | 2013-11-19 | 2016-03-16 | FEHR Groupe | Permanent form wall with rigid connecting means |
WO2015089642A1 (en) | 2013-12-17 | 2015-06-25 | Baader Benjamin | Insulated concrete panel form and method of making same |
CA2938725A1 (en) | 2014-02-04 | 2015-08-13 | Thermagreen Systems, Inc. | Modular units for insulating concrete forms |
US20170009449A1 (en) | 2014-02-17 | 2017-01-12 | Vandersanden Steenfabrieken | Insulation wall and insulation plate for constructing the insulation wall |
CN103821264B (en) | 2014-03-10 | 2016-11-16 | 初明进 | A kind of precast concrete wall |
CN103806538B (en) | 2014-03-10 | 2016-08-17 | 初明进 | A kind of precast reinforced concrete structure |
KR101523987B1 (en) | 2014-05-07 | 2015-06-01 | 주식회사 돔앤돔 | H type fixture used wall mold and manufacture method of eco mold for wall using it |
EP2944735B1 (en) | 2014-05-15 | 2016-11-16 | FEHR Groupe | Insulating wall with crimped hoisting slings |
WO2016000066A1 (en) | 2014-07-03 | 2016-01-07 | Polycrete International Inc. | Prefabricated module for casting a concrete wall |
AT516119B1 (en) | 2014-08-12 | 2016-05-15 | Rapperstorfer Hubert | Double wall and method for producing a double wall |
FR3024989B1 (en) | 2014-08-21 | 2018-03-02 | Lesage Developpement | INTEGRATED FORMWORK WALL WITH THERMAL BREAK, METHOD FOR CONSTRUCTING A BUILDING THEREFROM, AND BUILDING OBTAINED |
AT516242A1 (en) | 2014-09-08 | 2016-03-15 | Tech Universität Wien | Double wall made of high-strength or ultra high-strength reinforced concrete |
GB2531912B8 (en) | 2014-10-15 | 2019-05-29 | Twinwall Icf Ltd | A formwork system |
US9676166B1 (en) | 2014-12-23 | 2017-06-13 | Waldemar Stachniuk | Modular reinforced insulating concrete form |
KR101698548B1 (en) | 2015-03-05 | 2017-01-23 | (주)제이엠디글로벌 | Form block apparatus and bridge for form block for constructing concrete wall |
FR3034791B1 (en) | 2015-04-09 | 2018-05-25 | Spurgin Leonhart | INTEGRATED FORMWORK WALL WITH REMOVABLE MEANS FOR RECEIVING A MEANS FOR CONNECTING TO A HANDLING MACHINE |
US20160340899A1 (en) * | 2015-05-21 | 2016-11-24 | Francesco Piccone | Adjustably Interconnectable Formwork |
KR101553345B1 (en) | 2015-05-27 | 2015-09-15 | 삼표피앤씨 주식회사 | Method for constructing junction between the double wall Precast Concrete panels and the junction structure |
US9850699B2 (en) * | 2015-08-28 | 2017-12-26 | Buildblock Building Systems, Llc | Buck panel for forming a buck assembly |
RU2608374C1 (en) | 2015-09-08 | 2017-01-18 | Сергей Михайлович Анпилов | Method of erecting heat-insulating walls of building using retained formwork |
MA38796A1 (en) | 2016-01-18 | 2017-09-29 | Bouhaya Driss | Insulating formwork block |
US10267037B2 (en) * | 2016-05-06 | 2019-04-23 | Cooper E. Stewart | Insulating concrete form system |
AT518959B1 (en) | 2016-08-04 | 2018-12-15 | Redlberger Alfred | Process for the manufacture of prefabricated building components |
KR101708760B1 (en) | 2016-08-26 | 2017-02-21 | 동서 피, 씨, 씨 주식회사 | Construction method for precast concrete wall |
KR101880813B1 (en) | 2016-10-20 | 2018-07-20 | 이은호 | A sandwitch pc pannel structure and construction method of structure using thereof |
KR101795986B1 (en) | 2017-03-06 | 2017-11-08 | 채가영 | Insulation finishing material construction apparatus and method of construction using the same |
KR101835094B1 (en) | 2017-03-29 | 2018-03-08 | 주식회사 케이씨산업 | Wall structure using precast concrete panel and construction method thereof |
KR101835378B1 (en) | 2017-04-24 | 2018-03-08 | 주식회사 우리이앤씨 | Wall structure using precast concrete panel and construction method thereof |
KR101855472B1 (en) | 2017-07-27 | 2018-06-25 | 김기현 | Double wall structure using inserting groove connector and construction method therefor |
KR101842239B1 (en) | 2017-10-13 | 2018-03-26 | 주식회사 엠베스텍 | Non-removing Mold with Improved Earthquake Resistance Strength |
-
2019
- 2019-09-20 US US16/577,841 patent/US11248383B2/en active Active
- 2019-09-20 CA CA3056094A patent/CA3056094A1/en active Pending
-
2022
- 2022-02-11 US US17/670,239 patent/US20220259873A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120023851A1 (en) * | 2006-06-14 | 2012-02-02 | Encon Environmental Construction Solutions Inc. | Insulated Concrete Form |
US20200102761A1 (en) * | 2018-09-21 | 2020-04-02 | Cooper E. Stewart | Insulating concrete form apparatus |
US11248383B2 (en) * | 2018-09-21 | 2022-02-15 | Cooper E. Stewart | Insulating concrete form apparatus |
Also Published As
Publication number | Publication date |
---|---|
US20200102761A1 (en) | 2020-04-02 |
CA3056094A1 (en) | 2020-03-21 |
US11248383B2 (en) | 2022-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2563986B1 (en) | Web structure for knockdown insulating concrete block | |
US20220259873A1 (en) | Insulating concrete form apparatus | |
US6792729B2 (en) | Stackable construction panel system | |
US8468761B2 (en) | Insulated concrete form | |
US8181414B2 (en) | Web structure for insulating concrete block | |
CA1092846A (en) | Foamed plastic concrete form and connectors therefor | |
US7703248B2 (en) | Hollow interconnecting panels as lost formwork | |
US4742659A (en) | Module sections, modules and formwork for making insulated concrete walls | |
US20050028466A1 (en) | Insulated concrete wall forming system and hinged bridging webs | |
US7461490B2 (en) | Construction block system | |
US20200063451A1 (en) | Concrete form tie, and concrete formwork comprising same | |
JP3974533B2 (en) | Improved stackable structural panel system | |
US8132776B2 (en) | Sideform system | |
US20180155929A1 (en) | Masonry lintel for long spans | |
AU2002257439A1 (en) | Improvements in a stackable construction panel system | |
EP3936675A1 (en) | Assembly of modular panel walls for exhibition stand construction | |
GB2584739A (en) | Modular wall unit | |
KR200303803Y1 (en) | Supporting system for a concrete structure having an easily mountable supporting panel | |
AU753281B2 (en) | Platform elements and connectors | |
AU2004202483A1 (en) | Spacer for concrete reinforcing | |
GB2517454A (en) | A Wall Tie |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: STRONGHOLD INSULATION SYSTEM, INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STEWART, COOPER E.;REEL/FRAME:059584/0922 Effective date: 20220309 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |