US20210391604A1 - Semiconductor device and secondary battery system - Google Patents
Semiconductor device and secondary battery system Download PDFInfo
- Publication number
- US20210391604A1 US20210391604A1 US17/291,021 US201917291021A US2021391604A1 US 20210391604 A1 US20210391604 A1 US 20210391604A1 US 201917291021 A US201917291021 A US 201917291021A US 2021391604 A1 US2021391604 A1 US 2021391604A1
- Authority
- US
- United States
- Prior art keywords
- semiconductor device
- transistor
- insulating layer
- semiconductor
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- H01L27/0629—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/007188—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
- H02J7/007192—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/811—Combinations of field-effect devices and one or more diodes, capacitors or resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4278—Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/08—Manufacture or treatment characterised by using material-based technologies using combinations of technologies, e.g. using both Si and SiC technologies or using both Si and Group III-V technologies
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D88/00—Three-dimensional [3D] integrated devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- One embodiment of the present invention relates to an object, a method, or a manufacturing method.
- One embodiment of the present invention relates to a process, a machine, manufacture, or a composition of matter.
- One embodiment of the present invention relates to a semiconductor device, a display device, a light-emitting device, a power storage device, a lighting device, or an electronic device.
- One embodiment of the present invention relates to a charge control method for a power storage device.
- One embodiment of the present invention relates to a charging device.
- a power storage device (also referred to as “battery” or “secondary battery”) generally refers to elements and devices having a function of storing power.
- the power storage device includes a storage battery (also referred to as secondary battery) such as a lithium-ion secondary battery, a lithium-ion capacitor, a nickel hydrogen battery, an all-solid-state battery, and an electric double layer capacitor.
- a silicon-based semiconductor material is widely known as a semiconductor thin film that can be used in a transistor, and as another material, an oxide semiconductor (OS) has attracted attention.
- oxide semiconductors include not only single-component metal oxides, such as indium oxide and zinc oxide, but also multi-component metal oxides.
- IGZO In—Ga—Zn oxide
- Non-Patent Document 1 and Non-Patent Document 2 also disclose a technique for fabricating a transistor using an oxide semiconductor having the CAAC structure.
- Non-Patent Document 4 and Non-Patent Document 5 disclose that a fine crystal is included even in an oxide semiconductor which has lower crystallinity than an oxide semiconductor having the CAAC structure or the nc structure.
- Non-Patent Document 6 a transistor including IGZO as an active layer has an extremely low off-state current (see Non-Patent Document 6), and an LSI and a display utilizing the transistor characteristics have been reported (see Non-Patent Document 7 and Non-Patent Document 8).
- lithium-ion secondary batteries such as lithium-ion secondary batteries, lithium-ion capacitors, and air cells
- demand for lithium-ion secondary batteries with high output and high energy density has rapidly grown with the development of the semiconductor industry for portable information terminals such as cell phones, smartphones, and laptop computers, electronic devices such as portable music players and digital cameras, medical equipment, and next-generation clean energy vehicles such as hybrid electric vehicles (HEVs), electric vehicles (EVs), and plug-in hybrid electric vehicles (PHEVs); and the like
- the lithium-ion secondary batteries are essential as rechargeable energy supply sources for today's information society.
- the performance required for lithium-ion secondary batteries includes increased energy density, improved cycle performance, safe operation under a variety of operation environments, and longer-term reliability.
- a lithium-ion battery includes, as an example, at least a positive electrode, a negative electrode, and an electrolyte solution (Patent Document 1).
- Patent Document 2 discloses a battery state detector that detects micro short circuit of a secondary battery and a battery pack incorporating the same.
- An object of one embodiment of the present invention is to provide a novel semiconductor device that is highly convenient or reliable. Another object is to provide a novel secondary battery system that is highly convenient or reliable. Another object is to provide a novel semiconductor device or a novel secondary battery system.
- a method in which a current is applied across a positive electrode and a negative electrode of the power storage device until the voltage between the positive electrode and the negative electrode becomes a certain value is often employed.
- the optimal current value for charging a power storage device depends on the constituent materials of the positive electrode, the negative electrode, and the electrolyte solution.
- the current value needs to be set properly in accordance with the ambient temperature at the time of charging (including heat generated by the power storage device) in order to reduce deterioration of the power storage device (e.g., decrease in power storage capacity).
- An object of one embodiment of the present invention is to provide a semiconductor device capable of charging that is less likely to cause deterioration of a power storage device. Another object is to provide a charging method that is less likely to cause deterioration of a power storage device. Another object is to provide a charging method that is less likely to damage a power storage device. Another object is to provide a novel semiconductor device. Another object is to provide a novel charging device. Another object is to provide a novel charging method.
- One embodiment of the present invention is a semiconductor device including a sensor unit, a first memory unit, a second memory unit, and a determination unit.
- the sensor unit supplies a sensor signal, and the first memory unit retains the sensor signal.
- the second memory unit retains standard data and allowable difference information.
- the determination unit compares the sensor signal with the standard data, and the determination unit supplies a control signal in the case where a difference between the sensor signal and the standard data exceeds the allowable difference information.
- the sensor signal is a signal deviated from the standard data.
- anomaly can be sensed.
- anomaly can be sensed and a control signal can be supplied.
- a novel semiconductor device that is highly convenient or reliable can be provided.
- Another embodiment of the present invention is the above semiconductor device including a control unit.
- the control unit supplies a selection signal.
- the first memory unit includes a group of memory elements and a selection circuit, and the group of the memory elements includes a memory element.
- the memory element retains the sensor signal.
- the selection circuit selects a memory element in accordance with the selection signal.
- the first memory unit can retain a plurality of sensor signals obtained by sampling performed more than once, for example.
- the first memory unit can retain a plurality of sensor signals obtained by sensing a plurality of different items such as voltage, current, and temperature, for example.
- the first memory unit can retain a plurality of sensor signals that sequentially change.
- the first memory unit can retain the sensor signal that changes over time, together with information on the sensing time, for example.
- the first memory unit can retain the sensor signal that changes with wear and tear, together with information on the usage history.
- whether a difference between each of the plurality of sensor signals and the standard data exceeds the allowable difference information can be determined.
- a difference exceeding the allowable difference information can be sensed and the control signal can be supplied.
- a novel semiconductor device that is highly convenient or reliable can be provided.
- Another embodiment of the present invention is the above semiconductor device in which the selection circuit includes a switch.
- one memory element can be selected from the plurality of memory elements, for example.
- a novel semiconductor device that is highly convenient or reliable can be provided.
- Another embodiment of the present invention is the above semiconductor device in which the selection circuit includes a source follower circuit.
- one memory element can be selected from the plurality of memory elements, for example.
- deterioration of analog data due to the selection operation can be suppressed.
- a novel semiconductor device that is highly convenient or reliable can be provided.
- One embodiment of the present invention is the above semiconductor device in which the memory element includes a semiconductor layer and the semiconductor layer contains an oxide semiconductor.
- a sensor signal can be retained, for example.
- the sensor signal can be repeatedly rewritten.
- deterioration of the memory element due to a rewrite can be reduced.
- a novel semiconductor device that is highly convenient or reliable can be provided.
- One embodiment of the present invention is a semiconductor device including a first semiconductor device and the above semiconductor device.
- the first semiconductor device has a function of supplying a predetermined current or a predetermined voltage, and the first semiconductor device is electrically connected to the second semiconductor device.
- the first semiconductor device is supplied with a control signal, and the first semiconductor device operates in accordance with the control signal.
- Another embodiment of the present invention is the above semiconductor device in which the sensor unit includes a voltage sensor.
- the voltage sensor measures a voltage required when the predetermined current is supplied.
- the second memory unit retains standard data on voltage.
- a difference generated between the standard data and a voltage to be sensed, which exceeds the allowable difference information, can be monitored.
- anomaly of the first semiconductor device electrically connected to the second semiconductor device can be monitored through the use of the voltage.
- anomaly of a load electrically connected to the first semiconductor device can be monitored through the use of the voltage.
- Another embodiment of the present invention is the above semiconductor device in which the sensor unit includes a current sensor.
- the current sensor measures a current required when a predetermined voltage is supplied.
- the second memory unit retains standard data on current.
- a difference generated between the standard data and a current to be sensed, which exceeds the allowable difference information, can be monitored.
- anomaly of the first semiconductor device electrically connected to the second semiconductor device can be monitored through the use of the current.
- anomaly of a load electrically connected to the first semiconductor device can be monitored through the use of the current.
- the sensor unit includes a terminal.
- the above semiconductor device includes a semiconductor device.
- the terminal is supplied with a sensor signal related to temperature.
- the second memory unit retains standard data on temperature.
- a difference generated between the standard data and temperature to be sensed, which exceeds the allowable difference information, can be monitored.
- anomaly of the first semiconductor device connected to the second semiconductor device or a load can be monitored through the use of the temperature.
- a novel semiconductor device that is highly convenient or reliable can be provided.
- Another embodiment of the present invention is a secondary battery system including a secondary battery and the above semiconductor device.
- the secondary battery is electrically connected to the semiconductor device.
- a voltage exceeding the allowable difference information, which is applied to the secondary battery while being charged can be sensed, for example.
- a current flowing through the secondary battery while being charged, which exceeds the allowable difference information can be sensed, for example.
- the control signal can be supplied in accordance with the allowable difference information derived from the characteristics of the secondary battery.
- Another embodiment of the present invention is a secondary battery system including a secondary battery and the above semiconductor device.
- the secondary battery includes a battery cell and a temperature sensor.
- the temperature sensor is electrically connected to the terminal, and the temperature sensor senses the temperature of the battery cell.
- the amount of temperature change of the secondary battery while being charged which exceeds the allowable difference information, can be sensed, for example.
- a novel secondary battery system that is highly convenient or reliable can be provided.
- the amount of charging current is adjusted in accordance with the ambient temperature. Charging under low-temperature environments is performed with a reduced charging current. When the ambient temperature is too low or too high, charging is stopped. Measurement of the ambient temperature is performed with a memory element using an oxide semiconductor. The use of a memory element using an oxide semiconductor enables measurement of the ambient temperature and retention of the temperature information to be performed at the same time.
- One embodiment of the present invention is a semiconductor device including a first memory element, a second memory element, a comparison circuit, and a current adjustment circuit.
- the first memory element has a function of retaining reference temperature information.
- the second memory element includes a transistor containing an oxide semiconductor in a semiconductor layer.
- the second memory element has a function of measuring ambient temperature, and a function of retaining the ambient temperature as ambient temperature information.
- the comparison circuit has a function of determining an operation of the current adjustment circuit by comparing the reference temperature information and the ambient temperature information.
- the current adjustment circuit has a function of supplying a current to a secondary battery.
- a plurality of first memory elements may be provided. It is preferable that each of the first memory elements retain reference temperature information different from each other.
- the semiconductor layer contain at least one of indium and zinc. It is more preferable that the semiconductor layer contain each of indium and zinc.
- a lithium-ion secondary battery can be used as a secondary battery, for example.
- a novel semiconductor device that is highly convenient or reliable can be provided.
- a novel secondary battery system that is highly convenient or reliable can also be provided.
- a novel semiconductor device or a novel secondary battery system can also be provided.
- a semiconductor device capable of charging that is less likely to cause deterioration of a power storage device can be provided.
- a charging method that is less likely to cause deterioration of a power storage device can also be provided.
- a charging method that is less likely to damage a power storage device can also be provided.
- a novel semiconductor device can also be provided.
- a novel charging device can also be provided.
- a novel charging method can also be provided.
- FIG. 1A and FIG. 1B are diagrams illustrating semiconductor devices.
- FIG. 2A , FIG. 2B , FIG. 2C , FIG. 2D , FIG. 2E , FIG. 2F , and FIG. 2G are diagrams each illustrating a circuit configuration example of a memory element.
- FIG. 3A and FIG. 3B are diagrams showing electrical characteristics of transistors.
- FIG. 4A , FIG. 4B , and FIG. 4C are diagrams showing a charging method of a secondary battery.
- FIG. 5A , FIG. 5B , FIG. 5C , and FIG. 5D are diagrams showing a charging method of a secondary battery.
- FIG. 6 is a flow chart describing a charging operation of a semiconductor device.
- FIG. 7A and FIG. 7B are diagrams showing the relation between ambient temperatures and charging currents.
- FIG. 8A and FIG. 8B are perspective views of a semiconductor device 100 .
- FIG. 9 is a cross-sectional view of the semiconductor device 100 .
- FIG. 10 is a cross-sectional view of a semiconductor device 100 A.
- FIG. 11 is a cross-sectional view of a semiconductor device 100 B.
- FIG. 12A , FIG. 12B , and FIG. 12C are drawings illustrating an example of a transistor.
- FIG. 13A , FIG. 13B , and FIG. 13C are drawings illustrating an example of a transistor.
- FIG. 14A and FIG. 14B are perspective views showing an example of a secondary battery.
- FIG. 15A , FIG. 15B , and FIG. 15C are drawings showing examples of electronic devices.
- FIG. 16A , FIG. 16B , FIG. 16C , and FIG. 16D are drawings showing examples of electronic devices.
- FIG. 17 is a drawing illustrating a semiconductor device.
- FIG. 18A and FIG. 18B are perspective views of a semiconductor device 700 .
- FIG. 19 is a drawing illustrating a secondary battery system and a semiconductor device.
- a semiconductor device of one embodiment of the present invention is a semiconductor device including a sensor unit, a first memory unit, a second memory unit, and a determination unit.
- the sensor unit supplies a sensor signal.
- the first memory unit retains the sensor signal.
- the second memory unit retains standard data and allowable difference information.
- the determination unit compares a sensor signal with standard data.
- the determination unit supplies a control signal in the case where a difference between the sensor signal and the standard data exceeds the allowable difference information.
- the sensor signal is a signal deviated from the standard data.
- anomaly can be sensed.
- anomaly can be sensed and the control signal can be supplied.
- a novel semiconductor device that is highly convenient or reliable can be provided.
- the size, the layer thickness, the region, and the like of each component are exaggerated or omitted for clarification of the invention in some cases. Therefore, the size, the layer thickness, or the region is not necessarily limited to the illustrated scale.
- ordinal numbers such as “first” and “second” in this specification and the like are used in order to avoid confusion among components and do not denote the priority or the order such as the order of steps or the stacking order.
- a term without an ordinal number in this specification and the like might be provided with an ordinal number in the scope of claims or the like in order to avoid confusion among components.
- FIG. 1 and FIG. 18 a structure of a semiconductor device of one embodiment of the present invention will be described with reference to FIG. 1 and FIG. 18 .
- FIG. 1 is a drawing illustrating a structure of a semiconductor device of one embodiment of the present invention.
- FIG. 1A is a block diagram of the semiconductor device of one embodiment of the present invention, and
- FIG. 1B is a portion of FIG. 1A .
- FIG. 18 is a drawing illustrating a structure of a semiconductor device of one embodiment of the present invention.
- FIG. 18A is a perspective view of the semiconductor device of one embodiment of the present invention
- FIG. 18B is an exploded view illustrating a stacked-layer structure of FIG. 18A .
- an integer variable of 1 or more is sometimes used in reference numerals.
- (p) where p is an integer variable of 1 or more is sometimes used in part of a reference numeral that specifies any of p components at a maximum.
- (m, n) where m and n are each an integer variable of 1 or more is sometimes used in part of a reference numeral that specifies any of m ⁇ n components at a maximum.
- a semiconductor device 700 described in this embodiment includes a sensor unit 702 , a memory unit 701 A, a memory unit 701 B, and a determination unit 703 (see FIG. 1A ).
- the sensor unit 702 supplies a sensor signal DS(i).
- a voltage sensor, a current sensor, a temperature sensor, a timer, or the like can be used for the sensor unit 702 , for example.
- a signal including information such as voltage, current, or temperature can be used as the sensor signal DS(i), for example.
- An analog signal can be used as the sensor signal DS(i), for example.
- the memory unit 701 A retains the sensor signal DS(i).
- the memory unit 701 B retains standard data DATA and allowable difference information TI.
- Average characteristics of an electrically connected load for example, can be used for the standard data DATA.
- characteristics that are different between each usage can be used for the standard data DATA.
- characteristics that depend on use history can be used for the standard data DATA.
- the characteristics that are sensed at the last use can be used for the standard data DATA.
- the memory element to be described in Embodiment 2 can be used in the memory unit 701 B.
- a flash memory can also be used in the memory unit 701 B.
- the determination unit 703 compares the sensor signal DS(i) with the standard data DATA. In addition, in the case where a difference between the sensor signal DS(i) and the standard data DATA exceeds the allowable difference information TI, the determination unit 703 supplies a control signal CI 1 .
- a comparator can be used for the determination unit 703 , for example. Specifically, a comparison circuit with a configuration similar to that of a comparison circuit 103 described in Embodiment 2 can be used for the determination unit 703 .
- the sensor signal DS(i) is a signal deviated from the standard data DATA can be determined.
- anomaly can be sensed.
- anomaly can be sensed and the control signal CI′ can be supplied.
- a novel semiconductor device that is highly convenient or reliable can be provided.
- the semiconductor device 700 described in this embodiment includes a control unit 705 (see FIG. 1A ).
- the control unit 705 supplies a selection signal CI 2 .
- the memory unit 701 A includes a group of memory elements, i.e., a memory element 701 A( 1 ) to a memory element 701 A(n), and a selection circuit SC (see FIG. 1B ).
- the group composed of the memory element 701 A( 1 ) to the memory element 701 A(n) includes a memory element 701 A(i), and the memory element 701 A(i) retains a sensor signal DS(i).
- the selection circuit SC selects the memory element 701 A(i) in accordance with the selection signal CI 2 .
- the first memory unit 701 A can retain a plurality of sensor signals, i.e., a sensor signal DS( 1 ) to a sensor signal DS(n), for example, obtained by sampling performed more than once.
- the first memory unit 701 A can retain the plurality of sensor signals DS( 1 ) to DS(n), for example, obtained by sensing a plurality of different items such as voltage, current, and temperature.
- the first memory unit 701 A can retain a plurality of sensor signals that sequentially change.
- the first memory unit 701 A can retain the sensor signal that changes over time together with information on the sensing time, for example.
- the first memory unit 701 A can retain the sensor signal DS(i) that changes with wear and tear together with information on the usage history. Alternatively, whether a difference between the plurality of sensor signals DS( 1 ) to DS(n) and the standard data DATA(i) exceeds the allowable difference information TI can be determined. Alternatively, a difference exceeding the allowable difference information TI can be sensed and the control signal CI 1 can be supplied. As a result, a novel semiconductor device that is highly convenient or reliable can be provided.
- the selection circuit SC is provided with a switch SW.
- one memory element can be selected from the memory element 701 A( 1 ) to the memory element 701 A(n), for example.
- a novel semiconductor device that is highly convenient or reliable can be provided.
- the selection circuit SC is provided with a source follower circuit SF.
- one memory element can be selected from the memory element 701 A( 1 ) to the memory element 701 A(n), for example.
- deterioration of analog data DATA(i) due to the selection operation can be suppressed.
- a novel semiconductor device that is highly convenient or reliable can be provided.
- the memory element 701 A(i) is the above semiconductor device which is provided with a semiconductor layer 260 containing an oxide semiconductor.
- a metal oxide to be described in Embodiment 3, for example, can be used for the semiconductor layer 260 .
- the sensor signal DS(i) can be retained, for example.
- the sensor signal DS(i) can be repeatedly rewritten.
- deterioration of the memory element 701 A(i) due to a rewrite can be reduced.
- a novel semiconductor device that is highly convenient or reliable can be provided.
- the semiconductor device 700 described in this embodiment includes an integrated circuit 750 and an integrated circuit 760 (see FIG. 18 ).
- the integrated circuit 750 includes the determination unit 703 (see FIG. 18B ).
- a Si transistor can be used for the integrated circuit 750 , for example. This can increase the current drive capability of the transistor used for the integrated circuit 750 . Alternatively, this can improve the operation speed. Note that the configuration of an integrated circuit 150 to be described in Embodiment 3 can be used for the integrated circuit 750 , for example.
- the integrated circuit 760 includes the memory element 701 A(i).
- a transistor containing an oxide semiconductor can be used for the integrated circuit 760 , for example.
- the integrated circuit 760 includes a region overlapping with the integrated circuit 750 , and the integrated circuit 760 is electrically connected to the integrated circuit 750 . This can decrease the area occupied by the semiconductor device 700 . Note that a configuration similar to that of an integrated circuit 160 to be described in Embodiment 3, for example, can be used for the integrated circuit 760 .
- This embodiment can be implemented in combination with any of the configurations described in the other embodiments and the like, as appropriate.
- FIG. 17 is a block diagram for illustrating a semiconductor device 100 .
- the semiconductor device 100 includes a memory element 101 , a memory element 102 , a comparison circuit 103 , a current adjustment circuit 104 , a control circuit 105 , and an input/output circuit 106 .
- the semiconductor device 100 is electrically connected to a secondary battery 200 and has a function of charging the secondary battery 200 .
- the memory element 101 includes one or more memory elements.
- the memory element 101 includes three memory elements (a memory element 101 _ 1 , a memory element 101 _ 2 , and a memory element 101 _ 3 ) is shown.
- Information for changing a charging current in accordance with the ambient temperature at the time of charging is retained in the memory element 101 .
- information that corresponds to the temperature serving as a judgment criterion is retained in each of the memory element 101 _ 1 , the memory element 101 _ 2 , and the memory element 101 _ 3 .
- FIG. 2A to FIG. 2G Examples of a circuit configuration that can be used for the memory element 101 are shown in FIG. 2A to FIG. 2G .
- FIG. 2A to FIG. 2G each function as a memory element.
- a memory element 410 shown in FIG. 2A includes a transistor M 1 and a capacitor CA.
- the memory element 410 is a memory element including one transistor and one capacitor.
- a first terminal of the transistor M 1 is connected to a first terminal of the capacitor CA.
- a second terminal of the transistor M 1 is connected to a wiring BL.
- a gate of the transistor M 1 is connected to a wiring WL.
- a back gate of the transistor M 1 is connected to a wiring BGL.
- a second terminal of the capacitor CA is connected to a wiring CAL.
- a node to which the first terminal of the transistor M 1 and the first terminal of the capacitor CA are electrically connected is referred to as a node ND.
- the gate and the back gate are provided to overlap with each other with a channel formation region of a semiconductor layer therebetween.
- the gate and the back gate can each function as a gate.
- the other is referred to as a “gate” or a “front gate” in some cases.
- one of them is referred to as a “first gate” and the other is referred to as a “second gate”.
- the potential of the back gate may be the same as the potential of the gate, or may be a ground potential or a given potential. By changing the potential of the back gate independently of that of the gate, the threshold voltage of the transistor can be changed.
- the transistor can be a transistor having high on-state current for its occupation area. That is, the occupation area of the transistor can be small for required on-state current. Accordingly, a semiconductor device having a high degree of integration can be provided.
- the wiring BGL functions as a wiring for applying a potential to the back gate of the transistor M 1 .
- the threshold voltage of the transistor M 1 can be increased or decreased.
- Data write and read are performed in such a manner that a high-level potential is applied to the wiring WL to turn on the transistor M 1 so that the wiring BL is electrically connected to the node ND.
- the wiring CAL functions as a wiring for applying a predetermined potential to the second terminal of the capacitor CA.
- a fixed potential is preferably applied to the wiring CAL.
- a memory element 420 shown in FIG. 2B is a modification example of the memory element 410 .
- the back gate of the transistor M 1 is electrically connected to the wiring WL. With such a configuration, a potential which is the same as that of the gate of the transistor M 1 can be applied to the back gate of the transistor M 1 . Thus, the amount of current flowing through the transistor M 1 can be increased when the transistor M 1 is on.
- the transistor M 1 may be a single-gate transistor (a transistor without a back gate).
- the memory element 430 has a configuration of the memory element 410 and the memory element 420 from which the back gate of the transistor M 1 is eliminated.
- the number of fabrication steps of the memory element 430 can be smaller than those of the memory element 410 and the memory element 420 .
- the memory element 410 , the memory element 420 , and the memory element 430 are each a DRAM-type memory element.
- An oxide semiconductor which is a metal oxide, is preferably used for a semiconductor layer in which a channel of the transistor M 1 is formed.
- a transistor including an oxide semiconductor in a semiconductor layer where a channel is formed is also referred to as an “OS transistor”.
- a metal oxide containing any one of indium, an element M (the element M is one or more kinds selected from aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and the like), and zinc can be used, for example, as an oxide semiconductor.
- An oxide semiconductor is preferably a metal oxide containing indium, gallium, and zinc, in particular.
- An OS transistor has a characteristic of an extremely small off-state current.
- the leakage current of the transistor M 1 can be extremely low. That is, written data can be retained for a long time with the transistor M 1 . Thus, the frequency of refresh of the memory element can be reduced. In addition, refresh operation of the memory element can be omitted. Furthermore, since the leakage current is extremely low, multilevel data or analog data can be retained in the memory element 410 , the memory element 420 , and the memory element 430 .
- DOSRAM dynamic oxide semiconductor random access memory
- FIG. 2D shows a circuit configuration example of a gain-cell memory element made up of two transistors and one capacitor.
- a memory element 440 includes a transistor M 1 , a transistor M 2 , and a capacitor CA.
- a first terminal of the transistor M 1 is connected to a first terminal of the capacitor CA, a second terminal of the transistor M 1 is connected to a wiring WBL, and a gate of the transistor M 1 is connected to a wiring WWL.
- a second terminal of the capacitor CA is connected to a wiring CAL.
- a first terminal of the transistor M 2 is connected to a wiring RBL, a second terminal of the transistor M 2 is connected to a wiring RWL, and a gate of the transistor M 2 is connected to the first terminal of the capacitor CA.
- a node to which the first terminal of the transistor M 1 , the first terminal of the capacitor CA, and the gate of the transistor M 2 are electrically connected is referred to as a node ND.
- the bit line WBL functions as a write bit line
- the bit line RBL functions as a read bit line
- the word line WWL functions as a write word line
- the word line RWL functions as a read word line.
- the transistor M 1 has a function of a switch for controlling conduction or non-conduction between the node ND and the bit line WBL.
- an OS transistor as the transistor M 1 .
- the OS transistor since the OS transistor has extremely small off-state current, a potential written to the node ND can be retained for a long time when the OS transistor is used as the transistor M 1 . In other words, data written in the memory element can be retained for a long time.
- a transistor to be used as the transistor M 2 is not particularly limited. Any of an OS transistor, a Si transistor (a transistor in which silicon is used for the semiconductor layer), or other transistors may be used as the transistor M 2 .
- silicon used for the semiconductor layer may be amorphous silicon, polycrystalline silicon, low-temperature poly-silicon (LTPS), or single crystal silicon. Since a Si transistor has higher field-effect mobility than an OS transistor in some cases, the use of the Si transistor as a read transistor can improve the operation speed at the time of read.
- LTPS low-temperature poly-silicon
- the two transistors may be provided in different layers to be stacked on one another.
- An OS transistor can be fabricated with the same manufacturing equipment by the same process as those of a Si transistor. Thus, hybridization of an OS transistor and a Si transistor is easy, and higher integration is also easy.
- an OS transistor when used as the transistor M 2 , its leakage current when being non-selected can be extremely small; thus, reading accuracy can be improved.
- an OS transistor is used for each of the transistor M 1 and the transistor M 2 , the number of fabrication steps of the semiconductor device can be reduced and the productivity can be improved. It is possible to fabricate the semiconductor device at a process temperature of 400° C. or lower, for example.
- FIG. 2E to FIG. 2G Circuit configuration examples of a case where a transistor having a back gate (four-terminal transistor, also referred to as a “four-terminal element”) is used as each of the transistor M 1 and the transistor M 2 are shown in FIG. 2E to FIG. 2G .
- a memory element 450 shown in FIG. 2E , a memory element 460 shown in FIG. 2F , and a memory element 470 shown in FIG. 2G are modification examples of the memory element 440 .
- the gate and the back gate of the transistor M 1 are electrically connected to each other.
- the gate and the back gate of the transistor M 2 are electrically connected to each other.
- the back gate of the transistor M 1 and the back gate of the transistor M 2 are electrically connected to the wiring BGL.
- a predetermined potential can be applied to the back gates of the transistor M 1 and the transistor M 2 through the wiring BGL.
- the back gate of the transistor M 1 is electrically connected to a wiring WBGL
- the back gate of the transistor M 2 is electrically connected to a wiring RBGL.
- the memory element 440 to the memory element 470 are each a 2Tr1C-type memory cell.
- a memory device constituting a 2Tr1C-type memory cell using an OS transistor as the transistor M 1 is referred to as a NOSRAM (Non-volatile Oxide Semiconductor Random Access Memory).
- NOSRAM Non-volatile Oxide Semiconductor Random Access Memory
- the memory element 440 to the memory element 470 are capable of reading the potential of the node ND by amplifying the potential with the transistor M 12 . Since the off-state current of an OS transistor is extremely small, the potential of the node ND can be retained for a long time. In addition, non-destructive read is possible, with which the potential of the node ND remains retained even after the read operation.
- Data retained in the memory element 101 is data with less rewrite frequency.
- a NOSRAM which is capable of non-destructive read and long-term retention of data.
- the transistors shown in FIG. 2A , FIGS. 2B, and 2 (E) to 2 (G) are each a four-terminal element; hence, its input and output can be controlled independently of each other in a simpler manner than that in two-terminal elements typified by MRAM (Magnetoresistive Random Access Memory) utilizing MTJ (Magnetic Tunnel Junction) properties, ReRAM (Resistive Random Access Memory), and phase-change memory.
- MRAM Magneticoresistive Random Access Memory
- MTJ Magnetic Tunnel Junction
- ReRAM Resistive Random Access Memory
- phase-change memory phase-change memory
- MRAM Magnetoresistive RAM
- ReRAM resistive RAM
- phase-change memory may change at the atomic level when data is rewritten.
- data rewrite is performed by charging or discharging of electric charge via transistors; thus, the memory device has characteristics such as high rewrite endurance and less structure changes.
- a memory element similar to the memory element 101 can be used as the memory element 102 . It is preferable to use DOSRAM or NOARAM as the memory element 102 .
- FIG. 3A and FIG. 3B show an example of Id-Vg characteristics, which are electrical characteristics of a transistor.
- the Id-Vg characteristics show a change in drain current (Id) with respect to a change in gate voltage (Vg).
- the horizontal axis in FIG. 3A and FIG. 3B represents Vg on a linear scale.
- the vertical axis in FIG. 3A and FIG. 3B represents Id on a log scale.
- FIG. 3A shows the Id-Vg characteristics of an OS transistor.
- FIG. 3B shows the Id-Vg characteristics of a transistor using silicon for a semiconductor layer in which a channel is formed (Si transistor). Note that both FIG. 3A and FIG. 3B show the Id-Vg characteristics of an n-channel transistor.
- the off-state current is less likely to increase in the OS transistor even in the operation at high temperature environments.
- An OS transistor can achieve an on/off ratio of 10 digits or larger even when the operating temperature is 125° C. to 150° C. inclusive.
- the off-state current increases with the increase in temperature as shown in FIG. 3B .
- Vth shifts in the positive direction with the increase in temperature, and the on-state current decreases.
- the use of the OS transistor as the transistor M 1 enables a long-term data retention even at the time of operation under high temperatures.
- An oxide semiconductor tends to decrease in resistance in nature when the temperature rises. By utilizing this nature, it is possible to convert the ambient temperature into potential.
- the memory element 430 shown in FIG. 2C for example, the transistor
- the memory element 102 can function as a temperature sensor.
- the use of an oxide semiconductor enables the memory element 101 and the memory element 102 to be fabricated through the same steps at the same time. Furthermore, since the provision of a temperature sensor such as a thermistor is not required, the productivity of the semiconductor device 100 can be improved.
- the comparison circuit 103 has a function of determining the operation of a current adjustment circuit by comparing the temperature information retained in the memory element 101 and the ambient temperature retained in the memory element 102 . Specifically, the comparison circuit 103 compares the potential of the node ND of the memory element 101 and the potential of the node ND of the memory element 102 .
- the comparison circuit 103 can be composed of a comparator or the like.
- the current adjustment circuit 104 has a function of controlling a current value to be supplied to the secondary battery 200 by a signal supplied from the comparison circuit 103 .
- the current adjustment circuit 104 can be composed of a power transistor or the like.
- the control circuit 105 has a function of collectively controlling operations of the memory element 101 , the memory element 102 , the comparison circuit 103 , the current adjustment circuit 104 , and the input/output circuit 106 .
- control signals, setting information of the memory element 101 , and the like are supplied through the input/output circuit 106 to the control circuit 105 from external circuits.
- the control circuit 105 also has a function of outputting the charging voltage of the secondary battery 200 , the current value output from the current adjustment circuit 104 , the ambient temperature information obtained by the memory element 102 , and the like through the input/output circuit 106 to the external circuits.
- the secondary battery can be charged in the following manner, for example.
- CC charging is described as one of charging methods.
- CC charging is a charging method in which a constant current is made to flow to a secondary battery in the whole charging period and charging is terminated when the voltage reaches a predetermined voltage.
- the secondary battery is assumed to be an equivalent circuit with internal resistance R and secondary battery capacitance C as shown in FIG. 4A .
- secondary battery voltage V B is the sum of voltage V R applied to the internal resistance R and voltage V C applied to the secondary battery capacitance C.
- the charging is terminated.
- a predetermined voltage e.g., 4.3 V
- the switch is turned off as shown in FIG. 4B , and the current I becomes 0.
- the voltage V R applied to the internal resistance R becomes 0 V. Consequently, the secondary battery voltage V B is decreased.
- FIG. 4C shows examples of the secondary battery voltage V B and charging current while the CC charging is performed and after the CC charging is stopped. As shown in FIG. 4C , the secondary battery voltage V B increases while the CC charging is performed, and slightly decreases after the CC charging is terminated.
- CCCV charging which is a charging method different from the above-described method, is described.
- CCCV charging is a charging method in which CC charging is performed until the voltage reaches a predetermined voltage and then constant voltage (CV) charging is performed until the amount of current flow becomes small, specifically, reaches a termination current value.
- the secondary battery voltage V B reaches a predetermined voltage, e.g., 4.3 V.
- FIG. 5D shows an example of the secondary battery voltage V B and charging current while the CCCV charging is performed and after the CCCV charging is terminated. As shown in FIG. 5D , the secondary battery voltage V B hardly decreases even after the CCCV charging is terminated.
- the charging rate refers to the relative ratio of charging current to battery capacity, and is expressed in a unit C.
- a current corresponding to 1 C in a battery with a rated capacity X [Ah] is X [A].
- X [A] A current corresponding to 1 C in a battery with a rated capacity
- the battery is charged at 2 C
- the battery is charged at 0.2 C.
- a charging condition of a secondary battery depends on the constituent materials of a positive electrode, a negative electrode, and an electrolyte solution included in the secondary battery.
- the semiconductor device 100 performs CC charging with respect to the secondary battery 200 under the charging conditions shown in Table 1 will be described.
- FIG. 6 is a flow chart describing the charging operation of the semiconductor device 100 .
- FIG. 7A is a graph showing the relation between ambient temperatures and charging currents.
- FIG. 7A shows a temperature region P 0 which covers temperatures lower than 0° C., a temperature region P 1 which covers temperatures higher than or equal to 0° C. and lower than 10° C., a temperature region P 2 which covers temperatures higher than or equal to 10° C. and lower than 45° C., and a temperature region P 3 which covers temperatures higher than or equal to 45° C.
- an ambient temperature Tp is obtained (Step S 501 ).
- Step S 502 a temperature condition T 1 retained in the memory element 101 _ 1 and the ambient temperature Tp are compared.
- the ambient temperature Tp is lower than the temperature condition T 1 , it is determined that the secondary battery 200 is in the temperature region P 0 , and charging of the secondary battery 200 is stopped (supply of the current is stopped) (Step S 505 ).
- the ambient temperature Tp is compared with a temperature condition T 2 retained in the memory element 101 _ 2 (Step S 503 ).
- a current IL is supplied to the secondary battery 200 (Step S 511 ).
- the current IL is a current corresponding to a charging rate of 0.25 C.
- the current IL is 750 mA.
- the ambient temperature Tp is compared with a temperature condition T 3 retained in the memory element 101 _ 3 (Step S 504 ).
- the ambient temperature Tp is lower than the temperature condition T 3 , it is determined that the secondary battery 200 is in the temperature region P 2 , and a current ISD is supplied to the secondary battery 200 (Step S 512 ).
- the current ISD is a current corresponding to a charging rate of 0.5 C.
- the current ISD is 1500 mA.
- Step S 505 it is determined that the secondary battery 200 is in the temperature region P 3 , and charging of the secondary battery 200 is stopped (supply of the current is stopped) (Step S 505 ).
- Step S 506 the state of Step S 505 , Step S 511 , or Step S 512 is maintained for a certain period (Step S 506 ).
- Step S 507 the charging operation is terminated.
- the charging current is preferably small.
- the ambient temperature is too low (lower than 0° C. in this embodiment)
- supply of a charging current is stopped.
- Charging under a condition where the ambient temperature is too high facilitates oxidation decomposition of the electrolyte solution and elution of a metal component from the positive electrode material, which sometimes contributes to decrease in battery capacity.
- Adjusting the charging current in accordance with the ambient temperature prevents deterioration of the secondary battery and enables safer charging.
- FIG. 7B shows a temperature region P 0 which covers temperatures lower than 0° C., a temperature region P 1 which covers temperatures higher than or equal to 0° C. and lower than 10° C., a temperature region P 2 which covers temperatures higher than or equal to 10° C. and lower than 25° C., a temperature region P 3 which covers temperatures higher than or equal to 25° C. and lower than 45° C., and a temperature region P 4 which covers temperatures higher than or equal to 45° C.
- the ambient temperature and the charging current may be continuously changed in a specific temperature region.
- FIG. 7B shows an example in which the charging current is continuously changed in accordance with the ambient temperature in the temperature region P 2 . With such a control, the charging time of the secondary battery 200 can be shortened.
- This embodiment can be implemented in combination with any of the configurations described in the other embodiments and the like, as appropriate.
- High current drive capability and/or high speed operation are required for the comparison circuit 103 , the current adjustment circuit 104 , the control circuit 105 , and the input/output circuit 106 in some cases. In such cases, it is preferable to use Si transistors for the comparison circuit 103 , the current adjustment circuit 104 , the control circuit 105 , and the input/output circuit 106 .
- OS transistors for the memory element 101 and the memory element 102 .
- an OS transistor and a Si transistor can be stacked on one another.
- the integrated circuit 160 including the memory element 101 and the memory element 102 may be provided over an integrated circuit 150 including the comparison circuit 103 , the current adjustment circuit 104 , the control circuit 105 , and the input/output circuit 106 , for example.
- Providing a variety of circuits to be stacked on one another can reduce the size of the semiconductor device 100 . In other words, the area occupied by the semiconductor device 100 can be reduced.
- FIG. 8A is a perspective view of the semiconductor device 100 including the integrated circuit 150 and the integrated circuit 160 .
- FIG. 8B is a diagram for making it easier to understand the positional relation between the integrated circuit 150 and the integrated circuit 160 .
- FIG. 9 is a cross-sectional view of a portion of the semiconductor device 100 .
- the integrated circuit 150 includes a transistor 233 a , a transistor 233 b , and a transistor 233 c over the substrate 231 .
- FIG. 9 shows cross sections of the transistor 233 a , the transistor 233 b , and the transistor 233 c in the channel length direction.
- Channels of the transistor 233 a , the transistor 233 b , and the transistor 233 c are formed in part of the substrate 231 .
- a single crystal semiconductor substrate is preferably used as the substrate 231 .
- the transistor 233 a , the transistor 233 b , and the transistor 233 c are electrically isolated from each other by an element isolation layer 232 .
- an element isolation layer 232 For the formation of the element isolation layer, a LOCOS (Local Oxidation of Silicon) method, an STI (Shallow Trench Isolation) method, or the like can be used.
- LOCOS Local Oxidation of Silicon
- STI Shallow Trench Isolation
- An insulating layer 234 , an insulating layer 235 , and an insulating layer 237 are provided over the transistor 233 a , the transistor 233 b , and the transistor 233 c , and an electrode 238 is embedded in the insulating layer 237 .
- the electrode 238 is electrically connected to one of a source and a drain of the transistor 233 a through a contact plug 236 .
- An insulating layer 239 , an insulating layer 240 , and an insulating layer 241 are provided over the electrode 238 and the insulating layer 237 , and an electrode 242 is embedded in the insulating layer 239 , the insulating layer 240 , and the insulating layer 241 .
- the electrode 242 is electrically connected to the electrode 238 .
- An insulating layer 243 and an insulating layer 244 are provided over the electrode 242 and the insulating layer 241 , and an electrode 245 is embedded in the insulating layer 243 and the insulating layer 244 .
- the electrode 245 is electrically connected to the electrode 242 .
- An insulating layer 246 and an insulating layer 247 are provided over the electrode 245 and the insulating layer 244 , and an electrode 249 is embedded in the insulating layer 246 and the insulating layer 247 .
- the electrode 249 is electrically connected to the electrode 245 .
- An insulating layer 248 and an insulating layer 250 are provided over the electrode 249 and the insulating layer 247 , and an electrode 251 is embedded in the insulating layer 248 and the insulating layer 250 .
- the electrode 251 is electrically connected to the electrode 249 .
- the integrated circuit 160 is provided over the integrated circuit 150 .
- the integrated circuit 160 includes a transistor 210 and a capacitor 220 .
- FIG. 9 shows a cross section of the transistor 210 in the channel length direction.
- the transistor 210 is a transistor having a back gate.
- An oxide semiconductor which is one kind of metal oxide, is preferably used for a semiconductor layer of the transistor 210 .
- an OS transistor is preferably used as the transistor 210 .
- the transistor 210 is provided over an insulating layer 361 .
- An insulating layer 362 is provided over the insulating layer 361 .
- a back gate of the transistor 210 is embedded in the insulating layer 362 .
- An insulating layer 371 and an insulating layer 380 are provided over the insulating layer 362 .
- a gate of the transistor 210 is embedded in the insulating layer 380 .
- An insulating layer 374 and an insulating layer 381 are provided over the insulating layer 380 .
- An electrode 355 is embedded in the insulating layer 361 , the insulating layer 362 , an insulating layer 365 , an insulating layer 366 , the insulating layer 371 , the insulating layer 380 , the insulating layer 374 , and the insulating layer 381 .
- the electrode 355 is electrically connected to the electrode 251 .
- the electrode 355 can function as a contact plug.
- An electrode 152 is provided over the insulating layer 381 .
- the electrode 152 is electrically connected to the electrode 355 .
- An insulating layer 114 , an insulating layer 115 , and an insulating layer 130 are provided over the insulating layer 381 and the electrode 152 .
- the capacitor 220 includes an electrode 110 placed in an opening formed in the insulating layer 114 and the insulating layer 115 , an insulating layer 130 over the electrode 110 and the insulating layer 115 , and an electrode 120 over the insulating layer 130 .
- an electrode 110 placed in an opening formed in the insulating layer 114 and the insulating layer 115 , an insulating layer 130 over the electrode 110 and the insulating layer 115 , and an electrode 120 over the insulating layer 130 .
- the opening formed in the insulating layer 114 and the insulating layer 115 at least part of the electrode 110 , at least part of the insulating layer 130 , and at least part of the electrode 120 are placed.
- the electrode 110 functions as a lower electrode of the capacitor 220
- the electrode 120 functions as an upper electrode of the capacitor 220
- the insulating layer 130 functions as a dielectric of the capacitor 220 .
- the upper electrode and the lower electrode face each other with the dielectric positioned therebetween on the side surface as well as the bottom surface of the opening in the insulating layer 114 and the insulating layer 115 ; thus, the capacitance per unit area can be increased. Accordingly, the deeper the opening is, the larger the capacitance of the capacitor 220 can be. Increasing the capacitance per unit area of the capacitor 220 in this manner can promote miniaturization or higher integration of a semiconductor device.
- the shape of the opening formed in the insulating layer 114 and the insulating layer 115 when seen from above may be a quadrangular shape, a polygonal shape other than a quadrangular shape, a polygonal shape with rounded corners, or a circular shape including an elliptical shape.
- An insulating layer 116 and an insulating layer 154 are provided over the insulating layer 130 and the electrode 120 .
- An electrode 112 is embedded in the insulating layer 114 , the insulating layer 115 , the insulating layer 130 , the insulating layer 116 , and the insulating layer 154 .
- the electrode 112 is electrically connected to the electrode 152 .
- the electrode 112 can function as a contact plug.
- An electrode 153 is provided over the insulating layer 154 .
- the electrode 153 is electrically connected to the electrode 112 .
- An insulating layer 156 is provided over the insulating layer 154 and the electrode 153 .
- FIG. 10 shows a semiconductor device 100 A, which is a modification example of the semiconductor device 100 .
- an integrated circuit 150 A and the integrated circuit 160 are provided to be stacked on one another.
- OS transistors are used as the transistors included in the integrated circuit 150 such as the transistor 233 a and the transistor 233 b .
- All the transistors included in the semiconductor device 100 A are OS transistors, whereby the semiconductor device 100 A can be an integrated circuit in which all the transistors have the same conductivity type.
- FIG. 11 shows a semiconductor device 100 B, which is a modification example of the semiconductor device 100 A.
- the integrated circuit 150 A and the integrated circuit 160 can be fabricated over the substrate 231 through the same steps.
- the productivity of the semiconductor device can be increased.
- the manufacturing cost of the semiconductor device can be reduced.
- the cooling efficiency of the semiconductor device can be improved, as compared with the case where an insulating substrate or the like is used. Consequently, the reliability of the semiconductor device can be improved.
- a substrate, an insulating layer, a conductive layer, a semiconductor layer, a metal oxide, and the like can be used in the semiconductor device, for example.
- An insulator substrate, a semiconductor substrate, or a conductor substrate may be used, for example.
- the insulator substrate examples include a glass substrate, a quartz substrate, a sapphire substrate, a stabilized zirconia substrate (an yttria-stabilized zirconia substrate or the like), and a resin substrate.
- the semiconductor substrate examples include a semiconductor substrate using silicon, germanium, or the like as a material and a compound semiconductor substrate including silicon carbide, silicon germanium, gallium arsenide, indium phosphide, zinc oxide, or gallium oxide.
- a semiconductor substrate in which an insulator region is included in the above semiconductor substrate for example, an SOI (Silicon On Insulator) substrate or the like may be used.
- a single crystal semiconductor substrate is preferably used as the substrate.
- Examples of the conductor substrate include a graphite substrate, a metal substrate, an alloy substrate, and a conductive resin substrate.
- Other examples include a substrate including a metal nitride and a substrate including a metal oxide.
- Other examples include an insulator substrate provided with a conductor or a semiconductor, a semiconductor substrate provided with a conductor or an insulator, and a conductor substrate provided with a semiconductor or an insulator.
- these substrates provided with elements may be used.
- Examples of the element provided for the substrate include a capacitor, a resistor, a switching element, a light-emitting element, and a memory element.
- a semiconductor substrate on which a semiconductor element such as a strained transistor or a FIN-type transistor is provided, or the like can be used. That is, the substrate is not limited to a simple supporting substrate and may be a substrate where a device such as another transistor is formed.
- Examples of a material used for an insulating layer include an oxide, a nitride, an oxynitride, a nitride oxide, a metal oxide, a metal oxynitride, and a metal nitride oxide, each of which has an insulating property.
- a problem such as leakage current may arise because of a thinner gate insulating layer.
- a high-k material is used for the insulating layer functioning as a gate insulating layer, such an insulating layer enables a reduction in voltage at operation of the transistor while maintaining the physical thickness of the gate insulator.
- a material with low dielectric constant is used as an insulator functioning as an interlayer insulating film, parasitic capacitance generated between wirings can be reduced.
- a material is preferably selected in accordance with the function of an insulating layer.
- examples of the insulator with high dielectric constant include gallium oxide, hafnium oxide, zirconium oxide, an oxide containing aluminum and hafnium, an oxynitride containing aluminum and hafnium, an oxide containing silicon and hafnium, an oxynitride containing silicon and hafnium, and a nitride containing silicon and hafnium.
- examples of the insulator with low dielectric constant include silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, silicon oxide to which fluorine is added, silicon oxide to which carbon is added, silicon oxide to which carbon and nitrogen are added, porous silicon oxide, and a resin.
- the transistor is surrounded by an insulating layer (e.g., the insulating layer 365 , the insulating layer 371 , and the like) having a function of inhibiting transmission of oxygen and impurities such as hydrogen, so that the transistor can have stable electrical characteristics.
- an insulating layer e.g., the insulating layer 365 , the insulating layer 371 , and the like
- insulator having a function of inhibiting transmission of oxygen and impurities such as hydrogen a single layer or stacked layers of an insulator containing, for example, boron, carbon, nitrogen, oxygen, fluorine, magnesium, aluminum, silicon, phosphorus, chlorine, argon, gallium, germanium, yttrium, zirconium, lanthanum, neodymium, hafnium, or tantalum is used.
- a metal oxide such as aluminum oxide, magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, hafnium oxide, or tantalum oxide
- a metal nitride such as aluminum nitride, aluminum titanium nitride, titanium nitride, silicon nitride oxide or silicon nitride; or the like can be used.
- the insulating layer functioning as the gate insulating layer is preferably an insulator including a region containing oxygen released by heating.
- an insulator including a region containing oxygen released by heating For example, when a structure is employed in which silicon oxide or silicon oxynitride including a region containing oxygen released by heating is in contact with the semiconductor layer 260 , oxygen vacancies included in the semiconductor layer 260 can be compensated for.
- a nitride oxide refers to a compound that includes more nitrogen than oxygen.
- An oxynitride refers to a compound that includes more oxygen than nitrogen.
- the content of each element can be measured by Rutherford backscattering spectrometry (RBS), for example.
- the hydrogen concentration in the insulating layer is preferably lowered in order to prevent an increase in the hydrogen concentration in the semiconductor layer.
- the hydrogen concentration in the insulating layer is lower than or equal to 2 ⁇ 10 20 atoms/cm 3 , preferably lower than or equal to 5 ⁇ 10 19 atoms/cm 3 , further preferably lower than or equal to 1 ⁇ 10 19 atoms/cm 3 , still further preferably lower than or equal to 5 ⁇ 10 18 atoms/cm 3 in secondary ion mass spectrometry (SIMS). It is particularly preferable to lower the hydrogen concentration in the insulating layer in contact with the semiconductor layer.
- SIMS secondary ion mass spectrometry
- the nitrogen concentration in the insulating layer is preferably lowered in order to prevent an increase in the nitrogen concentration in the semiconductor layer.
- the nitrogen concentration in the insulating layer is lower than or equal to 5 ⁇ 10 19 atoms/cm 3 , preferably lower than or equal to 5 ⁇ 10 18 atoms/cm 3 , further preferably lower than or equal to 1 ⁇ 10 18 atoms/cm 3 , still further preferably lower than or equal to 5 ⁇ 10 17 atoms/cm 3 in SIMS.
- At least a region of the insulating layer in contact with the semiconductor layer have few defects and typically have as few signals observed by electron spin resonance (ESR) spectroscopy as possible.
- An example of the signals is an E′ center observed at a g-factor of 2.001. Note that the E′ center is due to the dangling bond of silicon.
- a silicon oxide layer or a silicon oxynitride layer whose spin density due to the E′ center is lower than or equal to 3 ⁇ 10 17 spins/cm 3 , preferably lower than or equal to 5 ⁇ 10 16 spins/cm 3 is used.
- a signal due to nitrogen dioxide (NO 2 ) may be observed.
- the signal is divided into the following three signals according to the N nuclear spin: a signal observed at a g-factor greater than or equal to 2.037 and less than or equal to 2.039 (referred to as a first signal), a signal observed at a g-factor greater than or equal to 2.001 and less than or equal to 2.003 (referred to as a second signal), and a signal observed at a g-factor greater than or equal to 1.964 and less than or equal to 1.966 (referred to as a third signal).
- the insulating layer it is suitable to use an insulating layer whose spin density of a signal due to nitrogen dioxide (NO 2 ) is higher than or equal to 1 ⁇ 10 17 spins/cm 3 and lower than 1 ⁇ 10 18 spins/cm 3 .
- NO 2 nitrogen dioxide
- nitrogen oxide (NO x ) including nitrogen dioxide (NO 2 ) forms a state in the insulating layer.
- the state is positioned in the energy gap of the oxide semiconductor layer.
- nitrogen oxide (NO x ) is diffused into the interface between the insulating layer and the oxide semiconductor layer, an electron may be trapped by the state on the insulating layer side.
- the trapped electron remains in the vicinity of the interface between the insulating layer and the oxide semiconductor layer; hence, the threshold voltage of the transistor is shifted in the positive direction. Accordingly, the use of a film with a low nitrogen oxide content as the insulating layer and the insulating layer can reduce a shift in the threshold voltage of the transistor.
- a silicon oxynitride layer As an insulating layer that releases a small amount of nitrogen oxide (NO x ), for example, a silicon oxynitride layer can be used.
- the silicon oxynitride layer is a film that releases more ammonia than nitrogen oxide (NO x ) in thermal desorption spectroscopy (TDS); the typical released amount of ammonia is greater than or equal to 1 ⁇ 10 18 /cm 3 and less than or equal to 5 ⁇ 10 19 /cm 3 .
- the released amount of ammonia is the total amount in the range of the heat treatment temperature in TDS from 50° C. to 650° C. inclusive or from 50° C. to 550° C. inclusive.
- nitrogen oxide (NO x ) reacts with ammonia and oxygen in heat treatment, the use of an insulating layer that releases a large amount of ammonia reduces nitrogen oxide (NO x ).
- At least one of the insulating layers in contact with the oxide semiconductor layer is preferably formed using an insulating layer from which oxygen is released by heating.
- an insulating layer in which the amount of released oxygen converted into oxygen atoms is 1.0 ⁇ 10 18 atoms/cm 3 or more, 1.0 ⁇ 10 19 atoms/cm 3 or more, or 1.0 ⁇ 10 20 atoms/cm 3 or more in TDS performed with heat treatment where the surface temperature of the insulating layer is higher than or equal to 100° C. and lower than or equal to 700° C., preferably higher than or equal to 100° C. and lower than or equal to 500° C.
- oxygen released by heating is also referred to as “excess oxygen”.
- an insulating layer containing excess oxygen can also be formed by performing treatment for adding oxygen to an insulating layer.
- the treatment for adding oxygen can be performed by heat treatment, plasma treatment, or the like in an oxidizing atmosphere.
- oxygen may be added by an ion implantation method, an ion doping method, a plasma immersion ion implantation method, or the like.
- a gas used in the treatment for adding oxygen include an oxygen gas such as 16 O 2 or 18 O 2 and a gas containing oxygen, such as a nitrous oxide gas or an ozone gas.
- the treatment for adding oxygen is also referred to as “oxygen doping treatment”.
- the oxygen doping treatment may be performed while the substrate is heated.
- a heat-resistant organic material such as polyimide, an acrylic-based resin, a benzocyclobutene-based resin, polyamide, or an epoxy-based resin can be used.
- a low dielectric constant material a low-k material
- a siloxane-based resin PSG (phosphosilicate glass), BPSG (borophosphosilicate glass), or the like.
- the insulating layer may be formed by stacking a plurality of insulating layers formed of these materials.
- the siloxane-based resin corresponds to a resin including a Si—O—Si bond formed using a siloxane-based material as a starting material.
- the siloxane-based resin may include an organic group (e.g., an alkyl group or an aryl group) or a fluoro group as a substituent.
- the organic group may include a fluoro group.
- the method for forming the insulating layer There is no particular limitation on the method for forming the insulating layer. Note that a baking step is necessary in some cases depending on a material used for the insulating layer. In this case, when the baking step of the insulating layer also serves as another heat treatment step, the transistor can be manufactured efficiently.
- the method for forming the insulating layer There is no particular limitation on the method for forming the insulating layer. Note that a baking step is necessary in some cases depending on a material used for the insulating layer. In this case, when the baking step of the insulating layer also serves as another heat treatment step, the transistor can be manufactured efficiently.
- a metal element selected from aluminum, chromium, copper, silver, gold, platinum, tantalum, nickel, titanium, molybdenum, tungsten, hafnium, vanadium, niobium, manganese, magnesium, zirconium, beryllium, indium, ruthenium, iridium, strontium, and lanthanum; an alloy containing the above metal element; an alloy containing a combination of the above metal elements; or the like.
- tantalum nitride titanium nitride, tungsten, a nitride containing titanium and aluminum, a nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, an oxide containing lanthanum and nickel, or the like.
- Tantalum nitride, titanium nitride, a nitride containing titanium and aluminum, a nitride containing tantalum and aluminum, ruthenium oxide, ruthenium nitride, an oxide containing strontium and ruthenium, and an oxide containing lanthanum and nickel are preferable because they are oxidation-resistant conductive materials or materials that retain their conductivity even after absorbing oxygen.
- a semiconductor having high electrical conductivity, typified by polycrystalline silicon containing an impurity element such as phosphorus, or silicide such as nickel silicide may be used.
- a stack including a plurality of conductive layers formed of the above materials may be used.
- a stacked-layer structure combining a material containing the above metal element and a conductive material containing oxygen may be employed.
- a stacked-layer structure combining a material containing the above metal element and a conductive material containing nitrogen may be employed.
- a stacked-layer structure combining a material containing the above metal element, a conductive material containing oxygen, and a conductive material containing nitrogen may be employed.
- a stacked-layer structure in which a material containing the above metal element and a conductive material containing oxygen are combined is preferably used for the conductive layer functioning as the gate electrode.
- the conductive material containing oxygen is preferably provided on the channel formation region side.
- a conductive material containing oxygen and a metal element contained in a metal oxide where the channel is formed It is particularly preferable to use, for the conductive layer functioning as the gate electrode, a conductive material containing oxygen and a metal element contained in a metal oxide where the channel is formed.
- a conductive material containing the above metal element and nitrogen may be used.
- a conductive material containing nitrogen such as titanium nitride or tantalum nitride, may be used.
- Indium tin oxide (ITO) indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium zinc oxide, or indium tin oxide to which silicon is added may be used.
- indium gallium zinc oxide containing nitrogen may be used. With use of such a material, hydrogen contained in the metal oxide where the channel is formed can be trapped in some cases. Alternatively, hydrogen entering from an external insulator or the like can be trapped in some cases.
- a conductive material with high embeddability such as tungsten or polysilicon
- a barrier layer such as a titanium layer, a titanium nitride layer, or a tantalum nitride layer may be used in combination.
- a single crystal semiconductor, a polycrystalline semiconductor, a microcrystalline semiconductor, an amorphous semiconductor, or the like can be used alone or in combination.
- a semiconductor material silicon, germanium, or the like can be used, for example.
- a compound semiconductor such as silicon germanium, silicon carbide, gallium arsenide, an oxide semiconductor, or a nitride semiconductor, an organic semiconductor, or the like can be used.
- a low molecular organic material having an aromatic ring, a ⁇ -electron conjugated conductive polymer, or the like can be used.
- a low molecular organic material having an aromatic ring, a ⁇ -electron conjugated conductive polymer, or the like can be used.
- rubrene, tetracene, pentacene, perylenediimide, tetracyanoquinodimethane, polythiophene, polyacetylene, polyparaphenylene vinylene, or the like can be used.
- semiconductor layers may be stacked. In the case of stacking semiconductor layers, semiconductors having different crystal states may be used or different semiconductor materials may be used.
- the bandgap of an oxide semiconductor which is one kind of metal oxide, is greater than or equal to 2 eV; thus, the use of the oxide semiconductor for the semiconductor layer can achieve a transistor with an extremely low off-state current.
- the off-state current per micrometer of channel width at room temperature (typically 25° C.) at a voltage between a source and a drain of 3.5 V can be lower than 1 ⁇ 10 ⁇ 20 A, lower than 1 ⁇ 10 ⁇ 22 A, or lower than 1 ⁇ 10 ⁇ 24 A. That is, the on/off ratio can be greater than or equal to 20 digits.
- a transistor using an oxide semiconductor for the semiconductor layer (an OS transistor) has high withstand voltage between its source and drain.
- a transistor with high reliability can be provided.
- a transistor with high output voltage and high withstand voltage can be provided.
- a memory device or the like with high reliability can be provided.
- a memory device with high output voltage and high withstand voltage can be provided.
- the crystalline Si transistor tends to have relatively high mobility compared with the OS transistor.
- the crystalline Si transistor has difficulty in achieving an extremely low off-state current such as one in the OS transistor.
- the semiconductor material used for the semiconductor layer be properly selected depending on the purpose and the usage.
- the OS transistor, the crystalline Si transistor, and the like may be used in combination.
- the oxide semiconductor layer is preferably formed by a sputtering method.
- the oxide semiconductor layer is preferably formed by a sputtering method, in which case the density of the oxide semiconductor layer can be increased.
- a rare gas typically argon
- oxygen or a mixed gas of a rare gas and oxygen may be used as a sputtering gas.
- increasing the purity of a sputtering gas is necessary.
- a gas that is highly purified to have a dew point of ⁇ 60° C. or lower, preferably ⁇ 100° C. or lower is used.
- the highly purified sputtering gas is used for the deposition, entry of moisture or the like into the oxide semiconductor layer can be prevented as much as possible.
- the oxide semiconductor layer is formed by a sputtering method
- moisture in a deposition chamber of a sputtering apparatus is preferably removed as much as possible.
- the deposition chamber is preferably evacuated to be a high vacuum state (to a degree of approximately 5 ⁇ 10 ⁇ 7 Pa to 1 ⁇ 10 ⁇ 4 Pa).
- a conductor By changing the composition of elements contained in a metal oxide, a conductor, a semiconductor, and an insulator can be formed separately.
- the metal oxide with conductor properties is referred to as “conductive oxide” in some cases.
- the metal oxide having semiconductor properties is referred to as “oxide semiconductor” in some cases.
- the metal oxide having insulator properties is referred to as “insulating oxide” in some cases.
- An oxide semiconductor which is one kind of metal oxide, preferably contains indium or zinc.
- indium and zinc are preferably contained.
- aluminum, gallium, yttrium, tin, or the like is preferably contained.
- one or more kinds selected from boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and the like may be contained.
- an oxide semiconductor contains indium, an element M, and zinc
- the element M is aluminum, gallium, yttrium, tin, or the like.
- Other elements that can be used as the element M include boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and the like. Note that it is sometimes acceptable to use a plurality of the above-described elements in combination as the element M
- a metal oxide containing nitrogen is also collectively referred to as a metal oxide in some cases.
- a metal oxide containing nitrogen may be referred to as a metal oxynitride.
- Oxide semiconductors can be classified into a single crystal oxide semiconductor and a non-single-crystal oxide semiconductor.
- a non-single-crystal oxide semiconductor include a CAAC-OS, a polycrystalline oxide semiconductor, an nc-OS (nanocrystalline oxide semiconductor), an amorphous-like oxide semiconductor (a-like OS), and an amorphous oxide semiconductor.
- the CAAC-OS has c-axis alignment, a plurality of nanocrystals are connected in the a-b plane direction, and its crystal structure has distortion.
- the distortion refers to a portion where the direction of a lattice arrangement changes between a region with a regular lattice arrangement and another region with a regular lattice arrangement in a region where the plurality of nanocrystals are connected.
- the nanocrystal is basically a hexagon but is not always a regular hexagon and is a non-regular hexagon in some cases. Furthermore, a pentagonal or heptagonal lattice arrangement, for example, is included in the distortion in some cases. Note that it is difficult to observe a clear crystal grain boundary (also referred to as grain boundary) even in the vicinity of distortion in the CAAC-OS. That is, formation of a crystal grain boundary is inhibited by the distortion of a lattice arrangement. This is because the CAAC-OS can tolerate distortion owing to a low density of arrangement of oxygen atoms in the a-b plane direction, an interatomic bond length changed by substitution of a metal element, and the like.
- the CAAC-OS tends to have a layered crystal structure (also referred to as a layered structure) in which a layer containing indium and oxygen (hereinafter, an In layer) and a layer containing the element M, zinc, and oxygen (hereinafter, an (M,Zn) layer) are stacked.
- a layer containing indium and oxygen hereinafter, an In layer
- a layer containing the element M, zinc, and oxygen hereinafter, an (M,Zn) layer
- indium and the element M can be replaced with each other
- the layer can also be referred to as an (In,M,Zn) layer.
- the layer can be referred to as an (In,M) layer.
- the CAAC-OS is a metal oxide with high crystallinity.
- a reduction in electron mobility due to the crystal grain boundary is less likely to occur because it is difficult to observe a clear crystal grain boundary.
- entry of impurities, formation of defects, or the like might decrease the crystallinity of a metal oxide, which means that the CAAC-OS is a metal oxide including few impurities and defects (e.g., oxygen vacancies).
- a metal oxide including a CAAC-OS is physically stable. Therefore, the metal oxide including a CAAC-OS is resistant to heat and has high reliability.
- nc-OS In the nc-OS, a microscopic region (for example, a region with a size greater than or equal to 1 nm and less than or equal to 10 nm, in particular, a region with a size greater than or equal to 1 nm and less than or equal to 3 nm) has a periodic atomic arrangement. Furthermore, there is no regularity of crystal orientation between different nanocrystals in the nc-OS. Thus, the orientation in the whole film is not observed. Accordingly, the nc-OS cannot be distinguished from an a-like OS or an amorphous oxide semiconductor depending on the analysis method.
- IGZO In—Ga—Zn oxide
- IGZO In—Ga—Zn oxide
- crystals of IGZO tend not to grow in the air and thus, a stable structure is obtained when IGZO is formed of smaller crystals (e.g., the above-described nanocrystals) rather than larger crystals (here, crystals with a size of several millimeters or several centimeters).
- An a-like OS is a metal oxide having a structure between those of the nc-OS and an amorphous oxide semiconductor.
- the a-like OS includes a void or a low-density region. That is, the a-like OS has low crystallinity compared with the nc-OS and the CAAC-OS.
- An oxide semiconductor can have various structures that show different properties. Two or more of the amorphous oxide semiconductor, the polycrystalline oxide semiconductor, the a-like OS, the nc-OS, and the CAAC-OS may be included in an oxide semiconductor of one embodiment of the present invention.
- a metal oxide with a low carrier density is preferably used as the transistor.
- the concentration of impurities in the metal oxide is reduced so that the density of defect states can be reduced.
- a state with a low impurity concentration and a low density of defect states is referred to as a highly purified intrinsic or substantially highly purified intrinsic state.
- a metal oxide has a carrier density lower than 8 ⁇ 10 11 cm ⁇ 3 , preferably lower than 1 ⁇ 10 11 cm ⁇ 3 , further preferably lower than 1 ⁇ 10 10 cm ⁇ 3 , and higher than or equal to 1 ⁇ 10 ⁇ 9 cm ⁇ 3 .
- the highly purified intrinsic or substantially highly purified intrinsic metal oxide has a low density of defect states and accordingly has a low density of trap states in some cases.
- a transistor whose channel formation region includes a metal oxide having a high density of trap states has unstable electrical characteristics in some cases.
- the impurity concentration in the metal oxide in order to obtain stable electrical characteristics of the transistor, it is effective to reduce the impurity concentration in the metal oxide.
- the impurity concentration in an adjacent film is also preferably reduced.
- impurities include hydrogen, nitrogen, an alkali metal, an alkaline earth metal, iron, nickel, and silicon.
- the concentration of an alkali metal or an alkaline earth metal in the metal oxide is set lower than or equal to 1 ⁇ 10 18 atoms/cm 3 , preferably lower than or equal to 2 ⁇ 10 16 atoms/cm 3 .
- Hydrogen contained in a metal oxide reacts with oxygen bonded to a metal atom to be water, and thus forms an oxygen vacancy in some cases. Moreover, when the channel formation region of the metal oxide includes oxygen vacancies, the transistor tends to have normally-on characteristics. Entry of hydrogen into the oxygen vacancy generates an electron serving as a carrier in some cases. Furthermore, in some cases, bonding of part of hydrogen to oxygen bonded to a metal atom causes generation of an electron serving as a carrier. Thus, a transistor using a metal oxide containing hydrogen is likely to have normally-on characteristics.
- hydrogen in the metal oxide is preferably reduced as much as possible.
- the hydrogen concentration of the metal oxide obtained by SIMS is set lower than 1 ⁇ 10 20 atoms/cm 3 , preferably lower than 1 ⁇ 10 19 atoms/cm 3 , further preferably lower than 5 ⁇ 10 18 atoms/cm 3 , still further preferably lower than 1 ⁇ 10 18 atoms/cm 3 .
- a thin film having high crystallinity is preferably used as a metal oxide used as a semiconductor of a transistor. With use of the thin film, the stability or reliability of the transistor can be improved.
- the thin film include a thin film of a single-crystal metal oxide and a thin film of a polycrystalline metal oxide.
- a high-temperature process or a laser heating process is needed to form the thin film of a single-crystal metal oxide or the thin film of a polycrystalline metal oxide over a substrate. Thus, manufacturing cost is increased, and throughput is decreased.
- Non-Patent Document 1 and Non-Patent Document 2 have reported that an In—Ga—Zn oxide having a CAAC structure (referred to as CAAC-IGZO) was found in 2009. Here, it has been reported that CAAC-IGZO has c-axis alignment, a crystal grain boundary is not clearly observed in CAAC-IGZO, and CAAC-IGZO can be formed over a substrate at low temperatures. It has also been reported that a transistor using CAAC-IGZO has excellent electrical characteristics and high reliability.
- CAAC-IGZO In—Ga—Zn oxide having a CAAC structure
- nc-IGZO In—Ga—Zn oxide having an nc structure
- Non-Patent Document 3 it has been reported that nc-IGZO has a periodic atomic arrangement in a microscopic region (for example, a region within a size of 1 nm to 3 nm inclusive) and there is no regularity of crystal orientation between different regions.
- Non-Patent Document 4 and Non-Patent Document 5 have shown changes in average crystal size due to electron beam irradiation to thin films of CAAC-IGZO, nc-IGZO, and IGZO having low crystallinity.
- IGZO having low crystallinity crystalline IGZO with a crystal size of approximately 1 nm was observed even before electron beam irradiation.
- the thin film of CAAC-IGZO and the thin film of nc-IGZO each have higher stability to electron beam irradiation than the thin film of IGZO having low crystallinity.
- the thin film of CAAC-IGZO or the thin film of nc-IGZO is preferably used as the semiconductor of the transistor.
- Non-Patent Document 6 shows that a transistor using a metal oxide has an extremely low leakage current in an off state; specifically, the off-state current per micrometer in the channel width of the transistor is of the order of yA/ ⁇ m (10 ⁇ 24 A/ ⁇ m).
- a low-power-consumption CPU applying a characteristic of low leakage current of the transistor using a metal oxide is disclosed (see Non-Patent Document 7).
- Non-Patent Document 8 Furthermore, application of a transistor using a metal oxide to a display device that utilizes the characteristic of a low leakage current of the transistor has been reported (see Non-Patent Document 8).
- a displayed image is changed several tens of times per second. The number of times an image is changed per second is referred to as a refresh rate.
- the refresh rate is also referred to as drive frequency.
- Such high-speed screen change that is hard for human eyes to recognize is considered as a cause of eyestrain.
- the refresh rate of the display device is lowered to reduce the number of times of image rewriting.
- driving with a lowered refresh rate can reduce the power consumption of the display device.
- Such a driving method is referred to as idling stop (IDS) driving.
- IDS idling stop
- the discovery of the CAAC structure and the nc structure has contributed to an improvement in electrical characteristics and reliability of a transistor using a metal oxide having the CAAC structure or the nc structure, a reduction in manufacturing cost, and an improvement in throughput. Furthermore, applications of the transistor to a display device and an LSI utilizing the characteristics of a low leakage current of the transistor have been studied.
- An insulating material for forming the insulating layer, a conductive material for forming the conductive layer, or a semiconductor material for forming the semiconductor layer can be formed by a sputtering method, a spin coating method, a CVD (Chemical Vapor Deposition) method (including a thermal CVD method, an MOCVD (Metal Organic Chemical Vapor Deposition) method, a PECVD (Plasma Enhanced CVD) method, a high density plasma CVD method, an LPCVD (low pressure CVD) method, an APCVD (atmospheric pressure CVD) method, and the like), an ALD (Atomic Layer Deposition) method, or an MBE (Molecular Beam Epitaxy) method, or a PLD (Pulsed Laser Deposition) method, a dipping method, a spray coating method, a droplet discharging method (e.g., an inkjet method), or a printing method (e.g., screen printing or offset printing).
- a high-quality film can be obtained at a relatively low temperature.
- a deposition method that does not use plasma at the time of deposition such as an MOCVD method, an ALD method, or a thermal CVD method
- damage is not easily caused on a surface where the film is deposited.
- a wiring, an electrode, an element (e.g., a transistor or a capacitor), or the like included in a memory device might be charged up by receiving charges from plasma. In that case, accumulated charges might break the wiring, electrode, element, or the like included in the memory device.
- plasma damage is not caused; thus, the yield of memory devices can be increased.
- plasma damage during film formation is not caused, a film with few defects can be obtained.
- the ALD method In an ALD method, one atomic layer can be deposited at a time using self-regulating characteristics of atoms.
- the ALD method has advantages such as deposition of an extremely thin film, deposition on a component with a high aspect ratio, deposition of a film with a small number of defects such as pinholes, deposition with good coverage, and low-temperature deposition.
- the ALD method includes a PEALD (plasma enhanced ALD) method using plasma. The use of plasma is sometimes preferable because deposition at lower temperature is possible.
- a precursor used in the ALD method sometimes contains impurities such as carbon.
- a film provided by the ALD method contains impurities such as carbon in a larger amount than a film provided by another deposition method.
- impurities can be quantified by X-ray photoelectron spectroscopy (XPS).
- a CVD method and an ALD method are film deposition methods in which a film is deposited by reaction at a surface of an object.
- a CVD method and an ALD method are film deposition methods that enable favorable step coverage almost regardless of the shape of an object.
- an ALD method has excellent step coverage and excellent thickness uniformity and thus is suitable for covering a surface of an opening with a high aspect ratio, for example.
- an ALD method has a relatively low deposition rate, and thus is preferably used in combination with another film deposition method with a high deposition rate, such as a CVD method, in some cases.
- Each of a CVD method and an ALD method enables the composition of a film that is to be deposited to be controlled with a flow rate ratio of source gases. For example, by each of a CVD method and an ALD method, a film with a certain composition can be deposited depending on the flow rate ratio of the source gases. Moreover, with each of a CVD method and an ALD method, by changing the flow rate ratio of the source gases while depositing the film, a film whose composition is continuously changed can be formed.
- the time taken for the film formation can be shortened because the time taken for transfer and pressure adjustment is omitted.
- memory devices can be manufactured with improved productivity in some cases.
- This embodiment can be implemented in combination with any of the configurations described in the other embodiments and the like, as appropriate.
- FIG. 12A is a top view of the transistor 210 A.
- FIG. 12B is a cross-sectional view of a portion indicated by a dashed-dotted line L 1 -L 2 in FIG. 12A .
- FIG. 12C is a cross-sectional view of a portion indicated by a dashed-dotted line W 1 -W 2 in FIG. 12A . Note that for simplification of the drawing, some components are not shown in the top view in FIG. 12A .
- FIG. 12A , FIG. 12B , and FIG. 12C show the transistor 210 A, the insulating layer 361 functioning as an interlayer insulating layer, an insulating layer 362 , the insulating layer 365 , the insulating layer 366 , the insulating layer 371 , the insulating layer 380 , the insulating layer 374 , and the insulating layer 381 .
- a conductive layer 340 (a conductive layer 340 a and a conductive layer 340 b ) that is electrically connected to the transistor 210 A and functions as a contact plug is shown.
- an insulating layer 341 an insulating layer 341 a and an insulating layer 341 b ) is provided in contact with a side surface of the conducting layer 340 functioning as a contact plug.
- a single layer or stacked layers of an insulator such as silicon oxide, silicon oxynitride, silicon nitride oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba,Sr)TiO 3 (BST) can be used.
- an insulator such as silicon oxide, silicon oxynitride, silicon nitride oxide, aluminum oxide, hafnium oxide, tantalum oxide, zirconium oxide, lead zirconate titanate (PZT), strontium titanate (SrTiO 3 ), or (Ba,Sr)TiO 3 (BST)
- aluminum oxide, bismuth oxide, germanium oxide, niobium oxide, silicon oxide, titanium oxide, tungsten oxide, yttrium oxide, or zirconium oxide may be added to these insulators, for example.
- these insulators may be
- the transistor 210 A includes the conductive layer 360 (a conductive layer 360 a and a conductive layer 360 b ) functioning as a first gate electrode; the conductive layer 305 (a conductive layer 305 a and a conductive layer 305 b ) functioning as a second gate electrode; an insulating layer 349 functioning as a first gate insulating film; the insulating layer 365 and the insulating layer 366 that function as a second gate insulating layer; the semiconductor layer 260 (a semiconductor layer 260 a , a semiconductor layer 260 b , and a semiconductor layer 260 c ) including a region where a channel is formed; a conductive layer 342 a functioning as one of a source and a drain; a conductive layer 342 b functioning as the other of the source and the drain; and the insulating layer 371 .
- the conductive layer 305 is provided to be embedded in the insulating layer 362 , and the insulating layer 365 is provided over the insulating layer 362 and the conductive layer 305 .
- the insulating layer 366 is provided over the insulating layer 365 .
- the semiconductor layer 260 (the semiconductor layer 260 a , the semiconductor layer 260 b , and the semiconductor layer 260 c ) is provided over the insulating layer 366 .
- the insulating layer 349 is provided over the semiconductor layer 260 , and the conductive layer 360 (the conductive layer 360 a and the conductive layer 360 b ) is provided over the insulating layer 349 .
- the conductive layer 342 a and the conductive layer 342 b are provided in contact with part of the top surface of the semiconductor layer 260 b
- the insulating layer 371 is provided in contact with part of the top surface of the insulating layer 366 , the side surface of the semiconductor layer 260 a , the side surface of the semiconductor layer 260 b , the side surface of the conductive layer 342 a , the top surface of the conductive layer 342 a , the side surface of the conductive layer 342 b , and the top surface of the conductive layer 342 b.
- the insulating layer 341 is provided in contact with the inner wall of an opening formed in the insulating layer 380 , the insulating layer 374 , and the insulating layer 381 . Moreover, a first conductor of the conductive layer 340 is provided in contact with the side surface of the insulating layer 341 , and a second conductor of the conductive layer 340 is further provided on the inner side.
- the height of a top surface of the conductive layer 340 and the height of a top surface of the insulating layer 381 can be substantially level with each other.
- the transistor 210 A having a structure in which the first conductor of the conductive layer 340 and the second conductor of the conductive layer 340 are stacked is shown, the present invention is not limited thereto.
- the conductive layer 340 may be provided as a single layer or a stacked-layer structure of three or more layers.
- layers may be distinguished by ordinal numbers corresponding to the formation order.
- the semiconductor layer 260 preferably includes the semiconductor layer 260 a positioned over the insulating layer 366 , the semiconductor layer 260 b positioned over the semiconductor layer 260 a , and the semiconductor layer 260 c that is positioned over the semiconductor layer 260 b and at least partly in contact with the top surface of the semiconductor layer 260 b .
- the semiconductor layer 260 a is provided below the semiconductor layer 260 b , impurities can be inhibited from diffusing into the semiconductor layer 260 b from the structures formed below the semiconductor layer 260 a .
- the semiconductor layer 260 c is provided over the semiconductor layer 260 b , impurities can be inhibited from diffusing into the semiconductor layer 260 b from the structures formed above the semiconductor layer 260 c.
- an oxide semiconductor that is a kind of a metal oxide is preferably used for the semiconductor layer 260 .
- a transistor in which the oxide semiconductor is used in a semiconductor layer where the channel is formed exhibits an extremely low leakage current (off-state current) in the off state.
- the oxide semiconductor can be formed by a sputtering method or the like, a highly integrated semiconductor device can be easily achieved.
- a metal oxide such as In-M-Zn oxide (the element M is one or more kinds selected from gallium, yttrium, tin, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, and the like) is preferably used.
- gallium, yttrium, or tin is preferably used as the element M.
- an In-M oxide, an In—Zn oxide, or an M-Zn oxide may be used as the semiconductor layer 260 .
- the conductive layer 360 functioning as the first gate (top gate) electrode is formed in a self-aligned manner to fill an opening formed in the insulating layer 380 and the like. Forming the conductive layer 360 in this manner allows the conductive layer 360 to be surely positioned in a region between the conductive layer 342 a and the conductive layer 342 b without alignment.
- the conductive layer 360 preferably includes the conductive layer 360 a and the conductive layer 360 b positioned over the conductive layer 360 a .
- the conductive layer 360 a is preferably positioned so as to cover the bottom surface and side surface of the conductive layer 360 b .
- a top surface of the conductive layer 360 is substantially aligned with a top surface of the insulating layer 349 and a top surface of the oxide 260 c.
- the conductive layer 305 sometimes functions as a second gate (also referred to as bottom gate) electrode.
- the threshold voltage (Vth) of the transistor 210 A can be controlled.
- Vth of the transistor 210 A can be higher than 0 V, and its off-state current can be reduced.
- drain current at the time when a potential applied to the conductive layer 360 is 0 V can be lower in the case where a negative potential is applied to the conductive layer 305 than in the case where a negative potential is not applied to the conductive layer 305 .
- the conductive layer 305 and the conductive layer 360 are provided to overlap with the channel formation region of the semiconductor layer 260 provided therebetween, whereby when a voltage is applied to the conductive layer 305 and the conductive layer 360 , an electric field generated from the conductive layer 360 and an electric field generated from the conductive layer 305 are connected and can cover the channel formation region of the semiconductor layer 260 .
- the channel formation region can be electrically surrounded by the electric field of the conductive layer 360 having a function of the first gate electrode and the electric field of the conductive layer 305 having a function of the second gate electrode.
- the transistor structure in which the channel formation region is electrically surrounded by the electric fields of the first gate electrode and the second gate electrode is referred to as a surrounded channel (S-channel) structure.
- the insulating layer 365 and the insulating layer 371 preferably have a function of inhibiting diffusion of hydrogen (for example, at least one of a hydrogen atom, a hydrogen molecule, and the like).
- the insulating layer 365 and the insulating layer 371 preferably have a function of inhibiting diffusion of oxygen (for example, at least one of an oxygen atom and an oxygen molecule, and the like).
- the insulating layer 365 and the insulating layer 371 preferably have a function of inhibiting diffusion of one or both of hydrogen and oxygen than the insulating layer 366 .
- the insulating layer 365 and the insulating layer 371 preferably have a function of inhibiting diffusion of one or both of hydrogen and oxygen than the insulating layer 349 .
- the insulating layer 365 and the insulating layer 371 preferably have a function of inhibiting diffusion of one or both of hydrogen and oxygen than the insulating layer 380 .
- a film having a function of inhibiting diffusion of hydrogen or oxygen may be referred to as a film through which hydrogen or oxygen does not pass easily, a film having low permeability of hydrogen or oxygen, a film having a barrier property against hydrogen or oxygen, or a barrier film against hydrogen or oxygen, for example.
- a barrier film having conductivity is sometimes referred to as a conductive barrier film.
- the insulating layer 371 is preferably in contact with the top surfaces of the conductive layer 342 a and the conductive layer 342 b , the side surfaces of the conductive layer 342 a and the conductive layer 342 b except facing side surfaces of the conductive layer 342 a and the conductive layer 342 b , the side surfaces of the semiconductor layer 260 a and the semiconductor layer 260 b , and the part of the top surface of the insulating layer 366 .
- the insulating layer 380 is electrically isolated from the insulating layer 366 , the semiconductor layer 260 a , and the semiconductor layer 260 b by the insulating layer 371 . This can inhibit entry of impurities such as hydrogen contained in the insulating layer 380 and the like into the insulating layer 366 , the semiconductor layer 260 a , and the semiconductor layer 260 b.
- the transistor 210 A has a structure in which the insulating layer 374 is in contact with the top surfaces of the conductive layer 360 , the insulating layer 349 , and the semiconductor layer 260 c .
- impurities such as hydrogen contained in the insulating layer 381 and the like can be inhibited from entering the insulating layer 349 .
- a transistor having a high on-state current can be provided.
- a transistor with low off-state current can be provided.
- a semiconductor device that has small variations in electrical characteristics, stable electrical characteristics, and high reliability can be provided.
- FIG. 13A is a top view of the transistor 210 B.
- FIG. 13B is a cross-sectional view of a portion indicated by a dashed-dotted line L 1 -L 2 in FIG. 13A .
- FIG. 13C is a cross-sectional view of a portion indicated by a dashed-dotted line W 1 -W 2 in FIG. 13A .
- some components are not shown in the top view of FIG. 13A .
- the transistor 210 B is a variation example of the transistor 210 A. Therefore, differences from the transistor 210 A are mainly described to avoid repeated description.
- the conductive layer 360 functioning as a first gate electrode includes the conductive layer 360 a and the conductive layer 360 b over the conductive layer 360 a .
- the conductive layer 360 a is preferably formed using a conductive material having a function of inhibiting diffusion of impurities such as a hydrogen atom, a hydrogen molecule, a water molecule, and a copper atom.
- a conductive material having a function of inhibiting diffusion of oxygen e.g., at least one of an oxygen atom, an oxygen molecule, and the like).
- the conductive layer 360 a has a function of inhibiting oxygen diffusion
- the range of choices for the material of the conductive layer 360 b can be expanded. That is, the conductive layer 360 a inhibits oxidation of the conductive layer 360 b , thereby preventing the decrease in conductivity of the conductive layer 360 b.
- the insulating layer 371 is preferably provided to cover the top surface and the side surface of the conductive layer 360 , the side surface of the insulating layer 349 , and the side surface of the semiconductor layer 260 c .
- an insulating material having a function of inhibiting diffusion of oxygen and impurities such as water and hydrogen is preferably used.
- aluminum oxide or hafnium oxide is preferably used.
- a metal oxide such as magnesium oxide, gallium oxide, germanium oxide, yttrium oxide, zirconium oxide, lanthanum oxide, neodymium oxide, or tantalum oxide or silicon nitride oxide, silicon nitride, or the like.
- the insulating layer 371 is provided, whereby oxidation of the conductive layer 360 can be inhibited. Moreover, including the insulating layer 371 can inhibit diffusion of impurities such as water and hydrogen contained in the insulating layer 380 into the transistor 210 B.
- the transistor 210 B has the conductive layer 360 overlapping with part of the conductive layer 342 a and part of the conductive layer 342 b and thus tends to have larger parasitic capacitance than the transistor 210 A. Thus, the transistor 210 B tends to have a lower operation frequency than the transistor 210 A. However, the transistor 210 B does not require a step of embedding the conductive layer 360 , the insulating layer 349 , and the like in the opening formed in the insulating layer 380 and the like; thus, the productivity is higher than that of the transistor 210 A.
- This embodiment can be implemented in combination with any of the configurations described in the other embodiments and the like, as appropriate.
- FIG. 19 is a drawing illustrating a configuration of a semiconductor device of one embodiment of the present invention.
- a semiconductor device 800 described in this embodiment includes the semiconductor device 100 and the semiconductor device 700 (see FIG. 19 ).
- the semiconductor device described in Embodiment 2 can be used as the semiconductor device 100 , for example.
- the semiconductor device described in Embodiment 1 can be used as the semiconductor device 700 , for example.
- the semiconductor device 100 has a function of supplying a predetermined current or a predetermined voltage.
- the semiconductor device 100 is electrically connected to the second semiconductor device 700 , and the semiconductor device 100 is supplied with the control signal CI 1 .
- the semiconductor device 100 operates in accordance with the control signal CI 1 .
- the semiconductor device 100 can stop power supply in accordance with the control signal CI 1 , for example.
- the control signal CI′ is supplied to the input/output circuit 106 , and the control circuit 105 makes the current adjustment circuit 104 stop power supply, in accordance with the signal CI′ (see FIG. 17 ).
- the sensor unit 702 includes a voltage sensor VD.
- the voltage sensor VD measures a voltage that is required when a predetermined current is supplied.
- the memory unit 701 B retains standard data DATA on voltage.
- a difference generated between the standard data DATA and the voltage to be sensed, which exceeds the allowable difference information TI, can be monitored.
- anomaly of the first semiconductor device 100 connected to the second semiconductor device 700 can be monitored through the use of the voltage.
- anomaly of a load connected to the first semiconductor device 100 can be monitored through the use of the voltage.
- the sensor unit 702 includes a current sensor CD, and the current sensor CD measures a current that is required when a predetermined voltage is supplied.
- the memory unit 701 B retains standard data DATA on current.
- a difference generated between the standard data DATA and the current to be sensed, which exceeds the allowable difference information TI, can be monitored.
- anomaly of the first semiconductor device 100 electrically connected to the second semiconductor device 700 can be monitored through the use of the current.
- anomaly of a load electrically connected to the first semiconductor device 100 can be monitored through the use of the current.
- the sensor unit 702 includes a terminal TT (see FIG. 1A ).
- the terminal TT is supplied with a sensor signal related to temperature.
- the memory unit 701 B retains standard data DATA on temperature.
- a difference generated between the standard data DATA and the temperature to be sensed, which exceeds the allowable difference information TI, can be monitored.
- anomaly of the first semiconductor device 100 connected to the second semiconductor device 700 or a load can be monitored through the use of the temperature.
- a novel semiconductor device that is highly convenient or reliable can be provided.
- This embodiment can be implemented in combination with any of the configurations described in the other embodiments and the like, as appropriate.
- FIG. 19 is a drawing illustrating a configuration of a secondary battery system of one embodiment of the present invention.
- the secondary battery system described in this embodiment includes the secondary battery 200 and the semiconductor device 800 .
- the semiconductor device 800 described in Embodiment 5, for example, can be used.
- the secondary battery 200 is electrically connected to the semiconductor device 800 .
- a voltage exceeding the allowable difference information TI that is applied to the secondary battery 200 while being charged with a constant current can be sensed, for example.
- a current exceeding the allowable difference information TI that flows through the secondary battery 200 while being charged with a constant voltage can be sensed.
- a control signal can be supplied in accordance with the allowable difference information TI that is derived from the characteristics of the secondary battery 200 .
- the secondary battery system described in this embodiment includes the secondary battery 200 and the semiconductor device 800 .
- the secondary battery 200 is electrically connected to the semiconductor device 800 .
- the secondary battery 200 includes a battery cell and a temperature sensor TD.
- the semiconductor device 800 described in Embodiment 5, for example, can be used.
- the temperature sensor TD is electrically connected to the terminal TT, and the temperature sensor TD senses the temperature of the battery cell.
- the amount of temperature change exceeding the allowable difference information TI of the secondary battery 200 while being charged can be sensed, for example.
- a novel secondary battery system that is highly convenient or reliable can be provided.
- This embodiment can be implemented in combination with any of the configurations described in the other embodiments and the like, as appropriate.
- a cylindrical secondary battery 600 will be described as an example of the secondary battery 200 , with reference to FIG. 14A and FIG. 14B .
- the cylindrical secondary battery 600 includes a positive electrode cap (battery lid) 601 on a top surface and a battery can (outer can) 602 on a side surface and a bottom surface.
- the positive electrode cap (battery lid) 601 and the battery can (outer can) 602 are insulated from each other by a gasket (insulating packing) 610 .
- FIG. 14B is a diagram schematically showing a cross-section of the cylindrical secondary battery.
- a battery element in which a belt-like positive electrode 604 and a belt-like negative electrode 606 are wound with a separator 605 located therebetween is provided.
- the battery element is wound centering around a center pin.
- One end of the battery can 602 is closed and the other end thereof is opened.
- a metal having corrosion resistance to an electrolyte solution such as nickel, aluminum, or titanium, an alloy of such a metal, or an alloy of such a metal and another metal (e.g., stainless steel or the like) can be used.
- the battery can 602 is preferably covered with nickel, aluminum, or the like in order to prevent corrosion due to the electrolyte solution.
- the battery element in which the positive electrode 604 , the negative electrode 606 , and the separator 605 are wound is sandwiched between a pair of insulating plates 608 and 609 that face each other.
- a nonaqueous electrolyte solution (not shown) is injected inside the battery can 602 provided with the battery element.
- the secondary battery is composed of a positive electrode containing an active material such as lithium cobalt oxide (LiCoO 2 ) or lithium iron phosphate (LiFePO 4 ), a negative electrode composed of a carbon material such as graphite capable of occluding and releasing lithium ions, a nonaqueous electrolyte solution in which an electrolyte composed of lithium salt such as LiBF 4 or LiPF 6 is dissolved in an organic solvent such as ethylene carbonate or diethyl carbonate, and the like.
- an active material such as lithium cobalt oxide (LiCoO 2 ) or lithium iron phosphate (LiFePO 4 )
- a negative electrode composed of a carbon material such as graphite capable of occluding and releasing lithium ions
- a nonaqueous electrolyte solution in which an electrolyte composed of lithium salt such as LiBF 4 or LiPF 6 is dissolved in an organic solvent such as ethylene carbonate or diethyl carbonate, and the like
- a positive electrode terminal (positive electrode current collector lead) 603 is connected to the positive electrode 604
- a negative electrode terminal (negative electrode current collector lead) 607 is connected to the negative electrode 606 .
- a metal material such as aluminum can be used for both the positive electrode terminal 603 and the negative electrode terminal 607 .
- the positive electrode terminal 603 and the negative electrode terminal 607 are resistance-welded to a safety valve mechanism 612 and the bottom of the battery can 602 , respectively.
- the safety valve mechanism 612 is electrically connected to the positive electrode cap 601 through a PTC element (Positive Temperature Coefficient) 611 .
- the safety valve mechanism 612 cuts off electrical connection between the positive electrode cap 601 and the positive electrode 604 when the internal pressure of the battery exceeds a predetermined threshold value.
- the PTC element 611 is a thermally sensitive resistor whose resistance increases as temperature rises, and limits the amount of current by increasing the resistance to prevent abnormal heat generation. Barium titanate (BaTiO 3 )-based semiconductor ceramics or the like can be used for the PTC element 611 .
- a lithium-ion secondary battery using an electrolyte solution includes a positive electrode, a negative electrode, a separator, an electrolyte solution, and an exterior body. Note that in a lithium-ion secondary battery, an anode and a cathode are interchanged in charging and discharging, and oxidation reaction and reduction reaction are interchanged; thus, an electrode with a high reaction potential is called a positive electrode and an electrode with a low reaction potential is called a negative electrode.
- the positive electrode is referred to as a “positive electrode” or a “+ electrode (plus electrode)” and the negative electrode is referred to as a “negative electrode” or a “ ⁇ electrode (minus electrode)” in either of the case where charging is performed or the case where discharging is performed.
- the use of terms “anode” and “cathode” related to oxidation reaction and reduction reaction might cause confusion because the anode and the cathode interchange in charging and in discharging. Thus, the terms “anode” and “cathode” are not used in this specification.
- anode or the cathode is which of the one in charging or in discharging and corresponds to which of the positive electrode (plus electrode) or the negative electrode (minus electrode).
- an example of a lithium-ion secondary battery is shown; however, it is not limited to a lithium-ion secondary battery and a material including an element A, an element X, and oxygen can be used as a positive electrode material for the secondary battery, for example.
- the element A is preferably one or more selected from the Group 1 elements and the Group 2 elements.
- the Group 1 element for example, an alkali metal such as lithium, sodium, or potassium can be used.
- the Group 2 element for example, calcium, beryllium, magnesium, or the like can be used.
- the element X for example, one or more selected from metal elements, silicon, and phosphorus can be used.
- the element X is preferably one or more selected from cobalt, nickel, manganese, iron, and vanadium.
- Typical examples include lithium-cobalt composite oxide (LiCoO 2 ) and lithium iron phosphate (LiFePO 4 ).
- the negative electrode includes a negative electrode active material layer and a negative electrode current collector.
- the negative electrode active material layer may contain a conductive additive and a binder.
- a negative electrode active material an element that enables charge-discharge reaction by alloying reaction and dealloying reaction with lithium can be used.
- a material containing at least one of silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, indium, and the like can be used.
- Such elements have higher capacity than carbon.
- silicon has a high theoretical capacity of 4200 mAh/g.
- the secondary battery preferably includes a separator.
- a separator for example, fiber containing cellulose such as paper; nonwoven fabric; glass fiber; ceramics; synthetic fiber using nylon (polyamide), vinylon (polyvinyl alcohol-based fiber), polyester, acrylic, polyolefin, or polyurethane; or the like can be used.
- This embodiment can be implemented in combination with any of the configurations described in the other embodiments and the like, as appropriate.
- the semiconductor device of one embodiment of the present invention can be mounted on a variety of electronic devices.
- electronic devices include a digital camera, a digital video camera, a digital photo frame, a mobile phone, a portable game console, a portable information terminal, and an audio reproducing device in addition to electronic devices provided with a relatively large screen, such as a television device, a desktop or laptop personal computer, a monitor for a computer and the like, digital signage, and a large game machine like a pachinko machine.
- Vehicles such as an automobile, a bicycle, a ship, and an airplane can also be categorized as electronic devices.
- the semiconductor device of one embodiment of the present invention can be used for a battery charge monitoring device incorporated in any of the electronic devices.
- the electronic device may include an antenna. When a signal is received by the antenna, the electronic device can display a video, data, or the like on the display portion.
- the antenna may be used for contactless power transmission.
- the electronic device in may include a sensor (a sensor having a function of measuring force, displacement, position, speed, acceleration, angular velocity, rotational frequency, distance, light, liquid, magnetism, temperature, a chemical substance, sound, time, hardness, electric field, current, voltage, electric power, radiation, flow rate, humidity, gradient, oscillation, a smell, or infrared rays).
- a sensor a sensor having a function of measuring force, displacement, position, speed, acceleration, angular velocity, rotational frequency, distance, light, liquid, magnetism, temperature, a chemical substance, sound, time, hardness, electric field, current, voltage, electric power, radiation, flow rate, humidity, gradient, oscillation, a smell, or infrared rays.
- the electronic device can have a variety of functions.
- the electronic device can have a function of displaying a variety of data (a still image, a moving image, a text image, and the like) on the display portion, a touch panel function, a function of displaying a calendar, date, time, and the like, a function of executing a variety of software (programs), a wireless communication function, and a function of reading out a program or data stored in a recording medium.
- FIG. 15 shows examples of vehicles each using the semiconductor device of one embodiment of the present invention and a secondary battery.
- a secondary battery 8024 in an automobile 8400 shown in FIG. 15A not only drives an electric motor 8406 but also can supply power to a light-emitting device such as a headlamp 8401 or a room light (not shown).
- a battery module using a plurality of cylindrical secondary batteries 600 shown in FIGS. 14A and 14B can be used for the secondary battery 8024 in the automobile 8400 .
- a charge monitoring device 8025 includes the semiconductor device of one embodiment of the present invention, and performs charging of the secondary battery 8024 in accordance with the ambient temperature.
- An automobile 8500 shown in FIG. 15B includes a secondary battery and can be charged when the secondary battery is supplied with electric power through external charging equipment by a plug-in system, a contactless power feeding system, or the like.
- FIG. 15B shows a state where a secondary battery 8024 incorporated in the automobile 8500 is charged with the use of a ground-based charging device 8021 through a cable 8022 .
- the charge monitoring device 8025 including the semiconductor device of one embodiment of the present invention, charging can be performed in accordance with the ambient temperature. Note that a charge monitoring device including the semiconductor device of one embodiment of the present invention can be provided in the charging device 8021 .
- Charging is performed as appropriate by a given method such as CHAdeMO (registered trademark) or Combined Charging System as a charging method, the standard of a connector, or the like.
- the charging device 8021 may be a charging station provided in a commerce facility or a power source in a house.
- the secondary battery 8024 incorporated in the automobile 8500 can be charged by power supply from the outside.
- Charging can be performed by converting AC power into DC power through a converter such as an ACDC converter.
- the vehicle may incorporate a power receiving device so that it can be charged by being supplied with electric power from an above-ground power transmitting device in a contactless manner.
- a power transmitting device in a road or an exterior wall enables charging to be performed not only while the vehicle is parked but also while the vehicle is moving.
- the contactless power feeding system may be utilized to perform transmission and reception of electric power between vehicles.
- a solar cell may be provided on the exterior of the vehicle to charge the secondary battery when the vehicle is parked or moving.
- an electromagnetic induction method or a magnetic resonance method can be used.
- FIG. 15C shows an example of a motorcycle including a secondary battery.
- a motor scooter 8600 shown in FIG. 15C includes a secondary battery 8602 , a charge monitoring device 8625 , side mirrors 8601 , and direction indicator lamps 8603 .
- the secondary battery 8602 can supply electricity to the direction indicator lamps 8603 .
- charging of the secondary battery 8602 can be performed in accordance with the ambient temperature.
- the secondary battery 8602 can be stored in an under-seat storage 8604 .
- the secondary battery 8602 can be stored in the under-seat storage 8604 even when the under-seat storage 8604 is small.
- the semiconductor device of one embodiment of the present invention can be used in a device including a secondary battery and a wireless nodule, not being limited to a vehicle.
- FIG. 16A shows an example of a mobile phone.
- a mobile phone 7400 includes operation buttons 7403 , an external connection port 7404 , a speaker 7405 , a microphone 7406 , and the like in addition to a display portion 7402 incorporated in a housing 7401 .
- the mobile phone 7400 includes a power storage device 7407 and a charge monitoring device of the power storage device 7407 .
- FIG. 16B is a projection diagram for illustrating an example of an external view of an information processing device 1200 .
- the information processing device 1200 described in this embodiment includes an arithmetic device, an input/output device, a housing 1210 , a display portion 1230 , a display portion 1240 , a power storage device 1250 , and a charge monitoring device.
- the information processing device 1200 includes a communication portion, and has a function of supplying information to a network and a function of obtaining information from the network. In addition, information distributed in a specific area can be received using the communication portion and image data can be generated based on the received information.
- the information processing device 1200 can function as a personal computer when a screen in which a keyboard is displayed is set as a touch input panel, either in the display portion 1230 or the display portion 1240 .
- the charge monitoring device of a secondary battery of one embodiment of the present invention may be provided in wearable devices shown in FIG. 16C .
- the charge monitoring device may be provided in a glasses-type device 400 shown in FIG. 16C .
- the glasses-type device 400 includes a frame 400 a , a display portion 400 b , and a wireless module.
- a temple portion of the frame 400 a with curvature may be provided with a power storage device, a charge monitoring device, and a wireless module.
- the provision of the charge monitoring device can reduce the deterioration of the power storage device and prevent continuous operating time from decreasing. In addition, charging anomaly becomes less likely to occur and the glasses-type device 400 can be safer.
- a headset-type device 401 can be provided with a power storage device, a charge monitoring device, and a wireless module.
- the headset-type device 401 includes at least a microphone portion 401 a , a flexible pipe 401 b , and an earphone portion 401 c .
- the power storage device, the charge monitoring device, and the wireless module can be provided in the flexible pipe 401 b or the earphone portion 401 c.
- the charge monitoring device can also be provided in a device 402 that can be directly attached to a human body.
- a power storage device 402 b and a charge monitoring device of the power storage device can be provided in a thin housing 402 a of the device 402 .
- the charge monitoring device can also be provided in a device 403 that can be attached to clothing.
- a power storage device 403 b and a charge monitoring device of the power storage device can be provided in a thin housing 403 a of the device 403 .
- the charge monitoring device can also be provided in a watch-type device 405 .
- the watch-type device 405 includes a display portion 405 a and a belt portion 405 b , and a power storage device and a charge monitoring device of the power storage device can be provided in the display portion 405 a or the belt portion 405 b.
- the display portion 405 a can display various kinds of information such as reception information of an e-mail or an incoming call in addition to time.
- the watch-type device 405 is a type of wearable device that is directly wrapped around an arm, a sensor that measures pulse, blood pressure, or the like of a user can be provided therein. Data on the exercise quantity and health of the user can be stored to be used for health maintenance.
- the belt-type device 406 includes a belt portion 406 a and a wireless power-feeding/power-receiving portion 406 b , and the power storage device, the charge monitoring device, and a wireless module can be provided in the belt-portion 406 a.
- FIG. 16D is a perspective diagram of a device called a cigarette smoking device (electronic cigarette).
- a cigarette smoking device electronic cigarette
- an electronic cigarette 7410 is composed of an atomizer 7411 including a heating element, a power storage device 7414 that supplies power to the atomizer, and a cartridge 7412 including a liquid supply bottle, a sensor, and the like.
- a charge monitoring device of a power storage device may be electrically connected to the power storage device 7414 .
- the power storage device 7414 shown in FIG. 16D includes an external terminal for connection to a charger. When the power storage device 7414 is held, the power storage device 7414 becomes a tip portion; thus, it is desirable that the power storage device 7414 have a short total length and be lightweight.
- 100 semiconductor device, 101 : memory element, 102 : memory element, 103 : comparison circuit, 104 : current adjustment circuit, 105 : control circuit, 106 : input/output circuit, 110 : electrode, 112 : electrode, 114 : insulating layer, 115 : insulating layer, 116 : insulating layer, 120 : electrode, 130 : insulating layer, 150 : integrated circuit, 152 : electrode, 153 : electrode, 154 insulating layer, 156 : insulating layer, 160 : integrated circuit, 200 : secondary battery, 210 : transistor, 700 : semiconductor device, 701 ( i ): memory element, 701 : memory unit, 702 : sensor unit, 703 : determination unit, 705 : control unit, 750 : integrated circuit, 760 : integrated circuit, 800 : semiconductor device
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Semiconductor Memories (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018220233 | 2018-11-26 | ||
JP2018-220233 | 2018-11-26 | ||
PCT/IB2019/059724 WO2020109901A1 (ja) | 2018-11-26 | 2019-11-13 | 半導体装置、二次電池システム |
Publications (1)
Publication Number | Publication Date |
---|---|
US20210391604A1 true US20210391604A1 (en) | 2021-12-16 |
Family
ID=70854413
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/291,021 Pending US20210391604A1 (en) | 2018-11-26 | 2019-11-13 | Semiconductor device and secondary battery system |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210391604A1 (enrdf_load_stackoverflow) |
JP (2) | JP7419258B2 (enrdf_load_stackoverflow) |
WO (1) | WO2020109901A1 (enrdf_load_stackoverflow) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220011357A1 (en) * | 2006-11-16 | 2022-01-13 | Semiconductor Energy Laboratory Co., Ltd. | Radio field intensity measurement device, and radio field intensity detector and game console using the same |
US11961979B2 (en) | 2018-07-10 | 2024-04-16 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US12266957B2 (en) | 2019-02-25 | 2025-04-01 | Semiconductor Energy Laboratory Co., Ltd. | Protection circuit for secondary battery and abnormality detection system of secondary battery |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008043188A (ja) * | 2006-07-12 | 2008-02-21 | Nissan Motor Co Ltd | 二次電池の入出力電力制御装置及び入出力電力制御方法 |
US20110057684A1 (en) * | 2009-09-10 | 2011-03-10 | Seok-Woo Choi | Transceiver system, semiconductor device thereof, and data transceiving method of the same |
US20110182109A1 (en) * | 2009-07-28 | 2011-07-28 | Yuichiro Ikeda | Variable resistance nonvolatile memory device and programming method for same |
US20130247117A1 (en) * | 2010-11-25 | 2013-09-19 | Kazunori Yamada | Communication device |
US20190012133A1 (en) * | 2014-12-19 | 2019-01-10 | Dolby Laboratories Licensing Corporation | Audio Benchmarking with Simulated Real Time Processing of Audio |
US20190275889A1 (en) * | 2018-03-08 | 2019-09-12 | Toyota Jidosha Kabushiki Kaisha | Electrified vehicle and control method for electrified vehicle |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3029664B2 (ja) * | 1990-11-06 | 2000-04-04 | 株式会社東芝 | バッテリー駆動パーソナルコンピュータ |
JPH05168169A (ja) * | 1991-12-16 | 1993-07-02 | Matsushita Electric Works Ltd | 充電制御回路 |
JPH10201124A (ja) * | 1997-01-09 | 1998-07-31 | Takashi Toyomura | 電力貯蔵手段の充電システム |
JP3774995B2 (ja) * | 1997-06-20 | 2006-05-17 | 宇部興産株式会社 | リチウムイオン二次電池の充電方法およびその充電装置 |
JP4013289B2 (ja) * | 1997-06-30 | 2007-11-28 | 宇部興産株式会社 | 非水系二次電池の充電方法およびその充電装置 |
JPH1128642A (ja) * | 1997-07-07 | 1999-02-02 | Toyota Motor Corp | 設備異常検出装置 |
JPH1123680A (ja) * | 1997-07-09 | 1999-01-29 | Fuji Elelctrochem Co Ltd | 鉛蓄電池の寿命判定方法および寿命判定装置 |
JPH1174001A (ja) * | 1997-09-01 | 1999-03-16 | Shin Kobe Electric Mach Co Ltd | 鉛蓄電池の充電方法 |
JP2003009406A (ja) * | 2001-06-22 | 2003-01-10 | Matsushita Electric Ind Co Ltd | 二次電池の状態演算装置 |
JP5029862B2 (ja) * | 2006-03-31 | 2012-09-19 | 日立工機株式会社 | 充電装置 |
JP2008141907A (ja) * | 2006-12-05 | 2008-06-19 | Matsushita Electric Ind Co Ltd | 温度保護機能付充電装置 |
JP4660523B2 (ja) * | 2007-09-19 | 2011-03-30 | レノボ・シンガポール・プライベート・リミテッド | 電池セルの表面温度で充電制御する充電システム |
JP2010200553A (ja) * | 2009-02-26 | 2010-09-09 | Sanyo Electric Co Ltd | 車両用の電源装置 |
JP2011109802A (ja) * | 2009-11-17 | 2011-06-02 | Sanyo Electric Co Ltd | パック電池および充電システム |
US9454197B2 (en) * | 2011-01-28 | 2016-09-27 | Renesas Electronics Corporation | Controller and semiconductor system |
JP2012252887A (ja) * | 2011-06-03 | 2012-12-20 | Toyota Industries Corp | 外部環境からの熱量を考慮した温調制御システム |
JP6012263B2 (ja) * | 2011-06-09 | 2016-10-25 | 株式会社半導体エネルギー研究所 | 半導体記憶装置 |
JP2013115862A (ja) * | 2011-11-25 | 2013-06-10 | Sharp Corp | 充電装置、電気機器、および、クーロンカウンタ |
JP2014064354A (ja) * | 2012-09-20 | 2014-04-10 | Fanuc Ltd | 異常検出機能を有するデジタル制御電源 |
US9614258B2 (en) * | 2012-12-28 | 2017-04-04 | Semiconductor Energy Laboratory Co., Ltd. | Power storage device and power storage system |
JP2015041388A (ja) * | 2013-08-20 | 2015-03-02 | 株式会社半導体エネルギー研究所 | 記憶装置、及び半導体装置 |
JP2015156319A (ja) * | 2014-02-20 | 2015-08-27 | セイコーインスツル株式会社 | 電気化学セルユニット制御方法および電気化学セルユニット |
JP6622380B2 (ja) * | 2016-03-10 | 2019-12-18 | 株式会社東芝 | 蓄電池装置及び方法 |
-
2019
- 2019-11-13 WO PCT/IB2019/059724 patent/WO2020109901A1/ja active Application Filing
- 2019-11-13 US US17/291,021 patent/US20210391604A1/en active Pending
- 2019-11-13 JP JP2020557015A patent/JP7419258B2/ja active Active
-
2024
- 2024-01-10 JP JP2024001681A patent/JP2024032759A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008043188A (ja) * | 2006-07-12 | 2008-02-21 | Nissan Motor Co Ltd | 二次電池の入出力電力制御装置及び入出力電力制御方法 |
US20110182109A1 (en) * | 2009-07-28 | 2011-07-28 | Yuichiro Ikeda | Variable resistance nonvolatile memory device and programming method for same |
US20110057684A1 (en) * | 2009-09-10 | 2011-03-10 | Seok-Woo Choi | Transceiver system, semiconductor device thereof, and data transceiving method of the same |
US20130247117A1 (en) * | 2010-11-25 | 2013-09-19 | Kazunori Yamada | Communication device |
US20190012133A1 (en) * | 2014-12-19 | 2019-01-10 | Dolby Laboratories Licensing Corporation | Audio Benchmarking with Simulated Real Time Processing of Audio |
US20190275889A1 (en) * | 2018-03-08 | 2019-09-12 | Toyota Jidosha Kabushiki Kaisha | Electrified vehicle and control method for electrified vehicle |
Non-Patent Citations (1)
Title |
---|
INPUT/OUTPUT ELECTRIC POWER CONTROL DEVICE AND METHOD FOR SECONDARY BATTERY (Year: 2007) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220011357A1 (en) * | 2006-11-16 | 2022-01-13 | Semiconductor Energy Laboratory Co., Ltd. | Radio field intensity measurement device, and radio field intensity detector and game console using the same |
US11656258B2 (en) * | 2006-11-16 | 2023-05-23 | Semiconductor Energy Laboratory Co., Ltd. | Radio field intensity measurement device, and radio field intensity detector and game console using the same |
US11961979B2 (en) | 2018-07-10 | 2024-04-16 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US12266957B2 (en) | 2019-02-25 | 2025-04-01 | Semiconductor Energy Laboratory Co., Ltd. | Protection circuit for secondary battery and abnormality detection system of secondary battery |
Also Published As
Publication number | Publication date |
---|---|
WO2020109901A1 (ja) | 2020-06-04 |
JPWO2020109901A1 (enrdf_load_stackoverflow) | 2020-06-04 |
JP7419258B2 (ja) | 2024-01-22 |
JP2024032759A (ja) | 2024-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12051924B2 (en) | Semiconductor device and charge control system | |
US11961979B2 (en) | Semiconductor device | |
US11990778B2 (en) | Secondary battery protection circuit and secondary battery anomaly detection system | |
CN112930636B (zh) | 蓄电装置及蓄电装置的工作方法 | |
US12062764B2 (en) | Semiconductor device | |
JP2024032759A (ja) | 半導体装置、二次電池システム | |
US20230336006A1 (en) | Control Circuit And Electronic Device | |
US20250015614A1 (en) | Semiconductor device and battery pack | |
US11988720B2 (en) | Semiconductor device and battery pack | |
US12040653B2 (en) | Charge control circuit and abnormality detection system of secondary battery | |
US11531362B2 (en) | Amplifier circuit, latch circuit, and sensing device | |
US20220190398A1 (en) | Semiconductor device, battery pack, and electronic device | |
US20250046864A1 (en) | Solid-state secondary battery and manufacturing method thereof | |
US12334507B2 (en) | Solid-state secondary battery | |
US11867503B2 (en) | Anomaly detection system for secondary battery | |
US11791640B2 (en) | Overdischarge prevention circuit of secondary battery and secondary battery module | |
US20220368149A1 (en) | Power storage device and operation method of power storage device | |
US11996133B2 (en) | Memory circuit using oxide semiconductor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SEMICONDUCTOR ENERGY LABORATORY CO., LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATSUZAKI, TAKANORI;IKEDA, TAKAYUKI;KOZUMA, MUNEHIRO;AND OTHERS;SIGNING DATES FROM 20210421 TO 20210422;REEL/FRAME:056124/0630 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: FINAL REJECTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |