US20200172895A1 - Using split deaminases to limit unwanted off-target base editor deamination - Google Patents

Using split deaminases to limit unwanted off-target base editor deamination Download PDF

Info

Publication number
US20200172895A1
US20200172895A1 US16/615,538 US201816615538A US2020172895A1 US 20200172895 A1 US20200172895 A1 US 20200172895A1 US 201816615538 A US201816615538 A US 201816615538A US 2020172895 A1 US2020172895 A1 US 2020172895A1
Authority
US
United States
Prior art keywords
split
ncas9
cell
deaminase
fusion protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
US16/615,538
Other languages
English (en)
Inventor
J. Keith Joung
James Angstman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Hospital Corp
Original Assignee
General Hospital Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Hospital Corp filed Critical General Hospital Corp
Priority to US16/615,538 priority Critical patent/US20200172895A1/en
Publication of US20200172895A1 publication Critical patent/US20200172895A1/en
Assigned to THE GENERAL HOSPITAL CORPORATION reassignment THE GENERAL HOSPITAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANGSTMAN, James, JOUNG, J. KEITH
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4703Inhibitors; Suppressors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0647Haematopoietic stem cells; Uncommitted or multipotent progenitors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/80Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
    • C07K2319/81Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor containing a Zn-finger domain for DNA binding
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04001Cytosine deaminase (3.5.4.1)

Definitions

  • Described herein are methods and compositions for improving the genome-wide specificities of targeted base editing technologies.
  • BE Base editing technologies use an engineered DNA binding domain (such as RNA-guided, catalytically inactive Cas9 (dead Cas9 or dCas9), a nickase version of Cas9 (nCas9), or zinc finger (ZF) arrays) to recruit a cytosine deaminase domain to a specific genomic location to effect site-specific cytosine ⁇ thymine transition substitutions 1,2 .
  • BEs are a particularly attractive tool for treating genetic diseases that manifest in cellular contexts where making precise mutations by homology directed repair (HDR) would be therapeutically beneficial but are difficult to create with traditional nuclease-based genome editing technology.
  • HDR homology directed repair
  • HDR high-length indel mutations
  • BE technology has the potential to allow practitioners to make highly controllable, highly precise mutations without the need for cell-type-variable DNA repair mechanisms.
  • Base editor platforms possess the unique capability to generate precise, user-defined genome-editing events without the need for a donor DNA molecule.
  • Base Editors that include a single strand nicking CRISPR-Cas9 (nCas9) protein fused to cytosine deaminase domain and uracil glycosylase inhibitor (UGI) domains (e.g., BE3) efficiently induce cytosine-to-thymine (C-to-T) base transitions in a site-specific manner as determined by the CRISPR guide RNA (gRNA) spacer sequence 1 .
  • BEs that use split deaminases (sDA) that are functional when brought into close proximity to each other, one fused to a ZF and one to an nCas9-UGI protein comprising one or more UGIs, so as to limit the ability of the deaminase domain from deaminating at off-target ssDNA target sites independent of nCas9 R-loop formation.
  • sDA split deaminases
  • fusion proteins comprising: (i) a first portion of a split deaminase (“sDA1”) enzyme fused to a programmable DNA-binding domain, preferably selected from the group consisting of such as a ZF, TALE, Cas9, catalytically inactive Cas9 (dCas9) or Cas9 ortholog (i.e., a homologous protein from another species such as dCpf1), nicking Cas9 (nCas9) or nicking Cas9 ortholog, wherein the sDA1 is an N-terminal truncated, catalytically inactive or deficient derivative of a parental deaminase selected from the group consisting of hAID, rAPOBEC1, mAPOBEC3, hAPOBEC3A, hAPOBEC3B, hAPOBEC3C, hAPOBEC3F, hAPOBEC3G, or hAPOBEC3H, and variants thereof,
  • the split deaminases are not full length proteins, but are fragments thereof, wherein the co-expression of a fusion protein of (i) with a fusion protein of (ii) comprising a sDA1 and sDA2 portion from the same parental deaminase in eukaryotic cells, and their subsequent co-localization at adjacent genomic target sites, provides a catalytically active base-editor.
  • sDA1 and sDA2 are used herein to refer to the first and second split deaminases generally, and do not refer specifically to the exemplary split deaminases described herein.
  • nucleic acids encoding the fusion proteins described herein, and compositions comprising one or more of those nucleic acids, e.g., wherein the nucleic acids encode a pair of the fusion proteins, e.g., comprising a SDA1 and SDA2 portion from the same parental deaminase.
  • vectors comprising the nucleic acids, and isolated host cells comprising and optionally expressing the nucleic acids.
  • the host cell is a stem cell, e.g., a hematopoietic stem cell.
  • fusion proteins described herein comprising a SDA1 and SDA2 portion from the same parental deaminase, as well as one or more gRNAs that interact with Cas9 domains in the fusion proteins.
  • one of the fusion proteins comprises nCas9
  • the other fusion protein comprises ZF or TALE
  • the ZF or TALE is targeted to a sequence of 9-24 bp adjacent to the target site of the gRNA for the nCas9, wherein the gRNA binds to the nucleic acid comprising the selected cytosine.
  • the nucleic acid is in a cell, e.g., a eukaryotic cell, and the method comprises contact the cell with the fusion proteins or expressing the fusion proteins in the cell.
  • one of the fusion proteins comprises nCas9
  • the other fusion protein comprises ZF or TALE
  • the ZF or TALE is targeted to a sequence of 9-24 bp adjacent to the target site of the gRNA for the nCas9, wherein the gRNA binds to the nucleic acid comprising the selected cytosine.
  • the fusion protein is delivered as an RNP, mRNA, or plasmid.
  • compositions comprising a purified fusion protein or pair of fusion proteins described herein, preferably a pair of fusion proteins described herein comprising a sDA1 and sDA2 portion from the same parental deaminase, an optionally one or more gRNAs that interact with Cas9 domains in the fusion proteins.
  • the composition comprise one or more ribonucleoprotein (RNP) complexes.
  • RNP ribonucleoprotein
  • the fusion protein is delivered as an RNP, mRNA, or plasmid DNA.
  • Also provided herein are methods for deaminating a selected cytosine in a nucleic acid the method comprising contacting the nucleic acid with a fusion protein or base editing system described herein.
  • compositions comprising a purified a fusion protein or base editing system as described herein.
  • nucleic acids encoding a fusion protein or base editing system described herein, as well as vectors comprising the nucleic acids, and host cells comprising the nucleic acids, e.g., stem cells, e.g., hematopoietic stem cells.
  • FIG. 1 Diagram of an exemplary typical high efficiency base editing setup.
  • a nicking Cas9 bearing a catalytically inactivating mutation at one of its two nuclease domains binds to the target site dictated by the variable spacer sequence of the gRNA.
  • the formation of a stable R-loop creates a ssDNA editing window on the non-deaminated strand.
  • the Cas9 creates a single strand break in the genomic DNA, prompting the host cell to repair the lesion using the deaminated strand as a template, thus biasing repair towards the cytosine ⁇ thymine transition substitution. See Komor et al., 2016.
  • FIGS. 2A-2G Schematic representation of: 2A.) First-generation base editor targeting and deaminating at an on-target site, with a deaminase targeting an R-loop generated by an on-target nCas9.
  • 2B. First-generation base-editor binding to and deaminating an off-target genomic R-loop independent of its nCas9 targeting capabilities.
  • 2C. First-generation base-editor binding to and deaminating an off-target genomic transcription bubble independent of its nCas9 targeting capabilities.
  • FIGS. 3A-3B hAPOBEC3G with representative candidate split sites. Multiple rotational views of the hAPOBEC3G structure are shown. Magenta colored loop regions are candidate split sites selected on the bases of their lack of secondary structures and their distance from the catalytic center. PDB: 3E1U.
  • FIG. 4 C-to-T transition mutations in the integrated EGFP gene from a split rAPO1 base editor architecture consisting of adjacently-targeting N-sDA1.1-3AC3L-ZF-C and N-sDA2.1-nCas9-UGI-C proteins in several indicated orientations. Conversion rates at each position are indicated by shaded boxes with overlaid percentage numbers for residues in which significant mutation was observed. Orientation information is depicted, with arrows representing gRNA binding sites (with the arrow pointing in the direction of the PAM) and ZF binding sites (with the arrow indicating the direction of ZF binding in reference to N ⁇ C orientation). Approximate editing windows (residues 4-8 in the gRNA target site) are indicated.
  • FIG. 5 C-to-T transition mutations in the integrated EGFP gene from a split rAPO1 base editor architecture consisting of adjacently-targeting N-sDA1.1-3AC3L-ZF-C and N-sDA2.2-nCas9-UGI-C proteins in several indicated orientations. Conversion rates at each position are indicated by shaded boxes with overlaid percentage numbers for residues in which significant mutation was observed. Orientation information is depicted, with arrows representing gRNA binding sites (with the arrow pointing in the direction of the PAM) and ZF binding sites (with the arrow indicating the direction of ZF binding in reference to N ⁇ C orientation). Approximate editing windows (residues 4-8 in the gRNA target site) are indicated. Experiments were performed in duplicate and sequencing from each sample is shown independently. The sDA1.1 and sDA2.2 pair did not stimulate discernable C-to-T conversion in any orientation attempted. EGFP target sequence,
  • FIG. 6 C-to-T transition mutations in the integrated EGFP gene from a split rAPO1 base editor architecture consisting of adjacently-targeting N-sDA1.2-3AC3L-ZF-C and N-sDA2.1-nCas9-UGI-C proteins in several indicated orientations. Conversion rates at each position are indicated by shaded boxes with overlaid percentage numbers for residues in which significant mutation was observed. Orientation information is depicted, with arrows representing gRNA binding sites (with the arrow pointing in the direction of the PAM) and ZF binding sites (with the arrow indicating the direction of ZF binding in reference to N ⁇ C orientation). Approximate editing windows (residues 4-8 in the gRNA target site) are indicated. Experiments were performed in duplicate and sequencing from each sample is shown independently. Low-level C-to-T mutations are observed primarily when using gRNA2 with either ZF, with gRNA1 experiments yielding detectable but diminished levels of activity. EGFP target sequence,
  • FIG. 7 C-to-T transition mutations in the integrated EGFP gene from a split rAPO1 base editor architecture consisting of adjacently-targeting N-sDA1.2-3AC3L-ZF-C and N-sDA2.2-nCas9-UGI-C proteins in several indicated orientations. Conversion rates at each position are indicated by shaded boxes with overlaid percentage numbers for residues in which significant mutation was observed. Orientation information is depicted, with arrows representing gRNA binding sites (with the arrow pointing in the direction of the PAM) and ZF binding sites (with the arrow indicating the direction of ZF binding in reference to N ⁇ C orientation). Approximate editing windows (residues 4-8 in the gRNA target site) are indicated. Experiments were performed in duplicate and sequencing from each sample is shown independently. Low-level C-to-T mutations are observed primarily when using gRNA2 with either ZF, with gRNA1 experiments yielding detectable but diminished levels of activity. EGFP target sequence,
  • FIG. 8 C-to-T transition mutations in the integrated EGFP gene from a split rAPO1 base editor architecture consisting of adjacently-targeting N-sDA1.2-3AC3L-ZF-C and N-sDA2.3-nCas9-UGI-C proteins in several indicated orientations. Conversion rates at each position are indicated by shaded boxes with overlaid percentage numbers for residues in which significant mutation was observed. Orientation information is depicted, with arrows representing gRNA binding sites (with the arrow pointing in the direction of the PAM) and ZF binding sites (with the arrow indicating the direction of ZF binding in reference to N ⁇ C orientation). Approximate editing windows (residues 4-8 in the gRNA target site) are indicated. Experiments were performed in duplicate and sequencing from each sample is shown independently. No significant mutations detected. EGFP target sequence,
  • FIG. 9 C-to-T transition mutations in the integrated EGFP gene from a split rAPO1 base editor architecture consisting of adjacently-targeting N-sDA1.3-3AC3L-ZF-C and N-sDA2.2-nCas9-UGI-C proteins in several indicated orientations. Conversion rates at each position are indicated by shaded boxes with overlaid percentage numbers for residues in which significant mutation was observed. Orientation information is depicted, with arrows representing gRNA binding sites (with the arrow pointing in the direction of the PAM) and ZF binding sites (with the arrow indicating the direction of ZF binding in reference to N ⁇ C orientation). Approximate editing windows (residues 4-8 in the gRNA target site) are indicated. Experiments were performed in duplicate and sequencing from each sample is shown independently. No significant mutations detected. EGFP target sequence,
  • FIG. 10 C-to-T transition mutations in the integrated EGFP gene from a split rAPO1 base editor architecture consisting of adjacently-targeting N-sDA1.2-3AC3L-ZF-C and N-sDA2.3-nCas9-UGI-C proteins in several indicated orientations. Conversion rates at each position are indicated by shaded boxes with overlaid percentage numbers for residues in which significant mutation was observed. Orientation information is depicted, with arrows representing gRNA binding sites (with the arrow pointing in the direction of the PAM) and ZF binding sites (with the arrow indicating the direction of ZF binding in reference to N ⁇ C orientation). Approximate editing windows (residues 4-8 in the gRNA target site) are indicated. Experiments were performed in duplicate and sequencing from each sample is shown independently. No significant mutations detected. EGFP target sequence,
  • FIG. 11 C-to-T transition mutations in the integrated EGFP gene from a split rAPO1 base editor architecture consisting of adjacently-targeting N-sDA1.3-3AC3L-ZF-C and N-sDA2.4-nCas9-UGI-C proteins in several indicated orientations. Conversion rates at each position are indicated by shaded boxes with overlaid percentage numbers for residues in which significant mutation was observed. Orientation information is depicted, with arrows representing gRNA binding sites (with the arrow pointing in the direction of the PAM) and ZF binding sites (with the arrow indicating the direction of ZF binding in reference to N ⁇ C orientation). Approximate editing windows (residues 4-8 in the gRNA target site) are indicated. Experiments were performed in duplicate and sequencing from each sample is shown independently. No significant mutations detected. EGFP target sequence,
  • FIG. 12 C-to-T transition mutations in the integrated EGFP gene from a split rAPO1 base editor architecture consisting of adjacently-targeting N-sDA1.4-3AC3L-ZF-C and N-sDA2.3-nCas9-UGI-C proteins in several indicated orientations. Conversion rates at each position are indicated by shaded boxes with overlaid percentage numbers for residues in which significant mutation was observed. Orientation information is depicted, with arrows representing gRNA binding sites (with the arrow pointing in the direction of the PAM) and ZF binding sites (with the arrow indicating the direction of ZF binding in reference to N ⁇ C orientation). Approximate editing windows (residues 4-8 in the gRNA target site) are indicated. Experiments were performed in duplicate and sequencing from each sample is shown independently. No significant mutations detected. EGFP target sequence,
  • FIG. 13 C-to-T transition mutations in the integrated EGFP gene from a split rAPO1 base editor architecture consisting of adjacently-targeting N-sDA1.4-3AC3L-ZF-C and N-sDA2.4-nCas9-UGI-C proteins in several indicated orientations. Conversion rates at each position are indicated by shaded boxes with overlaid percentage numbers for residues in which significant mutation was observed. Orientation information is depicted, with arrows representing gRNA binding sites (with the arrow pointing in the direction of the PAM) and ZF binding sites (with the arrow indicating the direction of ZF binding in reference to N ⁇ C orientation). Approximate editing windows (residues 4-8 in the gRNA target site) are indicated. Experiments were performed in duplicate and sequencing from each sample is shown independently. No significant mutations detected. EGFP target sequence,
  • FIG. 14 C-to-T transition mutations in the integrated EGFP gene from a split rAPO1 base editor architecture consisting of adjacently-targeting N-sDA1.5-3AC3L-ZF-C and N-sDA2.4-nCas9-UGI-C proteins in several indicated orientations. Conversion rates at each position are indicated by shaded boxes with overlaid percentage numbers for residues in which significant mutation was observed. Orientation information is depicted, with arrows representing gRNA binding sites (with the arrow pointing in the direction of the PAM) and ZF binding sites (with the arrow indicating the direction of ZF binding in reference to N ⁇ C orientation). Approximate editing windows (residues 4-8 in the gRNA target site) are indicated. Experiments were performed in duplicate and sequencing from each sample is shown independently. No significant mutations detected. EGFP target sequence,
  • FIG. 15 C-to-T transition mutations in the integrated EGFP gene from a split rAPO1 base editor architecture consisting of adjacently-targeting N-sDA1.5-3AC3L-ZF-C and N-sDA2.6-nCas9-UGI-C proteins in several indicated orientations. Conversion rates at each position are indicated by shaded boxes with overlaid percentage numbers for residues in which significant mutation was observed. Orientation information is depicted, with arrows representing gRNA binding sites (with the arrow pointing in the direction of the PAM) and ZF binding sites (with the arrow indicating the direction of ZF binding in reference to N ⁇ C orientation). Approximate editing windows (residues 4-8 in the gRNA target site) are indicated. Experiments were performed in duplicate and sequencing from each sample is shown independently. No significant mutations detected. EGFP target sequence,
  • FIG. 16 C-to-T transition mutations in the integrated EGFP gene from a split rAPO1 base editor architecture consisting of adjacently-targeting N-sDA1.6-3AC3L-ZF-C and N-sDA2.6-nCas9-UGI-C proteins in several indicated orientations. Conversion rates at each position are indicated by shaded boxes with overlaid percentage numbers for residues in which significant mutation was observed. Orientation information is depicted, with arrows representing gRNA binding sites (with the arrow pointing in the direction of the PAM) and ZF binding sites (with the arrow indicating the direction of ZF binding in reference to N ⁇ C orientation). Approximate editing windows (residues 4-8 in the gRNA target site) are indicated. Experiments were performed in duplicate and sequencing from each sample is shown independently. No significant mutations detected. EGFP target sequence,
  • FIG. 17 C-to-T conversion data with first-generation BE3 (described in reference 1) with both gRNAs used in this study. (Note that the coloration gradient of these samples is shaded lighter than graphs above and that direct comparison requires evaluation of relative numerical rates). Orientation information is depicted, with an arrows representing gRNA binding sites (with the arrow pointing in the direction of the PAM). EGFP target sequence,
  • FIG. 18 C-to-T conversion rates of individual N-sDA1-ZF-C proteins without an adjacent sDA2-nCas9-UGI. No discernable editing observed. EGFP target sequence,
  • FIG. 19 C-to-T conversion rates of individual N-sDA2-nCas9-UGI-C proteins without an adjacent N-sDA1-ZF-C. No discernable editing was observed.
  • EGFP target sequence
  • FIG. 20 Evidence of C-to-T conversion when using adjacently-targeting N-sDA1.X-NLS-ZF-C and N-sDA2.X-nCas9-UGI-C human APOBEC3a (hA3A) split Base Editors in the indicated orientation. Pointed boxes representing the nCas9 gRNA binding site (gRNA2) and ZF binding site (ZF1) are shown, with the pointed ends indicating the PAM-proximal end of the gRNA and indicating the N ⁇ C orientation of the ZF, respectively. Conversion rates at each position are indicated by shaded boxes.
  • Rates of deamination by split BE pairs are around 2.5% per cytosine using the sDA1.6+sDA2.6 configuration and around 1.7% per cytosine for the sDA1.1+sDA2.1 configuration, while a hAPOBEC3A-nCas9-UGI positive control possessed 3-4 ⁇ the amount of on-target activity as active hA3A halfase pairs.
  • gRNA target region
  • FIGS. 21A-21D Summary of C-to-T conversion rate of all rAPO1 halfase combination base editors as compared to a benchmark BE3 base editor at an integrated EGFP locus. The sum of total C-to-T editing percentages among three cytosines within or near the target gRNA's approximate editing window is shown, as averaged between two replicates.
  • 21A shows the ZF1+gRNA1 data
  • 21B shows the ZF1+gRNA2 data
  • 21C shows the ZF2+gRNA1 data
  • 21D shows the ZF2+gRNA2 data.
  • FIG. 22 Representation of a portion of the EGFP reporter gene and the target sites used for the rAPO1 halfase combination experiments.
  • EGFP target region
  • a cytosine deaminase (DA) domain and uracil glycosylase inhibitor (UGI; a small bacteriophage protein that inhibits host cell uracil DNA glycosylase (UDG), the enzyme responsible for excising uracil from the genome 1, 4 ) are both fused to nCas9 (derived from either Streptococcus pyogenes Cas9 (SpCas9) or Staphylococcus aureus Cas9 (SaCas9).
  • the nCas9 forms an R-loop at a target site specified by its single guide RNA (gRNA) and recognition of an adjacent protospacer adjacent motif (PAM), leaving approximately 4-8 nucleotides of the non-target strand exposed as single stranded DNA (ssDNA) near the PAM-distal end of the R-loop ( FIG. 1 ).
  • This region of the ssDNA is the template that is able to be deaminated by the ssDNA-specific DA domain to produce a guanosine:uracil (G:U) mismatch and defines the editing window.
  • the nCas9 nicks the non-deaminated strand of DNA, biasing conversion of the G:U mismatch to an adenine:thymine (A:T) base pair by directing the cell to repair the nick lesion using the deaminated strand as a template.
  • deaminase domains described in these fusion proteins have been rat APOBEC1 (rAPO1), an activation-induced cytosine deaminase (AID) derived from lamprey termed CDA (PmCDA), human AID (hAID), or a hyperactive form of hAID lacking a nuclear export signal, or an engineered variant of human APOBEC3A (hA3A) termed eA3A 1-2, 5-7, 16 . Any of these deaminase domains from these BEs can be used as parental deaminases in the present fusion proteins.
  • nSpCas9 nCas9 domain
  • any Cas9-like nickase could be used based on any ortholog of the Cpf1 protein (including the related Cpf1 enzyme class) to perform this function, unless specifically indicated.
  • a completely enzymatically dead dCas9 or Cas9-like enzyme can also be used as the targeting mechanism of a functional BE enzyme.
  • BE in therapeutic settings will be to assess its genome-wide capacity for off-target mutagenesis and to modify the technology to minimize or, ideally, to eliminate the risks of stimulating deleterious off-target mutations.
  • BEs that can be used to reduce or eliminate potential unwanted BE mutagenesis.
  • AID/APOBEC enzymes Because of AID/APOBEC enzymes' natural ability to bind and deaminate cytosines in genomic DNA and cytosines in RNA, non-specific spurious deamination events are a possibly important source of off-target mutagenesis in the genome and transcriptome from CRISPR Base Editor technology.
  • BE's nCas9 domain and any potential dCas9, TALE, and/or ZF domains
  • this might do nothing to prevent the natural RNA- and ssDNA-targeting ability of the APOBEC enzyme from non-specifically deaminating globally across the transcriptome or the whichever regions of the genome are exposed as ssDNA, such as actively transcribed regions or DNA undergoing replication.
  • an E. coli -based assay examining deaminases showed that an actively transcribed region could be highly enriched ( ⁇ 7-530 fold) for C ⁇ T transition mutations when exposed to various overexpressed mammalian deaminases 4 .
  • one group has found that co-expression of PmCda1 and nCas9 as two separate, untethered proteins in yeast cells results in similar levels of deamination at the gRNA-specified target site as when the two components are expressed as direct fusion partners, demonstrating that these proteins are capable of deaminating ssDNA from solution without an affinity tether to the genomic location 5 .
  • sDA1 split deaminase
  • ZF any DNA targeting domain orthogonal to Cas9, such as Cpf1, TALE, ZF, or a dCas9 orthogonal to the nCas9 used to target sDA2, may be suitable
  • any DNA targeting domain orthogonal to Cas9 such as Cpf1, TALE, ZF, or a dCas9 orthogonal to the nCas9 used to target sDA2
  • a reciprocal or somewhat overlapping C-terminal truncation of a deaminase fused to an nCas9-UGI fusion protein such that the N-terminal truncation and the C-terminal truncation together form a functional enzyme.
  • the exemplary BEs were made in a similar orientation to the first-generation BE3 enzyme (sDA2-nCas9-UGI) targeting an adjacent sequence with a ⁇ 17-24 bp target site 1 .
  • a yeast cytosine deaminase yCD
  • yCD yeast cytosine deaminase
  • FIGS. 3A-3B we used APOBEC structural information to determine the unstructured linker regions as potential sites at which to split APOBEC enzymes ( FIGS. 3A-3B ), since those sites may be less likely to affect overall functionality or folding of the constituent subdomains.
  • This split deaminase strategy can be used with wild-type versions of deaminase enyzmes, and also any engineered variants that may be described, with the split BE potentially retaining any special features of the engineered deaminases 16 .
  • a split BE should generally increase the specificity of editing compared to typical BEs by virtue of the fact that the split BE system requires the binding of a higher number of sequential/adjacent DNA bases, thereby decreasing the off-target effects conferred by off-target binding of either halfase on its own.
  • CRISPR BE architectures are known to induce C-to-T mutations in human cells at some genomic sites that are imperfect matches to their gRNAs 13 , and since ZFs are known to bind with some capacity to off-target sites it stands to reason that a ZF-BE architecture would also induce off-target mutagenesis to some capacityl 14 .
  • CRISPR/Cas-based targeting system including Cas9s from Streptococcus pyogenes or Stapholococcus aureus or Cpf1 proteins from various organisms could be used in place of the nCas9 portion of the sDA2-nCas9-UGI fusion protein, so long as the targeting mechanism results in specific DNA binding and the creation of an R-loop that exposes ssDNA to action by the reconstituted split deaminase.
  • Table 1 contains a list of representative CRISPR/Cas targeting systems and the residues/mutations therein known to be important for creating nickase and catalytically inactive (dead) mutants.
  • ZF domains are chosen as the DNA binding domain for sDA1 due to their small size, presumed lack of immunogenicity, and because, unlike CRISPR-based targeting systems, they do not create an R-loop upon binding and do not expose additional substrate ssDNA to the deaminase domain. In principle, however, use of any engineered DNA binding domain, such as a CRISPR-based targeting complex or a TALE DNA binding domain, could still result in functional sDA1 halfase. In the examples shown herein, ZF domains targeting an integrated EGFP gene were used for the sDA1 halfases 15 .
  • the present fusion proteins can include programmable DNA binding domains such as engineered C2H2 zinc-fingers, transcription activator effector-like effectors (TALEs), and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Cas RNA-guided nucleases (RGNs) and their variants, including ssDNA nickases (nCas9) or their analogs and catalytically inactive dead Cas9 (dCas9) and its analogs, and any engineered protospacer-adjacent motif (PAM) variants.
  • a programmable DNA binding domain is one that can be engineered to bind to a selected target sequence.
  • nCas9 in general any Cas9-like nickase could be used based on any ortholog of the Cpf1 protein (including the related Cpf1 enzyme class), unless specifically indicated.
  • BV3L6 (AsCpf1) U2UMQ6 D908, 993E, Q1226, D1263 22 L. bacterium N2006 (LbCpf1) A0A182DWE3 D832A 24 *predicted based on UniRule annotation on the UniProt database. **May be determinable based on sequence alignment with other Cpf1 orthologs These orthologs, and mutants and variants thereof as known in the art, can be used in any of the fusion proteins described herein.
  • the Cas9 nuclease from S. pyogenes can be guided via simple base pair complementarity between 17-20 nucleotides of an engineered guide RNA (gRNA), e.g., a single guide RNA or crRNA/tracrRNA pair, and the complementary strand of a target genomic DNA sequence of interest that lies next to a protospacer adjacent motif (PAM), e.g., a PAM matching the sequence NGG or NAG (Shen et al., Cell Res (2013); Dicarlo et al., Nucleic Acids Res (2013); Jiang et al., Nat Biotechnol 31, 233-239 (2013); Jinek et al., Elife 2, e00471 (2013); Hwang et al., Nat Biotechnol 31, 227-229 (2013); Cong et al., Science 339, 819-823 (2013); Mali et al., Science 339, 823-826 (2013c); Cho e
  • Cpf1 The engineered CRISPR from Prevotella and Francisella 1 (Cpf1) nuclease can also be used, e.g., as described in Zetsche et al., Cell 163, 759-771 (2015); Schunder et al., Int J Med Microbiol 303, 51-60 (2013); Makarova et al., Nat Rev Microbiol 13, 722-736 (2015); Fagerlund et al., Genome Biol 16, 251 (2015).
  • Cpf1 requires only a single 42-nt crRNA, which has 23 nt at its 3′ end that are complementary to the protospacer of the target DNA sequence (Zetsche et al., 2015).
  • SpCas9 recognizes an NGG PAM sequence that is 3′ of the protospacer
  • AsCpf1 and LbCp1 recognize TTTN PAMs that are found 5′ of the protospacer (Id.).
  • the present system utilizes a wild type or variant Cas9 protein from S. pyogenes or Staphylococcus aureus , or a wild type Cpf1 protein from Acidaminococcus sp. BV3L6 or Lachnospiraceae bacterium ND2006 either as encoded in bacteria or codon-optimized for expression in mammalian cells and/or modified in its PAM recognition specificity and/or its genome-wide specificity.
  • a number of variants have been described; see, e.g., WO 2016/141224, PCT/US2016/049147, Kleinstiver et al., Nat Biotechnol.
  • the guide RNA is expressed or present in the cell together with the Cas9 or Cpf1. Either the guide RNA or the nuclease, or both, can be expressed transiently or stably in the cell or introduced as a purified protein or nucleic acid.
  • the Cas9 also includes one of the following mutations, which reduce nuclease activity of the Cas9; e.g., for SpCas9, mutations at D10A or H840A (which creates a single-strand nickase).
  • the SpCas9 variants also include mutations at one of the following amino acid positions, which destroy the nuclease activity of the Cas9: D10, E762, D839, H983, or D986 and H840 or N863, e.g., D10A/D10N and H840A/H840N/H840Y, to render the nuclease portion of the protein catalytically inactive; substitutions at these positions could be alanine (as they are in Nishimasu al., Cell 156, 935-949 (2014)), or other residues, e.g., glutamine, asparagine, tyrosine, serine, or aspartate, e.g., E762Q, H983N, H983Y, D986N, N863D, N863S, or N863H (see WO 2014/152432).
  • the Cas9 is fused to one or more Uracil glycosylase inhibitor (UGI) protein sequences;
  • UGI Uracil glycosylase inhibitor
  • UGIs are at the C-terminus of a BE fusion protein, but could conceivably be at the N-terminus, or between the DNA binding domain and the sDA domain. Linkers as known in the art can be used to separate domains.
  • Transcription activator like effectors of plant pathogenic bacteria in the genus Xanthomonas play important roles in disease, or trigger defense, by binding host DNA and activating effector-specific host genes. Specificity depends on an effector-variable number of imperfect, typically ⁇ 33-35 amino acid repeats. Polymorphisms are present primarily at repeat positions 12 and 13, which are referred to herein as the repeat variable-diresidue (RVD).
  • RVDs of TAL effectors correspond to the nucleotides in their target sites in a direct, linear fashion, one RVD to one nucleotide, with some degeneracy and no apparent context dependence.
  • the polymorphic region that grants nucleotide specificity may be expressed as a triresidue or triplet.
  • Each DNA binding repeat can include a RVD that determines recognition of a base pair in the target DNA sequence, wherein each DNA binding repeat is responsible for recognizing one base pair in the target DNA sequence.
  • the RVD can comprise one or more of: HA for recognizing C; ND for recognizing C; HI for recognizing C; HN for recognizing G; NA for recognizing G; SN for recognizing G or A; YG for recognizing T; and NK for recognizing G, and one or more of: HD for recognizing C; NG for recognizing T; NI for recognizing A; NN for recognizing G or A; NS for recognizing A or C or G or T; N* for recognizing C or T, wherein * represents a gap in the second position of the RVD; HG for recognizing T; H* for recognizing T, wherein * represents a gap in the second position of the RVD; and IG for recognizing T.
  • TALE proteins may be useful in research and biotechnology as targeted chimeric nucleases that can facilitate homologous recombination in genome engineering (e.g., to add or enhance traits useful for biofuels or biorenewables in plants). These proteins also may be useful as, for example, transcription factors, and especially for therapeutic applications requiring a very high level of specificity such as therapeutics against pathogens (e.g., viruses) as non-limiting examples.
  • pathogens e.g., viruses
  • MegaTALs are a fusion of a meganuclease with a TAL effector; see, e.g., Boissel et al., Nucl. Acids Res. 42(4):2591-2601 (2014); Boissel and Scharenberg, Methods Mol Biol. 2015; 1239:171-96.
  • Zinc finger (ZF) proteins are DNA-binding proteins that contain one or more zinc fingers, independently folded zinc-containing mini-domains, the structure of which is well known in the art and defined in, for example, Miller et al., 1985, EMBO J., 4:1609; Berg, 1988, Proc. Natl. Acad. Sci. USA, 85:99; Lee et al., 1989, Science. 245:635; and Klug, 1993, Gene, 135:83.
  • Crystal structures of the zinc finger protein Zif268 and its variants bound to DNA show a semi-conserved pattern of interactions, in which typically three amino acids from the alpha-helix of the zinc finger contact three adjacent base pairs or a “subsite” in the DNA (Pavletich et al., 1991, Science, 252:809; Elrod-Erickson et al., 1998, Structure, 6:451).
  • the crystal structure of Zif268 suggested that zinc finger DNA-binding domains might function in a modular manner with a one-to-one interaction between a zinc finger and a three-base-pair “subsite” in the DNA sequence.
  • multiple zinc fingers are typically linked together in a tandem array to achieve sequence-specific recognition of a contiguous DNA sequence (Klug, 1993, Gene 135:83).
  • Such recombinant zinc finger proteins can be fused to functional domains, such as transcriptional activators, transcriptional repressors, methylation domains, and nucleases to regulate gene expression, alter DNA methylation, and introduce targeted alterations into genomes of model organisms, plants, and human cells (Carroll, 2008, Gene Ther., 15:1463-68; Cathomen, 2008, Mol. Ther., 16:1200-07; Wu et al., 2007, Cell. Mol. Life Sci., 64:2933-44).
  • functional domains such as transcriptional activators, transcriptional repressors, methylation domains, and nucleases to regulate gene expression, alter DNA methylation, and introduce targeted alterations into genomes of model organisms, plants, and human cells
  • module assembly One existing method for engineering zinc finger arrays, known as “modular assembly,” advocates the simple joining together of pre-selected zinc finger modules into arrays (Segal et al., 2003, Biochemistry, 42:2137-48; Beerli et al., 2002, Nat. Biotechnol., 20:135-141; Mandell et al., 2006, Nucleic Acids Res., 34:W516-523; Carroll et al., 2006, Nat. Protoc. 1:1329-41; Liu et al., 2002, J. Biol. Chem., 277:3850-56; Bae et al., 2003, Nat. Biotechnol., 21:275-280; Wright et al., 2006, Nat.
  • the base editor is a deaminase that modifies cytosine DNA bases, e.g., a cytosine deaminase from the apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like (APOBEC) family of deaminases, including APOBEC1, APOBEC2, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D/E, APOBEC3F, APOBEC3G, APOBEC3H, APOBEC4 (see, e.g., Yang et al., J Genet Genomics. 2017 Sep.
  • APOBEC catalytic polypeptide-like family of deaminases
  • activation-induced cytosine deaminase AID
  • activation-induced cytosine deaminase AID
  • AICDA activation induced cytosine deaminase
  • CDA1 cytosine deaminase 1
  • CDA2 cytosine deaminase acting on tRNA
  • Table 2 provides exemplary sequences; other sequences can also be used.
  • split deaminase regions are shown in Table 3.
  • Each split region listed in Table 3 represents a region of the enzyme either known to be a linker region devoid of secondary structure and positioned away from enzymatically important functions or predicted to be linker based on alignment with hAPOBEC3G where structural information is lacking (* indicates which proteins lack sufficient structural information).
  • Unstructured recognition loops were not included due to their importance in determining substrate binding and specificity. All protein sequences acquired from uniprot.org. All positional information refers to positions within the full-length protein sequences as described below. Candidate split regions described only indicate our best attempt at a priori prediction of which splits will be functional.
  • the split deaminase regions can include mutations that may enhance base editing, e.g., when made to the nCas9-UGI portion, e.g., mutations corresponding to W90, R126, or R132 of SEQ ID NO:46, e.g., corresponding to W90Y, R126E, R132E, of SEQ ID NO:46 (see, e.g., Kim et al. “Increasing the Genome-Targeting Scope and Precision of Base Editing with Engineered Cas9-Cytosine Deaminase Fusions.” Nature Biotechnology 35(4):371-376 (2017)).
  • the split deaminase regions can include mutations at positions corresponding to one or more of N57, Y130, or K60 of SEQ ID NO:49, e.g., mutations corresponding to N57G, N57A, N57Q, Y130F, K60D of SEQ ID NO:49 (see, e.g., reference 17).
  • the components of the fusion proteins are at least 80%, e.g., at least 85%, 90%, 95%, 97%, or 99% identical to the amino acid sequence of a exemplary sequence (e.g., as provided herein), e.g., have differences at up to 1%, 2%, 5%, 10%, 15%, or 20% of the residues of the exemplary sequence replaced, e.g., with conservative mutations, e.g., including or in addition to the mutations described herein.
  • the variant retains desired activity of the parent, e.g., nickase activity, and/or the ability to interact with a guide RNA and/or target DNA, optionally with improved specificity or altered substrate specificity.
  • the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes).
  • the length of a reference sequence aligned for comparison purposes is at least 80% of the length of the reference sequence, and in some embodiments is at least 90% or 100%.
  • the nucleotides at corresponding amino acid positions or nucleotide positions are then compared.
  • nucleic acid “identity” is equivalent to nucleic acid “homology”.
  • the percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences. Percent identity between two polypeptides or nucleic acid sequences is determined in various ways that are within the skill in the art, for instance, using publicly available computer software such as Smith Waterman Alignment (Smith, T. F. and M. S.
  • the length of comparison can be any length, up to and including full length (e.g., 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100%).
  • full length e.g., 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100%.
  • at least 80% of the full length of the sequence is aligned.
  • the comparison of sequences and determination of percent identity between two sequences can be accomplished using a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.
  • Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine.
  • isolated nucleic acids encoding the split deaminase fusion proteins
  • vectors comprising the isolated nucleic acids, optionally operably linked to one or more regulatory domains for expressing the variant proteins
  • host cells e.g., mammalian host cells, comprising the nucleic acids, and optionally expressing the variant proteins.
  • the host cells are stem cells, e.g., hematopoietic stem cells.
  • the fusion proteins include a linker between the DNA binding domain (e.g., ZFN, TALE, or nCas9) and the BE domains.
  • Linkers that can be used in these fusion proteins (or between fusion proteins in a concatenated structure) can include any sequence that does not interfere with the function of the fusion proteins.
  • the linkers are short, e.g., 2-20 amino acids, and are typically flexible (i.e., comprising amino acids with a high degree of freedom such as glycine, alanine, and serine).
  • the linker comprises one or more units consisting of GGGS (SEQ ID NO:5) or GGGGS (SEQ ID NO:6), e.g., two, three, four, or more repeats of the GGGS (SEQ ID NO:5) or GGGGS (SEQ ID NO:6) unit.
  • Other linker sequences can also be used.
  • the split deaminase fusion protein includes a cell-penetrating peptide sequence that facilitates delivery to the intracellular space, e.g., HIV-derived TAT peptide, penetratins, transportans, or hCT derived cell-penetrating peptides, see, e.g., Caron et al., (2001) Mol Ther. 3(3):310-8; Langel, Cell-Penetrating Peptides: Processes and Applications (CRC Press, Boca Raton Fla. 2002); El-Andaloussi et al., (2005) Curr Pharm Des. 11(28):3597-611; and Deshayes et al., (2005) Cell Mol Life Sci. 62(16):1839-49.
  • a cell-penetrating peptide sequence that facilitates delivery to the intracellular space, e.g., HIV-derived TAT peptide, penetratins, transportans, or hCT derived cell-penetra
  • CPPs Cell penetrating peptides
  • cytoplasm or other organelles e.g. the mitochondria and the nucleus.
  • molecules that can be delivered by CPPs include therapeutic drugs, plasmid DNA, oligonucleotides, siRNA, peptide-nucleic acid (PNA), proteins, peptides, nanoparticles, and liposomes.
  • CPPs are generally 30 amino acids or less, are derived from naturally or non-naturally occurring protein or chimeric sequences, and contain either a high relative abundance of positively charged amino acids, e.g.
  • CPPs that are commonly used in the art include Tat (Frankel et al., (1988) Cell. 55:1189-1193, Vives et al., (1997) J. Biol. Chem. 272:16010-16017), penetratin (Derossi et al., (1994) J. Biol. Chem. 269:10444-10450), polyarginine peptide sequences (Wender et al., (2000) Proc. Natl. Acad. Sci. USA 97:13003-13008, Futaki et al., (2001) J. Biol. Chem. 276:5836-5840), and transportan (Pooga et al., (1998) Nat. Biotechnol. 16:857-861).
  • CPPs can be linked with their cargo through covalent or non-covalent strategies.
  • Methods for covalently joining a CPP and its cargo are known in the art, e.g. chemical cross-linking (Stetsenko et al., (2000) J. Org. Chem. 65:4900-4909, Gait et al. (2003) Cell. Mol. Life. Sci. 60:844-853) or cloning a fusion protein (Nagahara et al., (1998) Nat. Med. 4:1449-1453).
  • Non-covalent coupling between the cargo and short amphipathic CPPs comprising polar and non-polar domains is established through electrostatic and hydrophobic interactions.
  • CPPs have been utilized in the art to deliver potentially therapeutic biomolecules into cells. Examples include cyclosporine linked to polyarginine for immunosuppression (Rothbard et al., (2000) Nature Medicine 6(11):1253-1257), siRNA against cyclin B1 linked to a CPP called MPG for inhibiting tumorigenesis (Crombez et al., (2007) Biochem Soc. Trans. 35:44-46), tumor suppressor p53 peptides linked to CPPs to reduce cancer cell growth (Takenobu et al., (2002) Mol. Cancer Ther. 1(12):1043-1049, Snyder et al., (2004) PLoS Biol. 2:E36), and dominant negative forms of Ras or phosphoinositol 3 kinase (PI3K) fused to Tat to treat asthma (Myou et al., (2003) J. Immunol. 171:4399-4405).
  • PI3K phosphoinositol 3
  • CPPs have been utilized in the art to transport contrast agents into cells for imaging and biosensing applications.
  • green fluorescent protein (GFP) attached to Tat has been used to label cancer cells (Shokolenko et al., (2005) DNA Repair 4(4):511-518).
  • Tat conjugated to quantum dots have been used to successfully cross the blood-brain barrier for visualization of the rat brain (Santra et al., (2005) Chem. Commun. 3144-3146).
  • CPPs have also been combined with magnetic resonance imaging techniques for cell imaging (Liu et al., (2006) Biochem. and Biophys. Res. Comm. 347(1):133-140). See also Ramsey and Flynn, Pharmacol Ther. 2015 Jul. 22. pii: S0163-7258(15)00141-2.
  • the split deaminase fusion proteins can include a nuclear localization sequence, e.g., SV40 large T antigen NLS (PKKKRRV (SEQ ID NO:7)) and nucleoplasmin NLS (KRPAATKKAGQAKKKK (SEQ ID NO: 8)).
  • PKKKRRV SEQ ID NO:7
  • KRPAATKKAGQAKKKK SEQ ID NO: 8
  • Other NLSs are known in the art; see, e.g., Cokol et al., EMBO Rep. 2000 Nov. 15; 1(5): 411-415; Freitas and Cunha, Curr Genomics. 2009 December; 10(8): 550-557.
  • the split deaminase fusion proteins include a moiety that has a high affinity for a ligand, for example GST, FLAG or hexahistidine sequences.
  • affinity tags can facilitate the purification of recombinant split deaminase fusion proteins.
  • the split deaminase fusion proteins described herein can be used for altering the genome of a cell.
  • the methods generally include expressing or contacting the split deaminase fusion proteins in the cells; in versions using one or two Cas9s, the methods include using a guide RNA having a region complementary to a selected portion of the genome of the cell.
  • Methods for selectively altering the genome of a cell are known in the art, see, e.g., U.S. Pat. No. 8,993,233; US 20140186958; U.S. Pat. No.
  • CRISPRs Clustered Regularly Interspaced Short Palindromic Repeats
  • the proteins can be produced using any method known in the art, e.g., by in vitro translation, or expression in a suitable host cell from nucleic acid encoding the split deaminase fusion protein; a number of methods are known in the art for producing proteins.
  • the proteins can be produced in and purified from yeast, E. coli , insect cell lines, plants, transgenic animals, or cultured mammalian cells; see, e.g., Palomares et al., “Production of Recombinant Proteins: Challenges and Solutions,” Methods Mol Biol. 2004; 267:15-52.
  • split deaminase fusion proteins can be linked to a moiety that facilitates transfer into a cell, e.g., a lipid nanoparticle, optionally with a linker that is cleaved once the protein is inside the cell. See, e.g., LaFountaine et al., Int J Pharm. 2015 Aug. 13; 494(1):180-194.
  • the nucleic acid encoding the split deaminase fusion can be cloned into an intermediate vector for transformation into prokaryotic or eukaryotic cells for replication and/or expression.
  • Intermediate vectors are typically prokaryote vectors, e.g., plasmids, or shuttle vectors, or insect vectors, for storage or manipulation of the nucleic acid encoding the split deaminase fusion for production of the split deaminase fusion protein.
  • the nucleic acid encoding the split deaminase fusion protein can also be cloned into an expression vector, for administration to a plant cell, animal cell, preferably a mammalian cell or a human cell, fungal cell, bacterial cell, or protozoan cell.
  • a sequence encoding a split deaminase fusion protein is typically subcloned into an expression vector that contains a promoter to direct transcription.
  • Suitable bacterial and eukaryotic promoters are well known in the art and described, e.g., in Sambrook et al., Molecular Cloning, A Laboratory Manual (3d ed. 2001); Kriegler, Gene Transfer and Expression: A Laboratory Manual (1990); and Current Protocols in Molecular Biology (Ausubel et al., eds., 2010).
  • Bacterial expression systems for expressing the engineered protein are available in, e.g., E.
  • Kits for such expression systems are commercially available.
  • Eukaryotic expression systems for mammalian cells, yeast, and insect cells are well known in the art and are also commercially available.
  • the promoter used to direct expression of a nucleic acid depends on the particular application. For example, a strong constitutive promoter is typically used for expression and purification of fusion proteins. In contrast, when the split deaminase fusion protein is to be administered in vivo for gene regulation, either a constitutive or an inducible promoter can be used, depending on the particular use of the split deaminase fusion protein.
  • a preferred promoter for administration of the split deaminase fusion protein can be a weak promoter, such as HSV TK or a promoter having similar activity.
  • the promoter can also include elements that are responsive to transactivation, e.g., hypoxia response elements, Gal4 response elements, lac repressor response element, and small molecule control systems such as tetracycline-regulated systems and the RU-486 system (see, e.g., Gossen & Bujard, 1992, Proc. Natl. Acad. Sci. USA, 89:5547; Oligino et al., 1998, Gene Ther., 5:491-496; Wang et al., 1997, Gene Ther., 4:432-441; Neering et al., 1996, Blood, 88:1147-55; and Rendahl et al., 1998, Nat. Biotechnol., 16:757-761).
  • elements that are responsive to transactivation e.g., hypoxia response elements, Gal4 response elements, lac repressor response element, and small molecule control systems such as tetracycline-regulated systems and the RU-486 system
  • the expression vector typically contains a transcription unit or expression cassette that contains all the additional elements required for the expression of the nucleic acid in host cells, either prokaryotic or eukaryotic.
  • a typical expression cassette thus contains a promoter operably linked, e.g., to the nucleic acid sequence encoding the split deaminase fusion protein, and any signals required, e.g., for efficient polyadenylation of the transcript, transcriptional termination, ribosome binding sites, or translation termination.
  • Additional elements of the cassette may include, e.g., enhancers, and heterologous spliced intronic signals.
  • the particular expression vector used to transport the genetic information into the cell is selected with regard to the intended use of the split deaminase fusion protein, e.g., expression in plants, animals, bacteria, fungus, protozoa, etc.
  • Standard bacterial expression vectors include plasmids such as pBR322 based plasmids, pSKF, pET23D, and commercially available tag-fusion expression systems such as GST and LacZ.
  • Expression vectors containing regulatory elements from eukaryotic viruses are often used in eukaryotic expression vectors, e.g., SV40 vectors, papilloma virus vectors, and vectors derived from Epstein-Barr virus.
  • eukaryotic vectors include pMSG, pAV009/A+, pMTO10/A+, pMAMneo-5, baculovirus pDSVE, and any other vector allowing expression of proteins under the direction of the SV40 early promoter, SV40 late promoter, metallothionein promoter, murine mammary tumor virus promoter, Rous sarcoma virus promoter, polyhedrin promoter, or other promoters shown effective for expression in eukaryotic cells.
  • the vectors for expressing the split deaminase fusion protein can include RNA Pol III promoters to drive expression of the guide RNAs, e.g., the H1, U6 or 7SK promoters. These human promoters allow for expression of split deaminase fusion protein in mammalian cells following plasmid transfection.
  • Some expression systems have markers for selection of stably transfected cell lines such as thymidine kinase, hygromycin B phosphotransferase, and dihydrofolate reductase.
  • High yield expression systems are also suitable, such as using a baculovirus vector in insect cells, with the gRNA encoding sequence under the direction of the polyhedrin promoter or other strong baculovirus promoters.
  • the elements that are typically included in expression vectors also include a replicon that functions in E. coli , a gene encoding antibiotic resistance to permit selection of bacteria that harbor recombinant plasmids, and unique restriction sites in nonessential regions of the plasmid to allow insertion of recombinant sequences.
  • Standard transfection methods are used to produce bacterial, mammalian, yeast or insect cell lines that express large quantities of protein, which are then purified using standard techniques (see, e.g., Colley et al., 1989, J. Biol. Chem., 264:17619-22; Guide to Protein Purification, in Methods in Enzymology, vol. 182 (Deutscher, ed., 1990)). Transformation of eukaryotic and prokaryotic cells are performed according to standard techniques (see, e.g., Morrison, 1977, J. Bacteriol. 132:349-351; Clark-Curtiss & Curtiss, Methods in Enzymology 101:347-362 (Wu et al., eds, 1983).
  • Any of the known procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, polybrene, protoplast fusion, electroporation, nucleofection, liposomes, microinjection, naked DNA, plasmid vectors, viral vectors, both episomal and integrative, and any of the other well-known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g., Sambrook et al., supra). It is only necessary that the particular genetic engineering procedure used be capable of successfully introducing at least one gene into the host cell capable of expressing the split deaminase fusion protein.
  • the methods also include delivering a gRNA that interacts with the Cas9.
  • the methods can include delivering the split deaminase fusion protein and guide RNA together, e.g., as a complex.
  • the split deaminase fusion protein and gRNA can be can be overexpressed in a host cell and purified, then complexed with the guide RNA (e.g., in a test tube) to form a ribonucleoprotein (RNP), and delivered to cells.
  • the split deaminase fusion protein can be expressed in and purified from bacteria through the use of bacterial expression plasmids.
  • His-tagged split deaminase fusion protein can be expressed in bacterial cells and then purified using nickel affinity chromatography.
  • RNPs circumvents the necessity of delivering plasmid DNAs encoding the nuclease or the guide, or encoding the nuclease as an mRNA. RNP delivery may also improve specificity, presumably because the half-life of the RNP is shorter and there's no persistent expression of the nuclease and guide (as you′d get from a plasmid).
  • the RNPs can be delivered to the cells in vivo or in vitro, e.g., using lipid-mediated transfection or electroporation. See, e.g., Liang et al.
  • the present invention also includes the vectors and cells comprising the vectors, as well as kits comprising the proteins and nucleic acids described herein, e.g., for use in a method described herein.
  • sDA1-containing expression plasmids were constructed by selectively amplifying desired regions of the rAPO1, hA3A, or BE3 genes, as well as DNA sequences encoding a 3AC3L-NLS or NLS only linker and desired EGFP-targeting ZFs, by the PCR method such that they had significant overlapping ends and using isothermal assembly (or “Gibson Assembly,” NEB) to assemble them in the desired order in a pCAG expression vector.
  • sDA2-containing expression plasmids were constructed by truncating a BE3 gene by PCR and using Gibson assembly to put the resulting pieces into a pCAG expression plasmid. PCR was conducted using Q5 or Phusion polymerases (NEB).
  • a HEK293 cell line in which an integrated EGFP reporter gene has been integrated was grown in culture using media consisting of Advanced Dulbeccos Modified Medium (Gibco) supplemented with 10% heat inactivated fetal bovine serum (Gibco), 1% 10,000 U/ml penicillin-streptomycin solution (Gibco), and 1% Glutamax (Gibco). Cells were passaged every 3-4 days to maintain an actively growing population and avoid anoxic conditions.
  • Transfections containing 1.0 microgram of transfection quality DNA were conducted by seeding 1.5 ⁇ 10 5 cells in 24-well TC-treated plates (Corning) and using TransIT-293 reagent according to manufacturer's protocol (Minis Bio).
  • 400 nanograms contained the sDA1-encoding plasmid
  • 400 nanograms contained the sDA2-encoding plasmid
  • 200 nanograms contained an expression plasmid encoding the SpCas9 gRNA targeting the EGFP reporter gene.
  • 400 nanograms contained BE-expressing plasmid
  • 400 nanograms contained a pMax-GFP-encoding plasmid (Lonza)
  • 200 nanograms contained an expression plasmid encoding the SpCas9 gRNA targeting the EGFP reporter gene.
  • 400 nanograms contained the sDA-encoding plasmid
  • 400 nanograms contained a pMax-GFP-encoding plasmid (Lonza)
  • 200 nanograms contained an expression plasmid encoding the SpCas9 gRNA targeting the EGFP reporter gene.
  • Genomic DNA was harvested 3 days post-transfection using the DNAdvance kit (Agencourt).
  • Rates of base editing at target loci were determined by deep-sequencing of PCR amplicons amplified off of genomic DNA isolated from transfected cells.
  • Target site genomic DNA was amplified using EGFP-specific DNA primers flanking the sDA2 nCas9 binding sites.
  • Illumina TruSeq adapters were added to the ends of the amplicons either by PCR or NEBNext Ultra II kit (NEB) and molecularly indexed with NEBNext Dual Index Primers (NEB). Samples were combined into libraries and sequenced on the Illumina MiSeq machine using the MiSeq Reagent Micro Kit v2 (Illumina). Sequencing results were analyzed using a batch version of the software CRISPResso (crispresso.rocks).
  • ZF1 Binding site (SEQ ID NO: 9) aGAAGATGGTg ZF2 Binding Site: (SEQ ID NO: 10) gGTCGGGGTAg gRNA1 Binding Site (with PAM): (SEQ ID NO: 11) TTCAAGTCCGCCATGCCCGAAGG gRNA2 Binding Site (with PAM): (SEQ ID NO: 12) CATGCCCGAAGGCTACGTCCAGG
  • X indicates an undetermined amino acid residue, indicating the variable regions of a ZF that are responsible for specific DNA binding.
  • aureus Cas9 (SEQ ID NO: 39) MKRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRS KRGARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLS EEEFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAEL QLERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLL ETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLY NALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNEEDI KGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIYQSSEDIQ EELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAIN
  • lavamentivorans Cas9 (SEQ ID NO: 41) MERIFGFDIGTTSIGFSVIDYSSTQSAGNIQRLGVRIFPEARDPDGTPLNQ QRRQKRMMRRQLRRRRIRRKALNETLHEAGFLPAYGSADWPVVMADEPYE LRRRGLEEGLSAYEFGRAIYHLAQHRHFKGRELEESDTPDPDVDDEKEAANE RAATLKALKNEQTTLGAWLARRPPSDRKRGIHAHRNVVAEEFERLWEVQSK FHPALKSEEMRARISDTIFAQRPVFWRKNTLGECRFMPGEPLCPKGSWLSQQR RMLEKLNNLAIAGGNARPLDAEERDAILSKLQQQASMSWPGVRSALKALYK QRGEPGAEKSLKFNLELGGESKLLGNALEAKLADMFGPDWPAHPRKQEIRH AVHERLWAADYGETPDKKRVIILSEKDRKAHREAAANSFVADFGITGEQAAQ LQALKLPT
  • Tables 4-6 show the exact truncation variants that we have created and evaluated.
  • split BEs in which the halfases shared overlapping peptide sequences. We reasoned that this “extra” overlap may enable proper folding of the constituent halfases so as to enable functional reconstitution of the deamniase, and also noted that the most functional split yCD pair included a significant overlap in peptide sequence 12 .
  • each rAPOBEC1 pair was tested in two different orientations with regards to the ZF and gRNA binding sites, with two different ZF domains and two different gRNAs for 4 total orientation pairs. Only directly reciprocal hAPOBEC3A pairs were tested (e.g. sDA1.1 with sDA2.1).
  • Activity of each BE halfase pair when co-delivered by plasmid transfection with an approximate ratio of 1:1 for each halfase is shown in FIGS. 4-16 ( FIG. 17 is a positive BE3 control for comparison) for each orientation of rAPO1 sDA pairs and FIG.
  • FIG. 21 A summary of the cumulative editing efficiencies (the sum of the editing rates at the cytosines within the gRNA editing window) of all rAPO1 halfase pairs in each orientation is given in FIG. 21 .
  • the target site configurations for and all DNA targeting proteins used for rAPO1 experiments is shown in FIG. 22 .
  • All rAPO1 split BEs shown include an sDA1 halfase with an sDA1-3AC3L-NLS-ZF configuration, while all hA3A split BEs include an sDA1 with an sDA1-NLS-ZF configuration.
  • rAPO1 sDA1.1+rAPO1 sDA2.1, rAPO1 sDA1.2+rAPO1 sDA2.1, rAPO1 sDA1.2+rAPO1 sDA2.2, hA3A sDA1.1+sDA2.1, and hA3A 1.6+hA3A 2.6 show significant activity compared to a positive BE3 control ( FIGS. 4, 6, 7, 20, and 21 ).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hematology (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
US16/615,538 2017-05-25 2018-05-25 Using split deaminases to limit unwanted off-target base editor deamination Pending US20200172895A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/615,538 US20200172895A1 (en) 2017-05-25 2018-05-25 Using split deaminases to limit unwanted off-target base editor deamination

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762511296P 2017-05-25 2017-05-25
US201762541544P 2017-08-04 2017-08-04
US201862622676P 2018-01-26 2018-01-26
PCT/US2018/034687 WO2018218166A1 (en) 2017-05-25 2018-05-25 Using split deaminases to limit unwanted off-target base editor deamination
US16/615,538 US20200172895A1 (en) 2017-05-25 2018-05-25 Using split deaminases to limit unwanted off-target base editor deamination

Publications (1)

Publication Number Publication Date
US20200172895A1 true US20200172895A1 (en) 2020-06-04

Family

ID=64397083

Family Applications (4)

Application Number Title Priority Date Filing Date
US16/615,538 Pending US20200172895A1 (en) 2017-05-25 2018-05-25 Using split deaminases to limit unwanted off-target base editor deamination
US16/616,014 Pending US20200140842A1 (en) 2017-05-25 2018-05-25 Bipartite base editor (bbe) architectures and type-ii-c-cas9 zinc finger editing
US16/615,559 Active US11326157B2 (en) 2017-05-25 2018-05-25 Base editors with improved precision and specificity
US17/739,418 Pending US20220275356A1 (en) 2017-05-25 2022-05-09 Base editors with improved precision and specificity

Family Applications After (3)

Application Number Title Priority Date Filing Date
US16/616,014 Pending US20200140842A1 (en) 2017-05-25 2018-05-25 Bipartite base editor (bbe) architectures and type-ii-c-cas9 zinc finger editing
US16/615,559 Active US11326157B2 (en) 2017-05-25 2018-05-25 Base editors with improved precision and specificity
US17/739,418 Pending US20220275356A1 (en) 2017-05-25 2022-05-09 Base editors with improved precision and specificity

Country Status (7)

Country Link
US (4) US20200172895A1 (zh)
EP (3) EP3630849A4 (zh)
JP (5) JP2020521446A (zh)
CN (3) CN110997728A (zh)
AU (3) AU2018273968A1 (zh)
CA (3) CA3063449A1 (zh)
WO (3) WO2018218206A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022067122A1 (en) * 2020-09-25 2022-03-31 Sangamo Therapeutics, Inc. Zinc finger fusion proteins for nucleobase editing
US11326157B2 (en) 2017-05-25 2022-05-10 The General Hospital Corporation Base editors with improved precision and specificity
US11834686B2 (en) * 2018-08-23 2023-12-05 Sangamo Therapeutics, Inc. Engineered target specific base editors
US11946040B2 (en) 2019-02-04 2024-04-02 The General Hospital Corporation Adenine DNA base editor variants with reduced off-target RNA editing

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3613852A3 (en) 2011-07-22 2020-04-22 President and Fellows of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9228207B2 (en) 2013-09-06 2016-01-05 President And Fellows Of Harvard College Switchable gRNAs comprising aptamers
US20150166982A1 (en) 2013-12-12 2015-06-18 President And Fellows Of Harvard College Methods for correcting pi3k point mutations
US10077453B2 (en) 2014-07-30 2018-09-18 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
AU2016319110B2 (en) 2015-09-11 2022-01-27 The General Hospital Corporation Full interrogation of nuclease DSBs and sequencing (FIND-seq)
IL294014B1 (en) 2015-10-23 2024-03-01 Harvard College Nucleobase editors and their uses
AU2017306676B2 (en) 2016-08-03 2024-02-22 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
CA3033327A1 (en) 2016-08-09 2018-02-15 President And Fellows Of Harvard College Programmable cas9-recombinase fusion proteins and uses thereof
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
CN110214180A (zh) 2016-10-14 2019-09-06 哈佛大学的校长及成员们 核碱基编辑器的aav递送
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
JP2020510439A (ja) 2017-03-10 2020-04-09 プレジデント アンド フェローズ オブ ハーバード カレッジ シトシンからグアニンへの塩基編集因子
KR20190130613A (ko) 2017-03-23 2019-11-22 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵산 프로그램가능한 dna 결합 단백질을 포함하는 핵염기 편집제
WO2018209320A1 (en) 2017-05-12 2018-11-15 President And Fellows Of Harvard College Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation
WO2019023680A1 (en) 2017-07-28 2019-01-31 President And Fellows Of Harvard College METHODS AND COMPOSITIONS FOR EVOLUTION OF BASIC EDITORS USING PHAGE-ASSISTED CONTINUOUS EVOLUTION (PACE)
WO2019040650A1 (en) 2017-08-23 2019-02-28 The General Hospital Corporation GENETICALLY MODIFIED CRISPR-CAS9 NUCLEASES HAVING MODIFIED PAM SPECIFICITY
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11725228B2 (en) 2017-10-11 2023-08-15 The General Hospital Corporation Methods for detecting site-specific and spurious genomic deamination induced by base editing technologies
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
WO2019161783A1 (en) * 2018-02-23 2019-08-29 Shanghaitech University Fusion proteins for base editing
WO2019204378A1 (en) 2018-04-17 2019-10-24 The General Hospital Corporation Sensitive in vitro assays for substrate preferences and sites of nucleic acid binding, modifying, and cleaving agents
KR20210124280A (ko) * 2019-01-31 2021-10-14 빔 테라퓨틱스, 인크. 표적-이탈 탈아미노화가 감소된 핵염기 편집기 및 이를 이용하여 핵염기 표적 서열을 변형시키는 방법
CA3128283A1 (en) * 2019-02-02 2020-08-06 Shanghaitech University Inhibition of unintended mutations in gene editing
CN110804628B (zh) * 2019-02-28 2023-05-12 中国科学院脑科学与智能技术卓越创新中心 高特异性无脱靶单碱基基因编辑工具
EP3942040A1 (en) 2019-03-19 2022-01-26 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
CN112048497B (zh) * 2019-06-06 2023-11-03 辉大(上海)生物科技有限公司 一种新型的单碱基编辑技术及其应用
WO2021046155A1 (en) 2019-09-03 2021-03-11 Voyager Therapeutics, Inc. Vectorized editing of nucleic acids to correct overt mutations
CA3151279A1 (en) * 2019-09-17 2021-03-25 Shengkan Jin Highly efficient dna base editors mediated by rna-aptamer recruitment for targeted genome modification and uses thereof
CN110564752B (zh) * 2019-09-30 2021-07-16 北京市农林科学院 差异代理技术在c·t碱基替换细胞富集中的应用
CN112725348B (zh) * 2019-10-28 2022-04-01 安徽省农业科学院水稻研究所 一种提高水稻单碱基编辑效率的基因、方法及应用
EP4069282A4 (en) * 2019-12-06 2023-11-08 The General Hospital Corporation FRACTIONATED DEAMINASE BASE EDITORS
EP4093879A4 (en) * 2020-01-25 2024-02-28 The Trustees of the University of Pennsylvania COMPOSITIONS FOR SMALL MOLECULE CONTROL OF PRECISE BASE EDITING OF TARGET NUCLEIC ACIDS AND METHODS OF USE THEREOF
US20230049455A1 (en) * 2020-01-31 2023-02-16 University Of Massachusetts A cas9-pdbd base editor platform with improved targeting range and specificity
EP4103704A1 (en) * 2020-02-13 2022-12-21 Beam Therapeutics Inc. Compositions and methods for engraftment of base edited cells
WO2021163492A1 (en) * 2020-02-14 2021-08-19 Ohio State Innovation Foundation Nucleobase editors and methods of use thereof
WO2021175288A1 (zh) * 2020-03-04 2021-09-10 中国科学院遗传与发育生物学研究所 改进的胞嘧啶碱基编辑系统
MX2022014008A (es) 2020-05-08 2023-02-09 Broad Inst Inc Métodos y composiciones para la edición simultánea de ambas cadenas de una secuencia de nucleótidos de doble cadena objetivo.
GB202010348D0 (en) 2020-07-06 2020-08-19 Univ Wageningen Base editing tools
CA3194019A1 (en) * 2020-09-04 2022-03-10 National University Corporation Kobe University Miniaturized cytidine deaminase-containing complex for modifying double-stranded dna
EP4209588A4 (en) 2020-09-04 2024-06-26 Hiroshima University METHOD FOR EDITING TARGET DNA, METHOD FOR PRODUCING A CELL HAVING EDITED TARGET DNA, AND DNA EDITING SYSTEM FOR USE IN SAID METHODS
KR102399035B1 (ko) * 2020-10-21 2022-05-17 성균관대학교산학협력단 산업 균주 내 온-타겟 효율의 감소 없이 오프-타겟이 없는 사이토신 염기 편집기를 발현하는 벡터 및 이의 용도
US20220372497A1 (en) * 2021-05-18 2022-11-24 Shanghaitech University Base Editing Tool And Use Thereof
WO2023279118A2 (en) * 2021-07-02 2023-01-05 University Of Maryland, College Park Cytidine deaminases and methods of genome editing using the same
CN113774085B (zh) * 2021-08-20 2023-08-15 中国科学院广州生物医药与健康研究院 一种单碱基编辑工具TaC9-ABE及其应用
WO2023050169A1 (zh) * 2021-09-29 2023-04-06 深圳先进技术研究院 一种在基因组上高通量实现tag到taa转换的方法
CA3241193A1 (en) * 2021-12-22 2023-06-29 Friedrich A. FAUSER Novel zinc finger fusion proteins for nucleobase editing
CN114774399B (zh) * 2022-03-25 2024-01-30 武汉大学 一种人工改造脱氨酶辅助的dna中5-羟甲基胞嘧啶修饰单碱基分辨率定位分析方法
CN114686456B (zh) * 2022-05-10 2023-02-17 中山大学 基于双分子脱氨酶互补的碱基编辑系统及其应用
WO2023217280A1 (en) * 2022-05-13 2023-11-16 Huidagene Therapeutics Co., Ltd. Programmable adenine base editor and uses thereof
CN117659210A (zh) * 2023-11-30 2024-03-08 华南农业大学 一种用作植物双碱基编辑器的重组融合蛋白及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103233A2 (en) * 2014-12-24 2016-06-30 Dana-Farber Cancer Institute, Inc. Systems and methods for genome modification and regulation

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4118327B2 (ja) 1994-08-20 2008-07-16 ゲンダック・リミテッド Dna認識のための結合タンパク質におけるまたはそれに関連する改良
US6294330B1 (en) 1997-01-31 2001-09-25 Odyssey Pharmaceuticals Inc. Protein fragment complementation assays for the detection of biological or drug interactions
US6534261B1 (en) 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
ATE309536T1 (de) 1999-12-06 2005-11-15 Sangamo Biosciences Inc Methoden zur verwendung von randomisierten zinkfingerprotein-bibliotheken zur identifizierung von genfunktionen
US6511808B2 (en) 2000-04-28 2003-01-28 Sangamo Biosciences, Inc. Methods for designing exogenous regulatory molecules
AU2003304086A1 (en) 2002-10-23 2004-11-26 Massachussetts Institute Of Technlogy Context sensitive parallel optimization of zinc finger dna binding domains
US10066233B2 (en) 2005-08-26 2018-09-04 Dupont Nutrition Biosciences Aps Method of modulating cell resistance
EP2059122B1 (en) 2006-08-28 2012-06-20 University of Rochester Methods and compositions related to apobec-1 expression
RU2531343C2 (ru) 2007-03-02 2014-10-20 ДюПон Ньютришн Байосайенсиз АпС, Способ генерирования заквасочной культуры, заквасочная культура и способ ферментации с ее использованием
FR2925918A1 (fr) 2007-12-28 2009-07-03 Pasteur Institut Typage et sous-typage moleculaire de salmonella par identification des sequences nucleotidiques variables des loci crispr
US8546553B2 (en) 2008-07-25 2013-10-01 University Of Georgia Research Foundation, Inc. Prokaryotic RNAi-like system and methods of use
US20100076057A1 (en) 2008-09-23 2010-03-25 Northwestern University TARGET DNA INTERFERENCE WITH crRNA
WO2010054108A2 (en) 2008-11-06 2010-05-14 University Of Georgia Research Foundation, Inc. Cas6 polypeptides and methods of use
WO2010054154A2 (en) 2008-11-07 2010-05-14 Danisco A/S Bifidobacteria crispr sequences
WO2010066907A1 (en) 2008-12-12 2010-06-17 Danisco A/S Genetic cluster of strains of streptococcus thermophilus having unique rheological properties for dairy fermentation
WO2010132092A2 (en) * 2009-05-12 2010-11-18 The Scripps Research Institute Cytidine deaminase fusions and related methods
US20120178647A1 (en) 2009-08-03 2012-07-12 The General Hospital Corporation Engineering of zinc finger arrays by context-dependent assembly
US20110104787A1 (en) 2009-11-05 2011-05-05 President And Fellows Of Harvard College Fusion Peptides That Bind to and Modify Target Nucleic Acid Sequences
US10087431B2 (en) 2010-03-10 2018-10-02 The Regents Of The University Of California Methods of generating nucleic acid fragments
CA2798703A1 (en) 2010-05-10 2011-11-17 The Regents Of The University Of California Endoribonuclease compositions and methods of use thereof
BR112013009583A2 (pt) 2010-10-20 2017-05-30 Dupont Nutrition Biosci Aps ácido nucleico, vetor, célula hospedeira, métodos de preparação de uma linhagem bacteriana variante de tipificação, de marcação, de geração e de controle de populações bacterianas, linhagem e célula bacteriana variante, kit, uso de um ácido nucleico, cultivo celular, produto, processo de preparação de produtos, mutantes de fago e mutante de escape de fago
WO2012164565A1 (en) 2011-06-01 2012-12-06 Yeda Research And Development Co. Ltd. Compositions and methods for downregulating prokaryotic genes
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
US20150166969A1 (en) 2012-02-24 2015-06-18 Fred Hutchinson Cancer Research Center Compositions and methods for the treatment of hemoglobinopathies
US9637739B2 (en) 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
PT2800811T (pt) 2012-05-25 2017-08-17 Univ California Métodos e composições para modificação de adn alvo dirigida por arn e para modulação dirigida por arn de transcrição
WO2013188037A2 (en) 2012-06-11 2013-12-19 Agilent Technologies, Inc Method of adaptor-dimer subtraction using a crispr cas6 protein
EP2674501A1 (en) 2012-06-14 2013-12-18 Agence nationale de sécurité sanitaire de l'alimentation,de l'environnement et du travail Method for detecting and identifying enterohemorrhagic Escherichia coli
US9258704B2 (en) 2012-06-27 2016-02-09 Advanced Messaging Technologies, Inc. Facilitating network login
WO2014071235A1 (en) 2012-11-01 2014-05-08 Massachusetts Institute Of Technology Genetic device for the controlled destruction of dna
ES2769310T3 (es) 2012-12-06 2020-06-25 Sigma Aldrich Co Llc Modificación y regulación del genoma basada en CRISPR
US20140310830A1 (en) 2012-12-12 2014-10-16 Feng Zhang CRISPR-Cas Nickase Systems, Methods And Compositions For Sequence Manipulation in Eukaryotes
US20140186843A1 (en) 2012-12-12 2014-07-03 Massachusetts Institute Of Technology Methods, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
EP2931892B1 (en) 2012-12-12 2018-09-12 The Broad Institute, Inc. Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof
EP3825401A1 (en) 2012-12-12 2021-05-26 The Broad Institute, Inc. Crispr-cas component systems, methods and compositions for sequence manipulation
EP2931899A1 (en) 2012-12-12 2015-10-21 The Broad Institute, Inc. Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof
WO2014093655A2 (en) 2012-12-12 2014-06-19 The Broad Institute, Inc. Engineering and optimization of systems, methods and compositions for sequence manipulation with functional domains
EP4279588A3 (en) 2012-12-12 2024-01-17 The Broad Institute, Inc. Engineering of systems, methods and optimized guide compositions for sequence manipulation
MX2015007550A (es) 2012-12-12 2017-02-02 Broad Inst Inc Suministro, modificación y optimización de sistemas, métodos y composiciones para la manipulación de secuencias y aplicaciones terapéuticas.
US8697359B1 (en) 2012-12-12 2014-04-15 The Broad Institute, Inc. CRISPR-Cas systems and methods for altering expression of gene products
SG10201912327SA (en) 2012-12-12 2020-02-27 Broad Inst Inc Engineering and Optimization of Improved Systems, Methods and Enzyme Compositions for Sequence Manipulation
JP6473419B2 (ja) 2012-12-13 2019-02-20 ダウ アグロサイエンシィズ エルエルシー 部位特異的ヌクレアーゼ活性のdna検出方法
EP3553174A1 (en) 2012-12-17 2019-10-16 President and Fellows of Harvard College Rna-guided human genome engineering
AU2014205134B2 (en) 2013-01-14 2020-01-16 Recombinetics, Inc. Hornless livestock
US20140212869A1 (en) 2013-01-25 2014-07-31 Agilent Technologies, Inc. Nucleic Acid Proximity Assay Involving the Formation of a Three-way junction
WO2014124226A1 (en) 2013-02-07 2014-08-14 The Rockefeller University Sequence specific antimicrobials
WO2014130955A1 (en) 2013-02-25 2014-08-28 Sangamo Biosciences, Inc. Methods and compositions for enhancing nuclease-mediated gene disruption
JP2016507244A (ja) 2013-02-27 2016-03-10 ヘルムホルツ・ツェントルム・ミュンヒェン・ドイチェス・フォルシュンクスツェントルム・フューア・ゲズントハイト・ウント・ウムベルト(ゲーエムベーハー)Helmholtz Zentrum MuenchenDeutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH) Cas9ヌクレアーゼによる卵母細胞における遺伝子編集
US10612043B2 (en) 2013-03-09 2020-04-07 Agilent Technologies, Inc. Methods of in vivo engineering of large sequences using multiple CRISPR/cas selections of recombineering events
ES2901396T3 (es) 2013-03-14 2022-03-22 Caribou Biosciences Inc Composiciones y métodos de ácidos nucleicos dirigidos a ácido nucleico
US10760064B2 (en) 2013-03-15 2020-09-01 The General Hospital Corporation RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci
US20140273230A1 (en) 2013-03-15 2014-09-18 Sigma-Aldrich Co., Llc Crispr-based genome modification and regulation
US20140349400A1 (en) 2013-03-15 2014-11-27 Massachusetts Institute Of Technology Programmable Modification of DNA
CA2906747A1 (en) 2013-03-15 2014-09-18 Regents Of The University Of Minnesota Engineering plant genomes using crispr/cas systems
US9234213B2 (en) 2013-03-15 2016-01-12 System Biosciences, Llc Compositions and methods directed to CRISPR/Cas genomic engineering systems
US11332719B2 (en) 2013-03-15 2022-05-17 The Broad Institute, Inc. Recombinant virus and preparations thereof
CN110540991B (zh) 2013-03-15 2023-10-24 通用医疗公司 使用截短的引导RNA(tru-gRNA)提高RNA引导的基因组编辑的特异性
WO2014204578A1 (en) 2013-06-21 2014-12-24 The General Hospital Corporation Using rna-guided foki nucleases (rfns) to increase specificity for rna-guided genome editing
JP2016514480A (ja) 2013-04-05 2016-05-23 ダウ アグロサイエンシィズ エルエルシー 植物のゲノム内に外因性配列を組み込むための方法および組成物
US20150056629A1 (en) 2013-04-14 2015-02-26 Katriona Guthrie-Honea Compositions, systems, and methods for detecting a DNA sequence
JP6411463B2 (ja) 2013-04-16 2018-10-24 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. ラットゲノムの標的改変
CA2910427C (en) 2013-05-10 2024-02-20 Sangamo Biosciences, Inc. Delivery methods and compositions for nuclease-mediated genome engineering
US11414695B2 (en) 2013-05-29 2022-08-16 Agilent Technologies, Inc. Nucleic acid enrichment using Cas9
WO2014194190A1 (en) 2013-05-30 2014-12-04 The Penn State Research Foundation Gene targeting and genetic modification of plants via rna-guided genome editing
CN105492611A (zh) 2013-06-17 2016-04-13 布罗德研究所有限公司 用于序列操纵的优化的crispr-cas双切口酶系统、方法以及组合物
US9663782B2 (en) 2013-07-19 2017-05-30 Larix Bioscience Llc Methods and compositions for producing double allele knock outs
US20150044772A1 (en) 2013-08-09 2015-02-12 Sage Labs, Inc. Crispr/cas system-based novel fusion protein and its applications in genome editing
US9925248B2 (en) 2013-08-29 2018-03-27 Temple University Of The Commonwealth System Of Higher Education Methods and compositions for RNA-guided treatment of HIV infection
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9737604B2 (en) * 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
CA2926078C (en) * 2013-10-17 2021-11-16 Sangamo Biosciences, Inc. Delivery methods and compositions for nuclease-mediated genome engineering in hematopoietic stem cells
RU2685914C1 (ru) 2013-12-11 2019-04-23 Регенерон Фармасьютикалс, Инк. Способы и композиции для направленной модификации генома
CN106536729A (zh) 2013-12-12 2017-03-22 布罗德研究所有限公司 使用粒子递送组分靶向障碍和疾病的crispr‑cas系统和组合物的递送、用途和治疗应用
US20150191744A1 (en) 2013-12-17 2015-07-09 University Of Massachusetts Cas9 effector-mediated regulation of transcription, differentiation and gene editing/labeling
EP3985124A1 (en) 2013-12-26 2022-04-20 The General Hospital Corporation Multiplex guide rnas
WO2015138510A1 (en) 2014-03-10 2015-09-17 Editas Medicine., Inc. Crispr/cas-related methods and compositions for treating leber's congenital amaurosis 10 (lca10)
WO2016028682A1 (en) * 2014-08-17 2016-02-25 The Broad Institute Inc. Genome editing using cas9 nickases
US10190106B2 (en) 2014-12-22 2019-01-29 Univesity Of Massachusetts Cas9-DNA targeting unit chimeras
WO2016112242A1 (en) 2015-01-08 2016-07-14 President And Fellows Of Harvard College Split cas9 proteins
EP3265559B1 (en) 2015-03-03 2021-01-06 The General Hospital Corporation Engineered crispr-cas9 nucleases with altered pam specificity
WO2016183438A1 (en) * 2015-05-14 2016-11-17 Massachusetts Institute Of Technology Self-targeting genome editing system
JP7044373B2 (ja) 2015-07-15 2022-03-30 ラトガース,ザ ステート ユニバーシティ オブ ニュージャージー ヌクレアーゼ非依存的な標的化遺伝子編集プラットフォームおよびその用途
US9926546B2 (en) * 2015-08-28 2018-03-27 The General Hospital Corporation Engineered CRISPR-Cas9 nucleases
WO2017040348A1 (en) * 2015-08-28 2017-03-09 The General Hospital Corporation Engineered crispr-cas9 nucleases
IL294014B1 (en) * 2015-10-23 2024-03-01 Harvard College Nucleobase editors and their uses
US20190093128A1 (en) * 2016-03-31 2019-03-28 The Regents Of The University Of California Methods for genome editing in zygotes
WO2017189308A1 (en) * 2016-04-19 2017-11-02 The Broad Institute Inc. Novel crispr enzymes and systems
AU2017306676B2 (en) 2016-08-03 2024-02-22 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US20200283743A1 (en) * 2016-08-17 2020-09-10 The Broad Institute, Inc. Novel crispr enzymes and systems
JP2020510439A (ja) 2017-03-10 2020-04-09 プレジデント アンド フェローズ オブ ハーバード カレッジ シトシンからグアニンへの塩基編集因子
KR20190130613A (ko) 2017-03-23 2019-11-22 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 핵산 프로그램가능한 dna 결합 단백질을 포함하는 핵염기 편집제
EP3612551A4 (en) 2017-04-21 2020-12-30 The General Hospital Corporation VARIANTS OF CPF1 (CAS12A) WITH MODIFIED PAM SPECIFICITY
JP2020521446A (ja) 2017-05-25 2020-07-27 ザ ジェネラル ホスピタル コーポレイション 二部塩基エディター(bbe)構造およびii型−c−cas9ジンクフィンガー編集
WO2019040650A1 (en) 2017-08-23 2019-02-28 The General Hospital Corporation GENETICALLY MODIFIED CRISPR-CAS9 NUCLEASES HAVING MODIFIED PAM SPECIFICITY
WO2020077138A2 (en) 2018-10-10 2020-04-16 The General Hospital Corporation Selective curbing of unwanted rna editing (secure) dna base editor variants
US11946040B2 (en) 2019-02-04 2024-04-02 The General Hospital Corporation Adenine DNA base editor variants with reduced off-target RNA editing
US20220290121A1 (en) 2019-08-30 2022-09-15 The General Hospital Corporation Combinatorial Adenine and Cytosine DNA Base Editors
EP4022053A4 (en) 2019-08-30 2023-05-31 The General Hospital Corporation DNA BASE EDITORS WITH C-TO-G TRANSVERSION
EP4069282A4 (en) 2019-12-06 2023-11-08 The General Hospital Corporation FRACTIONATED DEAMINASE BASE EDITORS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103233A2 (en) * 2014-12-24 2016-06-30 Dana-Farber Cancer Institute, Inc. Systems and methods for genome modification and regulation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Singh et al., Curr. Protein Pept. Sci. 18:1-11, 2017 (Year: 2017) *
Stier et al., PLoS ONE 8:e79003, 2013, 10 pages (Year: 2013) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11326157B2 (en) 2017-05-25 2022-05-10 The General Hospital Corporation Base editors with improved precision and specificity
US11834686B2 (en) * 2018-08-23 2023-12-05 Sangamo Therapeutics, Inc. Engineered target specific base editors
US11946040B2 (en) 2019-02-04 2024-04-02 The General Hospital Corporation Adenine DNA base editor variants with reduced off-target RNA editing
WO2022067122A1 (en) * 2020-09-25 2022-03-31 Sangamo Therapeutics, Inc. Zinc finger fusion proteins for nucleobase editing

Also Published As

Publication number Publication date
CA3063733A1 (en) 2018-11-29
JP2023113672A (ja) 2023-08-16
WO2018218166A1 (en) 2018-11-29
AU2018273968A1 (en) 2019-11-28
EP3630198A4 (en) 2021-04-21
US20200172885A1 (en) 2020-06-04
AU2018272067A1 (en) 2019-11-28
CN110959040A (zh) 2020-04-03
EP3630849A1 (en) 2020-04-08
EP3630849A4 (en) 2021-01-13
EP3630970A4 (en) 2020-12-30
EP3630970A2 (en) 2020-04-08
JP7324713B2 (ja) 2023-08-10
JP2020521454A (ja) 2020-07-27
WO2018218188A3 (en) 2019-01-03
JP2023126956A (ja) 2023-09-12
EP3630198A1 (en) 2020-04-08
WO2018218206A1 (en) 2018-11-29
JP2020521446A (ja) 2020-07-27
CN111093714A (zh) 2020-05-01
US20220275356A1 (en) 2022-09-01
CA3063449A1 (en) 2018-11-29
CA3064828A1 (en) 2018-11-29
US11326157B2 (en) 2022-05-10
US20200140842A1 (en) 2020-05-07
CN110997728A (zh) 2020-04-10
WO2018218188A2 (en) 2018-11-29
JP2020521451A (ja) 2020-07-27
AU2018273986A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
US20200172895A1 (en) Using split deaminases to limit unwanted off-target base editor deamination
US11946040B2 (en) Adenine DNA base editor variants with reduced off-target RNA editing
US20220025347A1 (en) Variants of CRISPR from Prevotella and Francisella 1 (Cpf1)
US10633642B2 (en) Engineered CRISPR-Cas9 nucleases
US11591589B2 (en) Variants of Cpf1 (Cas12a) with altered PAM specificity
US20170058271A1 (en) Engineered CRISPR-Cas9 Nucleases
WO2021042047A1 (en) C-to-g transversion dna base editors
WO2021042062A2 (en) Combinatorial adenine and cytosine dna base editors
AU2017341926A1 (en) Epigenetically regulated site-specific nucleases
WO2020077138A2 (en) Selective curbing of unwanted rna editing (secure) dna base editor variants
US20230024833A1 (en) Split deaminase base editors
WO2024086845A2 (en) Engineered casphi2 nucleases
BASE Adenine Dna Base Editor Variants With Reduced Off-target Rna Editing

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: THE GENERAL HOSPITAL CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JOUNG, J. KEITH;ANGSTMAN, JAMES;SIGNING DATES FROM 20210722 TO 20211007;REEL/FRAME:059799/0371

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION