US20180223841A1 - Vane pump - Google Patents
Vane pump Download PDFInfo
- Publication number
- US20180223841A1 US20180223841A1 US15/579,943 US201615579943A US2018223841A1 US 20180223841 A1 US20180223841 A1 US 20180223841A1 US 201615579943 A US201615579943 A US 201615579943A US 2018223841 A1 US2018223841 A1 US 2018223841A1
- Authority
- US
- United States
- Prior art keywords
- cam ring
- outer cam
- slit
- end portion
- vane pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/10—Outer members for co-operation with rotary pistons; Casings
- F01C21/104—Stators; Members defining the outer boundaries of the working chamber
- F01C21/106—Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/30—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C2/34—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
- F04C2/344—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
- F04C2/3441—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/0042—Systems for the equilibration of forces acting on the machines or pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C14/00—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
- F04C14/18—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
- F04C14/22—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C14/00—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
- F04C14/18—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
- F04C14/22—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
- F04C14/223—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C14/00—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
- F04C14/18—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
- F04C14/22—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
- F04C14/223—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
- F04C14/226—Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam by pivoting the cam around an eccentric axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C15/00—Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
- F04C15/06—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2/00—Rotary-piston machines or pumps
- F04C2/30—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C2/34—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
- F04C2/344—Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/10—Stators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/80—Other components
- F04C2240/802—Liners
Definitions
- the present invention relates to a vane pump which is capable of smoothly suctioning a working fluid suctioned into a rotary chamber while minimizing damage to a vane or occurrence of noise, exhibits an excellent performance in terms of flow rate and volumetric efficiency, and is capable of effectively reducing inner cavitation.
- Pumps function to supply a working fluid to each portion of an engine to smoothly operating the engine, are configured to apply a pressure to the working fluid using mechanical energy of the engine such as a motor, an internal combustion engine, or a steam engine and then circulate the working fluid to each portion of the engine, and are classified into vane-type pumps and piston-type pumps.
- pumps include constant-volume pumps having constant discharge quantities under load variation and variable-capacity pumps having varying discharge quantities according to load variation.
- a variable-capacity vane pump which is a vane-type pump and has a discharge quantity varying according to load variation, includes: a casing 10 including a housing 11 and a cover 12 ; a rotor 30 rotating according to rotation of a driving shaft; an outer cam ring 20 installed eccentric to the rotor 30 ; a support spring 60 which elastically supports the outer cam ring 20 , and maintains the state in which the outer cam ring 20 and the rotor 30 are positioned eccentric to each other; and a plurality of vanes 31 which rotate while contacting the inner circumferential surface of the outer cam ring 20 and thereby delivers a pressurized working fluid to the outside.
- FIG. 3 is a perspective view illustrating an inside of an outer cam ring 20
- FIG. 4 is a view for illustrating a process in which a working fluid is introduced into a rotary chamber in a conventional variable-capacity vane-type pump.
- the conventional outer cam ring 20 is formed such that a working fluid is suctioned into the rotary chamber RS through a suctioning port 40 communicating with an upper opening and a lower opening, which correspond to one side of the rotary chamber RS, is transported under pressure applied by vanes 31 to the other side of the rotary chamber RS, and is then discharged through a discharge port 50 communicating with the upper opening and the lower opening which correspond to the other side of the rotary chamber RS.
- the conventional outer cam ring 20 had a limitation in that the working fluid suctioned into the rotary chamber RS could not be smoothly suctioned due to suction resistance of the working fluid suctioned, and thus, cavitation or noise occurred.
- a vane pump which was for continuously variable transmissions and had a multilayer suctioning flow passage, was disclosed in Korea Patent Publication No. 10-2014-010467.
- a circular through hole b is simply formed in the cam ring 80 to solve the above-mentioned limitation, but the effect thereof was unsatisfactory.
- stepped parts a were formed in the upper and lower portions of the cam ring 80 so as to smoothly suction the working fluid, but shaking of the vanes was caused due to the stepped parts a, and therefore, a smooth pressure-transport could not be carried out, and further, the stepped parts a caused damage to the vanes and noise.
- vane pumps have been demanded to be improved not only to effectively prevent cavitation or noise but also to smoothly suction the working fluid.
- An objective of the present invention for solving the limitations of conventional arts is to provide a vane pump which is capable of smoothly suctioning a working fluid suctioned into a rotary chamber while suppressing damage to a vanes or occurrence of noise, has an excellent performance in terms of flow rate and volumetric efficiency, and is capable of effectively reducing inner cavitation.
- the vane pump of the present invention is configured such that the working fluid introduced into one side of the rotary chamber formed between an outer cam ring and a rotor is discharged to the other side of the rotary chamber, wherein a through slit extending along the circumferential direction of the outer cam ring is formed in the corresponding portion of the outer cam ring corresponding to the side to which the working fluid is introduced.
- an upper end portion of the outer cam ring having a through slit formed therein may be formed in the same height as the remaining upper end portion of the outer ring, and a lower end portion of the outer cam ring having the through slit formed therein may be formed in the same height as the remaining lower end portion of the outer ring.
- an inside of the upper end portion and an inside of the lower end portion the outer cam ring which have through slits formed therein may be chamfered.
- the upper end portion of the outer cam ring having the through slit formed therein and the lower end portion of the outer cam ring having the through slit formed therein may be formed in a same height, the through slit may be formed in height at least two times the thickness of the upper end portion or the lower end portion of the outer cam ring having the through slit, and thus, the through slit may be formed in rectangular shapes.
- the through slit may be formed in a width 2.5 to 3 times the thickness of the upper end portion or lower end portion of the outer cam ring having the through slit formed therein.
- the upper and lower end portions of the outer cam ring having the through slit formed therein are formed in a thickness which gradually increases in an opposite direction to a moving direction of the working fluid, and the through slit may correspondingly be formed in a width which gradually increases.
- the upper and lower end portions of the outer cam ring having the through slit formed therein may be formed vertically symmetrical to each other.
- the through slit may extend up to an end portion corresponding to the opposite side of a moving direction of the working fluid in a suction port configured to communicate with the rotary chamber on the side to which the working fluid is introduced.
- the present invention described above relates to a vane pump has a merit of being capable of smoothly drawing a working fluid drawn into a rotary chamber while minimizing damage to a vane or occurrence of noise, having an excellent performance in terms of flow rate and volumetric efficiency, and being capable of effectively reducing inner cavitation.
- FIG. 1 is a perspective view illustrating a conventional vane pump.
- FIG. 2 is a partial exploded perspective view illustrating a conventional vane pump.
- FIG. 3 is a perspective view illustrating an inside of an outer cam ring constituting a conventional vane pump.
- FIG. 4 is a view for describing a process in which a working fluid is intruded into a rotary chamber in a conventional vane pump.
- FIG. 5 is a perspective view illustrating a cam ring constituting a vane pump for a conventional continuously variable transmission having a multilayered suction flow passage.
- FIG. 6 is a perspective view illustrating an outer cam ring constituting a vane pump according to a first embodiment of the present invention.
- FIG. 7 is a perspective view illustrating an outer cam ring constituting a vane pump according to a second embodiment of the present invention.
- FIG. 8 is an analysis result when a rotation speed of a pump is 6500 rpm in a cam ring provided in the vane pump for a conventional continuously variable transmission having a multilayered suction flow passage and in outer cam rings constituting vane pumps of the first and second embodiments.
- FIG. 9 is an analysis result when a rotation speed of a pump is 12000 rpm in a cam ring provided in the vane pump for a conventional continuously variable transmission having a multilayered suction flow passage and in the outer cam rings constituting the vane pumps of the first and second embodiments.
- FIG. 10 is a table in which flow rates, volume efficiencies, and remaining gas amounts when a rotation speeds of pumps are 6500 rpm and 12000 rpm in a cam ring provided in the vane pump for a conventional continuously variable transmission having a multilayered suction flow passage and in the outer cam rings constituting the vane pumps of the first and second embodiments.
- first and second may be used to describe various components, but the components should not be limited by the terms.
- first component may be named as a second component within the scope of the present disclosure, and likewise, the second component may be named as the first component.
- the term “and/or” includes a combination of a plurality of related elements described or one among a plurality of the related elements described.
- ком ⁇ онент When a component is referred to as being “coupled” or “connected” to another component, the component may be directly coupled or connected to the another component, but another component may be present therebetween.
- a vane pump is a vane pump configured such that a working fluid introduced into one side of a rotary chamber formed between an outer cam ring and a rotor is discharged to the other side of the rotary chamber, the entire components thereof may have a configuration similar to conventional vane pumps, and may be configured to include: a casing including a housing and a cover; a rotor rotating due to a rotation of a driving shaft; an outer cam ring eccentrically installed to the rotor; a support spring which elastically supports the outer cam ring and in which the outer cam ring and the rotor maintain a state of being located eccentric to each other; and a plurality of vanes which transports the working fluid under pressure to the outside while contacting an inner circumferential surface of the outer cam ring.
- FIG. 6 is a perspective view illustrating an outer cam ring constituting a vane pump according to a first embodiment of the present invention
- FIG. 7 is a perspective view illustrating an outer cam ring constituting a vane pump according to a second embodiment of the present invention, and hereinafter a shape of an outer cam ring constituting a configuration of a vane pump of the present invention will be described in detail.
- outer cam rings 100 and 200 configuring a vane pump of the present invention have, on portions of the outer cam rings 100 and 200 corresponding to the side to which working fluids are introduced into rotary chambers, through slits 100 h and 200 h extending in the circumferential directions of the outer cam rings 100 and 200 .
- the outer cam ring 100 of the first embodiment has, on a portion thereof corresponding to the side to which the working fluid is introduced, a rectangular through slit 100 h which extends in the circumferential direction thereof.
- the upper end part 111 of the outer cam ring 100 has one portion in which the rectangular through slit 100 h is formed, and which is formed in the same height as the remaining portion thereof, and the lower end part 113 of the outer cam ring 100 has one portion, in which the rectangular through slit 100 h is formed, and which is formed in the same height as the remaining portion thereof. That is, the outer cam ring 100 is formed such that the upper and lower portions thereof are formed to be flat overall.
- the upper end part 111 of the outer cam ring 100 having the through slit 100 h formed therein and the lower end part 113 of the outer cam ring 100 having the through slit 100 h formed therein may favorably be formed in the same thickness, and in this case, and the through slit 100 h may favorably be formed in a height at least two times the thickness of the upper end part 111 or the lower end part 113 of the outer cam ring 100 at the portion having the through slit 100 h .
- the through slit 100 h may favorably be formed in a height 2.5 to 3 times the thickness of the upper end portion 111 of the outer cam ring 100 having the through slit 100 h formed therein or the lower end portion 113 of the outer cam ring 100 having the through slit 100 h formed therein, and when the height formed falls out of this range, there may be a limitation of occurrence of cavitation or noise, or disadvantage of a decreased flow rate.
- insides of the upper end portion 111 and the lower end portion 113 of the outer cam ring 100 which have the through slit 100 h formed therein, may favorably be processed to have chamfers C, and thus, the working fluid may be smoothly introduced due to such chamfers C.
- the through slit 100 h may extend up to an end portion corresponding to the opposite side of a moving direction A of the working fluid in the suction port which is configured to communicate with the rotary chamber on the side to which the working fluid is introduced.
- the outer cam ring 200 of the second embodiment has, on the corresponding portion of the outer cam ring 200 corresponding to the side where the working fluid is introduced into a rotary chamber, a through slit 200 h which has a shape of an approximate isosceles triangle and extends in the circumferential direction of the outer cam ring 200 . That is, an upper end part 211 and a lower end part 213 of the outer cam ring 100 respectively have portions which have the through slit 200 h formed therein and are formed to be vertically symmetrical to each other.
- the upper end part 211 and the lower end part 213 of the outer cam ring 200 have portions which have the through slit with an isosceles triangle shape 200 h formed therein, the portions being formed to have heights which gradually increase in the opposite direction to a moving direction A of he working fluid, and corresponding to this, the through slit 200 h is formed to have a width which gradually increases, and similarly to the first embodiment, the upper portion and the lower portion of the outer cam ring 200 are formed to be flat overall.
- the portions corresponding to both sides of the through slit 200 h having an isosceles triangle shape are favorably formed not in a linear shape but in a smooth outwardly convex curve.
- insides of the upper end part 211 and the lower end part 213 of the outer cam ring 200 which have the through slit 200 h formed therein are favorably be processed to have chamfers C, and the working fluid may be smoothly introduced due to such chamfers C.
- the through slit 200 h may extend up to an end portion corresponding to the opposite side of a moving direction A of the working fluid in the suction port which is configured to communicate with the rotary chamber on the side to which the working fluid is introduced.
- FIG. 8 is an analysis result when the rotation speed of a pump is 6500 rpm, in a cam ring provided in a vane pump for a conventional continuously variable transmission having a multilayer suction flow passage, and in outer cam rings constituting vane pumps of the first and second embodiments.
- FIG. 9 is an analysis result when a rotation speed of a pump is 12000 rpm, in a cam ring provided in the vane pump for a conventional continuously variable transmission having a multilayer suction flow passage, and in the outer cam rings constituting the vane pumps of the first and second embodiments.
- FIG. 10 is a table in which flow rates, volumetric efficiencies, and remaining gas amounts when the rotation speeds of pumps are 6500 rpm and 12000 rpm, in a cam ring provided in the vane pump for a conventional continuously variable transmission having a multilayer suction flow passage, and in the outer cam rings constituting the vane pumps of the first and second embodiments.
- a vane pump to which the outer cam rings 100 and 200 of the first and second embodiments are applied, has a higher flow rate and a higher volumetric efficiency than the conventional art, and a reduced amount of cavitation (gas) is generated.
- the vane pump to which the outer cam rings 100 and 200 of the first and second embodiments are applied, has a structure which may decrease demerits while further increasing merits such that the amount of generated cavitation gas decreases while a flow rate and a volumetric efficiency increase.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
- Details And Applications Of Rotary Liquid Pumps (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2015-0082706 | 2015-06-11 | ||
KR1020150082706A KR101740610B1 (ko) | 2015-06-11 | 2015-06-11 | 베인펌프 |
PCT/KR2016/004484 WO2016200055A1 (ko) | 2015-06-11 | 2016-04-28 | 베인펌프 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20180223841A1 true US20180223841A1 (en) | 2018-08-09 |
Family
ID=57503613
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/579,943 Abandoned US20180223841A1 (en) | 2015-06-11 | 2016-04-28 | Vane pump |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180223841A1 (ko) |
EP (1) | EP3309397A4 (ko) |
JP (1) | JP2018519460A (ko) |
KR (1) | KR101740610B1 (ko) |
CN (1) | CN107771249A (ko) |
WO (1) | WO2016200055A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7029369B2 (ja) * | 2018-09-11 | 2022-03-03 | Kyb株式会社 | ベーンポンプ |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5289681A (en) * | 1991-01-16 | 1994-03-01 | Jidosha Kiki Co., Ltd. | Power steering system |
US20070266847A1 (en) * | 2006-05-17 | 2007-11-22 | Dow Glendal R | Heart Booster Pump |
US8550792B2 (en) * | 2008-06-30 | 2013-10-08 | Eaton Corporation | Energy conversion device and method of reducing friction therein |
US20150260186A1 (en) * | 2014-03-14 | 2015-09-17 | Hitachi Automotive Systems Steering, Ltd. | Variable displacement vane pump |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4354809A (en) * | 1980-03-03 | 1982-10-19 | Chandler Evans Inc. | Fixed displacement vane pump with undervane pumping |
JPS6084787U (ja) * | 1983-11-18 | 1985-06-11 | トキコ株式会社 | ベ−ンポンプ |
JPS60134888U (ja) * | 1984-02-17 | 1985-09-07 | 株式会社アツギユニシア | ベ−ン型回転圧縮機 |
JPH031289U (ko) * | 1989-05-29 | 1991-01-09 | ||
CA2103539C (en) * | 1992-12-28 | 2003-12-02 | James Jay Davis | Vane pump |
US5402569A (en) * | 1994-02-28 | 1995-04-04 | Hypro Corporation | Method of manufacturing a pump with a modular cam profile liner |
JP3672119B2 (ja) * | 1995-09-29 | 2005-07-13 | 株式会社ショーワ | ベーンポンプ |
US8011909B2 (en) * | 2007-03-28 | 2011-09-06 | Goodrich Pump & Engine Control Systems, Inc. | Balanced variable displacement vane pump with floating face seals and biased vane seals |
CN101576077A (zh) * | 2008-05-06 | 2009-11-11 | 洪铭煌 | 轮叶泵 |
JP5364606B2 (ja) | 2010-01-29 | 2013-12-11 | 日立オートモティブシステムズ株式会社 | ベーンポンプ |
US8668480B2 (en) * | 2010-09-22 | 2014-03-11 | Hamilton Sundstrand Corporation | Pre-pressurization pump liner for vane pump |
JP5475701B2 (ja) * | 2011-02-07 | 2014-04-16 | 日立オートモティブシステムズ株式会社 | ベーンポンプ |
US20130156564A1 (en) * | 2011-12-16 | 2013-06-20 | Goodrich Pump & Engine Control Systems, Inc. | Multi-discharge hydraulic vane pump |
JP2014122558A (ja) * | 2012-12-20 | 2014-07-03 | Jtekt Corp | ベーンポンプ |
KR101444010B1 (ko) * | 2013-02-21 | 2014-09-23 | 영신정공 주식회사 | 다층 흡입유로를 갖는 무단변속기용 베인펌프 |
-
2015
- 2015-06-11 KR KR1020150082706A patent/KR101740610B1/ko active IP Right Grant
-
2016
- 2016-04-28 WO PCT/KR2016/004484 patent/WO2016200055A1/ko active Application Filing
- 2016-04-28 CN CN201680033292.6A patent/CN107771249A/zh active Pending
- 2016-04-28 JP JP2017561895A patent/JP2018519460A/ja active Pending
- 2016-04-28 US US15/579,943 patent/US20180223841A1/en not_active Abandoned
- 2016-04-28 EP EP16807696.6A patent/EP3309397A4/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5289681A (en) * | 1991-01-16 | 1994-03-01 | Jidosha Kiki Co., Ltd. | Power steering system |
US20070266847A1 (en) * | 2006-05-17 | 2007-11-22 | Dow Glendal R | Heart Booster Pump |
US8550792B2 (en) * | 2008-06-30 | 2013-10-08 | Eaton Corporation | Energy conversion device and method of reducing friction therein |
US20150260186A1 (en) * | 2014-03-14 | 2015-09-17 | Hitachi Automotive Systems Steering, Ltd. | Variable displacement vane pump |
Also Published As
Publication number | Publication date |
---|---|
EP3309397A4 (en) | 2019-01-23 |
EP3309397A1 (en) | 2018-04-18 |
KR20160147112A (ko) | 2016-12-22 |
JP2018519460A (ja) | 2018-07-19 |
KR101740610B1 (ko) | 2017-06-08 |
CN107771249A (zh) | 2018-03-06 |
WO2016200055A1 (ko) | 2016-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8535030B2 (en) | Gerotor hydraulic pump with fluid actuated vanes | |
US8348645B2 (en) | Balanced pressure, variable displacement, dual lobe, single ring, vane pump | |
RU2480627C1 (ru) | Лопастной насос | |
US9581156B2 (en) | Gear pump including an inner rotor having a plurality of teeth | |
JP2016507019A (ja) | 複数の圧力室を有する可変排水量ポンプ | |
RU2492358C2 (ru) | Насосное колесо и лопастной насос | |
US10012081B2 (en) | Multi-vane impeller device | |
US9638190B2 (en) | Oil pump | |
US9562530B2 (en) | Rotor pump and rotary machinery comprising the same, the rotor pump including a pump body forming an accommodation cavity, a pump wheel rotating in the accommodation cavity and a sealing plate having an eccentric hole that is eccentric relative to a rotation axis of the pump wheel, where a shaft portion of the pump wheel is rotatably fitted in the eccentric hole | |
EP2871366A1 (en) | Rotary compressor | |
US20180223841A1 (en) | Vane pump | |
CN112673176B (zh) | 叶片泵装置 | |
US20220228587A1 (en) | Rotary compressor | |
WO2021019938A1 (ja) | ベーンポンプ装置 | |
KR101103756B1 (ko) | 오일펌프 | |
JP6700994B2 (ja) | ベーンポンプ | |
JP2016133019A (ja) | バキュームポンプ | |
KR20160083386A (ko) | 복열 위상변위식 외접기어펌프 및 이를 적용한 유압시스템 | |
US11466686B2 (en) | Rotary compressor | |
KR101697148B1 (ko) | 원심 흡입식 하이브리드 베인 유체기계 | |
US20180156218A1 (en) | Automotive vacuum pump | |
EP2751393A1 (en) | Lubricant vane pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MYUNGHWA IND. CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JUNG, HYUNEU;KIM, SANGWOO;REEL/FRAME:044310/0003 Effective date: 20171121 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |