US20180223225A1 - Laundry detergent sheet with microcapsules - Google Patents

Laundry detergent sheet with microcapsules Download PDF

Info

Publication number
US20180223225A1
US20180223225A1 US15/888,115 US201815888115A US2018223225A1 US 20180223225 A1 US20180223225 A1 US 20180223225A1 US 201815888115 A US201815888115 A US 201815888115A US 2018223225 A1 US2018223225 A1 US 2018223225A1
Authority
US
United States
Prior art keywords
laundry detergent
detergent sheet
microcapsule
fibrous laundry
fibrous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/888,115
Other languages
English (en)
Inventor
Hong Sing TAN
Ming Tang
Mark Robert Sivik
Frank William DeNome
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Assigned to THE PROCTER AND GAMBLE COMPANY reassignment THE PROCTER AND GAMBLE COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DENOME, FRANK WILLIAM, SIVIK, MARK ROBERT, TAN, Hong Sing, TANG, MING
Publication of US20180223225A1 publication Critical patent/US20180223225A1/en
Priority to US17/077,345 priority Critical patent/US11680232B2/en
Priority to US18/313,572 priority patent/US20230272312A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • C11D3/502Protected perfumes
    • C11D3/505Protected perfumes encapsulated or adsorbed on a carrier, e.g. zeolite or clay
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/37Mixtures of compounds all of which are anionic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/83Mixtures of non-ionic with anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • C11D17/042Water soluble or water disintegrable containers or substrates containing cleaning compositions or additives for cleaning compositions
    • C11D17/044Solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3753Polyvinylalcohol; Ethers or esters thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/50Perfumes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/22Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
    • C11D1/24Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds containing ester or ether groups directly attached to the nucleus
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • C11D2111/12

Definitions

  • the present invention is directed to non-fibrous laundry detergent sheets having microcapsules that can help clean laundry and impart freshness to the laundry.
  • Non-fibrous laundry sheets are suitable for cleaning fabrics, but currently marketed sheets fall short in fulfilling this consumer need.
  • volatile scent characters such as fruity, citrus, green, lighter florals, and the like on their fabrics.
  • the issue is that the perfume ingredients that are needed to produce these character types do not readily deposit onto clothing during laundering (i.e., fabric cleaning) or because they can be lost during the drying process given, inter alia, high temperatures.
  • Non-fibrous laundry sheets are a convenient vehicle for delivering freshness (via perfume) onto consumers' clothing.
  • Long-lasting freshness e.g., scent that lasts for several days
  • One suitable way includes the use of friable perfume microcapsules.
  • friable perfume microcapsules verses moisture activated microcapsules (e.g., cyclodextrin)
  • traditional manufacturing approaches of making non-fibrous laundry sheets likely lead to pre-mature rupturing of the microcapsule thereby providing unacceptable yields in the manufacture of these sheets.
  • the present invention is based on the surprising discovery that friable microcapsules can be more effectively incorporated into non-fibrous laundry detergent sheets after the sheet is formed during the manufacturing process. In other words by dispensing the friable microcapsules to the sheet later in the manufacturing process, as opposed to being incorporating in the original starting materials, a better yield of friable microcapsules can be obtain in the final product.
  • One advantage of the present invention is better incorporation of perfume into onto the non-fibrous laundry detergent sheets by use of friable perfume microcapsules.
  • Another advantage is improving a user's experience when wearing clothing laundered by the non-fibrous laundry detergent sheets containing friable perfume microcapsules by the user smelling desirable volatile scent characters.
  • Yet still another advantage is improving a user's experience when wearing clothing laundered by the non-fibrous laundry detergent sheets containing friable perfume microcapsules by the user having long-lasting freshness imparted to their clothing.
  • Yet still another advantage is improving a user's experience when wearing clothing laundered by the non-fibrous laundry detergent sheets containing friable perfume microcapsules by the user experience a pleasant burst of freshness upon normal everyday physical movements such as taking off a jacket; pulling a shirt over your head; or taking off/putting on socks.
  • One aspect of the invention provides a non-fibrous laundry detergent sheet comprising: (a) at least one surfactant; (b) at least one film former; and (c) a friable microcapsule; wherein said laundry detergent sheet has a thickness ranging from 0.1 mm to 2 mm, a length-to-thickness aspect ratio of at least 5:1, and a width-to-thickness aspect ratio of at least 5:1.
  • Another aspect of the invention provides for a method of making a non-fibrous laundry detergent sheet comprising the step of dispensing a microcapsule to a precursor non-fibrous laundry detergent sheet, wherein the precursor non-fibrous laundry detergent sheet comprising (a) at least one surfactant; (b) at least one film former; and (c) a thickness ranging from 0.1 mm to 2 mm.
  • FIG. 1 is a cylinder laundry detergent sheet production system suitable for making a non-fibrous laundry detergent sheet comprising a friable microcapsule of the present invention
  • FIG. 2 is a heated rotatable cylinder of the system of FIG. 1 ;
  • FIG. 3 is a feeding mechanism of the system of FIG. 1 ;
  • FIG. 4 is a slicing device of system of FIG. 1 ;
  • FIG. 5 is a microcapsule slurry tank device of the system of FIG. 1 .
  • water-soluble refers to a solubility of more than about 30 grams per liter (g/L) of deionized water measured at 20° C. and under the atmospheric pressure.
  • substantially water-soluble refers to a solubility of more than about 25 grams per liter (g/L) of deionized water measured at 20° C. and under the atmospheric pressure.
  • the term “sheet” refers to a three-dimensional shape having a thickness, a length, and a width, while the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 5:1, and the length-to-width aspect ratio is at least about 1:1.
  • the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 10:1, and the length-to-width aspect ratio is at least about 1.2:1. More preferably, the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 15:1, and the length-to-width aspect ratio is at least about 1.5:1.
  • the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 20:1, and the length-to-width aspect ratio is at least about 1.618:1.
  • non-fibrous refers to a structure that is free of or substantially free of fibrous elements.
  • Fibrous element as used herein means elongated particulate having a length greatly exceeding its average diameter, i.e., a length-to-average-diameter aspect ratio of at least 10:1, and an average diameter of no more than 1 mm.
  • laundry detergent refers to all-purpose or “heavy-duty” washing agents, especially cleaning detergents, for fabrics, as well as cleaning auxiliaries such as bleach, rinse aids, additives, or pre-treat types.
  • Water Dissolvability refers to the ability of a sample material to dissolve in water within a specific time period at 20° C. and under the atmospheric pressure without any stirring. This parameter is measured by placing 10 grams of the sample material in 1 liter of deionized water at 20° C. and under the atmospheric pressure for one (1) minute without any stirring. The remaining undissolved solids then are filtered out from the solution and immediately weighed (without drying). The Water Dissolvability is calculated as
  • the terms “consisting essentially of” means that the composition contains no ingredient that will interfere with benefits or functions of those ingredients that are explicitly disclosed. Further, the terms “essentially free of,” “substantially free of” or “substantially free from” means that the indicated material is present in the amount of from 0 wt % to about 1 wt %, or preferably from 0 wt % to about 0.5 wt %, or more preferably from 0 wt % to about 0.1 wt %, and most preferably it is not present at analytically detectable levels.
  • substantially pure or “essentially pure” means that the indicated material is present in the amount of from about 99.5 wt % to about 100 wt %, preferably from about 99.9 wt % to about 100 wt %, and more preferably from 99.99 wt % to about 100 wt %, and most preferably all other materials are present only as impurities below analytically detectable levels.
  • the laundry detergent sheet of the present invention is non-fibrous, i.e., it is free of or substantially free of fibrous elements.
  • a laundry detergent sheet can be formed by first providing a slurry containing raw materials dissolved or dispersed in water, and then shaping the slurry into a sheet-like form. Drying is carried out either simultaneously with the shaping step, or it can be carried out subsequently, to remove water and form a finished sheet with little or no moisture content (e.g., less than 3 wt % water).
  • the laundry detergent sheet of the present invention is completely or substantially water-soluble. In other words, it does not contain a water-insoluble substrate, as some of the conventional laundry detergent sheets do.
  • the laundry detergent sheet of the present invention has a Water Dissolvability of at least 90%, preferably at least 95%, and more preferably at least 98%, and most preferably at least 99%.
  • the entire laundry detergent sheet of the present invention can be completely dissolved in a liter of deionized water, i.e., leaving no visible residue in the solution, within 15 seconds, more preferably within 10 seconds, and more preferably within 5 seconds, at 20° C. under atmospheric pressure and without any stirring.
  • the laundry detergent sheet of the present invention can have any shape or size, as long as its thickness, its length, and its width are characterized by a length-to-thickness aspect ratio of at least about 5:1, a width-to-thickness aspect ratio of at least about 5:1, and a length-to-width aspect ratio of at least about 1:1.
  • the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 10:1, and the length-to-width aspect ratio is at least about 1.2:1. More preferably, the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 15:1, and the length-to-width aspect ratio is at least about 1.5:1.
  • the length-to-thickness aspect ratio and the width-to-thickness aspect ratio are both at least about 20:1, and the length-to-width aspect ratio is at least about 1.618:1.
  • the thickness of the laundry detergent sheet of the present invention may range from about 0.1 mm to about 10 cm, preferably from about 0.2 mm to about 5 mm, more preferably from about 0.3 mm to about 4 mm, and most preferably from about 0.5 mm to about 2 mm.
  • the width of the laundry detergent sheet may range from about 2 cm to about 1 meter, preferably from about 5 cm to about 50 cm, more preferably from about 10 cm to about 40 cm.
  • the length of the laundry detergent sheet may range from about 2 cm to about 50 meters, preferably from about 5 cm to about 1 meter, and more preferably from about 10 cm to about 80 cm.
  • the laundry detergent sheet has a golden rectangular shape (i.e., with a length-to-width aspect ratio of about 1.618:1), and it is characterized by a width of about 10-15 cm and a thickness of about 0.5 mm to about 2 mm.
  • a golden rectangular shape is aesthetically pleasing and beloved to the consumers, so multiple sheets of such shape can be stacked up and packaged together for sale in a container that is also characterized by a similar golden rectangular shape.
  • the laundry detergent sheet has an elongated shape (i.e., with a length-to-width aspect ratio of about 10-50:1), and it is characterized by a width of about 10-15 cm and a thickness of about 0.5 mm to about 2 mm.
  • elongated shape allows the laundry detergent sheet to be rolled up or folded into a compact unit for easy of packaging, storage, shipment and display.
  • the laundry detergent sheet of the present invention is characterized by a sufficiently high Surfactant Activity, e.g., at least 30%, preferably at least 50%, more preferably at least 60%, and most preferably at least 70%.
  • a sufficiently high Surfactant Activity provides a very compact and concentrated form of laundry detergent, which is particularly convenient for consumers who travel often and need to do laundry on the road. Further, shipping and handling costs for such compact and concentrated form are significantly reduced, in comparison with the traditional powder or liquid forms of laundry detergents, which make this laundry detergent sheet particularly desirable to be marketed through e-commerce channels.
  • the laundry detergent sheet of the present invention has certain attributes that render it aesthetically pleasing to the consumers.
  • the sheet may have a relatively smooth surface, thereby providing a pleasant feel when touched by the consumer.
  • the laundry detergent sheet may have little or no perceivable pores on its surface.
  • laundry detergent sheet of the present invention is strong to withstand substantive mechanical forces without losing its structural integrity, yet at the same time is sufficiently flexible for ease of packaging and storage.
  • the present invention is based, in part, on the discovery that there can be less breakage of friable perfume microcapsules (“PMC”) if the friable PMCs are added after a sheet forming step (and optionally before a stamping/embossing step) even if there are additional capital costs associated with such a step. These capital costs are more than off-set by the improved yield obtained in unruptured friable PMC delivered to the final non-fibrous laundry detergent sheet product.
  • PMC friable perfume microcapsules
  • a non-fibrous laundry detergent sheet comprising a friable PMC.
  • “Friability” refers to the propensity of the microcapsules to rupture or break open when subjected to direct external pressures or shear forces.
  • the microcapsules utilized are “friable” if, while attached to fabrics treated therewith, they can be ruptured by the forces encountered when the capsule-containing fabrics are manipulated by being worn or handled (thereby releasing the contents of the capsule).
  • Friable perfume microcapsules are distinguished from moisture-activated microcapsules such as those microcapsules comprising mostly of cyclodextrin.
  • Friable PMC are attractive for use in non-fibrous laundry detergent sheets because not only do the friable PMC enables top-note scent characters to deposit onto fabrics, but also allows the consumer to experience these scent types throughout the day while wearing their article of clothing.
  • Friable PMC rupture and release perfume by a mechanical means (e.g., friction)—not a chemical means (e.g., water hydrolysis).
  • Minimal fracture pressure is typically needed to break the structure such as normal everyday physical movements such as taking off a jacket; pulling a shirt over your head; or taking off/putting on socks.
  • friable PMC also allow the consumer to have a beautiful scent experience on fabrics which have been in storage even for long durations of time due to their ability to protect perfume from volatilization to the surrounding air space.
  • Microcapsules of the current invention are formed by a variety of procedures that include, but are not limited to, coating, extrusion, spray-drying, interfacial, in-situ and matrix polymerization.
  • the possible shell materials vary widely in their stability toward water (i.e., laundry washing and laundry rinsing).
  • PMU polyoxymethyleneurea
  • Such systems include but are not limited to urea-formaldehyde and/or melamine-formaldehyde.
  • microcapsules comprise a shell material and a core material, said shell material encapsulating said core material, said core material comprising a perfume composition and said shell comprising a material selected from the group consisting of polyethylenes; polyamides; polystyrenes; polyisoprenes; polycarbonates; polyesters; polyacrylates; aminoplasts, in one aspect said aminoplast comprises a polyureas, polyurethane, and/or polyureaurethane, in one aspect said polyurea comprises polyoxymethyleneurea and/or melamine formaldehyde; polyvinylamine, polyvinyl formamide, polyolefins; polyvinyl alcohol, polysaccharides, in one aspect alginate and/or chitosan; gelatin; shellac; epoxy resins; vinyl polymers; water insoluble inorganics; silicone; and mixtures thereof.
  • the friable PMC may have a volume weighted mean particle size from about, from 5 microns to 45 microns more preferably from 8 microns to 25 microns, or alternatively a volume weighted mean particle size from, from about 25 microns to 60 microns, more preferably from 25 microns to 60 microns.
  • the shell comprises melamine formaldehyde and/or cross linked melamine formaldehyde.
  • the shell material may be coated by a water-soluble cationic polymer, for example, selected from the group that consists of polysaccharides, cationically modified starch and cationically modified guar, polysiloxanes, dimethyldiallylammonium polyhalogenides, copolymers of dimethyldiallylammonium polychloride and vinyl pyrrolidone, acrylamides, imidazoles, imidazolinium halogenides and imidazolium halogenides and polyvinyl amine and its copolymers with N-vinyl formamide.
  • the coating that coats said shell comprises a cationic polymer and an anionic polymer.
  • said cationic polymer comprises hydroxyl ethyl cellulose; and said anionic polymer comprises carboxyl methyl cellulose.
  • the process for making friable PMC may include one or more of the following steps:
  • a) preparing a first solution that may comprise, based on total solution weight from 20% to 90%, from 40% to 80%, or even from 60% to 80% water, of a first emulsifier and a first resin, the ratio of said first emulsifier and said first resin being from 0.1:0 to 10:0, from about 0.1:1 to 10:1, from 0.5:1 to 3:1, or even from 0.8:1 to 1.1:1;
  • a second solution that may comprise based on total solution weight from 20% to 95% water, of a second emulsifier and a second resin, the ratio of said second emulsifier and said second resin being from 0:1 to 3:1, from 0.04:1 to 0.2:1, or even from 0.05:1 to 0.15:1;
  • first composition and said second solution may be combined in any order but in one aspect said second solution is added to said first composition or said second solution and said first composition are combined simultaneously;
  • any scavenger material, structurant, and/or anti-agglomeration agent may be combined in any order but in one aspect the scavenger material is combined first, any structurant second, and then anti-agglomeration agent is combined;
  • said first and second resins may comprise the reaction product of an aldehyde and an amine
  • suitable aldehydes include, formaldehyde.
  • suitable amines include melamine, urea, benzoguanamine, glycoluril, and mixtures thereof.
  • Suitable melamines include, methylol melamine, methylated methylol melamine, imino melamine and mixtures thereof.
  • Suitable ureas include, dimethylol urea, methylated dimethylol urea, urea-resorcinol, and mixtures thereof.
  • said first and second emulsifiers may comprise a moiety selected from the group consisting of carboxy, hydroxyl, thiol, amine, amide and combinations thereof.
  • said emulsifier may have a pKa of less than 5, preferably greater than 0 but less than 5.
  • Emulsifiers include acrylic acid-alkyl acrylate copolymer, poly(acrylic acid), polyoxyalkylene sorbitan fatty esters, polyalkylene co-carboxy anhydrides, polyalkylene co-maleic anhydrides, poly(methyl vinyl ether-co-maleic anhydride), poly(propylene-co-maleic anhydride), poly(butadiene co-maleic anhydride), and poly(vinyl acetate-co-maleic anhydride), polyvinyl alcohols, polyalkylene glycols, polyoxyalkylene glycols, and mixtures thereof.
  • the pH of the first and second solutions may be controlled such that the pH of said first and second solution is from about 3.0 to 7.0.
  • step f. from 0% to 10%, from 1% to 5% or even from 2% to 4%, based on total second composition weight, of a salt comprising an anion and cation, said anion being selected from the group consisting of chloride, sulfate, phosphate, nitrate, polyphosphate, citrate, maleate, fumarate and mixtures thereof; and said cation being selected from the group consisting of a Periodic Group IA element, Periodic Group IIA element, ammonium cation and mixtures thereof, preferably sodium sulfate, may be combined with said second composition.
  • any of the aforementioned processing parameters may be combined.
  • Suitable equipment for use in the processes disclosed herein may include continuous stirred tank reactors, homogenizers, turbine agitators, recirculating pumps, paddle mixers, ploughshear mixers, ribbon blenders, vertical axis granulators and drum mixers, both in batch and, where available, in continuous process configurations, spray dryers, and extruders.
  • Such equipment can be obtained from Lodige GmbH (Paderborn, Germany), Littleford Day, Inc.
  • the present invention is not be limited to only those microcapsules encapsulating perfume. Rather, the friable microcapsules may encapsulate any active that is suitable to have on clothing. Non-limiting examples of such actives include skin care agents (such as aloe vera or skin moisturizer) or insect repellent (such as DEET).
  • skin care agents such as aloe vera or skin moisturizer
  • insect repellent such as DEET
  • One aspect of the invention comprises a microcapsule slurry, preferably wherein the microcapsule is a friable microcapsule or even more preferably a friable perfume microcapsule, contained in the microcapsule slurry tank.
  • microcapsule slurry tank is used herein the broadest sense to include any container suitable for containing commercial quantities of a microcapsule slurry.
  • the microcapsule slurry tank may comprise a heating element that imparts heat to the microcapsule slurry contained within the microcapsule slurry tank.
  • the microcapsule slurry tank may also comprise a mixing element.
  • heating element is used herein the broadest sense to include any device that may impart heat to the microcapsule slurry contained within the microcapsule slurry tank.
  • the microcapsule slurry is at a heated temperature in the microcapsule slurry tank (i.e., the microcapsule slurry is heated while in the microcapsule slurry tank or delivered to the microcapsule slurry already in a heated form, or combination thereof).
  • a heating element may include: electric heat tracing in the jacket of the microcapsule slurry tank (e.g., there is an outer layer and inner layer to the microcapsule slurry tank and between these layers there is an electric tracing that is controlled via a computer).
  • mixing elements is used herein the broadest sense and includes any means of mixing the microcapsule slurry in the microcapsule slurry tank on a commercial scale.
  • Non-limiting examples of mixing elements includes a wall scraper, agitator, recycle pump, or combinations thereof.
  • a wall scraper works by scraping, in a circular pattern, microcapsule slurry that has adhered to the wall of the microcapsule slurry tank.
  • An agitator is located at the bottom of the microcapsule slurry tank. Much like a blender, an agitator rotates in a circular fashion such that the microcapsule slurry is not allowed to settle at the bottom of the microcapsule slurry tank.
  • a recycle pump pushes the microcapsule slurry from the bottom of the vessel through piping and back into the top of the microcapsule slurry tank.
  • Manufacturers of mixing elements include Chemineer Kinetics.
  • the microcapsule slurry is heated within at least about ⁇ 30° C., preferably ⁇ 20° C., preferably ⁇ 10° C. of the temperature of precursor laundry detergent sheet (i.e., after the sheet is removed from a roller) to which the microcapsule slurry is applied (i.e., dispensed thereto).
  • the temperature of the detergent sheet is taken immediately before the microcapsule slurry is dispensed thereto.
  • An infrared temperature gun is one method of taking the temperature under these conditions.
  • the microcapsule slurry is at a temperature from 50° C. to 100° C., alternatively from 55° C. to 99° C., alternatively 60° C. to 98° C.
  • the temperature is of the microcapsule slurry is assessed as the slurry is contained in the microcapsule slurry tank.
  • the precursor laundry detergent sheet (after the detergent sheet forming step, but before the microcapsule slurry is dispensed to said detergent sheet) is at a temperature from 50° C. to 100° C., alternatively from 55° C. to 99° C., alternatively 60° C. to 98° C.
  • This aspect of the invention is based, in part, on the observation that if the microcapsule slurry is not of sufficient elevated temperature upon the addition of the detergent sheet the microcapsule treated detergent sheet then the potential for several negatives including imperfections to the sheet (e.g., less smooth surface, or bumps or other undesirable effects to the aesthetics). Without wishing to be bound by theory, this temperature difference may impact the “curing” of the sheet.
  • the microcapsule slurry comprises less than 75% water, alternatively less than 50% water, alternatively less than 42% water, by weight of the microcapsule slurry.
  • the microcapsule slurry comprises from 75% to 20% water, alternatively from 65% to 30%, alternatively from 60% to 35%, alternatively from 50% to 38% by weight of the microcapsule slurry.
  • Some water in the microcapsule slurry is desirable.
  • Many suppliers of friable PMC provide the friable PMC as a friable PMC slurry comprising water (vs. a powder form). These friable PMC slurries are typically less expensive than powdered or dry forms of the same. Moreover, powdered forms of the friable PMC or those friable PMC slurries with high non-aqueous solvent levels may pose safety issues given the flammability associated with fine dust of the PMC and the flammability associated with some solvents, respectively. Water in the PMC slurry may also provide more uniform distribution of the PMC in the PMC slurry such as to avoid additional mixing steps such as ball mills and colloid mills. Preferably PMC is incorporated into the laundry detergent sheet without, or substantially without, ball milling or colloid milling steps.
  • Yet another aspect of the invention provides for mixing the microcapsule slurry while the slurry is contained in the perfume slurry tank.
  • Suitable ways of the mixing the slurry while in the perfume slurry tank include: a wall scraper, agitator, or combination thereof in the microcapsule slurry tank; or a static mixer in the pipe to or from the microcapsule slurry tank; or combinations thereof. Mixing by ball mills, colloid mills should preferably be avoided as to avoid breakage of the microcapsules.
  • This aspect of the invention is based, in part, on the observation that mixing the PMC slurry provides more homogenous, uniform, incorporation of the microcapsule in the finished product.
  • the microcapsule slurry comprises a structurant. While not being bound by theory, it is believed that the anionic materials that are sometimes part of the microcapsule slurry may adversely interact with the cationic materials that may be part of the precursor laundry detergent sheet (or even visa versa). The interaction between anionic and cationic species may lead to aggregation or phase separation. In addition to the unacceptable aesthetics that results from aggregation of particles, such aggregates may result in rapid phase separation of the particles from the bulk phase. It is discovered that such aggregates may be prevented by the addition of structurants chosen from salts, polymers, or combinations thereof.
  • Useful structurants may include: (1) divalent salts such as: magnesium salts, e.g., magnesium chloride, magnesium acetate, magnesium phosphate, magnesium formate, magnesium boride, magnesium titanate, magnesium sulfate heptahydrate; calcium salts, e.g., calcium chloride, calcium formate, calcium calcium acetate, calcium bromide; (2) trivalent salts such as: aluminum salts, e.g., aluminum sulfate, aluminum phosphate, aluminum chloride n-hydrate; and (3) polymers that have the ability to suspend anionic particles, such as soil suspension polymers, e.g., (polyethylene imines, alkoxylated polyethylene imines, polyquarternium-6 and polyquarternium-7).
  • divalent salts such as: magnesium salts, e.g., magnesium chloride, magnesium acetate, magnesium phosphate, magnesium formate, magnesium boride, magnesium titanate, magnesium sulfate heptahydrate
  • calcium salts e.
  • calcium formate and/or formic acid may be added to a microcapsule slurry comprising water.
  • Calcium formate and/or formic acid is typically combined with, based on total aqueous microcapsule slurry weight, at a level of from 0.6% to 3%, from 1% to 2%, alternatively from 1.2% to 1.5%, of the microcapsule slurry.
  • An additional benefit with the use of calcium formate and/or formic acid may include microbial inhibition.
  • the structurant for example, may comprise from 0.1% to 5%, alternatively, 0.5% to 4%, alternatively 0.6% to 3%, by weight of the microcapsule slurry.
  • the microcapsule slurry comprises a formaldehyde scavenger.
  • the detergent sheet and friable PMC slurry may combine resulting in a composition that comprises from 0.1% to 10%, alternatively from 0.5% to 7%, alternatively from 1% to 6%, alternatively from 1.5% to 5%, alternatively from 1.5% to 4%, friable PMC by weight of the composition (wherein the composition comprises the detergent sheet and PMC).
  • the combined detergent sheet and friable PMC upon drying, may comprise from 5% to 0%, alternatively less than 4%, alternatively less than 3%, alternatively less than 2%, alternatively less than 1%, alternatively less than 0.5%, alternatively less than about 0.1%, alternatively substantially free, alternatively free, of water, by weight of the composition (wherein the composition comprises the detergent sheet and PMC).
  • a nozzle is fluidly connected with the microcapsule slurry tank by way of through piping.
  • An electromagnetic valve is placed on the through piping or nozzle.
  • the nozzle is capable of spraying or otherwise dispensing the PMC slurry onto the precursor laundry detergent sheet.
  • a composition of a friable PMC comprising a low amount of water (e.g., 5% to 0% water by weight of the composition such as in a powdered or granular form of the friable PMC) to the precursor laundry detergent sheet.
  • the substantially solid form of the friable PMC or low water composition containing PMC may be added after the detergent sheet is formed.
  • the process may include spraying the PMC composition to detergent sheet.
  • the low water composition of the friable PMC may comprise less than 5%, or 4%, or 3%, or 2%, or 1%, or 0.5%, or 0.1% water by weight of the composition.
  • the lower water composition of the friable PMC may comprise from 99.9% to 1%, alternatively from 80% to 99%, alternatively from 90% to 99% of the friable PMC by weight of the composition.
  • the low water composition of friable PMC is free or substantially free of detersive surfactants.
  • the low water composition of friable PMC may be in a powder or granular form.
  • Step(s) in making the non-fibrous laundry detergent sheet are described.
  • the system comprises a base bracket 1 , a heated rotatable cylinder 2 (see FIG. 2 ) is installed on the said base bracket 1 .
  • a heated rotatable cylinder 2 can be driven by the motorized drive A 1 installed on the said base bracket 1 , and work at a predetermined rotation speed.
  • Said rotating heat roll 2 is also coated with a non-stick coating 21 .
  • the non-stick coating 21 may be overlying on the outer surface of the heated rotatable cylinder 2 , or the said non-stick coating 21 is fixed to medium 22 of the outer surface of the heated rotatable cylinder 2 .
  • the medium 22 includes, but is not limited to, heat-resisting non-woven fabrics, heat-resisting carbon fiber, heat-resisting metal or non-metallic mesh and the like.
  • the said non-stick coating 21 effectively preserves the activity of the laundry detergent composition in the sheet material from damage.
  • the feeding mechanism 3 includes the feeding rack 31 installed on the said bracket 1 ; at least one (preferably two) feeding hopper(s) 32 installed on the said feeding rack 31 ; as well as an imaging device 33 for dynamic observation of the feeding.
  • the imaging device 33 is installed on the said feeding rack 31 as well as the adjustment device 34 for adjusting the position and inclination angle of said feeding hopper 32 .
  • the adjustment device 34 can adjust the feeding hopper 3 : 2 to different angles as to meet the material requirements of speed and quality.
  • the heating shield 4 is a modular assembly structure, or integrated structure, and can be freely detached from the said bracket 1 .
  • the suction device 41 is also installed on the heating shield 4 , for sucking the hot steam, to avoid any water condensate falling on the raw material of laundry detergent sheet.
  • start feeding mechanism 5 (see FIG. 1 ) installed on the said bracket 1 , which is for scooping up the laundry detergent sheet raw material dried by the said heated rotatable cylinder 2 .
  • the start feeding mechanism 5 is installed on the said bracket 1 , or on one side of the self-propelled platform 6 , for transporting down the scooped laundry detergent sheet raw material (i.e., a precursor non-fibrous laundry detergent sheet).
  • the said start feeding mechanism 5 can automatically or manually move close and go away from the heated rotatable cylinder 2 .
  • start feeding mechanism 5 can prematurely burst friable microcapsules if these microcapsules had otherwise been added to the original liquid laundry detergent sheet material.
  • the other side of the said self-propelled platform 6 is connected to the slicing device 7 , for shape slicing the laundry detergent sheet raw material, said self-propelled platform 6 is located at the bottom or one side of the microcapsule slurry tank device 8
  • said self-propelled platform is located at the bottom or one side of an embossing device 9 .
  • the embossing device 9 (see FIG. 6 ) is assembled by the freely stretching and rotating mobile arm 91 , freely exchangeable embossing mold 92 installed on the one end of the said mobile arm 91 , and the drive A 3 for driving the said mobile arm 91 .
  • any embossing steps are conducted before the dispensing of PMC slurry to the precursor non-fibrous laundry detergent sheet. Embossing the detergent sheet after microcapsule addition may burst the friable microcapsules.
  • the said self-propelled platform 6 (see FIG. 1 ) is assembled by the platform bracket 61 , the self-propelled belt 62 installed on the platform bracket 61 , and the drive A 2 installed on platform bracket 61 , for driving said self-propelled belt 62 .
  • the said slicing device 7 (see FIG. 4 ) is assembled by the slicing device housing 71 , the cutter 72 placed inside the said slicing device housing 71 , and the drive A 4 installed in the said slicing device housing 71 , for driving the cutter 72 .
  • the microcapsule slurry tank device 9 (see FIG. 5 ) is assembled by microcapsule slurry tank 81 used for storing the microcapsule slurry (and is preferably pressurized or gravity fed).
  • Nozzle 83 is fluidly connected with the microcapsule slurry tank 81 by way of through piping 82 .
  • An electromagnetic valve 84 is placed on said through piping 82 or nozzle 83 .
  • the nozzle 83 is on the top of said self-propelled belt 62 of the said self-propelled platform 6 .
  • the nozzle 83 is capable of spraying or otherwise dispensing the PMC slurry onto the detergent sheet.
  • the making process of the non-fibrous laundry detergent sheet is described. Firstly, the heated rotatable cylinder 2 , with the non-stick coating 21 , on the said bracket 1 , is driven by the drive A 1 . Next, the adjustment device 34 adjusts the feeding mechanism 3 so that the distance between the feeding hopper 32 and the outer surface of the heated rotatable cylinder 2 reaches a preset value. Meanwhile, the feeding hopper 32 adds liquid laundry detergent sheet raw material (free of friable microcapsules) to the heated rotatable cylinder 2 . The suction device 41 of the heating shield 4 sucks the hot steam generated by the heated rotatable cylinder 2 . Next, the start feeding mechanism 5 scoops up the laundry detergent sheet upon evaporated water reaches a predetermined value.
  • Drive A 2 drives the self-propelled belt 62 of the self-propelled platform 6 to work to transport down the laundry detergent sheet raw material which is scooped up by the said start feeding mechanism 5 .
  • Drive A 3 drives the mobile arm 91 of the embossing device 9 stretching and rotating freely, so that the embossing mold 92 can freely emboss the different shapes on the laundry detergent sheet material.
  • the electromagnetic valve 84 is opened in order to spray the microcapsule slurry in the pressure vessel 81 through nozzle 83 to the dried (and embossed) laundry detergent sheet raw material.
  • drive A 4 drives the cutter 72 of the slicing device 7 in order to cut the laundry detergent sheet into desired shapes to be packaged.
  • the non-fibrous laundry detergent sheet of the present invention may comprise at least one surfactant selected from the group consisting of anionic surfactants, nonionic surfactants, amphoteric surfactants, cationic surfactants, and combinations thereof.
  • Such at least one surfactant form a surfactant system in the non-fibrous laundry detergent sheet, which can be present in an amount ranging from about 5% to about 90%, preferably from about 10% to about 90%, more preferably from about 20% to about 90%, still more preferably from about 30% to about 90%, and most preferably from about 50% to about 90%, by total weight of the non-fibrous laundry detergent sheet.
  • the laundry detergent sheet may have a surfactant system containing only anionic surfactants, e.g., either a single anionic surfactant or a combination of two or more different anionic surfactants.
  • the laundry detergent sheet of the present invention may have a composite surfactant system, e.g., containing a combination of one or more anionic surfactants with one or more nonionic surfactants, or a combination of one or more anionic surfactants with one or more amphoteric surfactants, or a combination of one or more anionic surfactants with one or more cationic surfactants, or a combination of all the above-mentioned types of surfactants (i.e., anionic, nonionic, amphoteric and cationic).
  • the laundry detergent sheet of the present invention has a composite surfactant system containing a combination of one or more anionic surfactants with one or more nonionic surfactants.
  • Anionic surfactants suitable for forming the laundry detergent sheet of the present invention can be readily selected from the group consisting of C 6 -C 20 linear or branched alkyl benzene sulfonates (LAS), C 6 -C 20 linear or branched alkyl sulfates (AS), C 6 -C 20 linear or branched alkyl alkoxylated sulfates (AAS), C 6 -C 20 linear or branched alkyl sulfonates, C 6 -C 20 linear or branched alkyl carboxylates, C 6 -C 20 linear or branched alkyl phosphates, C 6 -C 20 linear or branched alkyl phosphonates, and combinations thereof.
  • LAS alkyl benzene sulfonates
  • AS linear or branched alkyl sulfates
  • AAS alkyl alkoxylated sulfates
  • Preferred anionic surfactants of the present invention are selected from the group consisting of LAS, AS, AAS, and combinations thereof.
  • the total amount of anionic surfactants in the laundry detergent sheet may range from 5% to 90%, preferably from 10% to 80%, more preferably from 20% to 75%, and most preferably from 30% to 70%, by total weight of the non-fibrous laundry detergent sheet.
  • a particularly preferred type of anionic surfactants for forming the non-fibrous laundry detergent sheet of the present invention are C 6 -C 18 alkyl sulfates, which are referred to as “mid-cut AS” hereinafter, while each of which has a branched or linear unalkoxylated alkyl group containing from about 6 to about 18 carbon atoms.
  • the mid-cut AS is present as the main surfactant in the laundry detergent sheet, i.e., it is present in an amount that is greater than 50% by total weight of all surfactants in said sheet, while other anionic surfactants (such as LAS and/or AAS) are present as co-surfactants for such mid-cut AS.
  • the mid-cut AS of the present invention has the generic formula of R—O—SO 3 ⁇ M + , while R is branched or linear unalkoxylated C 6 -C 18 alkyl group, and M is a cation of alkali metal, alkaline earth metal or ammonium.
  • the R group of the AS surfactant contains from about 8 to about 16 carbon atoms, more preferably from about 10 to about 14 carbon atoms, and most preferably from about 12 to about 14 carbon atoms.
  • R can be substituted or unsubstituted, and is preferably unsubstituted.
  • R is substantially free of any alkoxylation.
  • M is preferably a cationic of sodium, potassium, or magnesium, and more preferably M is a sodium cation.
  • Such mid-cut AS surfactant(s) preferably functions as the main surfactant in the surfactant system of the non-fibrous laundry detergent sheet of the present invention.
  • the mid-cut AS surfactant(s) are present in an amount of greater than 50% by total weight of all surfactants in the laundry detergent sheet.
  • the surfactant system of the present invention contains a mixture of mid-cut AS surfactants, in which C 6 -C 14 AS surfactants are present in an amount ranging from about 85% to about 100% by total weight of the mixture.
  • This mixture can be referred to as a “C 6 -C 14 -rich AS mixture.” More preferably, such C 6 -C 14 -rich AS mixture contains from about 90 wt % to about 100 wt %, or from 92 wt % to about 98 wt %, or from about 94 wt % to about 96 wt %, or 100 wt % (i.e., pure), of C 6 -C 14 AS.
  • the surfactant system contains a mixture of mid-cut AS surfactants comprising from about 30 wt % to about 100 wt % or from about 50 wt % to about 99 wt %, preferably from about 60 wt % to about 95 wt %, more preferably from about 65 wt % to about 90 wt %, and most preferably from about 70 wt % to about 80 wt % of C 12 -C 14 AS, which can be referred to as a “C 12 -C 14 -rich AS mixture.”
  • C 12 -C 14 -rich AS mixture contains a majority of C 12 AS.
  • the surfactant system contains a mixture of mid-cut AS surfactants that consist of C 12 and/or C 14 AS surfactants, e.g., 100% C 12 AS or from about 70 wt % to about 80 wt % of C 12 AS and from 20 wt % to about 30 wt % of C 14 AS, with little or no other AS surfactants therein.
  • a commercially available mid-cut AS mixture particularly suitable for practice of the present invention is Texapon® V95 G from Cognis (Monheim, Germany).
  • the surfactant system of the present invention may contain a mixture of mid-cut AS surfactants comprising more than about 50 wt %, preferably more than about 60 wt %, more preferably more than 70 wt % or 80 wt %, and most preferably more than 90 wt % or even at 100 wt % (i.e., substantially pure), of linear AS surfactants having an even number of carbon atoms, including, for example, C 6 , C 8 , C 10 , C 12 , C 14 , C 16 , and C 18 AS surfactants.
  • the amount of mid-cut AS surfactants used in the present invention may range from about 5% to about 90%, preferably from about 10% to about 80%, more preferably from about 20% to about 75%, and most preferably from about 30% to about 70%, by total weight of the non-fibrous laundry detergent sheet.
  • the non-fibrous laundry detergent sheet contains from about 10 wt % to about 60 wt %, preferably from about 20 wt % to about 50 wt %, of pure C 12 AS or a C 12 -C 14 -rich AS mixture by total weight of such sheet, while the C 12 -C 14 -rich AS mixture contains from about 70 wt % to about 80 wt % of C 12 AS and from 20 wt % to about 30 wt % of C 14 AS by total weight of such mixture.
  • the non-fibrous laundry detergent sheet of the present invention may contain, either alone as a main surfactant, or preferably in combination with the mid-cut AS described hereinabove as its co-surfactant, a C 6 -C 20 linear alkylbenzene sulfonate (LAS).
  • LAS is present as the main surfactant in the laundry detergent sheet, i.e., it is present in an amount that is greater than 50% by total weight of all surfactants in said sheet, while other anionic surfactants (such as mid-cut AS and/or AAS) are present as co-surfactants for such LAS.
  • LAS anionic surfactants are well known in the art and can be readily obtained by sulfonating commercially available linear alkylbenzenes.
  • Exemplary C 6 -C 20 linear alkylbenzene sulfonates that can be used in the present invention include alkali metal, alkaline earth metal or ammonium salts of C 6 -C 20 linear alkylbenzene sulfonic acids, and preferably the sodium, potassium, magnesium and/or ammonium salts of C 11 -C 18 or C 11 -C 14 linear alkylbenzene sulfonic acids.
  • sodium or potassium salts of C 12 linear alkylbenzene sulfonic acids More preferred are the sodium or potassium salts of C 12 linear alkylbenzene sulfonic acids, and most preferred is the sodium salt of C 12 linear alkylbenzene sulfonic acid, i.e., sodium dodecylbenzene sulfonate.
  • the amount of LAS in the non-fibrous laundry detergent sheet of the present invention may range from about 5% to about 90%, preferably from about 10% to about 80%, more preferably from about 20% to about 75%, and most preferably from about 30% to about 70%, by total weight of the laundry detergent sheet.
  • the non-fibrous laundry detergent sheet contains from about 5 wt % to about 20 wt % of a sodium, potassium, or magnesium salt of C 12 linear alkylbenzene sulfonic acid.
  • the non-fibrous laundry detergent sheet of the present invention may contain, either alone as a main surfactant, or preferably in combination with the mid-cut AS and/or LAS described hereinabove as a co-surfactant, a C 10 -C 20 linear or branched alkylalkoxy sulfate (AAS) having an average degree of alkoxylation ranging from about 0.1 to about 5.
  • AAS alkylalkoxy sulfate
  • the AAS surfactants preferably are C 10 -C 20 linear or branched alkylethoxy sulfate (AES) with the following formula (I):
  • R is a linear or branched alkyl chain having from 10 to 20 carbon atoms, either saturated or unsaturated; x averages from 1 to 3; and M is selected from the group consisting of alkali metal ions, ammonium, or substituted ammonium.
  • R is a linear or branched alkyl chain having from 12 to 16 carbon atoms; x averages 3; and M is sodium.
  • the most preferred anionic surfactant for the practice of the present invention is sodium lauryl ether sulphate with an average degree of ethoxylation of about 3.
  • the AAS surfactants if present, can be provided in an amount ranging from about 1% to about 30%, preferably from about 2% to about 20%, more preferably from about 5% to about 15%, by total weight of the non-fibrous laundry detergent sheet.
  • the non-fibrous laundry detergent sheet of the present invention may contain one or more nonionic surfactants, which are to be used in combination with the anionic surfactants described hereinabove.
  • Such nonionic surfactant(s) may be present in an amount ranging from 1% to 40%, preferably from 2% to 30%, more preferably from 5% to 25%, and most preferably from 10% to 20%, by total weight of such non-fibrous laundry detergent sheet.
  • Suitable nonionic surfactants useful herein can comprise any conventional nonionic surfactant. These can include, for e.g., amine oxide surfactants and alkoxylated fatty alcohols.
  • the nonionic surfactants may be selected from the ethoxylated alcohols and ethoxylated alkyl phenols of the formula R(OC 2 H 4 ) n OH, wherein R is selected from the group consisting of aliphatic hydrocarbon radicals containing from about 8 to about 15 carbon atoms and alkyl phenyl radicals in which the alkyl groups contain from about 8 to about 12 carbon atoms, and the average value of n is from about 5 to about 15.
  • the nonionic surfactant is selected from ethoxylated alcohols having an average of about 24 carbon atoms in the alcohol and an average degree of ethoxylation of about 9 moles of ethylene oxide per mole of alcohol.
  • Other non-limiting examples of nonionic surfactants useful herein include: C 8 -C 18 alkyl ethoxylates, such as, NEODOL® nonionic surfactants from Shell; C 6 -C 12 alkyl phenol alkoxylates where the alkoxylate units may be ethyleneoxy units, propyleneoxy units, or a mixture thereof; C 12 -C 18 alcohol and C 6 -C 12 alkyl phenol condensates with ethylene oxide/propylene oxide block polymers such as Pluronic® from BASF; C 14 -C 22 mid-chain branched alcohols; C 14 -C 22 mid-chain branched alkyl alkoxylates, wherein x is from 1 to 30; alkylpolysaccharides, and specifically
  • nonionic surfactants of the present invention include alkyl polyglucoside, alkyl alcohols, alkyl alkoxylated alcohols, alkyl alkoxylates, alkyl phenol alkoxylates, alkylcelluloses, polyhydroxy fatty acid amides, ether capped poly(oxyalkylated) alcohol surfactants.
  • the nonionic surfactant is selected from alkyl alkoxylated alcohols, such as a C 8-18 alkyl alkoxylated alcohol, and more specifically a C 8-18 alkyl ethoxylated alcohol.
  • the alkyl alkoxylated alcohol may have an average degree of alkoxylation of from about 1 to about 50, or from about 1 to about 30, or from about 1 to about 20, or from about 1 to about 10.
  • the alkyl alkoxylated alcohol can be linear or branched, substituted or unsubstituted.
  • the non-fibrous laundry detergent sheet of the present invention contains a C 12-14 alkyl ethoxylated alcohol having an average degree of ethoxylation of from about 1 to about 10, or from about 1 to about 8, or from about 3 to about 7, in an amount ranging from about 1% to about 40%, preferably from about 5% to about 25%, and more preferably from about 10% to about 20%, by total weight of the laundry detergent sheet.
  • the non-fibrous laundry detergent sheet of the present invention may optionally include one or more other adjunct detergent ingredients for assisting or enhancing cleaning performance or to modify the aesthetics of the sheet.
  • adjunct detergent ingredients include: (1) inorganic and/or organic builders, such as carbonates (including bicarbonates and sesquicarbonates), sulphates, phosphates (exemplified by the tripolyphosphates, pyrophosphates, and glassy polymeric meta-phosphates), phosphonates, phytic acid, silicates, zeolite, citrates, polycarboxylates and salts thereof (such as mellitic acid, succinic acid, oxydisuccinic acid, polymaleic acid, benzene 1,3,5-tricarboxylic acid, carboxymethyloxysuccinic acid, and soluble salts thereof), ether hydroxypolycarboxylates, copolymers of maleic anhydride with ethylene or vinyl methyl ether, 1,3,5-trihydroxy benzene-2
  • the non-fibrous laundry detergent sheet of the present invention contains, in addition to the surfactant(s) described and adjunct detergent ingredients described hereinabove, at least one film former.
  • at least one film former can be selected from water-soluble polymers, either synthetic or natural in origin and may be chemically and/or physically modified.
  • Suitable examples of water-soluble polymers for the practice of the present invention include polyalkylene glycols (also referred to as polyalkylene oxides or polyoxyalkylenes), polyvinyl alcohols, polysaccharides (such as starch or modified starch, cellulose or modified cellulose, pullulan, xanthum gum, guar gum, and carrageenan), polyacrylates, polymethacrylates, polyacrylamides, polyvinylpyrrolidones, and proteins/polypeptides or hydrolyzed products thereof (such as collagen and gelatin).
  • polyalkylene glycols also referred to as polyalkylene oxides or polyoxyalkylenes
  • polysaccharides such as starch or modified starch, cellulose or modified cellulose, pullulan, xanthum gum, guar gum, and carrageenan
  • polyacrylates polymethacrylates
  • polyacrylamides polyacrylamides
  • polyvinylpyrrolidones polyvinylpyrrolidone
  • the film former to be used in the present invention is selected from the group consisting of polyalkylene glycols, polyvinyl alcohols, starch or modified starch, cellulose or modified cellulose, polyacrylates, polymethacrylates, polyacrylamides, polyvinylpyrrolidones, and combinations thereof.
  • the non-fibrous laundry detergent sheet contains a polyethylene glycol (PEG) or a polyvinyl alcohol (PVA), either alone (i.e., without other film formers) or in combination with a polystarch, modified starch, cellulose, or modified cellulose.
  • the PEG may be selected from poly(ethylene glycol) homopolymers and poly(ethylene glycol) copolymers having a weight average molecular weight of between about 2,000 and about 100,000 g/mol, preferably between about 4,000 and about 90,000 g/mol, and more preferably between about 6,000 and about 8,000 g/mol.
  • Suitable poly(ethylene glycol) copolymers preferably contain at least about 50 wt % of PEG and may be selected from the group consisting of poly(lactide-block-ethylene glycol), poly(glycolide-block-ethylene glycol), poly(lactide-co-caprolactone)-block-poly(ethylene glycol), poly(ethylene glycol-co-lactic acid), poly(ethylene glycol-co-glycolic acid), poly(ethylene glycol-co-poly(lactic acid-co-glycolic acid), poly(ethylene glycol-co-propylene glycol), poly(ethylene oxide-block-propylene oxide-block-ethylene oxide), poly(propylene oxide-block-ethylene glycol-block-propylene glycol), and poly(ethylene glycol-co-caprolactone).
  • Exemplary poly(ethylene glycol) homopolymers are commercially available from Sigma Aldrich, or from Dow under the tradename of CARBOWAXTM, or from BASF under the tradename of Pluriol®.
  • Exemplary poly(ethylene glycol) copolymers are commercially available from BASF under the tradenames of Pluronic® F127, Pluronic® F108, Pluronic® F68 and Pluronic® P105.
  • a particularly preferred PEG for the practice of the present invention is a poly(ethylene glycol) homopolymer having a weight average molecular weight of between about 6,000 and about 80,000 g/mol.
  • the PVA may be unmodified or modified, e.g., carboxylated or sulfonated.
  • the PVA is partially or fully alcoholised or hydrolysed.
  • it may be from 40 to 100%, preferably 70 to 92%, more preferably 88% to 92%, alcoholised or hydrolysed.
  • the degree of hydrolysis is known to influence the temperature at which the PVA starts to dissolve in water, e.g., 88% hydrolysis corresponds to a PVA film soluble in cold (i.e. room temperature) water, whereas 92% hydrolysis corresponds to a PVA film soluble in warm water.
  • An example of preferred PVA is ethyoxylated PVA.
  • PVA polyvinyl acrylate copolymer
  • Sekisui Specialty Chemicals America, LLC (Dallas, Tex.) under the tradename CELVOL®.
  • Another more preferred example of PVA is the so-called G Polymer commercially available Nippon Ghosei.
  • the film former may be present in the non-fibrous laundry detergent sheet of the present invention at from about 1% to about 70%, preferably from about 2% to about 60%, more preferably from about 5% to about 50%, and most preferably from about 10% to about 40%, by total weight of the sheet.
  • the non-fibrous laundry detergent sheet may also comprise suitable additives such as plasticizers and solids, for modifying the properties of the film former.
  • suitable plasticizers are, for example, pentaerythritols such as depentaerythritol, sorbitol, mannitol, glycerine and glycols such as glycerol or ethylene glycol.
  • Plasticizers are generally used in an amount of up to 35 wt %, for example from 5 to 35 wt %, preferably from 7 to 20 wt %, more preferably from 10 to 15 wt %.
  • Solids such as talc, stearic acid, magnesium stearate, silicon dioxide, zinc stearate or colloidal silica may also be used, generally in an amount ranging from about 0.5 to 5 wt %.
  • the pH of the detergent sheet is about neutral to basic, preferably having a pH from 7 to 9, more preferably from 7.5 to 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Textile Engineering (AREA)
  • Detergent Compositions (AREA)
  • Fats And Perfumes (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
US15/888,115 2017-02-06 2018-02-05 Laundry detergent sheet with microcapsules Abandoned US20180223225A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/077,345 US11680232B2 (en) 2017-02-06 2020-10-22 Laundry detergent sheet with microcapsules
US18/313,572 US20230272312A1 (en) 2017-02-06 2023-05-08 Laundry detergent sheet with microcapsules

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/072927 WO2018141096A1 (fr) 2017-02-06 2017-02-06 Feuille de détergent pour lessive à microcapsules
CN2017/072927 2017-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/077,345 Division US11680232B2 (en) 2017-02-06 2020-10-22 Laundry detergent sheet with microcapsules

Publications (1)

Publication Number Publication Date
US20180223225A1 true US20180223225A1 (en) 2018-08-09

Family

ID=63037029

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/888,115 Abandoned US20180223225A1 (en) 2017-02-06 2018-02-05 Laundry detergent sheet with microcapsules
US17/077,345 Active US11680232B2 (en) 2017-02-06 2020-10-22 Laundry detergent sheet with microcapsules
US18/313,572 Pending US20230272312A1 (en) 2017-02-06 2023-05-08 Laundry detergent sheet with microcapsules

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/077,345 Active US11680232B2 (en) 2017-02-06 2020-10-22 Laundry detergent sheet with microcapsules
US18/313,572 Pending US20230272312A1 (en) 2017-02-06 2023-05-08 Laundry detergent sheet with microcapsules

Country Status (10)

Country Link
US (3) US20180223225A1 (fr)
EP (1) EP3577205A4 (fr)
JP (1) JP6882496B2 (fr)
KR (1) KR102360241B1 (fr)
CN (1) CN110225967A (fr)
BR (1) BR112019015854A2 (fr)
CA (1) CA3050343A1 (fr)
MX (1) MX2019009276A (fr)
RU (1) RU2742886C1 (fr)
WO (1) WO2018141096A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190093057A1 (en) * 2017-09-25 2019-03-28 The Procter & Gamble Company Unitary laundry detergent article
WO2020252502A1 (fr) * 2019-06-13 2020-12-17 The Procter & Gamble Company Procédé de fabrication d'une structure fibreuse
US20210238508A1 (en) * 2018-10-19 2021-08-05 Henkel Ag & Co. Kgaa Soluble Laundry Detergent Sheets With Textile Stiffening Agents
US20210238517A1 (en) * 2018-10-19 2021-08-05 Henkel Ag & Co. Kgaa Soluble Laundry Detergent Sheets With Soil Release Polymers
US20210238509A1 (en) * 2018-10-19 2021-08-05 Henkel Ag & Co. Kgaa Soluble Laundry Detergent Sheets With Textile Stiffening Agent And Cellulase
US20220054365A1 (en) * 2020-08-19 2022-02-24 The Procter & Gamble Company Flexible, porous, dissolvable solid sheet article containing direct-added microcapsules and process for making the same
US11544764B2 (en) 2019-06-10 2023-01-03 The Procter & Gamble Company Method of generating user feedback information to enhance product use results
US11680232B2 (en) 2017-02-06 2023-06-20 The Procter & Gamble Company Laundry detergent sheet with microcapsules

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112064350B (zh) * 2020-08-19 2023-04-25 广州视源电子科技股份有限公司 一种衣物护理用片剂及其制备方法
WO2022036581A1 (fr) 2020-08-19 2022-02-24 The Procter & Gamble Company Article en feuille solide, soluble, poreux et souple contenant des microcapsules directement ajoutées et son procédé de fabrication
EP4208529A1 (fr) * 2020-09-01 2023-07-12 The Procter & Gamble Company Granule de détergent
IT202000026401A1 (it) 2020-11-05 2022-05-05 Francesco Beneduce Soluzione innovativa e a basso impatto ambientale per il bucato. detergente e ammorbidente su sopporto solido per l’igienizzazione del bucato
CN115572643A (zh) * 2022-10-19 2023-01-06 宝洁公司 含有染料固定剂和水溶性钙盐的衣物洗涤剂组合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040152617A1 (en) * 2003-02-03 2004-08-05 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Laundry cleansing and conditioning compositions
US20070269651A1 (en) * 2006-05-05 2007-11-22 Denome Frank W Films with microcapsules
US20080305982A1 (en) * 2007-06-11 2008-12-11 Johan Smets Benefit agent containing delivery particle
US20100239622A1 (en) * 2005-09-26 2010-09-23 Photo Print Soap Ltd. Detergent printed film
US20110039985A1 (en) * 2001-10-09 2011-02-17 Arrow Coated Products, Ltd. Method of manufacturing embedded water soluble film carrier
US20140315772A1 (en) * 2013-04-18 2014-10-23 The Procter & Gamble Company Fragrance materials

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3126675B2 (ja) * 1997-01-23 2001-01-22 花王株式会社 シート状洗剤
TW399096B (en) 1996-07-03 2000-07-21 Kao Corp The sheet-like article for laundry
JP2000169896A (ja) * 1998-12-11 2000-06-20 Kao Corp 洗濯用品
WO2000077156A1 (fr) 1999-06-16 2000-12-21 Kao Corporation Article de lessive sous forme de feuille
JP3544156B2 (ja) 1999-10-29 2004-07-21 花王株式会社 シート状洗濯用品の製造方法
DE19955240A1 (de) 1999-11-17 2001-05-23 Henkel Kgaa Verfahren zur Herstellung von Wasch- und Reinigungsmittelformkörpern
GB9929843D0 (en) 1999-12-16 2000-02-09 Unilever Plc Process for preparing granular detergent compositions
JP2001294899A (ja) * 2000-04-12 2001-10-23 Lion Corp シート状洗濯用製品
EP1462512B1 (fr) * 2003-03-24 2007-08-01 The Procter & Gamble Company Compositions comprenant complexes de cyclodextrine et au moins un additif pour traitement de lavage
US7285520B2 (en) 2003-12-01 2007-10-23 Kimberly-Clark Worldwide, Inc. Water disintegratable cleansing wipes
JP2005179430A (ja) * 2003-12-17 2005-07-07 Lion Corp 洗浄剤組成物用被覆粒子及び洗浄剤組成物
GB0425795D0 (en) 2004-11-24 2004-12-22 Givaudan Sa Composition
US7786027B2 (en) * 2006-05-05 2010-08-31 The Procter & Gamble Company Functionalized substrates comprising perfume microcapsules
US7659239B2 (en) * 2006-05-24 2010-02-09 The Procter & Gamble Company Process of incorporating microcapsules into dryer-added fabric care articles
MX2009005248A (es) * 2006-11-22 2009-05-28 Appleton Paper Inc Agente de beneficio que contiene una particula de entrega.
CA2686494C (fr) 2007-10-12 2012-08-14 Unilever Plc Compositions de traitement du linge contenant des reperes visuels lamellaires
GB0814423D0 (en) * 2008-08-08 2008-09-10 Unilever Plc Improvements relating to surfactant-containing compositions
CA2695068A1 (fr) * 2009-03-02 2010-09-02 Dizolve Group Corporation Feuille soluble de detergent a lessive
HUE036954T2 (hu) 2009-05-19 2018-08-28 Procter & Gamble Eljárás vízoldékony film nyomtatására
US8367596B2 (en) * 2009-07-30 2013-02-05 The Procter & Gamble Company Laundry detergent compositions in the form of an article
AR078890A1 (es) * 2009-11-06 2011-12-07 Procter & Gamble Particula de suministro en composiciones con un agente benefico
US8524650B2 (en) 2009-12-18 2013-09-03 The Procter & Gamble Company Encapsulates
US20110269657A1 (en) 2010-04-28 2011-11-03 Jiten Odhavji Dihora Delivery particles
US9186642B2 (en) 2010-04-28 2015-11-17 The Procter & Gamble Company Delivery particle
US8849750B2 (en) 2010-10-13 2014-09-30 International Business Machines Corporation Synchronization for initialization of a remote mirror storage facility
JP2014508830A (ja) * 2011-02-16 2014-04-10 ノボザイムス アクティーゼルスカブ 金属プロテアーゼを含む洗剤組成物
ES2809509T3 (es) 2011-05-05 2021-03-04 Procter & Gamble Composiciones y métodos que comprenden variantes de serina proteasa
CN103608448B (zh) 2011-05-13 2018-06-26 Lg生活健康株式会社 用于洗涤的片
US20120296603A1 (en) 2011-05-16 2012-11-22 Qualcomm Incorporated Sensor orientation measurement with respect to pedestrian motion direction
US9179814B2 (en) 2012-04-13 2015-11-10 The Procter & Gamble Company Cleaning article comprising lines of frangibility with marked indicia
KR101368844B1 (ko) 2012-04-30 2014-03-04 주식회사 엘지생활건강 시트형 세제의 케이스
EP2906180B1 (fr) * 2012-10-12 2019-12-04 International Flavors & Fragrances Inc. Dépôt amélioré d'éthylvanilline ou de vanilline avec des microcapsules friables
BR112016013055B1 (pt) 2013-12-09 2022-08-02 The Procter & Gamble Company Manta que compreende uma estrutura fibrosa solúvel em água
CA2842442C (fr) * 2014-02-06 2020-07-14 Dizolve Group Corp. Procede de fabrication d'une feuille de detergent a lessive comprenant une premiere solution stable de longue conservation et une seconde solution de courte conservation
US9827173B2 (en) 2014-05-05 2017-11-28 The Procter & Gamble Company Porous dissolvable solid structure with two benefit agents and methods of forming an aqueous treatment liquor therefrom
CN106414732A (zh) * 2014-06-20 2017-02-15 诺维信公司 来自明矾韩国生工菌的金属蛋白酶和包括金属蛋白酶的洗涤剂组合物
CN105796375B (zh) * 2014-12-31 2018-07-13 罗允俊 可携式清洁用品
CN105199887B (zh) 2015-10-19 2018-10-02 茗燕生物科技(上海)有限公司 速溶型柚皮提取物洗衣片及其制作方法
CN105602773B (zh) 2016-02-17 2018-08-03 茗燕生物科技(上海)有限公司 洗衣片智能化生产系统
CN205398584U (zh) 2016-02-17 2016-07-27 茗燕生物科技(上海)有限公司 辊式洗衣片生产系统
US11352468B2 (en) * 2016-04-18 2022-06-07 Monosol, Llc Perfume microcapsules and related film and detergent compositions
CN205856432U (zh) 2016-08-15 2017-01-04 邓国政 一种超浓缩洗衣片
WO2018141096A1 (fr) 2017-02-06 2018-08-09 The Procter & Gamble Company Feuille de détergent pour lessive à microcapsules

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110039985A1 (en) * 2001-10-09 2011-02-17 Arrow Coated Products, Ltd. Method of manufacturing embedded water soluble film carrier
US20040152617A1 (en) * 2003-02-03 2004-08-05 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Laundry cleansing and conditioning compositions
US20100239622A1 (en) * 2005-09-26 2010-09-23 Photo Print Soap Ltd. Detergent printed film
US20070269651A1 (en) * 2006-05-05 2007-11-22 Denome Frank W Films with microcapsules
US20080305982A1 (en) * 2007-06-11 2008-12-11 Johan Smets Benefit agent containing delivery particle
US20140315772A1 (en) * 2013-04-18 2014-10-23 The Procter & Gamble Company Fragrance materials

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11680232B2 (en) 2017-02-06 2023-06-20 The Procter & Gamble Company Laundry detergent sheet with microcapsules
US20190093057A1 (en) * 2017-09-25 2019-03-28 The Procter & Gamble Company Unitary laundry detergent article
US11118146B2 (en) * 2017-09-25 2021-09-14 The Procter & Gamble Company Unitary laundry detergent article
US20210238508A1 (en) * 2018-10-19 2021-08-05 Henkel Ag & Co. Kgaa Soluble Laundry Detergent Sheets With Textile Stiffening Agents
US20210238517A1 (en) * 2018-10-19 2021-08-05 Henkel Ag & Co. Kgaa Soluble Laundry Detergent Sheets With Soil Release Polymers
US20210238509A1 (en) * 2018-10-19 2021-08-05 Henkel Ag & Co. Kgaa Soluble Laundry Detergent Sheets With Textile Stiffening Agent And Cellulase
US11544764B2 (en) 2019-06-10 2023-01-03 The Procter & Gamble Company Method of generating user feedback information to enhance product use results
WO2020252502A1 (fr) * 2019-06-13 2020-12-17 The Procter & Gamble Company Procédé de fabrication d'une structure fibreuse
US20220054365A1 (en) * 2020-08-19 2022-02-24 The Procter & Gamble Company Flexible, porous, dissolvable solid sheet article containing direct-added microcapsules and process for making the same

Also Published As

Publication number Publication date
JP2020506992A (ja) 2020-03-05
KR20190100965A (ko) 2019-08-29
EP3577205A4 (fr) 2020-10-28
MX2019009276A (es) 2019-09-19
JP6882496B2 (ja) 2021-06-02
WO2018141096A1 (fr) 2018-08-09
CA3050343A1 (fr) 2018-08-09
RU2742886C1 (ru) 2021-02-11
CN110225967A (zh) 2019-09-10
US11680232B2 (en) 2023-06-20
BR112019015854A2 (pt) 2020-04-07
EP3577205A1 (fr) 2019-12-11
US20230272312A1 (en) 2023-08-31
KR102360241B1 (ko) 2022-02-10
US20210040420A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
US11680232B2 (en) Laundry detergent sheet with microcapsules
JP5649817B2 (ja) マイクロカプセル付きフィルム
CA2653119C (fr) Procede d'incorporation de microcapsules dans des articles de conditionnement de tissu a ajouter dans le sechoir
JP7046829B2 (ja) 香料マイクロカプセルならびに関連するフィルム及び洗剤組成物
CN111051490B (zh) 一体式衣物洗涤剂制品
JP7414839B2 (ja) 繊維性水溶性単位用量物品を製造する方法
KR20220111295A (ko) 개인 관리 제품을 패키징하기 위한 단위 용량 물품
US20220356418A1 (en) Water-soluble unit dose article including water-soluble core construction
KR20240019086A (ko) 수용성 코어 구성품을 포함하는 수용성 단위 용량 물품
TW202311518A (zh) 包含水分散性核心構造之水分散性物品

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE PROCTER AND GAMBLE COMPANY, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TAN, HONG SING;TANG, MING;SIVIK, MARK ROBERT;AND OTHERS;SIGNING DATES FROM 20170303 TO 20171108;REEL/FRAME:044827/0220

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION