US20180092996A1 - Methods and kits for preparing radionuclide complexes - Google Patents

Methods and kits for preparing radionuclide complexes Download PDF

Info

Publication number
US20180092996A1
US20180092996A1 US15/554,573 US201615554573A US2018092996A1 US 20180092996 A1 US20180092996 A1 US 20180092996A1 US 201615554573 A US201615554573 A US 201615554573A US 2018092996 A1 US2018092996 A1 US 2018092996A1
Authority
US
United States
Prior art keywords
group
buffer
composition
gallium
chelator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/554,573
Other languages
English (en)
Inventor
Philip Blower
Gregory Mullen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Theragnostics Ltd
Kings College London
Original Assignee
Theragnostics Ltd
Kings College London
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=52998708&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20180092996(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Theragnostics Ltd, Kings College London filed Critical Theragnostics Ltd
Assigned to KING'S COLLEGE LONDON reassignment KING'S COLLEGE LONDON ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLOWER, PHILIP
Assigned to THERAGNOSTICS LIMITED reassignment THERAGNOSTICS LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MULLEN, GREGORY
Assigned to THERAGNOSTICS LIMITED reassignment THERAGNOSTICS LIMITED CORRECTIVE ASSIGNMENT TO CORRECT THE STREET ADDRESS AND ZIP CODE FOR THE RECEIVING PARTY PREVIOUSLY RECORDED ON REEL 044036 FRAME 0464. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: MULLEN, GREGORY
Publication of US20180092996A1 publication Critical patent/US20180092996A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0497Organic compounds conjugates with a carrier being an organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0474Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group
    • A61K51/0478Organic compounds complexes or complex-forming compounds, i.e. wherein a radioactive metal (e.g. 111In3+) is complexed or chelated by, e.g. a N2S2, N3S, NS3, N4 chelating group complexes from non-cyclic ligands, e.g. EDTA, MAG3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/003Compounds containing elements of Groups 3 or 13 of the Periodic Table without C-Metal linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/041Heterocyclic compounds
    • A61K51/044Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins
    • A61K51/0455Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine, rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/082Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins the peptide being a RGD-containing peptide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/08Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins
    • A61K51/088Peptides, e.g. proteins, carriers being peptides, polyamino acids, proteins conjugates with carriers being peptides, polyamino acids or proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/24Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table

Definitions

  • the present invention relates to methods for preparing radioactive gallium complexes for use in therapy or diagnosis, for example in molecular imaging procedures, to kits for use in these methods, and to novel compositions used in them as well as to methods for molecular imaging and therapy carried out using the compositions or the kits.
  • Molecular imaging is a well-known and useful technique for in vivo diagnostics. It may be used in a wide variety of methods including the three-dimensional mapping of molecular processes, such as gene expression, blood flow, physiological changes (pH, etc.), immune responses and cell trafficking. It can be used to detect and diagnose disease, select optimal treatments, and to monitor the effects of treatments to obtain an early readout of efficacy.
  • PET positron emission tomography
  • SPET single photon emission tomography
  • MRI magnetic resonance imaging
  • CT X-ray Computed Tomography
  • CLI Cerenkov luminescence imaging
  • Radionuclide imaging with PET and SPET has the advantage of extremely high sensitivity and small amounts of administered contrast agents (e.g. picomolar in vivo), which do not perturb the in vivo molecular processes.
  • the targeting principles for radionuclide imaging can be applied also in targeted delivery of radionuclide therapy.
  • the isotope that is used as a radionuclide in molecular imaging or therapy is incorporated into a molecule to produce a radiotracer that is pharmaceutically acceptable to the subject.
  • Radiotracers have a relatively short half-life and so have to be produced in situ, for example in the radiopharmacy section of the relevant hospital, under sterile conditions. Some hospitals have difficulty with this if they do not have specialist radiochemistry laboratories and therefore their ability to offer treatments such as PET may be restricted.
  • radiotracers with sensitive functional moieties may involve elevated temperatures that would disrupt protein structure and add undesirable complexity to the labelling process. It may be desirable to include sensitive functional moieties into radiotracers and so it is a need to provide radiotracers that may be prepared using mild conditions. Moreover it is desirable that labelling processes at the point of use are as simple as possible, with the minimum number of manipulations of radioactive materials, minimal need for costly equipment to perform the manipulations and the shortest possible time of preparation. As a result imaging conjugates with improved functionality and improved molecular imaging properties have been produced.
  • 1,4,7, 10-tetraazacyclododecane-N,N′,N′′,N′′′-tetraacetic acid is a common chelator for gallium-68 (and other metallic radioisotopes such as Ga-67, In-111, Cu-64, Lu-177, Y-90) used in molecular imaging and targeted radionuclide therapy.
  • DOTA has a long radiolabelling time of around 30 to 60 minutes (relative to the half-life of 68 Ga ⁇ 68 minutes), which reduces the useful life of the tracer.
  • chelation of gallium by DOTA derivatives often requires a high labelling temperature of around 95° C. and acidic pH, which may be damaging to any biological targeting agent associated with the biotracer and adds complexity to the process.
  • WO2012/063028 describes a range of bifunctional molecules that are able to quickly chelate radionuclides at room temperature, whilst retaining stability towards dissociation in the biological milieu.
  • the bifunctional molecules have a reactive portion to couple the bifunctional molecule to a functional moiety, such as targeting group which can target, for example, cells, tissues or biological molecules in the body. They chelate at neutral pHs. Kits comprising these bifunctional molecules and radionuclides are also described.
  • buffer and acid with the chelating compound and then heat the mixture to relatively high temperatures, for example of 100° C., to achieve labelling.
  • the product may require passing through further purification cartridges such as a SEP-Pak C-18 cartridge before being diluted in phosphate buffered saline (PBS) solution and passed through a sterile filter. All this requires complex and dedicated apparatus and the time taken erodes the useful life of the radionuclide.
  • PBS phosphate buffered saline
  • WO2012/063028 describes that 68 Ga eluate must be further acidified, and passed down an anion exchange column to concentrate it, before it is buffered and added to the bifunctional molecule to form the radiotracer. Such procedures require skilled staff and complex equipment which is not always available. They must be carried out in a strictly sterile environment.
  • 67 Ga radiolabelling was carried out by first reacting 67 Ga citrate (which is of acidic pH), with the chelator complex followed by a subsequent buffering step, which again involves two steps.
  • compositions can be used to provide robust, versatile and easy to use ‘kits’ that may be employed in clinical situations such as in hospitals.
  • a method for preparing a complex comprising a radioisotope of gallium for use in radiotherapy or in a medical imaging procedure, said method comprising adding a gallium radioisotope solution obtained directly from a gallium generator to a composition comprising a pharmaceutically acceptable buffer and optionally also a pharmaceutically acceptable basic reagent, in amounts sufficient to increase the pH to a level in the range of 3 to 8, wherein the composition further comprises a chelator that is able to chelate radioactive gallium within said pH range and at moderate temperature, said chelator being optionally linked to a biological targeting agent.
  • gallium radiolabelling may be achieved directly by contact with gallium solutions, in particular acidic solutions including the highly acidic eluates obtainable from 68 Ga radionuclide generators which are generally at a pH of less than 2, for example at a pH of 1. No undue gallium precipitation occurs.
  • gallium labelling procedures may be simplified by avoiding additional steps such as purification or concentration steps using ion exchange columns or membranes for example.
  • the gallium radioisotope solution is 68 Ga solution from a generator, there will be no need to subject it to an initial concentration step and no need to pass the solution through an ion exchange medium.
  • Suitable gallium-68 generators that may be used to supply the gallium radioisotope solution include Eckert & Ziegler's GalliaPharm 9, IRE-Elite Galli EoTM and Parsisotope GalluGEN.
  • the method is also applicable to solutions of 67 Ga salts, such as gallium citrate, which may be produced from a cyclotron.
  • the resultant radiolabelled product may be of sufficiently high purity that it may be used directly in medical procedures such as radiotherapy or molecular imaging.
  • the product of the cyclotron is ‘a gallium radioisotope solution obtained directly from a gallium generator’ as required by the method of the invention.
  • the acidic solution such as the eluate is added to a composition comprising both the pharmaceutically acceptable buffer and the chelator and also a pharmaceutically acceptable basic reagent if required or necessary.
  • basic reagent refers to a compound that will produce a neutralising effect when contacted with an acidic material.
  • the chelator is present in the composition comprising the pharmaceutically acceptable buffer and the pharmaceutically acceptable basic reagent as a ‘pre-mix’.
  • This provides an efficient ‘single step’ procedure, in which the acidic gallium solution is added directly to the pre-mix composition so that the chelation and neutralisation occurs simultaneously.
  • the chelator for the radionuclide may be any chelator which is effective at moderate temperatures, for example from 10-30° C., and suitably at ambient temperature, and at moderate pHs, for example of from 3-8 and at low concentrations (for example from 1-10 ⁇ M) and reaching acceptable yield in a short time (e.g. 1-5 minutes).
  • acceptable yields of complex would be at least 60%, for instance at least 70%, 80%, 90% or 95% of the administered radiolabel.
  • the chelation may be achieved at moderate temperatures and in particular at ambient temperature, so that heating steps or stages may be avoided, thus simplifying the procedure and ensuring that the radioactivity of the gallium remains at a good level.
  • Versatile chelators of this type which are effective at neutral pHs as well as at low pH, are known in the art.
  • suitable chelators include HBED, DFO, DTPA, DOTA, TRAP, NOTA, NOPO, NODAGA, MPO, 6SS, B6SS, PLED, TAME, NTP, and BAPEN.
  • radionuclide chelator is a compound of formula (I)
  • R 1 is a chelating group capable of chelating a radionuclide and is selected from:
  • R, R 2 , R 3 and R 4 are independently hydrogen or an optionally substituted C 1-7 alkyl group; and where Z is hydrogen or a group of formula -B′-H, -B′-A, or a group -B′-A*-T, where T is a targeting group capable of binding to a target of interest in a subject; A is a reactive group allowing coupling to the group T, A* is a reacted reactive group A; B′ is a linker group for linking the chelating group to a reactive group A, and is represented by the formula:
  • each Q is independently selected from a group consisting of —NR 5 —, —C(O)NR 5 —, —C(O)O, —NR 5 C(O)NR 5 —, —NR 5 C(S)NR 5 — and —O—
  • each R 5 is independently hydrogen or an optionally substituted C 1-7 alkyl group
  • each q and s are independently selected from 0 to 6 and each r is independently selected from 1 to 6.
  • Chelators of formula (I) are able to chelate radionuclides such as gallium radionuclides at a pH in the range of from 3 to 8 with a very high efficiency and at moderate temperature in a short time at low concentration. Chelators of this general type provide a useful advance over many of the previously known chelators, which only worked at low pH and therefore resulted in compositions which were not well suited to pharmaceutical application.
  • the applicants have found that the composition may be used directly with gallium solutions having a range of acidic pHs, such as a solution of a 67 Ga salt, for instance 67 Ga citrate, obtainable from a cyclotron, as well as an eluate from a 68 Ga radionuclide generator, even when this is at low pH, for example of 2 or less, without requiring complex preparation or purification steps.
  • a 67 Ga salt for instance 67 Ga citrate
  • a 68 Ga radionuclide generator even when this is at low pH, for example of 2 or less, without requiring complex preparation or purification steps. This simplifies the production process and allows the possibility of forming ‘cold kits’ for use with specifically gallium radionuclides with minimal manipulation.
  • the reagents used in the method are in solid form, in particular in lyophilized or freeze-dried form. This allows them to form a stable mixture that may be stored or transported ready for use for generating radiotracers in situ.
  • the buffer and basic components are contained in one vessel or vial, to which an eluate from a gallium radionuclide generator may be added. The contents of this vial may then be simply added to a second vial or vessel containing the solid chelator.
  • all the reagents are combined in a single unitary composition.
  • the unitary composition is divided into units containing sufficient chelator for a single imaging operation. In this instance the generator may be eluted directly into the container such as the vial holding the unitary composition.
  • the amount of pharmaceutically acceptable buffer and, where necessary, any basic reagent, used in the method should be suitable for raising and maintaining the pH of the mixture formed on addition of the acidic gallium solution, such as the eluate from a 68 Ga radionuclide generator to a pharmaceutically acceptable level, for example, in the range of from 3-8, for example from 4-7 such as from 5.5-7 and in particular from 6.5-7.5 or pH 6.0 to 7.0 on reconstitution, as well as maintaining a level at which the chelator will be effective to chelate a gallium radionuclide.
  • the activity of the chelator is not significantly reduced by direct exposure to low pHs.
  • no unwanted precipitation of gallium occurs as a result of exposure to high pH, which is a problem that has been encountered previously in connection when handling specifically gallium solutions.
  • Compositions in this pH range may be administered to patients directly without undue pain caused by high acidity.
  • the amount of chelator used in the method and so present in the composition will vary depending upon factors such as the precise nature of the chelator, the nature of the radionuclide to be chelated as well as the nature of the therapy or imaging process being undertaken. However, typically, the amount of chelator required in a composition for carrying out a single therapeutic treatment or imaging procedure is in the range of from 0.1-10 ⁇ moles. In a liquid composition, for example, one produced for lyophilisation to form a solid composition or after reconstitution for administration, the concentration of the chelator is suitably in excess of 5 ⁇ M, for example, from 10-100 ⁇ M.
  • Suitable pharmaceutically acceptable buffers include inorganic and organic buffers.
  • inorganic buffers include phosphate buffers, such as sodium phosphate, sodium phosphate dibasic, potassium phosphate and ammonium phosphate; bicarbonate or carbonate buffers; succinate buffers such as disodium succinate hexahydrate; borate buffers such as sodium borate; cacodylate buffers; citrate buffers such as sodium citrate or potassium citrate; sodium chloride, zinc chloride or zwitterionic buffers.
  • organic buffers include tris(hydroxymethyl)aminomethane (TRIS) buffers, such as Tris HCl, Tris EDTA, Tris Acetate, Tris phosphate or Tris glycine, morpholine propanesulphonic acid (MOPS), and N-(2-hydroxyethyl) piperazine-N′(2-ethanesulfonic acid) (HEPES), dextrose, lactose, tartaric acid, arginine or acetate buffers such as ammonium, sodium or potassium acetate.
  • the buffer is other than an acetate buffer, and other than a sodium acetate buffer.
  • the buffer is a phosphate buffer, such as sodium phosphate buffer.
  • the buffer may comprise one or more phosphate salt, and in particular comprise a monobasic and dibasic sodium phosphate salt.
  • a suitable buffer comprises sodium phosphate monobasic anhydrous and sodium phosphate dibasic heptahydrate in a ratio of about 1.5:1 to 2.5:1.
  • the total amount of buffer present will depend upon factors such as the particular nature of the buffer and the nature of the complex as well as the particular molecular imaging procedure which is to be carried out. Typically however, the buffer is present in the dried composition in an amount of from 5 to 95 mole percent.
  • the concentration of the buffer reagent is suitably in the range of from 0.01 to 0.6M, for example from 0.1 to 0.5M, for example at about 0.2M (20 mM).
  • a pharmaceutically acceptable basic reagent in particular where the buffer is a particularly ‘strong’ buffer such as ammonium acetate.
  • a pharmaceutically acceptable basic reagent is added to the buffer to facilitate neutralisation of the eluate.
  • Suitable pharmaceutically acceptable basic reagents include alkaline salts such as hydroxides, carbonates, bicarbonates or oxides of alkali or alkaline earth metals, such as sodium, potassium, calcium or magnesium, or ammonium salts or basic organic reagents.
  • suitable reagents may be selected from sodium hydroxide, potassium hydroxide, ammonium hydroxide, magnesium oxide, calcium carbonate, magnesium carbonate, magnesium, aluminum silicates, sodium, carbonate, sodium bicarbonate, triethanolamine, or any combination thereof
  • the pharmaceutically acceptable basic reagent is an alkali metal salt, such as an alkali metal hydroxide, in particular sodium or potassium hydroxide.
  • the basic reagent is sodium bicarbonate.
  • the amount of pharmaceutically acceptable basic reagent present in the composition will vary depending upon factors such as the precise nature of the reagent, the intended use of the kit and thus the pH of the eluate of the particular radionuclide generator intended to be used with it.
  • the amount of such reagent in a composition for use in a single therapy or imaging operation is from 0.5-0.75 mmoles.
  • the concentration of the basic reagent is suitably in the range of from 0.01 to 0.6M, for example from 0.1 to 0.15M.
  • the chelator of formula (I) is, or has the capability of becoming linked to a targeting moiety T as defined above.
  • the complexes used in the compositions of the invention will suitably comprise a biological targeting agent that is bound to the chelator, in particular covalently as described above where the compound of formula (I) includes a group ‘T’, but otherwise, a biological targeting agent may be associated with the compound of formula (I) by other means, for example by conjugation.
  • a biological targeting agent is covalently bonded to the chelator and the chelator is a compound of formula (II) where Z is a group -B′-A*-T:
  • T, A*, B′, X, Y, R 1 , m and p are as defined above.
  • the chelator is a compound which is capable of reacting a targeting group, and therefore is a compound of formula (III)
  • T, A, B′, X, Y, R′, m and p are as defined above.
  • R 1 is a group of sub-formula (i) or (ii) as described above, such as a group of sub-formula (i).
  • R 3 and R 4 are selected from hydrogen or lower C 1-4 alkyl groups such as methyl.
  • R 3 is hydrogen.
  • R 4 is methyl.
  • each X, Y, m, p, Q, s, r and q are similar.
  • X is C(O) and Y is NR.
  • R is hydrogen or C 1-4 alkyl and in particular is hydrogen.
  • p is 1. In another particular embodiment, m is 2.
  • q is 0.
  • Q is a group —C(O)NR 5 .
  • R 5 is selected from hydrogen and C 1-4 alkyl group, such as hydrogen.
  • Suitable biological targeting moieties T in formula (I) for use in the compositions of the invention will be groups which are capable of directing the molecules to different targets of interest in the biological system in question. Generally, these will therefore form a ‘specific binding pair’ with the target of interest, such that the targeting moiety T and the target of interest will have particular specificity for each other and which in normal conditions bind to each other in preference to binding to other molecules. Examples of specific binding pairs are well known in the art and include for example receptors and ligands, enzymes and substrates, and immunoglobulins such as antibodies and antigens.
  • targeting moieties T may be peptides, proteins or other biological molecules, such as aptamers, or small molecule ligands, that bind to specific in vivo molecular targets.
  • Classes of targets of interest include ligands or receptors or transporters expressed on diseased cells or tissue, cell surface antigen associated with disease states, or tumour markers, e.g. cancer specific markers or tissue specific markers.
  • the targeting moiety T is a ligand that targets a cancer specific marker such as prostate specific membrane antigen (PSMA).
  • PSMA prostate specific membrane antigen
  • ligands include DKFZ-PSMA-11 (Eder M. et al., Bioconjugate Chem. 2012, 688).
  • the targeting moiety T may comprise an antibody such as an anti-CD33 antibody, or binding fragment thereof, for imaging cancer cells expressing CD33 such as cells of myelomonocytic lineage and leukaemic cells, (see Emberson et al., J. Immunol. Methods. 305 (2): 135-51, 2005) or antibodies capable of binding to the glycoprotein carcinoembryonic antigen (CEA) as members of this family of glycoproteins are expressed on colorectal cancer cells, gastric cancer cells, pancreatic cancer cells, lung cancer cells, medullary thyroid cancer cells and breast cancer cells, as well as anti-PSMA antibodies and binding fragments thereof.
  • Other suitable antibodies may show affinity to cell adhesion molecules.
  • SER 4 which binds to the macrophage adhesion molecule, sialoadhesin.
  • Sialoadhesin is found on the surface of macrophages, and, for example, in high amounts on macrophages of the spleen, liver, lymph node, bone marrow colon and lungs.
  • T groups tissue inhibitors of metalloproteinases (TIMPs), such as TIMP-2, which allow for imaging matrix metalloproteinase expression, as expression of metalloproteinases has been implicated in metastatic processes, (see Giersing et al., Bioconjug Chem. 12(6): 964-71, 2001).
  • TIMPs tissue inhibitors of metalloproteinases
  • the targeting moiety T may be a polypeptide such as complement receptor 2 (CR2).
  • T groups may comprise the peptide octreotide or related analogues of somatostatin that have affinity to the somatostatin receptor expressed highly at the surface of cancer cells e.g. in carcinoid, medullary thyroid carcinoma and other neuroendocrine tumours.
  • the targeting groups T are polypeptides capable of binding to phosphatidylserine (PS) so that the resultant complex can be employed in apoptosis or cell death imaging studies.
  • PS phosphatidylserine
  • examples of such polypeptides include Annexin V and the C2 domain of a synaptotagmin.
  • Polypeptides that comprise one or more C2 domains are well known in the art. While some polypeptides have only one C2 domain, others have two or more C2 domains, and the domains are generally described by attaching a letter (in alphabetical order) to the end of the name (e.g., C2A, C2B, and so on). For a protein that contains only one C2 domain, the domain is simply referred to as C2 domain.
  • Particular examples include the C2A domain of rat synaptotagmin I or a C2A domain of a synaptotagmin of another species.
  • Further examples of proteins that contain a C2 domain include but are not limited to synaptotagmin 1-13, protein kinase C family members of serine/threonine kinases, phospholipase A2, phospholipase 51, cofactors in the coagulation cascade including factors V and VIII, and members of the copine family.
  • Human synaptotagmins include synaptotagmin 1-7, 12 and 13.
  • T are bombesin, gastrin, or VCAM targeting peptide.
  • the targeting moieties T are linked to a chelator molecule to form the compound of formula (I) by means of a suitable linker group A*.
  • the nature of the linker group A* will depend upon the nature of the targeting moiety T and will be determined using conventional chemistry.
  • they may comprise calcium chelating groups such as bisphosphonate derivatives, which target bones and in particular bone cancers.
  • the chelator may not include a targeting group, but act simply as a metal chelator, for general radiochemical monitoring, such as in monitoring of renal function.
  • the linker group A* is formed from a reactive group A which, in a particular embodiment is a protein-reactive functional group.
  • the protein reactive group may react with proteins or modified proteins or peptides or other vehicles derivatised for the purpose.
  • the protein-reactive group A is or comprises a maleimide group, an isothiocyanate group such as an alkyl or arylisothiocyanate, an aldehyde, an ester, or “click” reagent such as an alkyne, azide, alkene, hydrazine, hydrazine derivative, alkoxyamine, alkoxyamine derivative, aminoxy, thiol group.
  • Maleimide, isothiocyanate, aldehyde and ester groups efficiently react with peptide thiol- or amine-containing residues (cysteine, lysine) and so a conjugate can easily form.
  • Other bioorthogonal functional groups can be engineered into peptides and proteins for the purpose of conjugating them with alkyne, azide, alkene, hydrazine, aminoxy or thiol groups.
  • alkyl refers to straight or branched groups, which unless otherwise specified, contain from 1-10 and suitably from 1-7 carbon atoms.
  • aryl refers to aromatic groups which comprise for example phenyl groups, optionally linked to alkyl groups.
  • a compound of formula (II) above is, in general terms, obtainable by linking a group A to either a targeting moiety T or a chelator molecule, and then connected to the other of these.
  • they may be obtained by reacting a compound of formula (III) above, which is reacted with a compound of formula (IV)
  • T is as defined above. Suitable reaction conditions will depend upon factors such as the precise nature of the groups A, T etc. and will be determinable to a skilled chemist.
  • a reactive group such as a maleimide group, for example as shown in Example 5 of WO2012/063028.
  • a particular compound of formula (V) where B is a group H 2 N(CH 2 ) 2 C(O)NH is shown in Zhou T et al. J. Med Chem. 2006, 49, 4171-4182 (see compound (1) in scheme below).
  • the compound is a derivative of the tris(hydroxypyridinone chelator CP256 (which may also be known as THP) which is of formula CP256.
  • An alternative compound of formula III are compounds of formula (I) where A comprises an isothiocyanate group, which is able to conjugate to primary amines.
  • Examples of such compounds include compounds of formula designated H 3 THP 1 and H 3 THP 2 or salts thereof.
  • H 3 THP 2 To synthesize H 3 THP 2 , an excess of p-phenylene diisothiocyanate and diisopropylethylamine in DMF are added to a solution of (1), followed by isolation of (3) using reverse semi-preparative HPLC. Similar to (2), the benzyl groups of (3) are removed using BCl 3 in DCM, followed by addition of methanol, resulting in a chloride salt of bifunctional chelator H 3 THP 2 .
  • Suitable salts are pharmaceutically acceptable salts such as halide salts and in particular chlorides. Such compounds have been found to give rise fast radiolabelling ( ⁇ 5 minutes) with 68 Ga, at room temperature and physiological pH. Such pHs can be achieved in the compositions of the invention using material direct from the 68 Ga generator.
  • compositions of the invention may comprise further excipients or pharmaceutically acceptable carriers or fillers as would be understood in the art, as well as reagents such as stabilisers, antimicrobial agents, cryoprotectants, antioxidants, free radical scavengers, solubilizing agents, tonicifying agents, surfactants and collapse temperature modifiers, used in lyophilisation.
  • reagents such as stabilisers, antimicrobial agents, cryoprotectants, antioxidants, free radical scavengers, solubilizing agents, tonicifying agents, surfactants and collapse temperature modifiers, used in lyophilisation.
  • Suitable fillers for use in the formulations include for example, sugars such as mannitol, lactose, sucrose, trehalose, sorbitol, glucose, or raffinose, or amino acids such as arginine, glycine or histidine, as well as polymers such as dextran or polyethylene glycol (PEG).
  • sugars such as mannitol, lactose, sucrose, trehalose, sorbitol, glucose, or raffinose
  • amino acids such as arginine, glycine or histidine
  • polymers such as dextran or polyethylene glycol (PEG).
  • Suitable free radical scavengers are those which protect against autoradiolysis, such as ascorbic acid or gentisic acid.
  • the amount of free radical scavenger which may be added to the composition will depend upon factors such as the nature of the scavenger used and the nature of the composition. In a typical embodiment, a kit may contain from 1-4% w/w free radical scavenger.
  • Tonicifying agents may be selected for example from sodium chloride, sucrose, mannitol or dextrose.
  • Antimicrobial agents may be selected from benzyl alcohol, phenol, m-cresol, methyl paraben or ethyl paraben.
  • Surfactants may include polysorbate such as polysorbate 80.
  • Collapse temperature modifiers may be selected for example, from dextran, hydroxyethylstarch, Ficoll or Gelatin.
  • the compositions do not include agents which may inhibit metals other than gallium as described in Belgium Patent No. 1021191, WO2016030103 or WO2016030104.
  • agents are sugars such as monosaccharides, disaccharides or polysaccharides as well as derivatives thereof.
  • Particular examples are glucose, fructose, ⁇ -cyclodextrin, mannose and fucoidan. The applicants have found that such agents are not required in the compositions of the invention.
  • kits for use in a medical imaging procedure may be formed into kits for use in a medical imaging procedure and such kits form a further aspect of the invention.
  • the invention further provides a kit for use in a method as described above, said kit comprising a composition comprising a pharmaceutically acceptable buffer and optionally also a pharmaceutically acceptable basic reagent, and a chelator that is able to chelate radioactive gallium within a pH range of from 3 to 8 and at moderate temperature, said chelator being optionally linked to a biological targeting agent.
  • the chelator is in admixture with the buffer composition in the kit.
  • the components of the kit are suitably in a solid form in particular in lyophilized or freeze-dried form.
  • kits suitably comprises sufficient reagents to carry out one or more molecular imaging procedures held within a container.
  • the container is a sterile sealed container and may be filled with an inert atmosphere such as nitrogen gas.
  • kits may further comprise elements such as instructions and outer packaging and may be supplied to hospitals or clinics for reconstitution in situ, using a supply of gallium radiolabels present in appropriate generators.
  • compositions used in these kits are novel and these form a further aspect of the invention.
  • the invention further provides a unitary composition for use in a method described above, said composition comprising (i) a chelator which is able to chelate with a gallium radionuclide at pH 3 to 8 and at moderate temperature, optionally linked to a biological targeting agent, (ii) a pharmaceutically acceptable buffer and optionally also (iii) a pharmaceutically acceptable basic reagent, wherein (ii) and optionally (iii) are present in the composition in amounts sufficient to result in a pH of from 3 to 8 where eluate directly from a gallium generator is added to the composition.
  • the gallium radionuclide chelator is a compound of formula (I) as described above.
  • the composition may be in solution, for example in sterile solution, but is suitably in solid form, for example in lyophilized or freeze-dried form.
  • composition of the invention is one which, in solution, has pH in the range of from 3 to 8 after addition of acidic gallium solution obtained directly from a gallium generator. It suitably includes a pharmaceutically acceptable buffer as described above, and also a pharmaceutically acceptable basic reagent, also as described above.
  • the invention provides a process for producing a composition of the invention as described above, said method comprising mixing a chelator as defined above with a suitable amount of a pharmaceutically acceptable basic buffer and optionally also a pharmaceutically acceptable basic reagent and optionally lyophilising the resultant mixture.
  • the compositions are prepared by mixing together components as described above in aqueous solution.
  • the solution will suitably comprise the chelator of formula (I) in a concentration in excess of 5 ⁇ M for example from 10-100 ⁇ M, a base in a concentration from 01.-0.6M and a buffer in a concentration of from 0.01-0.6M, together with fillers and other excipients as described above as required.
  • the composition is suitably subjected to a lyophilisation procedure as would be understood in the art, to produce a dried composition.
  • the amount of composition subjected to the lyophilisation procedure may be sufficient to produce sufficient for a one or two therapeutic or imaging operation. In such cases, it may be preferable to lyophilise the composition in vials, in particular glass vials. Alternatively, where larger volumes of composition are subjected to drying, the dried composition may be subsequently divided into individual dosage units.
  • composition may packaged and stored for distribution, ready for reconstitution with an acid gallium solution, such as a 68 Ga eluate from a radiolabel generator, in situ.
  • an acid gallium solution such as a 68 Ga eluate from a radiolabel generator
  • 68 Ga radionuclide is supplied on a column which is eluted with an acid, in particular and inorganic acid such as hydrochloric acid, at concentrations of from 0.05M-1M, for example from 0.05 to 0.6M HCl, in particular at about m 0.1M HCl, to obtain the 68 Ga radionuclide for use in an imaging procedure.
  • an acid in particular and inorganic acid such as hydrochloric acid
  • 67 Ga radionuclides which may be used in molecular imaging or therapy, are generally prepared in a cyclotron procedure, and supplied in the form of an acid salt such as 67 Ga citrate. Solutions produced may be used as the acidic gallium solution in the method of the invention.
  • the product obtained is directly useable in a physiological procedure such as imaging procedure or therapy since the pH of the eluate is adjusted upwards by the presence of the base and buffer at the same time as the labelling process, in which the radionuclide becomes chelated.
  • the process is rapid and easy to operate with few handling steps. This ensures that the reagent has a good useful life before the half-life of the radionuclide is eroded, with minimal radiation exposure to operators, minimal opportunity for microbial contamination, and minimal requirement for complex and costly equipment.
  • the amount of eluate that will be added to the reagents will vary depending upon factors such as the precise nature of the eluate and the composition, the required amount of reagent required for the imaging procedure, the size and nature of the patient to whom the composition is to be administered. However, typically, about 3-7 ml for example about 5 ml eluate will be added to produce a suitable dosage unit.
  • a dried composition of the invention may be rehydrated with sterile water or saline, before addition of eluate, but in a particular embodiment, the eluate is added directly to the dried reagents.
  • the invention provides a radiolabelled product obtained by a method as described above for use in a molecular imaging or radionuclide therapy procedure.
  • Suitable molecular imaging procedures are well known in the art and include PET and SPECT procedures as well as X-ray Computed Tomography (CT) and Cerenkov luminescence imaging (CLI).
  • the invention provides a method for obtaining a molecular image of a patient, said method comprising carrying out a process to generate a radiolabelled product as described above, administering the product into patient in need thereof and monitoring the results using a molecular imaging technique.
  • Yet a further aspect provides a method for treating a patient with a radionuclide, said method comprising carrying out a process to generate a 67 Ga radiolabelled product as described above, and administering the product into patient in need thereof.
  • the amount of radiolabelled product administered will vary depending upon factors such as the nature of the patient and the organ or tissue targeted by the targeting moiety in the composition, the nature of the radiolabel and the particular imaging technique or therapy employed. The precise amount administered will be determined in accordance with usual clinical practice.
  • the invention provides effective ‘cold kits’ for use in a range of clinical situations where gallium and in particular 68 Ga is utilised.
  • Physiologically acceptable products may be generated rapidly and easily at room temperature, and so the available half-life of the radiolabel is maximised.
  • the level of labelling (radiochemical purity) using such chelators and in particular, compounds of formula (I) is particularly effective, typically in excess of 95% and therefore, significant purification procedures may be avoided.
  • FIG. 1 is a graph showing the results of a comparison of chelation efficiency of a range of chelators using the method of the invention.
  • compositions comprising the chelator CP256 were prepared containing various concentrations of pharmaceutically acceptable buffer (sodium phosphate buffer) and pharmaceutically acceptable basic reagent (sodium hydroxide) as set out in Table 1 below. The mixtures were lyophilised under vacuum overnight.
  • pharmaceutically acceptable buffer sodium phosphate buffer
  • pharmaceutically acceptable basic reagent sodium hydroxide
  • the pH of the resultant solutions was measured.
  • the % radiolabelling of the CP256 (THP) was investigated using TLC. The results are also shown in Table 1 below.
  • Example 1 The methodology of Example 1 was repeated using a range of formulations comprising 0.13M sodium bicarbonate, 0.1M phosphate buffer (PBS) and a range of CP256 concentrations as listed in the following Table. Highly efficient labelling was achieved in relation to the concentration of the chelator as illustrated in Tables 2 and 2a.
  • PBS phosphate buffer
  • Example 1 The method of Example 1 was repeated using a range of different chelators (DOTA, NOTA, TRAP, NOTP, HBED, DFO and THP) at various concentrations.
  • the amounts of phosphate buffer and sodium hydroxide was adjusted to provide a pH of either 4 or 7 on addition of the 0.1M eluate. Solutions were incubated at room temperature for 10 minutes.
  • a vial comprising a lyophilised reagent mixture, prepared as described above and comprising CP256(THP)(40 ⁇ g) linked to a PSMA targeting agent (30 nmoles), sodium bicarbonate (42 mg), sodium phosphate monobasic anhydrous (8.2 mg) and sodium phosphate dibasic heptahydrate (8.5 mg) is prepared. It could be reconstituted using a 0.1M HCl eluate (5 ml) obtained from an Eckert and Zeigler 68 Ga generator to produce a solution of pH 6.5 to 7.0, which may be used in therapy or in molecular imaging.
  • a vial comprising a lyophilised reagent mixture as described in Example 4 but also containing from 1 to 2 mg ascorbic acid may also be prepared.
  • This kit also can be reconstituted using a 0.1M HCl eluate (5 ml) obtained from an Eckert and Zeigler 68 Ga generator to produce a solution of pH 6.5 to 7.0, which may be used in therapy or in molecular imaging.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicinal Preparation (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Pyridine Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Hydrogenated Pyridines (AREA)
US15/554,573 2015-03-10 2016-03-09 Methods and kits for preparing radionuclide complexes Abandoned US20180092996A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1504064.5 2015-03-10
GB201504064A GB201504064D0 (en) 2015-03-10 2015-03-10 Method and kits for preparing radionuclide complexes
PCT/GB2016/050637 WO2016142702A1 (en) 2015-03-10 2016-03-09 Methods and kits for preparing radionuclide complexes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2016/050637 A-371-Of-International WO2016142702A1 (en) 2015-03-10 2016-03-09 Methods and kits for preparing radionuclide complexes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/154,926 Continuation US20210138094A1 (en) 2015-03-10 2021-01-21 Methods and kits for preparing radionuclide complexes

Publications (1)

Publication Number Publication Date
US20180092996A1 true US20180092996A1 (en) 2018-04-05

Family

ID=52998708

Family Applications (4)

Application Number Title Priority Date Filing Date
US15/554,573 Abandoned US20180092996A1 (en) 2015-03-10 2016-03-09 Methods and kits for preparing radionuclide complexes
US17/154,926 Pending US20210138094A1 (en) 2015-03-10 2021-01-21 Methods and kits for preparing radionuclide complexes
US17/857,990 Active US11826436B2 (en) 2015-03-10 2022-07-05 Methods and kits for preparing radionuclide complexes
US18/499,758 Pending US20240165277A1 (en) 2015-03-10 2023-11-01 Methods and kits for preparing radionuclide complexes

Family Applications After (3)

Application Number Title Priority Date Filing Date
US17/154,926 Pending US20210138094A1 (en) 2015-03-10 2021-01-21 Methods and kits for preparing radionuclide complexes
US17/857,990 Active US11826436B2 (en) 2015-03-10 2022-07-05 Methods and kits for preparing radionuclide complexes
US18/499,758 Pending US20240165277A1 (en) 2015-03-10 2023-11-01 Methods and kits for preparing radionuclide complexes

Country Status (10)

Country Link
US (4) US20180092996A1 (ja)
EP (1) EP3268337B1 (ja)
JP (4) JP6889665B2 (ja)
CN (1) CN107438615B (ja)
AU (1) AU2016230890B2 (ja)
CA (1) CA2979127C (ja)
ES (1) ES2794581T3 (ja)
GB (1) GB201504064D0 (ja)
PL (1) PL3268337T3 (ja)
WO (1) WO2016142702A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201504064D0 (en) * 2015-03-10 2015-04-22 Accretion Biotechnology Ltd Method and kits for preparing radionuclide complexes
CN111491670A (zh) * 2017-12-18 2020-08-04 詹森生物科技公司 多肽的放射性标记
TW202015744A (zh) * 2018-06-21 2020-05-01 法商艾普森藥品公司 用於放射性醫藥之含有體抑素類似物之組成物
IT202000032603A1 (it) * 2020-12-29 2022-06-29 Univ Degli Studi Di Bari Aldo Moro Kit freddi a base di ligandi del psma per l’allestimento di radiofarmaci.
WO2022147224A1 (en) * 2020-12-31 2022-07-07 Da Zen Theranostics, Inc. Heptamethine carbocyanine dye-dota conjugates complexed with lutetium-177, yttrium-90, or gallium-68, and their uses for image-guided radiotherapy
CN114149489B (zh) * 2021-11-18 2023-12-15 厦门大学 一种靶向tigit的放射性标记化合物及其制备方法和应用

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330507A (en) 1980-06-11 1982-05-18 New England Nuclear Corporation Method and system for generating and collecting gallium-68 using alkaline eluant
DK0600992T3 (da) 1991-08-29 2000-10-09 Mallinckrodt Medical Inc Anvendelse af gentissyre eller gentisylalkohol til stabilisering af radiomærkede peptider og proteiner
MY133346A (en) 1999-03-01 2007-11-30 Biogen Inc Kit for radiolabeling ligands with yttrium-90
GB0031592D0 (en) 2000-12-28 2001-02-07 Nycomed Amersham Plc Stabilised radiopharmaceutical compositions
US7011816B2 (en) 2001-12-26 2006-03-14 Immunomedics, Inc. Labeling targeting agents with gallium-68 and gallium-67
WO2009021947A1 (en) 2007-08-13 2009-02-19 Ge Healthcare As Chelators, paramagnetic chelates thereof and their use as contrast agents in magnetic resonance imaging (mri)
GB0718386D0 (en) 2007-09-21 2007-10-31 Ge Healthcare As Improved radiopharmaceutical formulation
US20100196272A1 (en) 2009-01-30 2010-08-05 Neoprobe Corporation Compositions for radiolabeling diethylenetriaminepentaacetic acid (dtpa)-dextran
GB0922492D0 (en) 2009-12-23 2010-02-03 Hammersmith Imanet Ltd Method for obtaining 68GA
GB201002508D0 (en) 2010-02-12 2010-03-31 Algeta As Product
TWI486617B (zh) 2010-10-21 2015-06-01 Iner Aec Executive Yuan 一種測定對鎝(Tc-99m)與錸(Re-186、Re-188)具有穩定錯合力之含硫螯合劑在凍晶劑中之含量與均一性的固態樣品分析技術
GB201019118D0 (en) * 2010-11-11 2010-12-29 King S College Conjugates and their uses in molecular imaging
ITFI20110180A1 (it) * 2011-08-12 2013-02-13 Advanced Accelerator Applic S A Processo per la preparazione di complessi di 68ga.
DE102012208375B4 (de) * 2012-05-18 2015-07-23 Zentralklinik Bad Berka Gmbh Satz und Verfahren zur Herstellung eines Radiopharmakons
US9161998B2 (en) 2012-05-18 2015-10-20 Zentralklinik Bad Berka Gmbh Method and kit for preparing a radiopharmaceutical
TW201440791A (zh) * 2013-04-30 2014-11-01 Univ Kyoto 具有放射性鎵結合部位之多肽及其放射性鎵複合體
JP6510539B2 (ja) 2014-01-09 2019-05-08 ザ ジェイ. デヴィッド グラッドストーン インスティテューツ, ア テスタメンタリー トラスト エスタブリッシュド アンダー ザ ウィル オブ ジェイ. デヴィッド グラッドストーン 置換ベンゾオキサジン及び関連化合物
BE1021191B1 (fr) 2014-08-29 2015-10-27 Anmi S.A. Kit pour radiomarquage.
IL237525A (en) 2015-03-03 2017-05-29 Shalom Eli Method for labeling a prostate-specific membrane antigen with a radioactive isotope
GB201504064D0 (en) 2015-03-10 2015-04-22 Accretion Biotechnology Ltd Method and kits for preparing radionuclide complexes
CN115322244A (zh) 2017-06-06 2022-11-11 透明医药有限公司 放射性药物、放射成像剂及其用途
JP7358484B2 (ja) 2018-09-25 2023-10-10 アドヴァンスド・アクセラレーター・アプリケーションズ・(イタリー)・エッセエッレエッレ 併用療法
TW202123975A (zh) 2019-09-17 2021-07-01 義大利商先進艾斯雷特應用(義大利)公司 放射性標記grpr拮抗劑之方法及其套組

Also Published As

Publication number Publication date
CA2979127A1 (en) 2016-09-15
AU2016230890B2 (en) 2020-01-16
ES2794581T3 (es) 2020-11-18
EP3268337B1 (en) 2020-04-01
US20210138094A1 (en) 2021-05-13
JP7412487B2 (ja) 2024-01-12
US11826436B2 (en) 2023-11-28
JP7109627B2 (ja) 2022-07-29
WO2016142702A1 (en) 2016-09-15
PL3268337T3 (pl) 2020-07-13
JP2018517761A (ja) 2018-07-05
AU2016230890A1 (en) 2017-08-31
JP2022153493A (ja) 2022-10-12
CN107438615A (zh) 2017-12-05
CN107438615B (zh) 2020-02-21
CA2979127C (en) 2024-01-23
US20240165277A1 (en) 2024-05-23
EP3268337A1 (en) 2018-01-17
JP6889665B2 (ja) 2021-06-18
GB201504064D0 (en) 2015-04-22
JP2021130675A (ja) 2021-09-09
US20220339304A1 (en) 2022-10-27
JP2024038107A (ja) 2024-03-19

Similar Documents

Publication Publication Date Title
US11826436B2 (en) Methods and kits for preparing radionuclide complexes
JP7059372B2 (ja) デュアルモードの放射性トレーサーおよび療法剤
JP7376481B2 (ja) 鉛またはトリウム放射性核種に連結されたpsma標的化化合物を含む錯体
CN107382890B (zh) 前列腺特异性膜抗原(psma)的同源多价抑制剂和异源多价抑制剂以及其用途
IL289989B (en) Use of programmable DNA-binding proteins to enhance targeted genome modification
KR20080009682A (ko) 킬레이트제인 폴리(펩티드): 제조 방법과 용도
JP2023552180A (ja) 放射性核種錯体のための安定な製剤
JPH07505621A (ja) 外科手術中における腫瘍組織の検出および探知法
JPH09510454A (ja) 放射性医薬用途のペプチド類およびタンパク質類の安定化
RU2795398C2 (ru) Комплекс, содержащий нацеливающееся на psma соединение, связанное с радионуклидом свинца или тория
KR101550399B1 (ko) 방사면역접합체 또는 방사표지펩티드 제조용 링커 화합물 및 그 제조방법
EA046402B1 (ru) Двухрежимная радиоактивная метка и радиотерапевтическое средство

Legal Events

Date Code Title Description
AS Assignment

Owner name: THERAGNOSTICS LIMITED, ENGLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MULLEN, GREGORY;REEL/FRAME:044036/0464

Effective date: 20171013

Owner name: KING'S COLLEGE LONDON, ENGLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BLOWER, PHILIP;REEL/FRAME:044036/0431

Effective date: 20171102

AS Assignment

Owner name: THERAGNOSTICS LIMITED, ENGLAND

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE STREET ADDRESS AND ZIP CODE FOR THE RECEIVING PARTY PREVIOUSLY RECORDED ON REEL 044036 FRAME 0464. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:MULLEN, GREGORY;REEL/FRAME:044739/0732

Effective date: 20171013

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: ADVISORY ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION