US20180051353A1 - High performance material for coiled tubing applications and the method of producing the same - Google Patents

High performance material for coiled tubing applications and the method of producing the same Download PDF

Info

Publication number
US20180051353A1
US20180051353A1 US15/788,534 US201715788534A US2018051353A1 US 20180051353 A1 US20180051353 A1 US 20180051353A1 US 201715788534 A US201715788534 A US 201715788534A US 2018051353 A1 US2018051353 A1 US 2018051353A1
Authority
US
United States
Prior art keywords
tube
coiled steel
bias
steel tube
weld joints
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/788,534
Inventor
Martin Valdez
Gonzalo Gomez
Jorge Mitre
Bruce A. Reichert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tenaris Coiled Tubes LLC
Original Assignee
Tenaris Coiled Tubes LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50276976&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20180051353(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tenaris Coiled Tubes LLC filed Critical Tenaris Coiled Tubes LLC
Priority to US15/788,534 priority Critical patent/US20180051353A1/en
Assigned to TENARIS COILED TUBES, LLC reassignment TENARIS COILED TUBES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REICHERT, BRUCE, GOMEZ, GONZALO, VALDEZ, MARTIN, MITRE, JORGE
Publication of US20180051353A1 publication Critical patent/US20180051353A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/22Martempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/085Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • C21D9/14Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes wear-resistant or pressure-resistant pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • C21D9/505Cooling thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L33/00Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12333Helical or with helical component

Definitions

  • the standard production of coiled tubing uses as raw material, hot rolled strips with mechanical properties achieved through microstructural refinement during rolling. This refinement is obtained with the use of different microalloying additions (Ti, N, V) as well as appropriate selection of hot rolling processing conditions.
  • the objective is to control material recrystalization and grain growth in order to achieve an ultra-fine microstructure.
  • the material is limited in the use of solid solution alloying elements and precipitation hardening, since refinement is the only mechanism that allows for high strength and toughness, simultaneously.
  • This raw material is specified to each supplier, and may require varying mechanical properties in the hot rolled steel in order to produce coiled tubes with varying mechanical properties as well. As the properties increase, the cost of production and hence the raw material cost also increases. It is known that the strip-to-strip welding process used during the assembly of the “long strip” that will be ERW formed/welded into the coiled tubing, deteriorates the joining area. Thereafter, the coiled tubing with increasing properties, tend to have a relatively lower performance on the area of the strip welds. This deterioration is caused by the fact that the welding processes destroys the refinement introduced during hot rolling, and there is no simple post weld heat treatment capable of regenerating both tensile and toughness properties. In general tensile is restored but toughness and its associated fatigue life are deteriorated in this zone. Current industrial route can produce high strength coiled tubing, only at elevated cost and with poor relative performance of strip welds joins with respect to pipe body.
  • One alternative for producing a coiled tubing is through a full body heat treatment.
  • This treatment is applied to a material that has been formed into a pipe in the so called “green” state, because its properties are yet to be defined by the heat treatment conditions.
  • the main variables affecting the final product properties are the steel chemistry and the heat treatments conditions.
  • the coiled tubing could be produced with uniform properties across the length eliminating the weak link of the strip-to-strip join that is critical on high strength conventional coiled tubing.
  • This general concept has been described before but never applied successfully to the production of high strength coiled tubing (yield strength in the range from 80 to 140 ksi). The reason being that the heat treatment at elevated line speed (needed to achieve high productivity) will generally result in the need for complicated and extended facilities. This process could be simplified if the appropriated chemistry and heat treatment conditions are selected.
  • Embodiments of this disclosure are for a coiled steel tube and methods of producing the same.
  • the tube in some embodiments can comprise a yield strength higher than about 80 Ksi.
  • the composition of the tube can comprise 0.16-0.35 wt. % carbon, 0.30-2.00 wt. % manganese, 0.10-0.35 wt. % silicon, up to 0.005 wt. % sulfur, up to 0.018 wt. % phosphorus, the remainder being iron and inevitable impurities.
  • the tube can also comprise a final microstructure comprising a mixture of tempered martensite and bainite, wherein the final microstructure of the coiled tube comprises more than 90 volume % tempered martensite, wherein the microstructure is homogenous in pipe body, ERW line and strip end-to-end joints.
  • a coiled steel tube formed from a plurality of welded strips, wherein the tube can include base metal regions, weld joints, and their heat affected zones, and can comprise a yield strength greater than about 80 ksi, a composition comprising iron and, 0.17-0.35 wt. % carbon, 0.30-2.00 wt. % manganese, 0.10-0.30 wt. % silicon, 0.010-0.040 wt. % aluminum, up to 0.010 wt. % sulfur, and up to 0.015 wt.
  • % phosphorus and a final microstructure comprising a mixture of tempered martensite and bainite, wherein the final microstructure of the coiled tube comprises more than 90 volume % tempered martensite in the base metal regions, the weld joints, and the heat affected zones, wherein the final microstructure across all base metal regions, weld joints, and heat affected zones is homogeneous, and wherein the final microstructure comprises a uniform distribution of fine carbides across the base metal regions, the weld joints, and the heat affected zones.
  • the composition further comprises, up to 1.0 wt. % chromium, up to 0.5 wt. % molybdenum, up to 0.0030 wt. % boron, up to 0.030 wt. % titanium, up to 0.50 wt. % copper, up to 0.50 wt. % nickel, up to 0.1 wt. % niobium, up to 0.15 wt. % vanadium, up to 0.0050 wt. % oxygen, and up to 0.05 wt. % calcium.
  • the composition can comprise 0.17 to 0.30 wt. % carbon, 0.30 to 1.60 wt. % manganese, 0.10 to 0.20 wt. % silicon, up to 0.7 wt. % chromium, up to 0.5 wt. % molybdenum, 0.0005 to 0.0025 wt. % boron, 0.010 to 0.025 wt. % titanium, 0.25 to 0.35 wt. % copper, 0.20 to 0.35 wt. % nickel, up to 0.04 wt. % niobium, up to 0.10 wt. % vanadium, up to 0.0015 wt. % oxygen, up to 0.03 wt. % calcium, up to 0.003 wt. % sulfur; and up to 0.010 wt. % phosphorus.
  • the tube can have a minimum yield strength of 125 ksi. In some embodiments, the tube can have a minimum yield strength of 140 ksi. In some embodiments, the tube can have a minimum yield strength of between 125 ksi and 140 ksi.
  • the final microstructure can comprise at least 95 volume % tempered martensite in the base metal regions, the weld joints, and the heat affected zones.
  • the tube can have a final grain size of below 20 ⁇ m in the base metal regions, the weld joints, and the heat affected zones. In some embodiments, the tube can have a final grain size of below 15 ⁇ m in the base metal regions, the weld joints, and the heat affected zones.
  • the weld joints can comprise bias welds.
  • the fatigue life at the bias welds can be at least about 80% of the base metal regions.
  • the a percent hardness of a weld joint, including its heat affected zone can be 110% or less than a hardness of the base metal.
  • Also disclosed herein is a method of forming a coiled steel tube which can comprise providing strips having a composition comprising iron and 0.17-0.35 wt. % carbon, 0.30-2.00 wt. % manganese, 0.10-0.30 wt. % silicon, 0.010-0.040 wt. % aluminum, up to 0.010 wt. % sulfur, up to 0.015 wt.
  • % phosphorus and welding the strips together, forming a tube from the welded strips, wherein the tube comprises base metal regions, joint welds, and their heat affected zones, austenitizing the tube between 900-1000° C., quenching the tube to form a final as quenched microstructure of martensite and bainite, wherein the as quenched microstructure comprises at least 90% martensite in the base metal regions, the weld joints, and the heat affected zones, and tempering the quenched tube between 550-720° C., wherein tempering of the quenched tube results in a yield strength greater than about 80 ksi, wherein the microstructure across all base metal regions, weld joints, and the heat affected zones is homogeneous, and wherein the microstructure comprises a uniform distribution of fine carbides across the base metal regions, the weld joints, and the heat affected zones.
  • the welding the strips can comprise bias welding.
  • the forming the tube can comprise forming a line joint.
  • the method can further comprise coiling the tempered tube on a spool.
  • the austenitizing can form a grain size below 20 ⁇ m in the base metal regions, the weld joints, and the heat affected zones.
  • the composition can further comprise up to 1.0 wt. % chromium up to 0.5 wt. % molybdenum up to 0.0030 wt. % boron, up to 0.030 wt. % titanium, up to 0.50 wt. % copper, up to 0.50 wt. % nickel, up to 0.1 wt. % niobium, up to 0.15 wt. % vanadium, up to 0.0050 wt. % oxygen, and up to 0.05 wt. % calcium.
  • the composition can comprise 0.17 to 0.30 wt. % carbon, 0.30 to 1.60 wt. % manganese, 0.10 to 0.20 wt. % silicon, up to 0.7 wt. % chromium, up to 0.5 wt. % molybdenum, 0.0005 to 0.0025 wt. % boron, 0.010 to 0.025 wt. % titanium, 0.25 to 0.35 wt. % copper, 0.20 to 0.35 wt. % nickel, up to 0.04 wt. % niobium, up to 0.10 wt. % vanadium, up to 0.00015 wt. % oxygen, up to 0.03 wt. % calcium, up to 0.003 wt. % sulfur, and up to 0.010 wt. % phosphorus.
  • the tempered tube can have a yield strength greater than or equal to 125 ksi. In some embodiments, the tempered tube can have a minimum yield strength of 140 ksi. In some embodiments, the tempered tube can have a minimum yield strength between 125 and 140 ksi.
  • FIGS. 1A-B illustrate CCT diagrams corresponding to STD2 (A) and STD3 (B) steels.
  • FIGS. 2A-B illustrate CCT diagrams corresponding to BTi 2 (A) and CrMoBTi 3 (B) steels.
  • FIG. 3 illustrates a cooling rate at an internal pipe surface as a function of the wall thickness (WT) for a coiled tube quenched from the external with water sprays.
  • FIG. 4 illustrates tensile properties of BTi 2 steel as a function of the maximum tempering temperature (Tmax). Peak-like tempering cycles were used in these Gleeble® simulations. (right) Tensile properties of the same steel as a function of the holding time at 720° C. (isothermal tempering cycles).
  • FIGS. 5A-B illustrate non-tempered martensite appearing at the central segregation band close to the ERW line after the seam annealing (PWHT).
  • FIGS. 5A-B correspond to a conventional coiled tube Grade 90.
  • FIGS. 6A-B illustrate localized damage at the central segregation band produced during fatigue testing of a Grade 110 coiled tubing.
  • FIGS. 7A-B illustrate localized damage at the central segregation band produced during fatigue testing with high inner pressure (9500 psi) of a Grade 100 coiled tubing.
  • FIGS. 8A-B illustrate base metal microstructures corresponding to the standard coiled tube (A) and a coiled tube manufactured from embodiments of the present disclosure (B). In both cases the coiled tubing has tensile properties corresponding to a Grade 110 (yield strength from 110 Ksi to 120 Ksi).
  • FIGS. 9A-B illustrate ERW line microstructures corresponding to the standard coiled tube (A) and a coiled tube manufactured from embodiments of the present disclosure (B). In both cases the coiled tubing tensile properties correspond to a Grade 110 (yield strength from 110 Ksi to 120 Ksi).
  • FIGS. 10A-B illustrate microstructures corresponding to HAZ of the ERW for the standard coiled tube (A) and a coiled tube manufactured from embodiments of the present disclosure (B).
  • the coiled tubing tensile properties correspond to a Grade 110 (yield strength from 110 Ksi to 120 Ksi).
  • FIGS. 11 A-B illustrate microstructures corresponding to HAZ of the bias weld for the standard coiled tube (A) and a coiled tube manufactured from embodiments of the present disclosure (B).
  • the coiled tubing tensile properties correspond to a Grade 110 (yield strength from 110 Ksi to 120 Ksi).
  • FIG. 12 illustrates a crack formed during service in the fusion zone of a bias weld (growing from the internal tube face). The crack is running in the direction of the large upper bainite laths.
  • the fusion zone (FZ) is approximately located in the area between ⁇ +/ ⁇ 5 mm from the weld center.
  • FIGS. 14A-B illustrate microstructures corresponding to the intersection between bias weld and ERW line for the standard coiled tube (A) and a coiled tube manufactured from embodiments of the present disclosure (B).
  • the coiled tubing tensile properties correspond to a Grade 110 (yield strength from 110 Ksi to 120 Ksi).
  • FIG. 15 illustrates a schematic drawing of a fatigue testing machine.
  • FIG. 16 illustrates fatigue life measured for BW samples relative to those corresponding to BM samples. Results are average values over different testing conditions and coiled tube grades (80, 90 and 110 for conventional tubes and 80, 90, 110, 125 and 140 for coiled tubes produced according to this disclosure).
  • FIG. 17 illustrates fatigue life improvement in coiled tubes produced with an embodiment of the chemistry and processing conditions according to this disclosure.
  • the improvement is determined by comparison against fatigue life measured for conventional coiled tubing of the same grade tested under similar conditions. Results are averaged for each grade over different testing conditions. In the case of grades 125 and 140, which are non-standard, the fatigue life comparison was performed against STD3 steel in Grade 110.
  • FIGS. 18A-B illustrate C-ring samples after testing material grade 80 according to NACE TM0177 (90% SMYS, Solution A, 1 bar H 2 S).
  • A conventional process.
  • B embodiment of the disclosed process.
  • Coiled Tubing raw material is produced in a steel shop as hot rolled strips. Controlled rolling is used to guarantee high strength and good toughness through microstructural refinement.
  • the strips are longitudinally cut to the width for pipe production, and then spliced end to end through a joining process (e.g. Plasma Arc Welding or Friction Stir Welding) to form a longer strip.
  • a joining process e.g. Plasma Arc Welding or Friction Stir Welding
  • the tube is formed using the ERW process.
  • the final product performance is measured in terms of: a) axial mechanical properties, b) uniformity of micro structure and properties, c) toughness, d) fatigue resistance, e) sour resistance, among others.
  • the coiled tubing mechanical properties result from the combination of the hot-rolled strip properties and the modifications introduced during welding operations and tube forming.
  • the properties thus obtained are limited when coiled tube performance is measured as listed above.
  • the reason being is that the welding process used to join the strips modifies the refined as-rolled microstructure in a way that, even if a post weld heat treatments is applied, final properties are still impaired. Reduced fatigue life and poor sour performance is associated to heterogeneities in micro structure and presence of brittle constituents across the welds. It has been proposed that a new route should at least comprise a full body heat treatment. This route has been described in general terms but never specified.
  • the disclosure describes the chemistries and raw material characteristics, that combined with appropriated welding processes, and heat treatment conditions, will yield a quenched and tempered product with high performance in both pipe body and strip joining welds.
  • This material is designed for coiled tubing since it is selected not only in terms of relative cost, but preferably in order to maximize fatigue life under the particular conditions that apply to the operation of coiled tubing (low cycle fatigue under bending with simultaneous axial load and internal pressures).
  • This disclosure is related to a high strength coiled tubing (minimum yield strength ranging from 80 ksi to 140 ksi) having increased low-cycle fatigue life in comparison with standard products, as defined by API 5ST. Additionally, Sulfide Stress Cracking (SSC) resistance is also improved in this disclosure. This outstanding combination of properties is obtained through an appropriate selection of steel chemistry and processing conditions.
  • Industrial processing differs from the standard route in the application of a Full Body Heat Treatment (FBHT), as was disclosed in U.S. App. No. US2012/0186686 A1.
  • FBHT Full Body Heat Treatment
  • This FBHT is performed after the coiled tubed is formed by ERW (Electrical Resistance Welding) and is composed of at least one cycle of austenitization, quenching and tempering.
  • the above mentioned disclosure is more specifically related to the steel chemistries and processing parameters to produce a quenched and tempered coiled tubing with the above mentioned properties.
  • the generation of certain mechanical properties through a heat treatment on a base material with a given composition are part of the general knowledge, the particular application for coiled tubing uses raw material with specific chemistry in order to minimize the detrimental effect of particular variables, such us segregation patterns, on the specific properties of this application.
  • coiled tube One of the most important properties to the coiled tube is an increased resistance to low cycle fatigue. This is because during standard field operation coiled tubes are spooled and unspooled frequently, introducing cyclic plastic deformations that may eventually produce failures. During low cycle fatigue, deformation is preferentially localized at the microscopical scale in softer material regions. When brittle constituents are present at or close to these strain concentration regions, cracks can easily nucleate and propagate. Therefore, a reduction in fatigue life is associated with heterogeneous microstructures (having softer regions that localize deformation) in combination with brittle constituents (that nucleate and/or propagate cracks). All these micro-structural features appear in the Heat Affected Zone of the welds (HAZ).
  • pipe body microstructures that also present the above mentioned characteristics. This is because they are composed of a mixture of hard and soft constituents, for example ferrite, pearlite and bainite. In this case strain is localized in the softer ferrite, close to the boundary with bainite, in which cracks are nucleated and propagated. High strength coiled tubes have currently this type of micro structure.
  • the microstructure In order to avoid strain localization during low cycle fatigue the microstructure has to be not only homogeneous throughout the pipe body and joints, but also in the microscopic scale.
  • a microstructure composed of tempered martensite which is basically a ferrite matrix with a homogeneous and fine distribution of carbides, is ideal.
  • the objective of the chemistry selection and processing conditions described in this disclosure is to achieve with the FBHT a homogeneous micro structure (in tube body, bias weld and ERW line) composed of at least 90% tempered martensite, preferably more than 95% tempered martensite.
  • tempered martensite is more suitable to produce ultra-high strength grades than standard coiled tube micro structures (composed of ferrite, pearlite and bainite), for which extremely costly alloying additions are needed to reach yield strengths higher than about 125 Ksi.
  • tempered martensite When compared with structures containing bainite, other important benefits of tempered martensite is its improved SSC resistance.
  • Steel chemistry has been defined as the most suitable for production of heat treated coiled tubing using a FBHT, and can be described in terms of concentration of Carbon (wt %C), Manganese (w %Mn), Silicon (w % Si), Chromium (wt %Cr), Molybdenum (w %Mo), as well as micro-alloying elements as Boron (w %B), Titanium (w % Ti), Aluminum (w %Al), Niobium (w %Nb) and Vanadium (w %V). Also, upper limits can be on unavoidable impurities as Sulfur (w %S), Phosphorus (w %P) and Oxygen (w %0).
  • the steel chemistry of this disclosure differs mainly from previous coiled tube art because of the higher Carbon content (see for example API 5ST in which maximum Carbon allowed for Coiled tubing is 0.16%), which allows for obtaining the desired microstructure through a FBHT composed of at least one cycle of austenitization, quenching and tempering.
  • the terms “approximately”, “about”, and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result.
  • the terms “ approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.
  • Carbon is an element whose addition inexpensively raises the strength of the steel through an improvement in hardenability and the promotion of carbide precipitation during heat treatments. If carbon is reduced below 0.17% hardenability could not be guaranteed, and large fractions of bainite may be formed during heat treatments. The appearance of bainite makes it difficult to reach a yield strength above 80 ksi with the desired fatigue life and SSC resistance. Current coiled tubing route is not suitable for heat treatment since the maximum Carbon allowed by API5ST is 0.16%. Conventional coiled tubing microstructures present large fractions of bainite that impair toughness, fatigue life and SSC resistance in the higher strength grades, i.e. coiled tubings with minimum yield strength above 110 Ksi.
  • the C content of the steel composition varies within the range from about 0.17% to about 0.35%, preferably from about 0.17% to about 0.30%.
  • Mn manganese addition improves hardenability and strength. Mn also contributes to deoxidation and sulfur control during the steelmaking process. IfMn content is less than about 0.30%, it may be difficult to obtain the desired strength level. However, as Mn content increases, large segregation patterns may be formed. Mn segregated areas will tend to form brittle constituents during heat treatment that impair toughness and reduce fatigue. Additionally, these segregated areas increase the material susceptibility to sulfide stress cracking (SSC). Accordingly, the Mn content of the steel composition varies within the range from 0.30% to 2.0%, preferably from 0.30% to 1.60%, and more preferably from 0.30% to 0.80% in application for which an improved SSC resistance is used.
  • SSC sulfide stress cracking
  • Silicon is an element whose addition has a deoxidizing effect during the steel making process and also raises the strength of the steel. In some embodiments, if Si exceeds about 0.30%, the toughness may decrease. Additionally, large segregation patterns may be formed. Therefore, the Si content of the steel composition varies within the range between about 0.10% to 0.30%, preferably about 0.10% to about 0.20%.
  • Chromium addition increases hardenability and tempering resistance of the steel. Cr can be used to partially replace Mn in the steel composition in order to achieve high strength without producing large segregation patterns that impair fatigue life and SSC resistance. However, Cr is a costly addition that makes the coiled tubing more difficult to produce because of its effects on hot forming loads. Therefore, in some embodiments Cr is limited to about 1.0%, preferably to about 0.7%.
  • Molybdenum is an element whose addition is effective in increasing the strength of the steel and further assists in retarding softening during tempering.
  • the resistance to tempering allows the production of high strength steels with reduced Mn content increasing fatigue life and SSC resistance.
  • Mo additions may also reduce the segregation of phosphorous to grain boundaries, improving resistance to inter-granular fracture.
  • this ferroalloy is expensive, making it desirable to reduce the maximum Mo content within the steel composition. Therefore, in certain embodiments, maximum Mo is about 0.5%.
  • Boron is an element whose addition is strongly effective in increasing the hardenability of the steel.
  • B may improve hardenability by inhibiting the formation of ferrite during quenching.
  • B is used to achieve good hardenability (i.e. as quenched structure composed of at least 90% martensite) in steels with Mn content reduced to improve fatigue life and SSC resistance. If the B content is less than about 0.0005 wt. % it may be difficult in these embodiments to obtain the desired hardenability of the steel. However, if the B content too high, coarse boron carbides may be formed at grain boundaries adversely affecting toughness. Accordingly, in an embodiment, the concentration of B in the composition lower than about 0.0030%, in another embodiment B content is from about 0.0005% to 0.0025%.
  • Titanium is an element whose addition is effective in increasing the effectiveness of B in the steel, by fixing nitrogen impurities as Titanium Nitrides (TiN) and inhibiting the formation of Boron nitrides. If the Ti content is too low it may be difficult in some embodiments to obtain the desired effect of boron on hardenability of the steel. On the other hand, if the Ti content is higher than 0.03 wt % coarse Titanium nitrides and carbides (TiN and TiC) may be formed, adversely affecting ductility and toughness. Accordingly, in certain embodiments, the concentration of Ti may be limited to about 0.030%. In other embodiments, the concentration of Ti may range from about 0.010% to about 0.025%.
  • B and Ti additions improve hardenability without increasing tempering resistance. Thereafter it allows for the production of 80 ksi grade without significant large soaking times during tempering, with the subsequent improvement in productivity. Since one of the limitations for the production of a coiled tubing in a heat treatment line is the length of the line to adequately soak the material during tempering, the use of B and Ti is particularly relevant to the production of low yield strength coiled tubing.
  • Copper is an element that is not required in certain embodiments of the steel composition. However, in some coiled tubing applications Cu may be needed to improve atmospheric corrosion resistance. Thus, in certain embodiments, the Cu content of the steel composition may be limited to less than about 0.50%. In other embodiments, the concentration of Cu may range from about 0.25% to about 0.35%.
  • Nickel is an element whose addition increases the strength and toughness of the steel. If Cu is added to the steel composition, Ni can be used to avoid hot rolling defects known as hot shortness. However, Ni is very costly and, in certain embodiments, the Ni content of the steel composition is limited to less than or equal to about 0.50%. In other embodiments, the concentration of Ni may range from about 0.20% to about 0.35%.
  • Niobium is an element whose addition to the steel composition may refine the austenitic grain size of the steel during reheating into the austenitic region, with the subsequent increase in both strength and toughness. Nb may also precipitate during tempering, increasing the steel strength by particle dispersion hardening. In an embodiment, the Nb content of the steel composition may vary within the range between about 0% to about 0.10%, preferably about 0% to about 0.04%.
  • Vanadium is an element whose addition may be used to increase the strength of the steel by carbide precipitations during tempering.
  • V content of the steel composition is greater than about 0.15%, a large volume fraction of vanadium carbide particles may be formed, with an attendant reduction in toughness of the steel. Therefore, in certain embodiments, the V content of the steel is limited to about 0.15%, preferably to about 0.10%.
  • Aluminum is an element whose addition to the steel composition has a deoxidizing effect during the steel making process and further refines the grain size of the steel.
  • the steel may be susceptible to oxidation, exhibiting high levels of inclusions.
  • the A1 content of the steel composition greater than about 0.040%, coarse precipitates may be formed that impair the toughness of the steel. Therefore, the A1 content of the steel composition may vary within the range between about 0.010% to about 0.040%.
  • the S content of the steel composition is limited to a maximum of about 0.010%, preferably about 0.003%.
  • Phosphorus is an element that causes the toughness of the steel to decrease. Accordingly, the P content of the steel composition limited to a maximum of about 0.015%, preferably about 0.010%.
  • a coiled steel tube may be formed from a composition comprising iron and 0.17-0.35 wt. % carbon, 0.30-2.00 wt. % manganese, 0.10-0.30 wt. % silicon, 0.010-0.040 wt. % aluminum, up to 0.010 wt. % sulfur, and up to 0.015 wt. % phosphorus.
  • the CE calculated using the foregoing formula for the example coiled steel tube compositions ranges from 0.237 to 0.733.
  • Oxygen may be an impurity within the steel composition that is present primarily in the form of oxides.
  • a relatively low O content is desired, less than or equal to about 0.0050 wt %; preferably less than or equal to about 0.0015 wt %.
  • the steel composition may comprise a minimum Ca to S content ratio of Ca/S >1.5. In other embodiments of the steel composition, excessive Ca is unnecessary and the steel composition may comprise a maximum content Ca of about 0.05%, preferably about 0.03%.
  • unavoidable impurities including, but not limited to N, Pb, Sn, As, Sb, Bi and the like are preferably kept as low as possible.
  • properties (e.g., strength, toughness) of steels formed from embodiments of the steel compositions of the present disclosure may not be substantially impaired provided these impurities are maintained below selected levels.
  • the N content of the steel composition may be less than about 0.010%, preferably less than or equal to about 0.008%.
  • the Pb content of the steel composition may be less than or equal to about 0.005%.
  • the Sn content of the steel composition may be less than or equal to about 0.02%.
  • the As content of the steel composition may be less than or equal to about 0.012%.
  • the Sb content of the steel composition may be less than or equal to about 0.008%.
  • the Bi content of the steel composition may be less than or equal to about 0.003%.
  • B and Ti microalloyed additions in combination with suitable C contents. These elements allow for achieving good hardenability without the use of high Mn additions. Moreover, B and Ti do not increase tempering resistance. Thereafter, simple and short tempering treatment can be used to achieve the desired strength level.
  • Raw material for coiled tubing is produced in a steel shop as hot rolled strips with wall thickness that may vary from about 0.08 inches to about 0.30 inches.
  • Controlled rolling may be used by the steel supplier to refine the as rolled microstructure.
  • an important microstructural refinement of the as rolled strips is not needed, because in this disclosure microstructure and mechanical properties are mostly defined by the final FBHT.
  • This flexibility in the hot rolling process helps to reduce raw-material cost, and allows to use steel chemistries not available when complex hot rolling procedures can be used (in general controlled rolling can be applied only to low carbon micro-alloyed steels).
  • the steel strips are longitudinally cut to the width for pipe production. Afterwards, the strips are joined end to end through a welding process (e.g. Plasma Arc Welding or Friction Stir Welding) to form a longer strip that allows to achieve the pipe length.
  • a welding process e.g. Plasma Arc Welding or Friction Stir Welding
  • These welded strips are formed into a pipe using, for example an ERW process.
  • Typical coiled tube outer diameters are between 1 inch and 5 inches. Pipe lengths are about 15,000 feet, but lengths can be between about 10,000 feet to about 40,000 feet.
  • FBHT Full Body Heat Treatment
  • the objective of this heat treatment is to produce a homogeneous final microstructure composed of at least 90% tempered martensite, the rest being bainite.
  • This microstructure having uniform carbide distribution and grain size below 20 ⁇ m-preferably below 15 ⁇ m-guarantees good combinations of strength, ductility, toughness and low cycle fatigue life.
  • SSC Sulfide Stress Cracking
  • the FBHT is composed of at least one austenitization and quenching cycle (Q) followed by a tempering treatment (T).
  • the austenitization is performed at temperatures between 900° C. and 1000° C. During this stage the total time of permanence above the equilibrium temperature Ae3 should be selected to guarantee a complete dissolution of iron carbides without having excessive austenitic grain growth.
  • the target grain size is below 20 ⁇ m, preferably below 15 ⁇ m. Quenching has to be performed controlling the minimum cooling rate in order to achieve a final as quenched microstructure composed of at least 90% martensite throughout the pipe.
  • Tempering is carried out at temperatures between 550° C. and 720° C. Heat treatment above 720° C. may led to partial martensite transformation to high carbon austenite. This constituent has to be avoided because tends to transform into brittle constituents, which may impair toughness and fatigue life. On the other hand, if tempering is performed below 550° C. the recovery process of the dislocated as quenched structure is not complete. Thereafter, toughness may be again strongly reduced. The tempering cycle has to be selected, within the above mentioned temperature range, in order to achieve the desired mechanical properties. Minimum yield strength may vary from 80 ksi to 140 ksi.
  • An appropriate time of permanence at temperature has to be selected to guarantee an homogeneous carbide distribution in both base tube and weld areas (ERW line and strip to strip joints).
  • quenching and tempering cycles may be performed.
  • the pipe may be subjected to a sizing process, in order to guarantee specified dimensional tolerances, stress relieved and spooled into a coil.
  • the microstructure of this disclosure is composed of at least 90% tempered martensite with an homogenous distribution of fine carbides, the rest being bainite. This microstructure allows for production of a coiled tube with the desired combination of high strength, extended low cycle fatigue life and improved SSC resistance.
  • the tempered martensite is obtained by at least one heat treatment of quenching and tempering, performed after the pipe is formed by ERW.
  • the heat treatment may be repeated two or more times if additional refinement is desired for improving SSC resistance. This is because subsequent cycles of austenization and quenching reduce not only prior austenitic grain size, but also martensite block and packet sizes.
  • CCT Continuous Cooling Transformation
  • FIGS. 1-2 Examples of obtained CCT diagrams are presented in FIGS. 1-2 .
  • the austenitization was performed at 900-950° C. in order to obtain a fine austenitic grain size (AGS) of 10-20 ⁇ m.
  • AGS fine austenitic grain size
  • STD1, STD2 and STD3 steels have chemistries within API 5 ST specification, but outside the range of this disclosure because of their low carbon addition (Table A1).
  • the critical cooling CR90 was greater than 100° C./sec in the case of STD1 and STD2, and about 50° C./sec for STD3.
  • FIGS. 1A-B show CCT diagrams corresponding to STD2 (A) and STD3 (B) steels. In bold is shown the critical cooling conditions to produce a final microstructure composed of about 90% martensite, the rest being bainite.
  • FIGS. 2A-B show the CCT diagrams corresponding to BTi 2 and CrMoBTi 3 steels. In bold are shown the critical cooling conditions to produce final microstructures composed of about 90% martensite, the rest being bainite.
  • the first one is a C—Mn steel microalloyed with B—Ti (see Table A1).
  • CrMoBTi 2 is a medium carbon steel having Cr and Mo additions, also microalloyed with B—Ti.
  • the measured critical cooling rates (corresponding to the cooling curves shown in bold in the CCT diagrams) were 25° C./s and 15° C./s for BTi 2 and CrMoBTi 3 , respectively.
  • STD1, STD2 and STD3 have critical cooling rates above 30° C./s, thereafter these steels are not suitable for this disclosure.
  • hardenability is adequate in BTi 2 and CrMoBTi 3 steels. The hardenability improvement is due to an increased carbon content and the B—Ti addition.
  • Table A2 is shown the critical cooling rates measured for the steels of Table A1.
  • STD1, STD2 and STD3 are chemistries currently used for coiled tubes grades 80, 90 and 110; and fulfill API 5ST.
  • STD3 have a critical cooling rate to guarantee more than 90% tempered martensite in pipes with WT in the range of interest.
  • standard materials are not adequate to produce the target micro structure of this disclosure and hardenability has to be improved.
  • the most important element affecting hardenability is Carbon. Thereafter, C was increased above the maximum specified by API 5ST (0.16 wt. %) to have critical cooling rates not higher than 30° C./s.
  • Carbon addition is in the range from 0.17% to 0.35% (the maximum level was selected to guarantee good weldability and toughness).
  • the rest of the chemistry has to be adjusted to have CR90 values equal or lower than 30° C./s.
  • C—Mn steels hardenability depends mainly on Carbon and Manganese additions. About 2%Mn can be used to achieve the desired hardenability when C is in the lower limit (CMn1 steel). However, Mn is an element which produces strong segregation patterns that may decrease fatigue life. Thereafter, Mn addition is decreased in higher Carbon formulations. For example, when carbon concentration is about 0.25%, 1.6% Mn is enough to achieve the hardenability (CMn2 steel).
  • B—Ti steels these alloys are plain carbon steels microalloyed with Boron and Titanium. Due to the increase in hardenability associated to the Boron effect, Mn can be further reduced. For Carbon in the lower limit, about 1.6% Mn can be used to achieve the hardenability. When carbon concentration is about 0.25%, 1.3% Mn is enough to achieve the hardenability (BTi 2 steel).
  • Cr—Mo steels these steels have Cr and Mo additions that are useful to increase tempering resistance, which make them suitable for ultra-high strength grades. Additionally, Cr and Mo are elements that improve hardenability; so Mn addition may be further reduced. However, Cr and Mo are costly additions that reduce the steel hot workability, and their maximum content is limited to 1% and 0.5%, respectively. In one example with Carbon in the lower limit, about 1%Mn can be used to achieve the CR90 (CrMo1). Ifthe steel is also microalloyed with B—Ti, a further reduction in Mn to 0.6% can be performed (CrMoBTi1).
  • Peak like cycle Heating at 50° C./s up to a maximum temperature (Tmax) that was in the range from 550° C. to 720° C. Cooling at about 1.5° C./s down to room temperature.
  • Isothermal cycle Heating at 50° C./s up to 710° C., soaking at this temperature during a time that ranged from 1 min to 1 hour and cooling at about 1.5° C./s. This cycle was used to simulate tempering in an industrial line with several soaking inductors or with a tunnel furnace.
  • tempering temperature ranged from 550° C. to 720° C. Temperatures higher than 720° C. were avoided because non-desired re-austenitization takes place. On the other hand, if tempering is performed below 550° C., recovery of the dislocated structure is not complete, and the material presents brittle constituents that may impair fatigue life.
  • Peak-like tempering cycles are preferred to reduce line length and to improve productivity. Thereafter, the feasibility of obtaining a given grade with a specific steel chemistry was mainly determined by the tempering curve obtaining using this type of cycles. If after a peak-like tempering at 720° C. strength is still high for the grade, soaking at maximum temperature can be performed. However, as soaking time increases, larger, more expensive and less productive industrial lines may be needed.
  • FIG. 4 (inset on the left) is presented the tempering curve measured for BTi 2 steel. Tensile properties are shown as a function of maximum tempering temperature. Peak-like thermal cycles were used in the simulations. From the figure it is seen that Grades 90 to 125 can be obtained by changing maximum peak temperature from about 710° C. to 575° C., respectively. With this chemistry is not possible to reach 140 Ksi of yield strength without reducing the tempering temperature below 550° C. Regarding the lower grades, 3 minutes of soaking at 710° C. can be used to obtain Grade 80 (inset on the right of FIG. 4 ).
  • Table B1 was constructed. This Table shows, for each analyzed steel, the feasibility of producing different grades, which ranged from 80 Ksi to 140 Ksi of minimum yield strength. For example, in the case of BTi 2 it is feasible to reach grades 90 to 125 using peak-like tempering cycles. But 2 minutes of soaking at 720° C. can be used in the case of Grade 80, which is why the in corresponding cell “soaking” is indicated.
  • Microsegregation results from freezing the solute-enriched liquid in the interdendritic spaces. But it does not constitute a major problem, since the effects of microsegregation can be removed during subsequent hot working.
  • macrosegregation is non-uniformity of chemical composition in the cast section on a larger scale. It cannot be completely eliminated by soaking at high temperature and/or hot working. In the case of interest for this disclosure, which is the continuous slab cast, it produces the centerline segregation band.
  • Brittle constituents as non-tempered martensite may appear in this region as a result of welding operations (bias weld and ERW, see for example FIGS. 5A-B ). These non-desired constituents are removed during the subsequent full body heat treatment. However, the tube may be plastically deformed by bending between welding and heat treatment operations, producing a failure during industrial production.
  • the remnant of the central segregation band is a region enriched in substitutional solutes (as Mn, Si, Mo) with a higher density of coarse carbides than the rest of the material. This region is susceptible to nucleate cracks during low cycle fatigue, as it is observed in FIGS. 6-7 . Additionally, prominent segregation bands are associated to poor SSC resistance.
  • the enrichment factors are the ratios between each element concentration at the central band and that corresponding to the average in the matrix. These factors are mainly dependent on thermodynamic partition coefficient between liquid and solid; and diffusivities during solidification.
  • Table CI shows clearly that there are some elements that have a strong tendency to segregate during solidification, like Si and Cu.
  • Cr and Ni have low enrichment factors.
  • Ni is a costly addition, but Cr may be used when an increase in hardenability and/or tempering resistance is desired without producing strong segregation patterns.
  • the enrichment factors give information about the increase in concentration that can be expected for each element at the central segregation band.
  • not all these elements have the same effect regarding the material tendency to form brittle constituents during welding or heat treatment. It is observed that the higher the improvement on hardenability, the higher the tendency to form brittle constituents during processing. It is important to mention that elements with high diffusion coefficients as Carbon and Boron may segregate during solidification, but are homogenized during hot rolling. Thereafter, they do not contribute to form brittle constituents localized at the segregation band.
  • High Mn contents are ordinarily added to the steel composition because of its effect on hardenability.
  • the hardenability is mostly achieved through the higher Carbon addition, so Mn concentration can be generally reduced.
  • Further Manganese reductions can be achieved using Boron and/or Chromium additions. Examples can be seen in Table C2, which shows the critical cooling rate (CR90) for different steels composition obtained from CCT diagrams (data taken from a previous Example A).
  • CR90 critical cooling rate
  • Base Metal coiled tubing microstructure apart from the ERW line and bias welds, when “apart” means that are not included in this region the Heat Affected Zones (HAZ) produced during the any welding operation and their possible Post-Weld Heat Treatment (PWHT).
  • HAZ Heat Affected Zones
  • BW Bias Weld
  • ERW line microstructure resulting from the longitudinal ERW welding during tube forming and its localized PWHT, which is generally a seam annealing. As in previous cases, this region also includes the corresponding heat affected zone.
  • FIGS. 8A-B are presented the base metal microstructures corresponding to the standard coiled tube (A) and this disclosure (B).
  • This disclosure microstructure ( FIG. 8B ) is mainly composed of tempered martensite.
  • the bainite volume fraction is lower than 5% in this case.
  • the tempered martensite structure is also a fine distribution of iron carbides in a ferrite matrix.
  • the main difference between conventional and new structures is related to the morphology of the ferrite grains and sub-grains, and the dislocation density. However, regarding refinement and homogeneity, both structures are very similar.
  • FIGS. 9A-B are shown scanning electron micrographs corresponding to the ERW line. It is clear that in the conventional structure two micro-constituents appear: there are soft ferrite grains and hard blocks composed of a mixture of fine pearlite, martensite and some retained austenite. In this type of structure plastic strain is localized in the ferrite, and cracks can nucleate and propagate in the neighboring brittle constituents (non-tempered martensite and high carbon retained austenite).
  • the ERW line microstructure obtained with chemistry and processing conditions within the ranges of this disclosure is homogeneous and very similar to the corresponding base metal structure.
  • FIGS. 10A-B Microstructures corresponding to the HAZ of the ERW are presented in FIGS. 10A-B .
  • the appearance of the remnant of the central segregation band which after seam annealing is partially transformed into non-tempered martensite. Again, these are brittle constituents that are localized along the ERW line, and can nucleate and propagate cracks during service. The risk of failure is higher than in previous case because of the larger size of the just mentioned constituents.
  • the quenched and tempered coiled tubing the structure close to the ERW line is homogeneous, and the remnants of the central segregation band are not observed.
  • FIGS. 11A-B are presented some scanning electron micrographs corresponding to the bias-weld HAZ of both conventional coiled tube and this disclosure.
  • the microstructure is very different than in Base Metal (BM). It is mainly composed of upper bainite and the grain size is large (50 microns in comparison of less than 15 microns for the BM). This type of coarse structure is not adequate for low cycle fatigue because cracks can easily propagate along bainitic laths.
  • An example of a fatigue crack running across coarse bainite in the bias weld is shown in FIG. 12 . This is a secondary crack located close to the main failure occurred during service of a standard coiled tubing grade 110.
  • the bias weld microstructure in this disclosure is again very similar to that corresponding to the base metal. No upper bainite grains were observed. It is important to mention that some bainite may appear after the full body heat treatment, but because of the selection of adequate chemistry and processing conditions, the corresponding volume fraction of this constituent is lower than 10%. This is the main reason for the good hardenability to the chemistries described in this disclosure. Additionally, due to the upper limit in the austenitization temperature the final grain size is small (lower than 20 microns), then large bainitic laths that can propagate cracks are completely avoided.
  • FIGS. 13-14 Other examples of the microstructural homogeneity achievable by the combination of steel chemistry and processing conditions disclosed in this disclosure are presented in FIGS. 13-14 .
  • FIG. 13 is shown the typical variation in hardness across the bias weld for coiled tubes produced conventionally compared to that obtained using the new chemistry and processing route. It is clear that when using this disclosure the hardness variation is strongly reduced. As a consequence, the tendency of the material to accumulate strain in localized regions (in this case the HAZ of the bias weld) is also reduced, and the fatigue life improved.
  • FIGS. 14A-B are shown some microstructures corresponding to the intersection between the bias weld and the ERW line. It is clear that large microstructural heterogeneities are obtained following the conventional route. These heterogeneities are successfully eliminated using the chemistry and processing conditions disclosed in this disclosure.
  • the fatigue specimens (tube pieces 5 or 6 feet long) are clamped on one end while an alternative force is applied by a hydraulic actuator on the opposite end.
  • Deformation cycles are applied on the test specimens by bending samples over a curved mandrel of fixed radius, and then straightening them against a straight backup.
  • Steel caps are welded at the ends of the specimen and connected to a hydraulic pump, so that cycling is conducted with the specimen filled with water at a constant internal pressure until it fails.
  • the test ends when a loss of internal pressure occurs, due to the development of a crack through the wall thickness.
  • STD1, STD2 and STD3 are steels within the limits described in API 5ST, processed following the standard route.
  • BTi 1 , BTi 2 and CrMoBTi 4 are chemistries selected and processed according to this disclosure. It is important to mention that CrMoBTi 4 steel was used to produce two non-standard grades with 125 Ksi and 140 Ksi of minimum yield strength (the highest grade described in API 5 ST has 110 Ksi of SMYS). Tests were performed on tube pieces with and without the bias weld (in all cases the longitudinal ERW line is included in the samples).
  • the severity of the test mainly depends on two parameters: bend radius and inner pressure.
  • the bend radius was 48 inches, which corresponds to a plastic strain of about 2%.
  • Inner pressures between 1600 psi and 13500 psi were considered, producing hoop stresses that ranged from about 10% to 60% of the minimum yield strength of the grades.
  • FIG. 16 is presented some results regarding the comparison between the fatigue life measured in samples with and without the Bias Weld (BW).
  • BW Bias Weld
  • FIG. 17 is shown the coiled tube fatigue life improvements obtained with chemistries and processing conditions as disclosed by this disclosure.
  • Grades 80, 90 and 110 the comparison was made against the equivalent grade produced by the conventional route.
  • grades 125 and 140 which are non-standard
  • the fatigue life comparison was performed against STD3 steel in Grade 110 tested under the similar conditions (pipe geometry, bend radius and inner pressure). The results presented in the figure correspond to average values for each grade, the error bars represent the dispersion obtained when using different inner pressures.
  • Material performance in regards to hydrogen embrittlement in H 2 S containing environments is related to the combined effects of corrosive environments, presence of traps (e.g. precipitates and dislocations) that could locally increase hydrogen concentration, as well as the presence of brittle areas, in which cracks could easily propagate.
  • a possible source of critical brittle regions in conventional coiled tubing material is the segregation pattern of substitutional elements, such us Mn, in the raw material. Regions of differential concentrations tend to respond in a distinct way to thermal cycles imposed during bias weld, PWHT, ERW and seam annealing, and could lead to the local formation of brittle constituents.
  • the pipe body quickly extracts heat from the weld area. If the segregation is high enough, elongated high hardness areas with the possible presence of martensite may be formed as a consequence of the cooling conditions. These areas will remain in the tube to become easy paths for crack propagation.
  • Other relevant differences are: a) the dislocations introduced during pipe cold forming are not present in the new product, b) the carbides in new product are smaller and isolated in comparison with the typical pearlite/bainite long brittle carbides. As a consequence the coiled tube produced with chemistries and processing conditions according to this disclosure presents an improved performance to cracking in H2 S containing environments.
  • the C ring formed by the conventional process has a large crack down the middle, whereas the C ring formed by embodiments of the disclosed process did not crack.
  • B—Ti and Cr—Mo additions can reduce maximum Mn.
  • grades may be higher than 110 that are difficult to achieve using the standard method.

Abstract

Embodiments of the present disclosure are directed to coiled steel tubes and methods of manufacturing coiled steel tubes. In some embodiments, the final microstructures of the coiled steel tubes across all base metal regions, weld joints, and heat affected zones can be homogeneous. Further, the final microstructure of the coiled steel tube can be a mixture of tempered martensite and bainite.

Description

    RELATED APPLICATION
  • This application is a continuation of co-pending application entitled HIGH PERFORMANCE MATERIAL FOR COILED TUBING APPLICATIONS AND THE METHOD OF PRODUCING THE SAME, U.S. Ser. No. 14/190,886, filed Feb. 26, 2014, now allowed, which claims priority on Provisional Application Ser. No. 61/783,701, filed on Mar. 14, 2013, the entirety of both of which are hereby incorporated by reference.
  • INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS
  • Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
  • BACKGROUND Description of the Related Art
  • In recent years the use of coiled tubing has been expanded to applications that require high pressure and extended reach operations. As a consequence, there is a need to produce coiled tubing with elevated tensile properties in order to withstand: i) axial loads on hanging or pooling long strings, and ii) elevated pressures applied during operation.
  • The standard production of coiled tubing uses as raw material, hot rolled strips with mechanical properties achieved through microstructural refinement during rolling. This refinement is obtained with the use of different microalloying additions (Ti, N, V) as well as appropriate selection of hot rolling processing conditions. The objective is to control material recrystalization and grain growth in order to achieve an ultra-fine microstructure. The material is limited in the use of solid solution alloying elements and precipitation hardening, since refinement is the only mechanism that allows for high strength and toughness, simultaneously.
  • This raw material is specified to each supplier, and may require varying mechanical properties in the hot rolled steel in order to produce coiled tubes with varying mechanical properties as well. As the properties increase, the cost of production and hence the raw material cost also increases. It is known that the strip-to-strip welding process used during the assembly of the “long strip” that will be ERW formed/welded into the coiled tubing, deteriorates the joining area. Thereafter, the coiled tubing with increasing properties, tend to have a relatively lower performance on the area of the strip welds. This deterioration is caused by the fact that the welding processes destroys the refinement introduced during hot rolling, and there is no simple post weld heat treatment capable of regenerating both tensile and toughness properties. In general tensile is restored but toughness and its associated fatigue life are deteriorated in this zone. Current industrial route can produce high strength coiled tubing, only at elevated cost and with poor relative performance of strip welds joins with respect to pipe body.
  • One alternative for producing a coiled tubing is through a full body heat treatment. This treatment is applied to a material that has been formed into a pipe in the so called “green” state, because its properties are yet to be defined by the heat treatment conditions. In this case the main variables affecting the final product properties are the steel chemistry and the heat treatments conditions. Thereafter, by appropriately combining steel composition with welding material and heat treatment, the coiled tubing could be produced with uniform properties across the length eliminating the weak link of the strip-to-strip join that is critical on high strength conventional coiled tubing. This general concept has been described before but never applied successfully to the production of high strength coiled tubing (yield strength in the range from 80 to 140 ksi). The reason being that the heat treatment at elevated line speed (needed to achieve high productivity) will generally result in the need for complicated and extended facilities. This process could be simplified if the appropriated chemistry and heat treatment conditions are selected.
  • The selection of the chemistry that is compatible with an industrial heat treatment facility of reasonable dimensions requires of an understanding of the many variables that affect coiled tubing performance measured as: a) Axial Mechanical Properties, b) Uniformity of Micro structure and Properties, c) Toughness, d) Fatigue Resistance, e) Sour Resistance, among others.
  • SUMMARY
  • Below is described chemistry designed to produce a heat treated coiled tubing which is mostly outside current limits for coiled tubing as set by API 5ST standard. (Max.C:0.16%, Max.Mn: 1.2% (CT70-90) Max.Mn: 1.65 (CT100-110), Max.P:0.02% (CT70-90) Max.P:0.025(CT100-CT110), Max.S:0.005, Si.Max:0.5).
  • Embodiments of this disclosure are for a coiled steel tube and methods of producing the same. The tube in some embodiments can comprise a yield strength higher than about 80 Ksi. The composition of the tube can comprise 0.16-0.35 wt. % carbon, 0.30-2.00 wt. % manganese, 0.10-0.35 wt. % silicon, up to 0.005 wt. % sulfur, up to 0.018 wt. % phosphorus, the remainder being iron and inevitable impurities. The tube can also comprise a final microstructure comprising a mixture of tempered martensite and bainite, wherein the final microstructure of the coiled tube comprises more than 90 volume % tempered martensite, wherein the microstructure is homogenous in pipe body, ERW line and strip end-to-end joints.
  • Disclosed herein is a coiled steel tube formed from a plurality of welded strips, wherein the tube can include base metal regions, weld joints, and their heat affected zones, and can comprise a yield strength greater than about 80 ksi, a composition comprising iron and, 0.17-0.35 wt. % carbon, 0.30-2.00 wt. % manganese, 0.10-0.30 wt. % silicon, 0.010-0.040 wt. % aluminum, up to 0.010 wt. % sulfur, and up to 0.015 wt. % phosphorus, and a final microstructure comprising a mixture of tempered martensite and bainite, wherein the final microstructure of the coiled tube comprises more than 90 volume % tempered martensite in the base metal regions, the weld joints, and the heat affected zones, wherein the final microstructure across all base metal regions, weld joints, and heat affected zones is homogeneous, and wherein the final microstructure comprises a uniform distribution of fine carbides across the base metal regions, the weld joints, and the heat affected zones.
  • In some embodiments, the composition further comprises, up to 1.0 wt. % chromium, up to 0.5 wt. % molybdenum, up to 0.0030 wt. % boron, up to 0.030 wt. % titanium, up to 0.50 wt. % copper, up to 0.50 wt. % nickel, up to 0.1 wt. % niobium, up to 0.15 wt. % vanadium, up to 0.0050 wt. % oxygen, and up to 0.05 wt. % calcium.
  • In some embodiments, the composition can comprise 0.17 to 0.30 wt. % carbon, 0.30 to 1.60 wt. % manganese, 0.10 to 0.20 wt. % silicon, up to 0.7 wt. % chromium, up to 0.5 wt. % molybdenum, 0.0005 to 0.0025 wt. % boron, 0.010 to 0.025 wt. % titanium, 0.25 to 0.35 wt. % copper, 0.20 to 0.35 wt. % nickel, up to 0.04 wt. % niobium, up to 0.10 wt. % vanadium, up to 0.0015 wt. % oxygen, up to 0.03 wt. % calcium, up to 0.003 wt. % sulfur; and up to 0.010 wt. % phosphorus.
  • In some embodiments, the tube can have a minimum yield strength of 125 ksi. In some embodiments, the tube can have a minimum yield strength of 140 ksi. In some embodiments, the tube can have a minimum yield strength of between 125 ksi and 140 ksi.
  • In some embodiments, the final microstructure can comprise at least 95 volume % tempered martensite in the base metal regions, the weld joints, and the heat affected zones. In some embodiments, the tube can have a final grain size of below 20 μm in the base metal regions, the weld joints, and the heat affected zones. In some embodiments, the tube can have a final grain size of below 15 μm in the base metal regions, the weld joints, and the heat affected zones.
  • In some embodiments, the weld joints can comprise bias welds. In some embodiments, the fatigue life at the bias welds can be at least about 80% of the base metal regions. In some embodiments, the a percent hardness of a weld joint, including its heat affected zone, can be 110% or less than a hardness of the base metal.
  • Also disclosed herein is a method of forming a coiled steel tube which can comprise providing strips having a composition comprising iron and 0.17-0.35 wt. % carbon, 0.30-2.00 wt. % manganese, 0.10-0.30 wt. % silicon, 0.010-0.040 wt. % aluminum, up to 0.010 wt. % sulfur, up to 0.015 wt. % phosphorus, and welding the strips together, forming a tube from the welded strips, wherein the tube comprises base metal regions, joint welds, and their heat affected zones, austenitizing the tube between 900-1000° C., quenching the tube to form a final as quenched microstructure of martensite and bainite, wherein the as quenched microstructure comprises at least 90% martensite in the base metal regions, the weld joints, and the heat affected zones, and tempering the quenched tube between 550-720° C., wherein tempering of the quenched tube results in a yield strength greater than about 80 ksi, wherein the microstructure across all base metal regions, weld joints, and the heat affected zones is homogeneous, and wherein the microstructure comprises a uniform distribution of fine carbides across the base metal regions, the weld joints, and the heat affected zones.
  • In some embodiments, the welding the strips can comprise bias welding. In some embodiments, the forming the tube can comprise forming a line joint. In some embodiments, the method can further comprise coiling the tempered tube on a spool. In some embodiments, the austenitizing can form a grain size below 20 μm in the base metal regions, the weld joints, and the heat affected zones.
  • In some embodiments, the composition can further comprise up to 1.0 wt. % chromium up to 0.5 wt. % molybdenum up to 0.0030 wt. % boron, up to 0.030 wt. % titanium, up to 0.50 wt. % copper, up to 0.50 wt. % nickel, up to 0.1 wt. % niobium, up to 0.15 wt. % vanadium, up to 0.0050 wt. % oxygen, and up to 0.05 wt. % calcium.
  • In some embodiments, the composition can comprise 0.17 to 0.30 wt. % carbon, 0.30 to 1.60 wt. % manganese, 0.10 to 0.20 wt. % silicon, up to 0.7 wt. % chromium, up to 0.5 wt. % molybdenum, 0.0005 to 0.0025 wt. % boron, 0.010 to 0.025 wt. % titanium, 0.25 to 0.35 wt. % copper, 0.20 to 0.35 wt. % nickel, up to 0.04 wt. % niobium, up to 0.10 wt. % vanadium, up to 0.00015 wt. % oxygen, up to 0.03 wt. % calcium, up to 0.003 wt. % sulfur, and up to 0.010 wt. % phosphorus.
  • In some embodiments, the tempered tube can have a yield strength greater than or equal to 125 ksi. In some embodiments, the tempered tube can have a minimum yield strength of 140 ksi. In some embodiments, the tempered tube can have a minimum yield strength between 125 and 140 ksi.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A-B illustrate CCT diagrams corresponding to STD2 (A) and STD3 (B) steels.
  • FIGS. 2A-B illustrate CCT diagrams corresponding to BTi2 (A) and CrMoBTi3 (B) steels.
  • FIG. 3 illustrates a cooling rate at an internal pipe surface as a function of the wall thickness (WT) for a coiled tube quenched from the external with water sprays.
  • FIG. 4 illustrates tensile properties of BTi2 steel as a function of the maximum tempering temperature (Tmax). Peak-like tempering cycles were used in these Gleeble® simulations. (right) Tensile properties of the same steel as a function of the holding time at 720° C. (isothermal tempering cycles).
  • FIGS. 5A-B illustrate non-tempered martensite appearing at the central segregation band close to the ERW line after the seam annealing (PWHT). FIGS. 5A-B correspond to a conventional coiled tube Grade 90.
  • FIGS. 6A-B illustrate localized damage at the central segregation band produced during fatigue testing of a Grade 110 coiled tubing.
  • FIGS. 7A-B illustrate localized damage at the central segregation band produced during fatigue testing with high inner pressure (9500 psi) of a Grade 100 coiled tubing.
  • FIGS. 8A-B illustrate base metal microstructures corresponding to the standard coiled tube (A) and a coiled tube manufactured from embodiments of the present disclosure (B). In both cases the coiled tubing has tensile properties corresponding to a Grade 110 (yield strength from 110 Ksi to 120 Ksi).
  • FIGS. 9A-B illustrate ERW line microstructures corresponding to the standard coiled tube (A) and a coiled tube manufactured from embodiments of the present disclosure (B). In both cases the coiled tubing tensile properties correspond to a Grade 110 (yield strength from 110 Ksi to 120 Ksi).
  • FIGS. 10A-B illustrate microstructures corresponding to HAZ of the ERW for the standard coiled tube (A) and a coiled tube manufactured from embodiments of the present disclosure (B). In both cases the coiled tubing tensile properties correspond to a Grade 110 (yield strength from 110 Ksi to 120 Ksi).
  • FIGS. 11 A-B illustrate microstructures corresponding to HAZ of the bias weld for the standard coiled tube (A) and a coiled tube manufactured from embodiments of the present disclosure (B). In both cases the coiled tubing tensile properties correspond to a Grade 110 (yield strength from 110 Ksi to 120 Ksi).
  • FIG. 12 illustrates a crack formed during service in the fusion zone of a bias weld (growing from the internal tube face). The crack is running in the direction of the large upper bainite laths.
  • FIG. 13 illustrates variations in hardness (base metal hardness=100%) across typical bias welds obtained with conventional processing and processing according to embodiments of the present disclose. The fusion zone (FZ) is approximately located in the area between ≈+/−5 mm from the weld center.
  • FIGS. 14A-B illustrate microstructures corresponding to the intersection between bias weld and ERW line for the standard coiled tube (A) and a coiled tube manufactured from embodiments of the present disclosure (B). In both cases the coiled tubing tensile properties correspond to a Grade 110 (yield strength from 110 Ksi to 120 Ksi).
  • FIG. 15 illustrates a schematic drawing of a fatigue testing machine.
  • FIG. 16 illustrates fatigue life measured for BW samples relative to those corresponding to BM samples. Results are average values over different testing conditions and coiled tube grades (80, 90 and 110 for conventional tubes and 80, 90, 110, 125 and 140 for coiled tubes produced according to this disclosure).
  • FIG. 17 illustrates fatigue life improvement in coiled tubes produced with an embodiment of the chemistry and processing conditions according to this disclosure. The improvement is determined by comparison against fatigue life measured for conventional coiled tubing of the same grade tested under similar conditions. Results are averaged for each grade over different testing conditions. In the case of grades 125 and 140, which are non-standard, the fatigue life comparison was performed against STD3 steel in Grade 110.
  • FIGS. 18A-B illustrate C-ring samples after testing material grade 80 according to NACE TM0177 (90% SMYS, Solution A, 1 bar H2S). A: conventional process. B: embodiment of the disclosed process.
  • DETAILED DESCRIPTION
  • Coiled Tubing raw material is produced in a steel shop as hot rolled strips. Controlled rolling is used to guarantee high strength and good toughness through microstructural refinement. The strips are longitudinally cut to the width for pipe production, and then spliced end to end through a joining process (e.g. Plasma Arc Welding or Friction Stir Welding) to form a longer strip. Afterwards, the tube is formed using the ERW process. The final product performance is measured in terms of: a) axial mechanical properties, b) uniformity of micro structure and properties, c) toughness, d) fatigue resistance, e) sour resistance, among others. Using the traditional processing route, the coiled tubing mechanical properties result from the combination of the hot-rolled strip properties and the modifications introduced during welding operations and tube forming. The properties thus obtained are limited when coiled tube performance is measured as listed above. The reason being is that the welding process used to join the strips modifies the refined as-rolled microstructure in a way that, even if a post weld heat treatments is applied, final properties are still impaired. Reduced fatigue life and poor sour performance is associated to heterogeneities in micro structure and presence of brittle constituents across the welds. It has been proposed that a new route should at least comprise a full body heat treatment. This route has been described in general terms but never specified. The disclosure describes the chemistries and raw material characteristics, that combined with appropriated welding processes, and heat treatment conditions, will yield a quenched and tempered product with high performance in both pipe body and strip joining welds. This material is designed for coiled tubing since it is selected not only in terms of relative cost, but preferably in order to maximize fatigue life under the particular conditions that apply to the operation of coiled tubing (low cycle fatigue under bending with simultaneous axial load and internal pressures).
  • This disclosure is related to a high strength coiled tubing (minimum yield strength ranging from 80 ksi to 140 ksi) having increased low-cycle fatigue life in comparison with standard products, as defined by API 5ST. Additionally, Sulfide Stress Cracking (SSC) resistance is also improved in this disclosure. This outstanding combination of properties is obtained through an appropriate selection of steel chemistry and processing conditions. Industrial processing differs from the standard route in the application of a Full Body Heat Treatment (FBHT), as was disclosed in U.S. App. No. US2012/0186686 A1. This FBHT is performed after the coiled tubed is formed by ERW (Electrical Resistance Welding) and is composed of at least one cycle of austenitization, quenching and tempering. The above mentioned disclosure is more specifically related to the steel chemistries and processing parameters to produce a quenched and tempered coiled tubing with the above mentioned properties. Although the generation of certain mechanical properties through a heat treatment on a base material with a given composition are part of the general knowledge, the particular application for coiled tubing uses raw material with specific chemistry in order to minimize the detrimental effect of particular variables, such us segregation patterns, on the specific properties of this application.
  • One of the most important properties to the coiled tube is an increased resistance to low cycle fatigue. This is because during standard field operation coiled tubes are spooled and unspooled frequently, introducing cyclic plastic deformations that may eventually produce failures. During low cycle fatigue, deformation is preferentially localized at the microscopical scale in softer material regions. When brittle constituents are present at or close to these strain concentration regions, cracks can easily nucleate and propagate. Therefore, a reduction in fatigue life is associated with heterogeneous microstructures (having softer regions that localize deformation) in combination with brittle constituents (that nucleate and/or propagate cracks). All these micro-structural features appear in the Heat Affected Zone of the welds (HAZ). There are some types of pipe body microstructures that also present the above mentioned characteristics. This is because they are composed of a mixture of hard and soft constituents, for example ferrite, pearlite and bainite. In this case strain is localized in the softer ferrite, close to the boundary with bainite, in which cracks are nucleated and propagated. High strength coiled tubes have currently this type of micro structure.
  • In order to avoid strain localization during low cycle fatigue the microstructure has to be not only homogeneous throughout the pipe body and joints, but also in the microscopic scale. For low carbon steels a microstructure composed of tempered martensite, which is basically a ferrite matrix with a homogeneous and fine distribution of carbides, is ideal. Thereafter, the objective of the chemistry selection and processing conditions described in this disclosure is to achieve with the FBHT a homogeneous micro structure (in tube body, bias weld and ERW line) composed of at least 90% tempered martensite, preferably more than 95% tempered martensite.
  • Additionally, tempered martensite is more suitable to produce ultra-high strength grades than standard coiled tube micro structures (composed of ferrite, pearlite and bainite), for which extremely costly alloying additions are needed to reach yield strengths higher than about 125 Ksi.
  • When compared with structures containing bainite, other important benefits of tempered martensite is its improved SSC resistance.
  • Steel chemistry has been defined as the most suitable for production of heat treated coiled tubing using a FBHT, and can be described in terms of concentration of Carbon (wt %C), Manganese (w %Mn), Silicon (w % Si), Chromium (wt %Cr), Molybdenum (w %Mo), as well as micro-alloying elements as Boron (w %B), Titanium (w % Ti), Aluminum (w %Al), Niobium (w %Nb) and Vanadium (w %V). Also, upper limits can be on unavoidable impurities as Sulfur (w %S), Phosphorus (w %P) and Oxygen (w %0).
  • In order to produce a final structure composed of tempered martensite, the steel chemistry of this disclosure differs mainly from previous coiled tube art because of the higher Carbon content (see for example API 5ST in which maximum Carbon allowed for Coiled tubing is 0.16%), which allows for obtaining the desired microstructure through a FBHT composed of at least one cycle of austenitization, quenching and tempering.
  • The terms “approximately”, “about”, and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “ approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.
  • Carbon is an element whose addition inexpensively raises the strength of the steel through an improvement in hardenability and the promotion of carbide precipitation during heat treatments. If carbon is reduced below 0.17% hardenability could not be guaranteed, and large fractions of bainite may be formed during heat treatments. The appearance of bainite makes it difficult to reach a yield strength above 80 ksi with the desired fatigue life and SSC resistance. Current coiled tubing route is not suitable for heat treatment since the maximum Carbon allowed by API5ST is 0.16%. Conventional coiled tubing microstructures present large fractions of bainite that impair toughness, fatigue life and SSC resistance in the higher strength grades, i.e. coiled tubings with minimum yield strength above 110 Ksi.
  • On the other hand, steels with more than 0.35% carbon will have poor weldability, being susceptible to present brittle constituents and cracks during welding and post-weld heat treatment operations. Additionally, higher carbon contents may result in significant amounts of retained austenite after quenching that transform into brittle constituents upon tempering. These brittle constituents impair fatigue life and SSC resistance. Therefore, the C content of the steel composition varies within the range from about 0.17% to about 0.35%, preferably from about 0.17% to about 0.30%.
  • Manganese addition improves hardenability and strength. Mn also contributes to deoxidation and sulfur control during the steelmaking process. IfMn content is less than about 0.30%, it may be difficult to obtain the desired strength level. However, as Mn content increases, large segregation patterns may be formed. Mn segregated areas will tend to form brittle constituents during heat treatment that impair toughness and reduce fatigue. Additionally, these segregated areas increase the material susceptibility to sulfide stress cracking (SSC). Accordingly, the Mn content of the steel composition varies within the range from 0.30% to 2.0%, preferably from 0.30% to 1.60%, and more preferably from 0.30% to 0.80% in application for which an improved SSC resistance is used.
  • Silicon is an element whose addition has a deoxidizing effect during the steel making process and also raises the strength of the steel. In some embodiments, if Si exceeds about 0.30%, the toughness may decrease. Additionally, large segregation patterns may be formed. Therefore, the Si content of the steel composition varies within the range between about 0.10% to 0.30%, preferably about 0.10% to about 0.20%.
  • Chromium addition increases hardenability and tempering resistance of the steel. Cr can be used to partially replace Mn in the steel composition in order to achieve high strength without producing large segregation patterns that impair fatigue life and SSC resistance. However, Cr is a costly addition that makes the coiled tubing more difficult to produce because of its effects on hot forming loads. Therefore, in some embodiments Cr is limited to about 1.0%, preferably to about 0.7%.
  • Molybdenum is an element whose addition is effective in increasing the strength of the steel and further assists in retarding softening during tempering. The resistance to tempering allows the production of high strength steels with reduced Mn content increasing fatigue life and SSC resistance. Mo additions may also reduce the segregation of phosphorous to grain boundaries, improving resistance to inter-granular fracture. However, this ferroalloy is expensive, making it desirable to reduce the maximum Mo content within the steel composition. Therefore, in certain embodiments, maximum Mo is about 0.5%.
  • Boron is an element whose addition is strongly effective in increasing the hardenability of the steel. For example, B may improve hardenability by inhibiting the formation of ferrite during quenching. In some embodiments, B is used to achieve good hardenability (i.e. as quenched structure composed of at least 90% martensite) in steels with Mn content reduced to improve fatigue life and SSC resistance. If the B content is less than about 0.0005 wt. % it may be difficult in these embodiments to obtain the desired hardenability of the steel. However, if the B content too high, coarse boron carbides may be formed at grain boundaries adversely affecting toughness. Accordingly, in an embodiment, the concentration of B in the composition lower than about 0.0030%, in another embodiment B content is from about 0.0005% to 0.0025%.
  • Titanium is an element whose addition is effective in increasing the effectiveness of B in the steel, by fixing nitrogen impurities as Titanium Nitrides (TiN) and inhibiting the formation of Boron nitrides. If the Ti content is too low it may be difficult in some embodiments to obtain the desired effect of boron on hardenability of the steel. On the other hand, if the Ti content is higher than 0.03 wt % coarse Titanium nitrides and carbides (TiN and TiC) may be formed, adversely affecting ductility and toughness. Accordingly, in certain embodiments, the concentration of Ti may be limited to about 0.030%. In other embodiments, the concentration of Ti may range from about 0.010% to about 0.025%.
  • Considering that the production of coiled tubing of low mechanical properties benefits from low tempering resistance, B and Ti additions improve hardenability without increasing tempering resistance. Thereafter it allows for the production of 80 ksi grade without significant large soaking times during tempering, with the subsequent improvement in productivity. Since one of the limitations for the production of a coiled tubing in a heat treatment line is the length of the line to adequately soak the material during tempering, the use of B and Ti is particularly relevant to the production of low yield strength coiled tubing.
  • Copper is an element that is not required in certain embodiments of the steel composition. However, in some coiled tubing applications Cu may be needed to improve atmospheric corrosion resistance. Thus, in certain embodiments, the Cu content of the steel composition may be limited to less than about 0.50%. In other embodiments, the concentration of Cu may range from about 0.25% to about 0.35%.
  • Nickel is an element whose addition increases the strength and toughness of the steel. If Cu is added to the steel composition, Ni can be used to avoid hot rolling defects known as hot shortness. However, Ni is very costly and, in certain embodiments, the Ni content of the steel composition is limited to less than or equal to about 0.50%. In other embodiments, the concentration of Ni may range from about 0.20% to about 0.35%.
  • Niobium is an element whose addition to the steel composition may refine the austenitic grain size of the steel during reheating into the austenitic region, with the subsequent increase in both strength and toughness. Nb may also precipitate during tempering, increasing the steel strength by particle dispersion hardening. In an embodiment, the Nb content of the steel composition may vary within the range between about 0% to about 0.10%, preferably about 0% to about 0.04%.
  • Vanadium is an element whose addition may be used to increase the strength of the steel by carbide precipitations during tempering. However if V content of the steel composition is greater than about 0.15%, a large volume fraction of vanadium carbide particles may be formed, with an attendant reduction in toughness of the steel. Therefore, in certain embodiments, the V content of the steel is limited to about 0.15%, preferably to about 0.10%.
  • Aluminum is an element whose addition to the steel composition has a deoxidizing effect during the steel making process and further refines the grain size of the steel. In an embodiment, if the A1 content of the steel composition is less than about 0.010%, the steel may be susceptible to oxidation, exhibiting high levels of inclusions. In other embodiments, if the A1 content of the steel composition greater than about 0.040%, coarse precipitates may be formed that impair the toughness of the steel. Therefore, the A1 content of the steel composition may vary within the range between about 0.010% to about 0.040%.
  • Sulfur is an element that causes the toughness and workability of the steel to decrease. Accordingly, in some embodiments, the S content of the steel composition is limited to a maximum of about 0.010%, preferably about 0.003%.
  • Phosphorus is an element that causes the toughness of the steel to decrease. Accordingly, the P content of the steel composition limited to a maximum of about 0.015%, preferably about 0.010%.
  • The concept of equivalent carbon content (“CE”) in the field of ferrous metals is well known. There are two commonly used formulas for calculating equivalent carbon content. One is from the American Welding Society (AWS) and the other is the formula based on the International Institute of Welding (IIW). One of the conventional formulas is as follows:

  • CE=%C+((%Mn+% Si)/6)+((%Cr+%Mo+%V)/5)+((%Cu+%Ni)/15)
  • (Steels:Microstructure and Properties, Third Edition, 2006). As set forth above in paragraphs [0049] to [0063], a coiled steel tube may be formed from a composition comprising iron and 0.17-0.35 wt. % carbon, 0.30-2.00 wt. % manganese, 0.10-0.30 wt. % silicon, 0.010-0.040 wt. % aluminum, up to 0.010 wt. % sulfur, and up to 0.015 wt. % phosphorus. Using the coiled steel tube composition described above, the CE (calculated using the foregoing formula) for the example coiled steel tube compositions ranges from 0.237 to 0.733.
  • Oxygen may be an impurity within the steel composition that is present primarily in the form of oxides. In an embodiment of the steel composition, as the 0 content increases, impact properties of the steel are impaired. Accordingly, in certain embodiments of the steel composition, a relatively low O content is desired, less than or equal to about 0.0050 wt %; preferably less than or equal to about 0.0015 wt %.
  • Calcium is an element whose addition to the steel composition may improve toughness by modifying the shape of sulfide inclusions. In an embodiment, the steel composition may comprise a minimum Ca to S content ratio of Ca/S >1.5. In other embodiments of the steel composition, excessive Ca is unnecessary and the steel composition may comprise a maximum content Ca of about 0.05%, preferably about 0.03%.
  • The contents of unavoidable impurities including, but not limited to N, Pb, Sn, As, Sb, Bi and the like are preferably kept as low as possible. However, properties (e.g., strength, toughness) of steels formed from embodiments of the steel compositions of the present disclosure may not be substantially impaired provided these impurities are maintained below selected levels. In one embodiment, the N content of the steel composition may be less than about 0.010%, preferably less than or equal to about 0.008%. In another embodiment, the Pb content of the steel composition may be less than or equal to about 0.005%. In a further embodiment, the Sn content of the steel composition may be less than or equal to about 0.02%. In an additional embodiment, the As content of the steel composition may be less than or equal to about 0.012%. In another embodiment, the Sb content of the steel composition may be less than or equal to about 0.008%. In a further embodiment, the Bi content of the steel composition may be less than or equal to about 0.003%.
  • The selection of a specific steel chemistry of this disclosure will depend on the final product specification and industrial facility constrains (for example in induction heat treatment lines it is difficult to achieve large soaking times during tempering). Mn addition will be reduced when possible because it impairs fatigue life and SSC resistance through the formation of large segregation patterns. Cr and to a less extent Mo will be used to replace Mn, and the full body heat treatment is kept as simple as possible. Both elements increase carbide stability and softening resistance, which may lead to large soaking times during tempering. Thereafter, these elements are preferred for the higher strength grades (for example Grade 110 and above) for which tempering resistance is desired, and avoided in the lower ones (Grade 80) for which long and impractical industrial heat treatment lines would be needed.
  • In the case of the lower grades (Grade 80), it will be preferred B and Ti microalloyed additions in combination with suitable C contents. These elements allow for achieving good hardenability without the use of high Mn additions. Moreover, B and Ti do not increase tempering resistance. Thereafter, simple and short tempering treatment can be used to achieve the desired strength level.
  • The industrial processing route corresponding to this disclosure is described in the following paragraphs, making focus on the Full Body Heat Treatment (FBHT) conditions.
  • Raw material for coiled tubing is produced in a steel shop as hot rolled strips with wall thickness that may vary from about 0.08 inches to about 0.30 inches. Controlled rolling may be used by the steel supplier to refine the as rolled microstructure. However, an important microstructural refinement of the as rolled strips is not needed, because in this disclosure microstructure and mechanical properties are mostly defined by the final FBHT. This flexibility in the hot rolling process helps to reduce raw-material cost, and allows to use steel chemistries not available when complex hot rolling procedures can be used (in general controlled rolling can be applied only to low carbon micro-alloyed steels).
  • The steel strips are longitudinally cut to the width for pipe production. Afterwards, the strips are joined end to end through a welding process (e.g. Plasma Arc Welding or Friction Stir Welding) to form a longer strip that allows to achieve the pipe length. These welded strips are formed into a pipe using, for example an ERW process. Typical coiled tube outer diameters are between 1 inch and 5 inches. Pipe lengths are about 15,000 feet, but lengths can be between about 10,000 feet to about 40,000 feet.
  • After forming the pipe, the Full Body Heat Treatment (FBHT) is applied. The objective of this heat treatment is to produce a homogeneous final microstructure composed of at least 90% tempered martensite, the rest being bainite. This microstructure, having uniform carbide distribution and grain size below 20 μm-preferably below 15 μm-guarantees good combinations of strength, ductility, toughness and low cycle fatigue life. Furthermore, as was previously mentioned, by properly selecting the steel chemistry this type of microstructure is suitable to improve Sulfide Stress Cracking (SSC) resistance in comparison with conventional structures, composed of ferrite, pearlite and large volume fractions of upper bainite.
  • The FBHT is composed of at least one austenitization and quenching cycle (Q) followed by a tempering treatment (T). The austenitization is performed at temperatures between 900° C. and 1000° C. During this stage the total time of permanence above the equilibrium temperature Ae3 should be selected to guarantee a complete dissolution of iron carbides without having excessive austenitic grain growth. The target grain size is below 20 μm, preferably below 15 μm. Quenching has to be performed controlling the minimum cooling rate in order to achieve a final as quenched microstructure composed of at least 90% martensite throughout the pipe.
  • Tempering is carried out at temperatures between 550° C. and 720° C. Heat treatment above 720° C. may led to partial martensite transformation to high carbon austenite. This constituent has to be avoided because tends to transform into brittle constituents, which may impair toughness and fatigue life. On the other hand, if tempering is performed below 550° C. the recovery process of the dislocated as quenched structure is not complete. Thereafter, toughness may be again strongly reduced. The tempering cycle has to be selected, within the above mentioned temperature range, in order to achieve the desired mechanical properties. Minimum yield strength may vary from 80 ksi to 140 ksi. An appropriate time of permanence at temperature has to be selected to guarantee an homogeneous carbide distribution in both base tube and weld areas (ERW line and strip to strip joints). In some cases, in order to improve the combination of strength and toughness more than one austenitization, quenching and tempering cycles may be performed. After FBHT the pipe may be subjected to a sizing process, in order to guarantee specified dimensional tolerances, stress relieved and spooled into a coil.
  • EXAMPLES Example A Chemistry Selection to Improve Hardenability
  • As was previously mentioned, the microstructure of this disclosure is composed of at least 90% tempered martensite with an homogenous distribution of fine carbides, the rest being bainite. This microstructure allows for production of a coiled tube with the desired combination of high strength, extended low cycle fatigue life and improved SSC resistance.
  • The tempered martensite is obtained by at least one heat treatment of quenching and tempering, performed after the pipe is formed by ERW. The heat treatment may be repeated two or more times if additional refinement is desired for improving SSC resistance. This is because subsequent cycles of austenization and quenching reduce not only prior austenitic grain size, but also martensite block and packet sizes.
  • To obtain the target microstructure with good hardenability, at least 90% martensite has to be formed at the end of the quenching process. An adequate chemistry selection is paramount to achieve such volume fraction of martensite. The selection of suitable steel compositions was based on results from experiments performed with a thermo-mechanical simulator Gleeble® 3500. Industrial trials were performed afterwards to confirm laboratory findings.
  • Some of the steel chemistries analyzed in laboratory are listed in Table A1. For all these chemistries dilatometric tests were carried out at Gleeble® to construct Continuous Cooling Transformation (CCT) diagrams. The CCT diagrams were used, in combination with metallographic analysis of the samples obtained from the simulations, to determine the minimum cooling rate to have more than 90% martensite. This critical cooling rate, mainly dependent on steel chemistry, will be referred as CR90.
  • TABLE A1
    Chemical composition of the steels experimentally studied.
    Element concentrations are in weight percent (wt %).
    Steel C Mn Si Cr Mo Ni Cu Other
    STD1 0.13 0.80 0.35 0.52 0.15 0.28 Ti
    STD2 0.14 0.80 0.33 0.55 0.10 0.17 0.27 Nb—Ti
    STD3 0.14 0.80 0.34 0.57 0.32 0.22 0.28 Nb—Ti
    CMn1 0.17 2.00 0.20
    CMn2 0.25 1.60 0.20
    BTi1 0.17 1.60 0.20 B—Ti
    BTI2 0.25 1.30 0.20 B—Ti
    CrMo1 0.17 1.00 0.25 1.00 0.50
    CrMo2 0.25 0.60 0.20 1.00 0.50
    CrMoBTi1 0.17 0.60 0.20 1.00 0.50 B—Ti
    CrMoBTi2 0.24 0.40 0.15 1.00 0.25 B—Ti
    CrMoBTi3 0.24 0.40 0.15 1.00 0.50 B—Ti
    CrMoBTi4 0.26 0.60 0.15 0.50 0.25 B—Ti
  • Examples of obtained CCT diagrams are presented in FIGS. 1-2. In all cases the austenitization was performed at 900-950° C. in order to obtain a fine austenitic grain size (AGS) of 10-20 μm. STD1, STD2 and STD3 steels have chemistries within API 5 ST specification, but outside the range of this disclosure because of their low carbon addition (Table A1). The critical cooling CR90 was greater than 100° C./sec in the case of STD1 and STD2, and about 50° C./sec for STD3.
  • FIGS. 1A-B show CCT diagrams corresponding to STD2 (A) and STD3 (B) steels. In bold is shown the critical cooling conditions to produce a final microstructure composed of about 90% martensite, the rest being bainite. FIGS. 2A-B show the CCT diagrams corresponding to BTi2and CrMoBTi3 steels. In bold are shown the critical cooling conditions to produce final microstructures composed of about 90% martensite, the rest being bainite. The first one is a C—Mn steel microalloyed with B—Ti (see Table A1). CrMoBTi2 is a medium carbon steel having Cr and Mo additions, also microalloyed with B—Ti. The measured critical cooling rates (corresponding to the cooling curves shown in bold in the CCT diagrams) were 25° C./s and 15° C./s for BTi2 and CrMoBTi3, respectively.
  • In FIG. 3 is presented the average cooling rate of pipes treated in an industrial quenching heads facility (sprays of water cooling the tube from the external surface). Values are shown as a function of the pipe Wall Thickness (WT). The shaded area in the plot corresponds to the wall thickness range typical of coiled tube applications. It is clear that when selecting steel chemistries suitable to have more than 90% tempered martensite, the critical cooling rate of the alloy should be equal or lower than 30° C./s. Otherwise, more than 10% bainite will be formed during quenching the thicker tube (WT=0.3 inches) in the above mentioned facility.
  • STD1, STD2 and STD3 have critical cooling rates above 30° C./s, thereafter these steels are not suitable for this disclosure. On the other hand, hardenability is adequate in BTi2and CrMoBTi3 steels. The hardenability improvement is due to an increased carbon content and the B—Ti addition.
  • In Table A2 is shown the critical cooling rates measured for the steels of Table A1. STD1, STD2 and STD3 are chemistries currently used for coiled tubes grades 80, 90 and 110; and fulfill API 5ST. However, even the more alloyed STD3 have a critical cooling rate to guarantee more than 90% tempered martensite in pipes with WT in the range of interest. It is clear that standard materials are not adequate to produce the target micro structure of this disclosure and hardenability has to be improved. In low alloy steels the most important element affecting hardenability is Carbon. Thereafter, C was increased above the maximum specified by API 5ST (0.16 wt. %) to have critical cooling rates not higher than 30° C./s. In this disclosure Carbon addition is in the range from 0.17% to 0.35% (the maximum level was selected to guarantee good weldability and toughness). As was just mentioned, the rest of the chemistry has to be adjusted to have CR90 values equal or lower than 30° C./s.
  • TABLE A2
    Critical cooling rates to have more than 90% martensite (CR90) measured for the analyzed
    steels. Values determined from Gleeble ® dilatometric tests and metallographic analysis.
    C Mn Si Cr Mo CR90 Adequate
    Steel (wt %) (wt %) (wt %) (wt %) (wt %) Other (° C./s) hardenability?
    STD1 0.13 0.80 0.35 0.52 0.13 Ni, Cu, Ti >100 No
    STD2 0.14 0.80 0.33 0.55 0.10 Ni, Cu, >100 No
    Nb—Ti
    STD3 0.14 0.80 0.34 0.57 0.32 Ni, Cu, 50 No
    Nb—Ti
    CMn1 0.17 2.00 0.20 30 Yes
    CMn2 0.25 1.60 0.20 30 Yes
    BTi1 0.17 1.60 0.20 B—Ti 30 Yes
    BTi2 0.25 1.30 0.20 B—Ti 25 Yes
    CrMo1 0.17 1.00 0.25 1.00 0.50 25 Yes
    CrMo2 0.25 0.60 0.20 1.00 0.50 23 Yes
    CrMoBTi1 0.17 0.60 0.20 1.00 0.50 B—Ti 25 Yes
    CrMoBTi2 0.24 0.40 0.15 1.00 0.25 B—Ti 25 Yes
    CrMoBTi3 0.24 0.40 0.15 1.00 0.50 B—Ti 15 Yes
    CrMoBTi4 0.26 0.60 0.16 0.50 0.25 B—Ti 30 Yes
  • The following guidelines for selecting adequate steel chemistries were obtained from the analysis of experimental results in Table A2:
  • C—Mn steels: hardenability depends mainly on Carbon and Manganese additions. About 2%Mn can be used to achieve the desired hardenability when C is in the lower limit (CMn1 steel). However, Mn is an element which produces strong segregation patterns that may decrease fatigue life. Thereafter, Mn addition is decreased in higher Carbon formulations. For example, when carbon concentration is about 0.25%, 1.6% Mn is enough to achieve the hardenability (CMn2 steel).
  • B—Ti steels: these alloys are plain carbon steels microalloyed with Boron and Titanium. Due to the increase in hardenability associated to the Boron effect, Mn can be further reduced. For Carbon in the lower limit, about 1.6% Mn can be used to achieve the hardenability. When carbon concentration is about 0.25%, 1.3% Mn is enough to achieve the hardenability (BTi2steel).
  • Cr—Mo steels: these steels have Cr and Mo additions that are useful to increase tempering resistance, which make them suitable for ultra-high strength grades. Additionally, Cr and Mo are elements that improve hardenability; so Mn addition may be further reduced. However, Cr and Mo are costly additions that reduce the steel hot workability, and their maximum content is limited to 1% and 0.5%, respectively. In one example with Carbon in the lower limit, about 1%Mn can be used to achieve the CR90 (CrMo1). Ifthe steel is also microalloyed with B—Ti, a further reduction in Mn to 0.6% can be performed (CrMoBTi1).
  • Example B Chemistry Selection for Different Coiled Tube Grades
  • To analyze tempering behavior of the steels presented in Table Al, simulations of industrial heat treatments were performed at Gleeble®. Simulations consisted in an austenitization at 900-950° C., quenching at 30° C./sec and tempering. In the particular case of STD1, STD2 and STD3 steels higher cooling rates were used in order to achieve at least 90% martensite during quenching. For STD1 and STD2 a quenching rate of about 150° C./s was used, while for STD3 cooling was at 50° C./s. These higher cooling rates can be achieved in small samples at Gleeble® when external water cooling is applied. After quenching the samples were tempered using two types of cycles:
  • Peak like cycle: Heating at 50° C./s up to a maximum temperature (Tmax) that was in the range from 550° C. to 720° C. Cooling at about 1.5° C./s down to room temperature. These cycles were intended to simulate actual tempering conditions at induction furnaces, which are characterized by high heating rate, no soaking time at maximum temperature and air cooling.
  • Isothermal cycle: Heating at 50° C./s up to 710° C., soaking at this temperature during a time that ranged from 1 min to 1 hour and cooling at about 1.5° C./s. This cycle was used to simulate tempering in an industrial line with several soaking inductors or with a tunnel furnace.
  • In all cases tempering temperature ranged from 550° C. to 720° C. Temperatures higher than 720° C. were avoided because non-desired re-austenitization takes place. On the other hand, if tempering is performed below 550° C., recovery of the dislocated structure is not complete, and the material presents brittle constituents that may impair fatigue life.
  • Peak-like tempering cycles are preferred to reduce line length and to improve productivity. Thereafter, the feasibility of obtaining a given grade with a specific steel chemistry was mainly determined by the tempering curve obtaining using this type of cycles. If after a peak-like tempering at 720° C. strength is still high for the grade, soaking at maximum temperature can be performed. However, as soaking time increases, larger, more expensive and less productive industrial lines may be needed.
  • In FIG. 4 (inset on the left) is presented the tempering curve measured for BTi2steel. Tensile properties are shown as a function of maximum tempering temperature. Peak-like thermal cycles were used in the simulations. From the figure it is seen that Grades 90 to 125 can be obtained by changing maximum peak temperature from about 710° C. to 575° C., respectively. With this chemistry is not possible to reach 140 Ksi of yield strength without reducing the tempering temperature below 550° C. Regarding the lower grades, 3 minutes of soaking at 710° C. can be used to obtain Grade 80 (inset on the right of FIG. 4).
  • Based on the results obtained from Gleeble® simulations, Table B1 was constructed. This Table shows, for each analyzed steel, the feasibility of producing different grades, which ranged from 80 Ksi to 140 Ksi of minimum yield strength. For example, in the case of BTi2 it is feasible to reach grades 90 to 125 using peak-like tempering cycles. But 2 minutes of soaking at 720° C. can be used in the case of Grade 80, which is why the in corresponding cell “soaking” is indicated.
  • TABLE B1
    Feasibility of industrially producing Grades 80 to 140
    using the steel chemistries analyzed. When “soaking”
    appears in the cell, it means that more than 1 minute
    of soaking at 720° C. can be used to reach the grade.
    Grade Grade Grade Grade Grade
    80 90 110 125 140
    Yield Strength (Ksi)
    Steel 80-90 90-100 110-125 125-140 140-155
    STD1 Yes Yes no no no
    STD2 Yes Yes yes no no
    STD3 soaking Soaking yes yes no
    CMn1 soaking Yes yes yes no
    CMn2 soaking Soaking yes yes no
    BTi1 Yes Yes yes no no
    BTi2 soaking Yes yes yes no
    CrMo1 soaking Soaking yes Yes Yes
    CrMo2 Soaking Soaking soaking Yes Yes
    CrMoBTi1 soaking Soaking yes Yes Yes
    CrMoBTi2 soaking Soaking yes Yes Yes
    CrMoBTi3 soaking Soaking soaking Yes Yes
    CrMoBTi4 soaking Soaking yes Yes Yes
  • From the results obtained is clear that in order to obtain the higher grades, increased Carbon and Cr—Mo additions can be used. Particularly, Grade 140 cannot be achieved with standard chemistries, as described in APISST, because of the low Carbon content. On the other hand, to reach Grade 80 a lean chemistry with low carbon, no Cr or Mo additions are the best options. In this case, B—Ti microalloying additions may be used to guarantee good hardenability (for example, a chemistry like BTi1 is a good alternative).
  • It is important to mention that in order to produce martensitic structures with the standard steels (STD1, STD2 and STD3) it was necessary to use at laboratory higher quenching rates than achievable at the mill. Thereafter, if we limit the cooling rate to that industrially achievable, none of the coiled tube grades can be obtained with conventional steels using the FBHT processing route.
  • Example C Chemistry Selection to Reduce Negative Effects of Segregation During Solidification
  • During steel solidification alloying elements tend to remain diluted in the liquid because of its higher solubility in comparison with the solid (8 ferrite or austenite). Solute rich areas form two types of non-uniform chemical composition patterns upon solidification: microsegregation and macrosegregation.
  • Microsegregation results from freezing the solute-enriched liquid in the interdendritic spaces. But it does not constitute a major problem, since the effects of microsegregation can be removed during subsequent hot working. On the other hand, macrosegregation is non-uniformity of chemical composition in the cast section on a larger scale. It cannot be completely eliminated by soaking at high temperature and/or hot working. In the case of interest for this disclosure, which is the continuous slab cast, it produces the centerline segregation band.
  • A pronounced central segregation band has to be avoided because:
  • Brittle constituents as non-tempered martensite may appear in this region as a result of welding operations (bias weld and ERW, see for example FIGS. 5A-B). These non-desired constituents are removed during the subsequent full body heat treatment. However, the tube may be plastically deformed by bending between welding and heat treatment operations, producing a failure during industrial production.
  • After FBHT the remnant of the central segregation band is a region enriched in substitutional solutes (as Mn, Si, Mo) with a higher density of coarse carbides than the rest of the material. This region is susceptible to nucleate cracks during low cycle fatigue, as it is observed in FIGS. 6-7. Additionally, prominent segregation bands are associated to poor SSC resistance.
  • Although it is not possible to remove macrosegregation, its negative effects on toughness, fatigue life and SSC resistance can be reduced by a proper selection of steel chemistry.
  • Based on EDX measurements on samples corresponding to a wide range of steel chemistries, enrichment factors at the central segregation band were estimated for different alloying elements. The results are shown in Table Cl. The enrichment factors (EF) are the ratios between each element concentration at the central band and that corresponding to the average in the matrix. These factors are mainly dependent on thermodynamic partition coefficient between liquid and solid; and diffusivities during solidification.
  • TABLE C1
    Enrichment factors (EF) at the central segregation band corresponding
    to different substitutional alloying elements.
    Element EF
    Mn 1.6
    Si 3.2
    Cr 1.2
    Mo 2.1
    Ni 1.3
    Cu 3.4
  • Table CI shows clearly that there are some elements that have a strong tendency to segregate during solidification, like Si and Cu. On the other hand Cr and Ni have low enrichment factors. Ni is a costly addition, but Cr may be used when an increase in hardenability and/or tempering resistance is desired without producing strong segregation patterns.
  • The enrichment factors give information about the increase in concentration that can be expected for each element at the central segregation band. However, not all these elements have the same effect regarding the material tendency to form brittle constituents during welding or heat treatment. It is observed that the higher the improvement on hardenability, the higher the tendency to form brittle constituents during processing. It is important to mention that elements with high diffusion coefficients as Carbon and Boron may segregate during solidification, but are homogenized during hot rolling. Thereafter, they do not contribute to form brittle constituents localized at the segregation band.
  • From the analysis of the CCT diagrams (Example A) it can be concluded that Manganese produces the strongest increase in hardenability. This is apart from Carbon and Boron, which do not present large segregation patterns after hot rolling. On the other hand, Si and Cu, which have a strong tendency to segregate, do not play a major role on hardenability. Because of its high enrichment factor and large effect on hardenability, Mn addition has to be reduced as much as possible when trying to diminish the negative effects of macro-segregation, as the reduction in low-cycle fatigue life.
  • High Mn contents are ordinarily added to the steel composition because of its effect on hardenability. In this disclosure the hardenability is mostly achieved through the higher Carbon addition, so Mn concentration can be generally reduced. Further Manganese reductions can be achieved using Boron and/or Chromium additions. Examples can be seen in Table C2, which shows the critical cooling rate (CR90) for different steels composition obtained from CCT diagrams (data taken from a previous Example A). In order to achieve the hardenability in a steel with about 0.25% Carbon, Mn can be reduced from 1.6% to 1.3% when adding Boron, and further reduced to 0.4% if Cr—Mo is additionally used.
  • TABLE C2
    Critical cooling rates to have more than 90% martensite (CR90)
    measured for the analyzed steels. Values determined from
    Gleeble ® dilatometric tests and metallographic analysis.
    C Mn Si Cr Mo CR90
    Steel (wt %) (wt %) (wt %) (wt %) (wt %) Other (° C./s)
    CMn1 0.17 2.00 0.20 30
    CMn2 0.25 1.60 0.20 30
    BTi1 0.17 1.60 0.20 B—Ti 30
    BTi2 0.25 1.30 0.20 B—Ti 25
    CrMo1 0.17 1.00 0.25 1.00 0.50 25
    CrMo2 0.25 0.60 0.20 1.00 0.50 23
    CrMoBTi1 0.17 0.60 0.20 1.00 0.50 B—Ti 25
    CrMoBTi2 0.24 0.40 0.15 1.00 0.25 B—Ti 25
    CrMoBTi3 0.24 0.40 0.15 1.00 0.50 B—Ti 15
    CrMoBTi4 0.26 0.60 0.16 0.50 0.25 B—Ti 30
  • Example D Homogenization of Microstructure
  • As was previously mentioned the fatigue life of coiled tubing is strongly dependent on microscopical features as microstructural heterogeneities. The combination of soft and hard micro-constituents tends to produce plastic strain localization, which is the driving force for crack nucleation and propagation. In this section are compared the coiled tubing microstructures obtained with the standard production method applied to chemistries within API SST, and those corresponding to a chemistry and processing conditions within the ranges disclosed in this disclosure.
  • As reference material was used a standard coiled tubing grade 110 (yield strength from 110 Ksi to 120 Ksi) with chemistry named STD2 in Table A1, which is within API SST specification. This standard material was compared to a coiled tubed of the same grade produced with chemistry BTi2and applying the FBHT.
  • In this comparison different pipe locations will be considered:
  • Base Metal (BM): coiled tubing microstructure apart from the ERW line and bias welds, when “apart” means that are not included in this region the Heat Affected Zones (HAZ) produced during the any welding operation and their possible Post-Weld Heat Treatment (PWHT).
  • Bias Weld (BW): microstructural region corresponding to the strip-to-strip joint that can be performed by Plasma Arc Welding (PAW), Friction Stir Welding (FSW) or any other welding techniques. It is also included in this region the corresponding heat affected zone during welding and PWHT.
  • ERW line: microstructure resulting from the longitudinal ERW welding during tube forming and its localized PWHT, which is generally a seam annealing. As in previous cases, this region also includes the corresponding heat affected zone.
  • In FIGS. 8A-B are presented the base metal microstructures corresponding to the standard coiled tube (A) and this disclosure (B). In the first case it is observed a ferrite matrix with a fine distribution of carbides. This matrix and fine structure results from the controlled hot rolling process. This disclosure microstructure (FIG. 8B) is mainly composed of tempered martensite. The bainite volume fraction is lower than 5% in this case. The tempered martensite structure is also a fine distribution of iron carbides in a ferrite matrix. The main difference between conventional and new structures is related to the morphology of the ferrite grains and sub-grains, and the dislocation density. However, regarding refinement and homogeneity, both structures are very similar.
  • In FIGS. 9A-B are shown scanning electron micrographs corresponding to the ERW line. It is clear that in the conventional structure two micro-constituents appear: there are soft ferrite grains and hard blocks composed of a mixture of fine pearlite, martensite and some retained austenite. In this type of structure plastic strain is localized in the ferrite, and cracks can nucleate and propagate in the neighboring brittle constituents (non-tempered martensite and high carbon retained austenite). On the other hand, the ERW line microstructure obtained with chemistry and processing conditions within the ranges of this disclosure is homogeneous and very similar to the corresponding base metal structure.
  • Microstructures corresponding to the HAZ of the ERW are presented in FIGS. 10A-B. In the standard material it is clear the appearance of the remnant of the central segregation band, which after seam annealing is partially transformed into non-tempered martensite. Again, these are brittle constituents that are localized along the ERW line, and can nucleate and propagate cracks during service. The risk of failure is higher than in previous case because of the larger size of the just mentioned constituents. On the other hand, in the quenched and tempered coiled tubing the structure close to the ERW line is homogeneous, and the remnants of the central segregation band are not observed.
  • In FIGS. 11A-B are presented some scanning electron micrographs corresponding to the bias-weld HAZ of both conventional coiled tube and this disclosure. For the conventional material the microstructure is very different than in Base Metal (BM). It is mainly composed of upper bainite and the grain size is large (50 microns in comparison of less than 15 microns for the BM). This type of coarse structure is not adequate for low cycle fatigue because cracks can easily propagate along bainitic laths. An example of a fatigue crack running across coarse bainite in the bias weld is shown in FIG. 12. This is a secondary crack located close to the main failure occurred during service of a standard coiled tubing grade 110.
  • On the other hand, the bias weld microstructure in this disclosure is again very similar to that corresponding to the base metal. No upper bainite grains were observed. It is important to mention that some bainite may appear after the full body heat treatment, but because of the selection of adequate chemistry and processing conditions, the corresponding volume fraction of this constituent is lower than 10%. This is the main reason for the good hardenability to the chemistries described in this disclosure. Additionally, due to the upper limit in the austenitization temperature the final grain size is small (lower than 20 microns), then large bainitic laths that can propagate cracks are completely avoided.
  • Other examples of the microstructural homogeneity achievable by the combination of steel chemistry and processing conditions disclosed in this disclosure are presented in FIGS. 13-14. In FIG. 13 is shown the typical variation in hardness across the bias weld for coiled tubes produced conventionally compared to that obtained using the new chemistry and processing route. It is clear that when using this disclosure the hardness variation is strongly reduced. As a consequence, the tendency of the material to accumulate strain in localized regions (in this case the HAZ of the bias weld) is also reduced, and the fatigue life improved.
  • In FIGS. 14A-B are shown some microstructures corresponding to the intersection between the bias weld and the ERW line. It is clear that large microstructural heterogeneities are obtained following the conventional route. These heterogeneities are successfully eliminated using the chemistry and processing conditions disclosed in this disclosure.
  • Example E Coiled Tube Fatigue Testing
  • In order to compare the performance of coiled tubing produced according to this disclosure with that corresponding to standard products, a series of tests were performed at laboratory. Coiled tube samples were tested in a fatigue machine schematically shown in FIG. 15. This machine is able to simulate the bending deformations during spooling and un-spooling operations, applying at the same time internal pressures. Therefore, the tests are useful to rank materials under low-cycle fatigue conditions that are close to those experienced during actual field operation.
  • During testing, the fatigue specimens ( tube pieces 5 or 6 feet long) are clamped on one end while an alternative force is applied by a hydraulic actuator on the opposite end. Deformation cycles are applied on the test specimens by bending samples over a curved mandrel of fixed radius, and then straightening them against a straight backup. Steel caps are welded at the ends of the specimen and connected to a hydraulic pump, so that cycling is conducted with the specimen filled with water at a constant internal pressure until it fails. The test ends when a loss of internal pressure occurs, due to the development of a crack through the wall thickness.
  • Testing was performed on coiled tubing with different chemistries and grades, as shown in Table El. The pipe geometry was the same in all cases (OD 2″, WT 0.19″). STD1, STD2 and STD3 are steels within the limits described in API 5ST, processed following the standard route. BTi1, BTi2 and CrMoBTi4 are chemistries selected and processed according to this disclosure. It is important to mention that CrMoBTi4 steel was used to produce two non-standard grades with 125 Ksi and 140 Ksi of minimum yield strength (the highest grade described in API 5 ST has 110 Ksi of SMYS). Tests were performed on tube pieces with and without the bias weld (in all cases the longitudinal ERW line is included in the samples). The severity of the test mainly depends on two parameters: bend radius and inner pressure. In this study the bend radius was 48 inches, which corresponds to a plastic strain of about 2%. Inner pressures between 1600 psi and 13500 psi were considered, producing hoop stresses that ranged from about 10% to 60% of the minimum yield strength of the grades.
  • TABLE E1
    Steel chemistries and coiled tube grades analyzed in this study.
    C Mn Si Cr Mo
    Steel (wt %) (wt %) (wt %) (wt %) (wt %) Other Grade
    STD1 0.13 0.80 0.35 0.52 Ni, Cu, Ti 80
    STD2 0.14 0.80 0.33 0.55 0.10 Ni, Cu, Nb—Ti 90
    STD3 0.14 0.80 0.34 0.57 0.32 Ni, Cu, Nb—Ti 110
    BTi1 0.17 1.60 0.20 B—Ti 80
    BTi2 0.25 1.30 0.20 B— Ti  90, 110
    CrMoBTi4 0.26 0.60 0.16 0.50 0.25 B— Ti 125, 140
  • In FIG. 16 is presented some results regarding the comparison between the fatigue life measured in samples with and without the Bias Weld (BW). The values shown in the figure correspond to the averages obtained when testing conventional and non-conventional coiled tubes grades. In the case of the conventional material there is clearly a reduction in fatigue life when testing samples containing the bias weld. On the other hand, the coiled tubes produced according to this disclosure do not present an important change in fatigue life when the tests are performed on BW samples. This is a consequence of the tube homogeneous structure, with almost no differences in mechanical properties between base metal, ERW line and bias weld.
  • In FIG. 17 is shown the coiled tube fatigue life improvements obtained with chemistries and processing conditions as disclosed by this disclosure. For Grades 80, 90 and 110 the comparison was made against the equivalent grade produced by the conventional route. In the case of grades 125 and 140, which are non-standard, the fatigue life comparison was performed against STD3 steel in Grade 110 tested under the similar conditions (pipe geometry, bend radius and inner pressure). The results presented in the figure correspond to average values for each grade, the error bars represent the dispersion obtained when using different inner pressures.
  • In FIG. 17 it is clear that a notorious improvement of fatigue life is observed when using chemistries and processing conditions according to this disclosure. For example, in Grade 110 there was an improvement of about 100% in fatigue life. This is a consequence of the fact that in conventional coiled tubing the fatigue performance is limited to that of the bias weld (which is generally the weak point regarding low cycle fatigue, because its microstructural heterogeneities and brittle constituents). In coiled tubes produced according to this disclosure there is no important fatigue life reduction at bias welds, which strongly increases the overall performance of the tube. Regarding the non-standard grades, the large improvement in fatigue life is due to the fact that the comparison is made against a conventional 110 grade tested under similar processing conditions. However, for the same inner pressures the applied hoop stresses are closer to the minimum yield strength of the lower grade, and the test severity increases for grade 110 in comparison to grades 125 and 140. These results show that by using higher grades (not achievable with the conventional method) fatigue life is strongly increased for the same service conditions.
  • Example F Sulfide Stress Cracking Resistance
  • Material performance in regards to hydrogen embrittlement in H2S containing environments is related to the combined effects of corrosive environments, presence of traps (e.g. precipitates and dislocations) that could locally increase hydrogen concentration, as well as the presence of brittle areas, in which cracks could easily propagate. A possible source of critical brittle regions in conventional coiled tubing material is the segregation pattern of substitutional elements, such us Mn, in the raw material. Regions of differential concentrations tend to respond in a distinct way to thermal cycles imposed during bias weld, PWHT, ERW and seam annealing, and could lead to the local formation of brittle constituents. In particular, when the material is seam annealed after the ERW process, the pipe body quickly extracts heat from the weld area. If the segregation is high enough, elongated high hardness areas with the possible presence of martensite may be formed as a consequence of the cooling conditions. These areas will remain in the tube to become easy paths for crack propagation. The fact that the new process is applied as the last stage of manufacturing, allows for the minimization of the excessively hardened areas. Other relevant differences are: a) the dislocations introduced during pipe cold forming are not present in the new product, b) the carbides in new product are smaller and isolated in comparison with the typical pearlite/bainite long brittle carbides. As a consequence the coiled tube produced with chemistries and processing conditions according to this disclosure presents an improved performance to cracking in H2 S containing environments.
  • TABLE F1
    Steel chemistries and coiled tube grades analyzed in this study.
    C Mn Si Cr Mo
    Steel (wt %) (wt %) (wt %) (wt %) (wt %) Other Grade
    STD1 0.13 0.80 0.35 0.52 Ni, Cu, Ti 80
    BTi1 0.17 1.60 0.20 B—Ti 80
  • In order to perform a first analysis on resistance to SSC cracking, coiled tube Grade 80 samples produced by i) the standard process and ii) the new chemistry-process were evaluated using method C (C-ring) of NACE TM0177. Steel chemistries are shown in Table F1. Both materials (3 specimens in each case) were tested with the ERW seam at center of C-ring sample, using the following conditions:
  • Load: 90% of 80Ksi, Solution A, I bar H2 S, Test Time: 720 hs
  • In the case of the standard coiled tube all 3 specimens failed. On the other hand, the 3 samples corresponding to the new chemistry-process passed the test (FIGS. 5A-B with pictures of C-rings). Although more tests are ongoing to analyze embrittlement resistance of different grades, as well as the effect of the bias weld, this first result shows a clear improvement in comparison with the standard condition, ascribed to a more homogeneous microstructure of base metal and ERW line in the case of the new process route.
  • As shown in FIGS. 18A-B, the C ring formed by the conventional process has a large crack down the middle, whereas the C ring formed by embodiments of the disclosed process did not crack.
  • In some embodiments, B—Ti and Cr—Mo additions can reduce maximum Mn. In some embodiments, grades may be higher than 110 that are difficult to achieve using the standard method.
  • Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
  • While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of protection. Indeed, the novel methods and apparatuses described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the form of the methods, compositions and apparatuses described herein may be made. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated and/or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure.
  • Although the present disclosure includes certain embodiments, examples and applications, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof, including embodiments which do not provide all of the features and advantages set forth herein. Accordingly, the scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments herein, and may be defined by claims as presented herein or as presented in the future.

Claims (26)

1. 22. (canceled)
23. A coiled steel tube having improved yield strength and fatigue life at weld joints of the coiled steel tube, the coiled steel tube comprising:
a plurality of strips welded together end to end by a bias weld to form a plurality of bias welded strips and formed into a coiled steel tube, each of the plurality of bias welded strips having base metal regions, bias weld joints, and heat affected zones surrounding the bias weld joints, each of the plurality of bias welded strips having a yield strength greater than about 80ksi;
an equivalent carbon content (CE) in the range of 0.237 to 0.733;

where CE=%C+((%Mn+%Si)/6)+((%Cr+%Mo+%V)/5)+((%Cu+%Ni)/15);
wherein the coiled steel tube has a final microstructure formed from a full body heat treatment applied to the coiled steel tube;
wherein the final microstructure comprises a mixture of tempered martensite and bainite;
wherein the final microstructure of the coiled steel tube comprises more than 90 volume % tempered martensite in the base metal regions, the bias weld joints, and the heat affected zones;
wherein the final microstructure across all base metal regions, bias weld joints, and heat affected zones is homogeneous; and
wherein the final microstructure comprises a uniform distribution of fine carbides across the base metal regions, the bias weld joints, and the heat affected zones.
24. The coiled steel tube of claim 23, wherein the tube has a minimum yield strength of 125 ksi.
25. The coiled steel tube of claim 23, wherein the tube has a minimum yield strength of 140 ksi.
26. The coiled steel tube of claim 23, wherein the tube has a minimum yield strength of between 125 ksi and 140 ksi.
27. The coiled steel tube of claim 23, wherein the final microstructure comprises at least 95 volume % tempered martensite in the base metal regions, the bias weld joints, and the heat affected zones.
28. The coiled steel tube of claim 23, wherein the tube has a final grain size of below 20 μm in the base metal regions, the bias weld joints, and the heat affected zones.
29. The coiled steel tube of claim 28, wherein the tube has a final grain size of below 15 μm in the base metal regions, the bias weld joints, and the heat affected zones.
30. The coiled steel tube of claim 23, wherein the fatigue life at the bias weld joints is at least about 80% of the base metal regions.
31. The coiled steel tube of claim 23, wherein a percent hardness of each of the bias weld joints, including its heat affected zone, is 110% or less than a hardness of the base metal region.
32. The coiled steel tube of claim 23, wherein the coiled steel tube passes method C of NACE TM0177 for resistance to SSC cracking.
33. The coiled steel tube of claim 23, wherein a final length of the coiled steel tube is between 10,000 feet and 40,000 feet.
34. The coiled steel tube of claim 23, wherein the fatigue life is at least 100% greater than an equivalent grade steel which has not undergone the fully body heat treatment;
35. The coiled steel tube of claim 23, wherein the coiled steel tube has a reduced segregation band as compared to an equivalent grade steel which has not undergone the full body heat treatment.
36. The coiled steel tube of claim 23, wherein the coiled steel tube has an equivalent carbon content (CE) in the range of 0.35 to 0.733.
37. The coiled steel tube of claim 23, wherein the coiled steel tube comprises 0.0005% to 0.0025% (by weight) boron.
38. A method of forming a steel tube having improved yield strength and fatigue life at weld joints of the tube comprising:
providing strips of steel having an equivalent carbon content (CE) in the range of 0.237 to 0.733 (where CE=%C+((%Mn+%Si)/6)+((%Cr+%Mo+%V)/5)+((%Cu+%Ni)/15));
bias welding the strips of steel together end to end to form bias welded strips with longitudinal sides;
welding the longitudinal sides of the bias welded strips to form a welded tube from the bias welded strips, wherein the welded tube comprises base metal regions, weld joints, and heat affected zones surrounding the weld joints;
austenitizing the welded tube using a full body heat treatment at greater than 900 degrees C. to form an austenitized tube;
quenching the austenitized tube to form a final as quenched microstructure of martensite and bainitine in a quenched tube;
tempering the quenched tube to form a quenched and tempered tube;
wherein the final as quenched and tempered microstructure comprises more than 90 volume % tempered martensite in the base metal regions, the bias weld joints, and the heat affected zones;
wherein tempering of the quenched tube results in a yield strength greater than about 80 ksi; and
wherein the microstructure of the quenched and tempered tube across all base metal regions, bias weld joints, and the heat affected zones is homogeneous; and wherein the microstructure of the quenched and tempered tube comprises a uniform distribution of fine carbides across the base metal regions, the bias weld joints, and the heat affected zones.
39. The method of claim 38 wherein the steps of welding, austenitizing, quenching and tempering are done in a continuous process.
40. The method of claim 38, comprising;
coiling the welded tube on a spool; and
uncoiling the welded tube off the spool and then austenitizing the uncoiled tube, quenching the uncoiled tube, and tempering the uncoiled tube.
41. The method of claim 40, further comprising coiling the quenched and tempered tube on a spool.
42. The method of claim 38, wherein the step of austenitizing forms a grain size below 20 μm in the base metal regions, the bias weld joints, and the heat affected zones.
43. The method of claim 38, wherein the step of providing strips of steel comprises providing strips comprising:
0.17 to 0.30 wt. % carbon;
0.30 to 1.60 wt. % manganese;
0.10 to 0.20 wt. % silicon;
up to 0.7 wt. % chromium;
up to 0.5 wt. % molybdenum;
0.0005 to 0.0025 wt. % boron;
0.010 to 0.025 wt. % titanium;
0.25 to 0.35 wt. % copper;
0.20 to 0.35 wt. % nickel;
up to 0.04 wt. % niobium;
up to 0.10 wt. % vanadium;
up to 0.00015 wt. % oxygen;
up to 0.03 wt. % calcium;
up to 0.003 wt. % sulfur; and
up to 0.010 wt. % phosphorus.
44. The method of claim 38, wherein the step of providing strip of steels further comprises providing strips comprising:
up to 1.0 wt. % chromium;
up to 0.5 wt. % molybdenum;
up to 0.0030 wt. % boron;
up to 0.030 wt. % titanium;
up to 0.50 wt. % copper;
up to 0.50 wt. % nickel;
up to 0.1 wt. % niobium;
up to 0.15 wt. % vanadium;
up to 0.0050 wt. % oxygen; and
up to 0.05 wt. % calcium.
45. The method of claim 38, wherein the quenched and tempered tube has a yield strength greater than or equal to 125 ksi.
46. The method of claim 38, wherein the quenched and tempered tube has a minimum yield strength of 140 ksi.
47. The method of claim 38, wherein the quenched and tempered tube has a minimum yield strength between 125 and 140 ksi.
US15/788,534 2013-03-14 2017-10-19 High performance material for coiled tubing applications and the method of producing the same Abandoned US20180051353A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/788,534 US20180051353A1 (en) 2013-03-14 2017-10-19 High performance material for coiled tubing applications and the method of producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361783701P 2013-03-14 2013-03-14
US14/190,886 US9803256B2 (en) 2013-03-14 2014-02-26 High performance material for coiled tubing applications and the method of producing the same
US15/788,534 US20180051353A1 (en) 2013-03-14 2017-10-19 High performance material for coiled tubing applications and the method of producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/190,886 Continuation US9803256B2 (en) 2013-03-14 2014-02-26 High performance material for coiled tubing applications and the method of producing the same

Publications (1)

Publication Number Publication Date
US20180051353A1 true US20180051353A1 (en) 2018-02-22

Family

ID=50276976

Family Applications (6)

Application Number Title Priority Date Filing Date
US14/190,886 Active US9803256B2 (en) 2013-03-14 2014-02-26 High performance material for coiled tubing applications and the method of producing the same
US15/665,054 Active US10378074B2 (en) 2013-03-14 2017-07-31 High performance material for coiled tubing applications and the method of producing the same
US15/788,534 Abandoned US20180051353A1 (en) 2013-03-14 2017-10-19 High performance material for coiled tubing applications and the method of producing the same
US15/943,528 Active US10378075B2 (en) 2013-03-14 2018-04-02 High performance material for coiled tubing applications and the method of producing the same
US16/538,326 Active US11377704B2 (en) 2013-03-14 2019-08-12 High performance material for coiled tubing applications and the method of producing the same
US16/538,407 Abandoned US20190360064A1 (en) 2013-03-14 2019-08-12 High performance material for coiled tubing applications and the method of producing the same

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/190,886 Active US9803256B2 (en) 2013-03-14 2014-02-26 High performance material for coiled tubing applications and the method of producing the same
US15/665,054 Active US10378074B2 (en) 2013-03-14 2017-07-31 High performance material for coiled tubing applications and the method of producing the same

Family Applications After (3)

Application Number Title Priority Date Filing Date
US15/943,528 Active US10378075B2 (en) 2013-03-14 2018-04-02 High performance material for coiled tubing applications and the method of producing the same
US16/538,326 Active US11377704B2 (en) 2013-03-14 2019-08-12 High performance material for coiled tubing applications and the method of producing the same
US16/538,407 Abandoned US20190360064A1 (en) 2013-03-14 2019-08-12 High performance material for coiled tubing applications and the method of producing the same

Country Status (10)

Country Link
US (6) US9803256B2 (en)
EP (2) EP3845672A1 (en)
JP (1) JP6431675B2 (en)
CN (1) CN104046918B (en)
BR (1) BR102014006157B1 (en)
CA (1) CA2845471C (en)
DK (1) DK2778239T3 (en)
MX (1) MX360596B (en)
PL (1) PL2778239T3 (en)
RU (1) RU2664347C2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378075B2 (en) * 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US11833561B2 (en) 2017-01-17 2023-12-05 Forum Us, Inc. Method of manufacturing a coiled tubing string
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2325435B2 (en) 2009-11-24 2020-09-30 Tenaris Connections B.V. Threaded joint sealed to [ultra high] internal and external pressures
IT1403689B1 (en) 2011-02-07 2013-10-31 Dalmine Spa HIGH-RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE SENSORS.
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
AU2013372439B2 (en) 2013-01-11 2018-03-01 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
EP2789701A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
EP2789700A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
KR102197204B1 (en) 2013-06-25 2021-01-04 테나리스 커넥션즈 비.브이. High-chromium heat-resistant steel
EP2960346A1 (en) * 2014-06-24 2015-12-30 B & J Rocket Sales AG A tire rasp blade
US20170159157A1 (en) * 2014-06-30 2017-06-08 Baoshan Iron & Steel Co., Ltd. Ultra-high-strength and ultra-high-toughness oil casing and manufacturing method thereof
CN104451427B (en) * 2014-12-11 2016-08-24 宝鸡石油钢管有限责任公司 A kind of welding defect coiled tubing and manufacture method
US9745640B2 (en) 2015-03-17 2017-08-29 Tenaris Coiled Tubes, Llc Quenching tank system and method of use
US20160281188A1 (en) * 2015-03-27 2016-09-29 Tenaris Coiled Tubes, Llc Heat treated coiled tubing
US20160305192A1 (en) * 2015-04-14 2016-10-20 Tenaris Connections Limited Ultra-fine grained steels having corrosion-fatigue resistance
JP5909014B1 (en) * 2015-06-08 2016-04-26 オリジン電気株式会社 Bonding member manufacturing method and bonding member manufacturing apparatus
CN105177453B (en) * 2015-09-25 2017-07-21 宝鸡石油钢管有限责任公司 A kind of high-strength high-performance is continuously managed and its manufacture method
PT3484639T (en) 2016-07-14 2023-09-11 Tata Steel Nederland Tubes Bv Method for the in-line manufacturing of steel tube
WO2018139096A1 (en) 2017-01-25 2018-08-02 Jfeスチール株式会社 Electric resistance welded steel tube for coiled tubing, and production method therefor
CA3048358C (en) 2017-01-25 2022-06-07 Jfe Steel Corporation Hot-rolled steel sheet for coiled tubing
US11177763B2 (en) * 2017-06-14 2021-11-16 Thomas E. RUSSELL Metallurgical steel post design for solar farm foundations and increased guardrail durability
CN111630367B (en) 2018-01-18 2023-03-14 杰富意钢铁株式会社 Spectrum analysis device, spectrum analysis method, steel strip manufacturing method, and steel strip quality assurance method
JP6569745B2 (en) 2018-01-29 2019-09-04 Jfeスチール株式会社 Hot rolled steel sheet for coiled tubing and method for producing the same
WO2019171624A1 (en) * 2018-03-09 2019-09-12 日新製鋼株式会社 Steel pipe and production method for steel pipe
CN109609747B (en) * 2018-12-11 2022-01-25 信达科创(唐山)石油设备有限公司 Homogenizing treatment process for coiled tubing
DE102018132908A1 (en) 2018-12-19 2020-06-25 Voestalpine Stahl Gmbh Process for the production of thermo-mechanically produced hot strip products
DE102018132901A1 (en) 2018-12-19 2020-06-25 Voestalpine Stahl Gmbh Process for the production of conventionally hot rolled hot rolled products
DE102018132860A1 (en) 2018-12-19 2020-06-25 Voestalpine Stahl Gmbh Process for the production of conventionally hot-rolled, profiled hot-rolled products
DE102018132816A1 (en) 2018-12-19 2020-06-25 Voestalpine Stahl Gmbh Process for the production of thermo-mechanically produced profiled hot-rolled products
CN113661027A (en) * 2019-03-27 2021-11-16 国立大学法人大阪大学 Surface modification method for steel material and steel structure
EP3719148B1 (en) * 2019-04-05 2023-01-25 SSAB Technology AB High-hardness steel product and method of manufacturing the same
CN115433870B (en) * 2021-06-02 2023-08-11 宝山钢铁股份有限公司 Low-cost quenched and tempered steel for continuous oil pipe, hot rolled steel strip, steel pipe and manufacturing method thereof
CN113789432B (en) * 2021-09-16 2023-01-24 昆明理工大学 Method for improving local hardening of SA508-4 steel welded structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080286504A1 (en) * 2004-02-19 2008-11-20 Hitoshi Asahi Steel Plate or Steel Pipe with Small Occurrence of Bauschinger Effect and Methods of Production of Same
US9803256B2 (en) * 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same

Family Cites Families (388)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1162731A (en) 1913-05-23 1915-11-30 Frank T Walsh Vacuum reducing-valve.
GB498472A (en) 1937-07-05 1939-01-05 William Reuben Webster Improvements in or relating to a method of and apparatus for heat treating metal strip, wire or flexible tubing
FR1149513A (en) 1955-07-25 1957-12-27 Elastic joint for pipes
US3316395A (en) 1963-05-23 1967-04-25 Credit Corp Comp Credit risk computer
US3366392A (en) 1964-09-16 1968-01-30 Budd Co Piston seal
US3325174A (en) 1964-11-16 1967-06-13 Woodward Iron Company Pipe joint packing
US3315396A (en) 1965-04-30 1967-04-25 Marshall S Hacker Pocket telephone attachment
US3413166A (en) 1965-10-15 1968-11-26 Atomic Energy Commission Usa Fine grained steel and process for preparation thereof
FR1489013A (en) 1965-11-05 1967-07-21 Vallourec Assembly joint for metal pipes
US3316396A (en) 1965-11-15 1967-04-25 E W Gilson Attachable signal light for drinking glass
US3362731A (en) 1965-11-22 1968-01-09 Autoclave Eng Inc High pressure fitting
US3512789A (en) 1967-03-31 1970-05-19 Charles L Tanner Cryogenic face seal
US3592491A (en) 1968-04-10 1971-07-13 Hepworth Iron Co Ltd Pipe couplings
NO126755B (en) 1968-05-28 1973-03-19 Raufoss Ammunisjonsfabrikker
US3575430A (en) 1969-01-10 1971-04-20 Certain Teed Prod Corp Pipe joint packing ring having means limiting assembly movement
US3655465A (en) 1969-03-10 1972-04-11 Int Nickel Co Heat treatment for alloys particularly steels to be used in sour well service
US3572777A (en) 1969-05-05 1971-03-30 Armco Steel Corp Multiple seal, double shoulder joint for tubular products
US3599931A (en) 1969-09-11 1971-08-17 G P E Controls Inc Internal safety shutoff and operating valve
DE2111568A1 (en) 1971-03-10 1972-09-28 Georg Seiler Pull and shear protection for screw socket connections of pipes
DE2131318C3 (en) 1971-06-24 1973-12-06 Fried. Krupp Huettenwerke Ag, 4630 Bochum Process for the production of a reinforcement steel bar for prestressed concrete
FR2173460A5 (en) 1972-02-25 1973-10-05 Vallourec
FR2190237A5 (en) 1972-06-16 1974-01-25 Vallourec
FR2190238A5 (en) 1972-06-16 1974-01-25 Vallourec
GB1473389A (en) 1973-05-09 1977-05-11 Dexploitation Des Brevets Ocla Pipe couplings
US3893919A (en) 1973-10-31 1975-07-08 Josam Mfg Co Adjustable top drain and seal
US3918726A (en) 1974-01-28 1975-11-11 Jack M Kramer Flexible seal ring
US4163290A (en) 1974-02-08 1979-07-31 Optical Data System Holographic verification system with indexed memory
US3891224A (en) 1974-03-20 1975-06-24 Lok Corp A Joint assembly for vertically aligned sectionalized manhole structures incorporating D-shaped gaskets
US4147368A (en) 1974-04-05 1979-04-03 Humes Limited Pipe seal
US4014568A (en) 1974-04-19 1977-03-29 Ciba-Geigy Corporation Pipe joint
US3915697A (en) 1975-01-31 1975-10-28 Centro Speriment Metallurg Bainitic steel resistant to hydrogen embrittlement
JPS522825A (en) * 1975-06-24 1977-01-10 Nippon Steel Corp Method of manufacturing high tensile seam welded steel tube
US3986731A (en) 1975-09-22 1976-10-19 Amp Incorporated Repair coupling
NO140752C (en) 1977-08-29 1979-11-07 Rieber & Son As COMBINED MOLDING AND SEALING ELEMENT FOR USE IN A SLEEVE END IN THERMOPLASTROS
DE2917287C2 (en) 1978-04-28 1986-02-27 Neturen Co. Ltd., Tokio/Tokyo Process for the manufacture of coil springs, torsion bars or the like from spring steel wire
US4231555A (en) 1978-06-12 1980-11-04 Horikiri Spring Manufacturing Co., Ltd. Bar-shaped torsion spring
US4219204A (en) 1978-11-30 1980-08-26 Utex Industries, Inc. Anti-extrusion seals and packings
DE3070501D1 (en) 1979-06-29 1985-05-23 Nippon Steel Corp High tensile steel and process for producing the same
FR2468823A1 (en) 1979-10-30 1981-05-08 Vallourec JOINT FOR TUBES FOR THE PETROLEUM INDUSTRY
JPS5680367A (en) 1979-12-06 1981-07-01 Nippon Steel Corp Restraining method of cracking in b-containing steel continuous casting ingot
US4305059A (en) 1980-01-03 1981-12-08 Benton William M Modular funds transfer system
US4310163A (en) 1980-01-10 1982-01-12 Utex Industries, Inc. Anti-extrusion seals and packings
CA1148193A (en) 1980-01-11 1983-06-14 Kornelis N. Zijlstra Coupling for interconnecting pipe sections and pipe section for well drilling operations
US5348350A (en) 1980-01-19 1994-09-20 Ipsco Enterprises Inc. Pipe coupling
US4384737A (en) 1980-04-25 1983-05-24 Republic Steel Corporation Threaded joint for well casing and tubing
NO801521L (en) 1980-05-22 1981-11-23 Rieber & Son As ARMED SEALING RING.
US4345739A (en) 1980-08-07 1982-08-24 Barton Valve Company Flanged sealing ring
US4366971A (en) 1980-09-17 1983-01-04 Allegheny Ludlum Steel Corporation Corrosion resistant tube assembly
US4376528A (en) 1980-11-14 1983-03-15 Kawasaki Steel Corporation Steel pipe hardening apparatus
US4445265A (en) 1980-12-12 1984-05-01 Smith International, Inc. Shrink grip drill pipe fabrication method
US4354882A (en) 1981-05-08 1982-10-19 Lone Star Steel Company High performance tubulars for critical oil country applications and process for their preparation
JPS5819439A (en) 1981-07-28 1983-02-04 Sumitomo Metal Ind Ltd Production of high strength steel pipe having excellent low temperature toughness
JPS6057519B2 (en) 1981-08-20 1985-12-16 住友金属工業株式会社 Oil country tubular joint with excellent seizure resistance and its manufacturing method
US4406561A (en) 1981-09-02 1983-09-27 Nss Industries Sucker rod assembly
US4426095A (en) 1981-09-28 1984-01-17 Concrete Pipe & Products Corp. Flexible seal
JPS58187684A (en) 1982-04-27 1983-11-01 新日本製鐵株式会社 Steel pipe joint for oil well
JPS58188532A (en) 1982-04-28 1983-11-04 Nhk Spring Co Ltd Manufacture of hollow stabilizer
US4706997A (en) 1982-05-19 1987-11-17 Carstensen Kenneth J Coupling for tubing or casing and method of assembly
US4473471A (en) 1982-09-13 1984-09-25 Purolator Inc. Filter sealing gasket with reinforcement ring
US4508375A (en) 1982-09-20 1985-04-02 Lone Star Steel Company Tubular connection
US4491725A (en) 1982-09-29 1985-01-01 Pritchard Lawrence E Medical insurance verification and processing system
US4527815A (en) 1982-10-21 1985-07-09 Mobil Oil Corporation Use of electroless nickel coating to prevent galling of threaded tubular joints
WO1984002947A1 (en) 1983-01-17 1984-08-02 Hydril Co Tubular joint with trapped mid-joint metal to metal seal
US4662659A (en) 1983-01-17 1987-05-05 Hydril Company Tubular joint with trapped mid-joint metal-to-metal seal having unequal tapers
US4570982A (en) 1983-01-17 1986-02-18 Hydril Company Tubular joint with trapped mid-joint metal-to-metal seal
DE3310226C2 (en) 1983-03-22 1985-08-22 Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim Pipe part or fitting
DK162684A (en) 1983-03-22 1984-11-02 Friedrichsfeld Gmbh ROOM PART OR FITTING
US4475839A (en) 1983-04-07 1984-10-09 Park-Ohio Industries, Inc. Sucker rod fitting
DE3322134A1 (en) 1983-06-20 1984-12-20 WOCO Franz-Josef Wolf & Co, 6483 Bad Soden-Salmünster CYLINDRICAL SEAL
JPS6024353A (en) 1983-07-20 1985-02-07 Japan Steel Works Ltd:The Heat-resistant 12% cr steel
JPS6025719A (en) 1983-07-23 1985-02-08 Matsushita Electric Works Ltd Method of molding sandwich
US4591195A (en) 1983-07-26 1986-05-27 J. B. N. Morris Pipe joint
US4506432A (en) 1983-10-03 1985-03-26 Hughes Tool Company Method of connecting joints of drill pipe
JPS6086209A (en) 1983-10-14 1985-05-15 Sumitomo Metal Ind Ltd Manufacture of steel having high resistance against crack by sulfide
US4601491A (en) 1983-10-19 1986-07-22 Vetco Offshore, Inc. Pipe connector
JPS60116796A (en) 1983-11-30 1985-06-24 Nippon Kokan Kk <Nkk> Screw joint for oil well pipe of high alloy steel
JPS60174822A (en) 1984-02-18 1985-09-09 Kawasaki Steel Corp Manufacture of thick-walled seamless steel pipe of high strength
JPS60215719A (en) 1984-04-07 1985-10-29 Nippon Steel Corp Manufacture of electric welded steel pipe for front fork of bicycle
US4602807A (en) 1984-05-04 1986-07-29 Rudy Bowers Rod coupling for oil well sucker rods and the like
JPS616488A (en) 1984-06-20 1986-01-13 日本鋼管株式会社 Screw coupling for oil well pipe
US4688832A (en) 1984-08-13 1987-08-25 Hydril Company Well pipe joint
US4592558A (en) 1984-10-17 1986-06-03 Hydril Company Spring ring and hat ring seal
IT1180102B (en) 1984-10-22 1987-09-23 Tako Spa PROCEDURE FOR THE MANUFACTURE OF REINFORCED SEALS AND PRODUCT OBTAINED WITH THE PROCEDURE
JPS61130462A (en) 1984-11-28 1986-06-18 Tech Res & Dev Inst Of Japan Def Agency High-touchness extra high tension steel having superior stress corrosion cracking resistance as well as yield stress of 110kgf/mm2 and above
DE3445371A1 (en) 1984-12-10 1986-06-12 Mannesmann AG, 4000 Düsseldorf METHOD FOR PRODUCING TUBES FOR THE PETROLEUM AND NATURAL GAS INDUSTRY AND DRILL UNITS
US4629218A (en) 1985-01-29 1986-12-16 Quality Tubing, Incorporated Oilfield coil tubing
US4762344A (en) 1985-01-30 1988-08-09 Lee E. Perkins Well casing connection
US4988127A (en) 1985-04-24 1991-01-29 Cartensen Kenneth J Threaded tubing and casing joint
JPS61270355A (en) 1985-05-24 1986-11-29 Sumitomo Metal Ind Ltd High strength steel excelling in resistance to delayed fracture
ATE47428T1 (en) 1985-06-10 1989-11-15 Hoesch Ag PROCESS AND USE OF A STEEL FOR THE MANUFACTURE OF STEEL PIPES WITH INCREASED SOUR GAS RESISTANCE.
US4758025A (en) 1985-06-18 1988-07-19 Mobil Oil Corporation Use of electroless metal coating to prevent galling of threaded tubular joints
US4674756A (en) 1986-04-28 1987-06-23 Draft Systems, Inc. Structurally supported elastomer sealing element
JPS634047A (en) 1986-06-20 1988-01-09 Sumitomo Metal Ind Ltd High-tensile steel for oil well excellent in sulfide cracking resistance
JPS634046A (en) 1986-06-20 1988-01-09 Sumitomo Metal Ind Ltd High-tensile steel for oil well excellent in resistance to sulfide cracking
IT1199343B (en) 1986-12-23 1988-12-30 Dalmine Spa PERFECTED JOINT FOR WELL COATING PIPES
US5191911A (en) 1987-03-18 1993-03-09 Quality Tubing, Inc. Continuous length of coilable tubing
JPS63230851A (en) 1987-03-20 1988-09-27 Sumitomo Metal Ind Ltd Low-alloy steel for oil well pipe excellent in corrosion resistance
JPS63230847A (en) 1987-03-20 1988-09-27 Sumitomo Metal Ind Ltd Low-alloy steel for oil well pipe excellent in corrosion resistance
US4844517A (en) 1987-06-02 1989-07-04 Sierracin Corporation Tube coupling
US4812182A (en) 1987-07-31 1989-03-14 Hongsheng Fang Air-cooling low-carbon bainitic steel
US4955645A (en) 1987-09-16 1990-09-11 Tuboscope, Inc. Gauging device and method for coupling threaded, tubular articles and a coupling assembly
US4867489A (en) 1987-09-21 1989-09-19 Parker Hannifin Corporation Tube fitting
US4856828A (en) 1987-12-08 1989-08-15 Tuboscope Inc. Coupling assembly for tubular articles
JPH01199088A (en) 1988-02-03 1989-08-10 Nippon Steel Corp High alloy oil well pipe fitting with high gap corrosion resistance
JPH01242761A (en) 1988-03-23 1989-09-27 Kawasaki Steel Corp Ultra high strength steel having low yield ratio and its manufacture
JPH01259125A (en) 1988-04-11 1989-10-16 Sumitomo Metal Ind Ltd Manufacture of high-strength oil well tube excellent in corrosion resistance
JPH01259124A (en) 1988-04-11 1989-10-16 Sumitomo Metal Ind Ltd Manufacture of high-strength oil well tube excellent in corrosion resistance
DE3815455C2 (en) 1988-05-06 1994-10-20 Freudenberg Carl Fa Inflatable seal
JPH01283322A (en) 1988-05-10 1989-11-14 Sumitomo Metal Ind Ltd Production of high-strength oil well pipe having excellent corrosion resistance
IT1224745B (en) 1988-10-03 1990-10-18 Dalmine Spa METALLIC HERMETIC SEAL JOINT FOR PIPES
FR2645562B1 (en) 1989-04-10 1992-11-27 Lorraine Laminage METHOD FOR MANUFACTURING A REINFORCEMENT FOR REINFORCING CONCRETE STRUCTURES AND REINFORCEMENT OBTAINED ACCORDING TO THIS PROCESS
CA1314864C (en) 1989-04-14 1993-03-23 Computalog Gearhart Ltd. Compressive seal and pressure control arrangements for downhole tools
JPH036329A (en) 1989-05-31 1991-01-11 Kawasaki Steel Corp Method for hardening steel pipe
CA1322773C (en) 1989-07-28 1993-10-05 Erich F. Klementich Threaded tubular connection
US6070912A (en) 1989-08-01 2000-06-06 Reflange, Inc. Dual seal and connection
DE4002494A1 (en) 1990-01-29 1991-08-08 Airbus Gmbh PIPE FITTING
JP2834276B2 (en) 1990-05-15 1998-12-09 新日本製鐵株式会社 Manufacturing method of high strength steel with excellent sulfide stress cracking resistance
JPH04107214A (en) 1990-08-29 1992-04-08 Nippon Steel Corp Inline softening treatment for air-hardening seamless steel tube
US5538566A (en) 1990-10-24 1996-07-23 Consolidated Metal Products, Inc. Warm forming high strength steel parts
US5137310A (en) 1990-11-27 1992-08-11 Vallourec Industries Assembly arrangement using frustoconical screwthreads for tubes
JP2567150B2 (en) 1990-12-06 1996-12-25 新日本製鐵株式会社 Manufacturing method of high strength low yield ratio line pipe material for low temperature
JPH04231414A (en) 1990-12-27 1992-08-20 Sumitomo Metal Ind Ltd Production of highly corrosion resistant oil well pipe
US5143381A (en) 1991-05-01 1992-09-01 Pipe Gasket & Supply Co., Inc. Pipe joint seal
US5521707A (en) 1991-08-21 1996-05-28 Apeiron, Inc. Laser scanning method and apparatus for rapid precision measurement of thread form
US5180008A (en) 1991-12-18 1993-01-19 Fmc Corporation Wellhead seal for wide temperature and pressure ranges
US5328158A (en) 1992-03-03 1994-07-12 Southwestern Pipe, Inc. Apparatus for continuous heat treating advancing continuously formed pipe in a restricted space
JP2682332B2 (en) 1992-04-08 1997-11-26 住友金属工業株式会社 Method for producing high strength corrosion resistant steel pipe
DK168834B1 (en) 1992-06-03 1994-06-20 Man B & W Diesel Gmbh seal
JPH0681078A (en) 1992-07-09 1994-03-22 Sumitomo Metal Ind Ltd Low yield ratio high strength steel and its production
JP2814882B2 (en) 1992-07-27 1998-10-27 住友金属工業株式会社 Method for manufacturing high strength and high ductility ERW steel pipe
IT1263251B (en) 1992-10-27 1996-08-05 Sviluppo Materiali Spa PROCEDURE FOR THE PRODUCTION OF SUPER-DUPLEX STAINLESS STEEL PRODUCTS.
JPH06172859A (en) 1992-12-04 1994-06-21 Nkk Corp Production of high strength steel tube excellent in sulfide stress corrosion cracking resistance
JPH06220536A (en) 1993-01-22 1994-08-09 Nkk Corp Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
US5454883A (en) 1993-02-02 1995-10-03 Nippon Steel Corporation High toughness low yield ratio, high fatigue strength steel plate and process of producing same
US5355961A (en) 1993-04-02 1994-10-18 Abb Vetco Gray Inc. Metal and elastomer casing hanger seal
NO941302L (en) 1993-04-14 1994-10-17 Fmc Corp Gasket for large diameter pipes
US5505512A (en) 1993-04-21 1996-04-09 Martindale; Gerald A. Dual composition bed liner
US5505502A (en) 1993-06-09 1996-04-09 Shell Oil Company Multiple-seal underwater pipe-riser connector
US5454605A (en) 1993-06-15 1995-10-03 Hydril Company Tool joint connection with interlocking wedge threads
JP3290247B2 (en) 1993-06-18 2002-06-10 日本鋼管株式会社 Method for manufacturing high tensile strength and high toughness bent pipe with excellent corrosion resistance
EP0658632A4 (en) 1993-07-06 1995-11-29 Nippon Steel Corp Steel of high corrosion resistance and steel of high corrosion resistance and workability.
JPH0741856A (en) 1993-07-28 1995-02-10 Nkk Corp Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
JPH07139666A (en) 1993-11-16 1995-05-30 Kawasaki Steel Corp Threaded joint for oil well pipe
US5456405A (en) * 1993-12-03 1995-10-10 Quality Tubing Inc. Dual bias weld for continuous coiled tubing
JPH07197125A (en) 1994-01-10 1995-08-01 Nkk Corp Production of high strength steel pipe having excellent sulfide stress corrosion crack resistance
JPH07266837A (en) 1994-03-29 1995-10-17 Horikiri Bane Seisakusho:Kk Manufacture of hollow stabilizer
IT1267243B1 (en) 1994-05-30 1997-01-28 Danieli Off Mecc CONTINUOUS CASTING PROCEDURE FOR PERITECTIC STEELS
US5515707A (en) 1994-07-15 1996-05-14 Precision Tube Technology, Inc. Method of increasing the fatigue life and/or reducing stress concentration cracking of coiled metal tubing
DE4446806C1 (en) 1994-12-09 1996-05-30 Mannesmann Ag Gas-tight pipe connection
GB2297094B (en) 1995-01-20 1998-09-23 British Steel Plc Improvements in and relating to Carbide-Free Bainitic Steels
JPH11502592A (en) 1995-03-23 1999-03-02 ハイドリル・カンパニー Threaded pipe connection
JP3755163B2 (en) 1995-05-15 2006-03-15 住友金属工業株式会社 Manufacturing method of high-strength seamless steel pipe with excellent resistance to sulfide stress cracking
DK0828007T3 (en) 1995-05-15 2002-02-25 Sumitomo Metal Ind Process for Manufacturing High Strength Seamless Steel Pipe and Excellent Sulfide Stress Crack Resistance
FI101498B (en) 1995-05-16 1998-06-30 Uponor Innovation Ab Sleeve connection for plastic pipes
IT1275287B (en) 1995-05-31 1997-08-05 Dalmine Spa SUPERMARTENSITIC STAINLESS STEEL WITH HIGH MECHANICAL AND CORROSION RESISTANCE AND RELATED MANUFACTURED PRODUCTS
EP0753595B1 (en) 1995-07-06 2001-08-08 Benteler Ag Pipes for manufacturing stabilisers and manufacturing stabilisers therefrom
JP3853428B2 (en) 1995-08-25 2006-12-06 Jfeスチール株式会社 Method and equipment for drawing and rolling steel pipes
JPH0967624A (en) 1995-08-25 1997-03-11 Sumitomo Metal Ind Ltd Production of high strength oil well steel pipe excellent in sscc resistance
US5720503A (en) 1995-11-08 1998-02-24 Single Buoy Moorings Inc. Sealing sytem--anti collapse device
JPH09201688A (en) 1996-01-22 1997-08-05 Sumitomo Metal Ind Ltd Manufacture of welded steel tube excellent in strength in weld zone
JPH09235617A (en) 1996-02-29 1997-09-09 Sumitomo Metal Ind Ltd Production of seamless steel tube
EP0896331B1 (en) 1996-04-26 2000-11-08 Matsushita Electric Industrial Co., Ltd. Information recording method and information recording medium
US5810401A (en) 1996-05-07 1998-09-22 Frank's Casing Crew And Rental Tools, Inc. Threaded tool joint with dual mating shoulders
US5879030A (en) 1996-09-04 1999-03-09 Wyman-Gordon Company Flow line coupling
JPH10176239A (en) 1996-10-17 1998-06-30 Kobe Steel Ltd High strength and low yield ratio hot rolled steel sheet for pipe and its production
JPH10140250A (en) 1996-11-12 1998-05-26 Sumitomo Metal Ind Ltd Production of steel tube for air bag, having high strength and high toughness
JP2001508131A (en) 1997-01-15 2001-06-19 マンネスマン・アクチエンゲゼルシャフト Manufacturing method of seamless steel pipe for piping
CA2231985C (en) 1997-03-26 2004-05-25 Sumitomo Metal Industries, Ltd. Welded high-strength steel structures and methods of manufacturing the same
JPH10280037A (en) 1997-04-08 1998-10-20 Sumitomo Metal Ind Ltd Production of high strength and high corrosion-resistant seamless seamless steel pipe
KR100351791B1 (en) 1997-04-30 2002-11-18 가와사키 세이테츠 가부시키가이샤 Steel pipe having high ductility and high strength and process for production thereof
EP0878334B1 (en) 1997-05-12 2003-09-24 Firma Muhr und Bender Stabilizer
US5993570A (en) 1997-06-20 1999-11-30 American Cast Iron Pipe Company Linepipe and structural steel produced by high speed continuous casting
DE69736232T2 (en) 1997-05-30 2007-05-24 Vallourec Mannesmann Oil & Gas France SCREW CONNECTION FOR OIL PIPES
DE19725434C2 (en) 1997-06-16 1999-08-19 Schloemann Siemag Ag Process for rolling hot wide strip in a CSP plant
JP3348397B2 (en) 1997-07-17 2002-11-20 本田技研工業株式会社 Inspection method of turning control mechanism of vehicle
JPH1150148A (en) 1997-08-06 1999-02-23 Sumitomo Metal Ind Ltd Production of high strength and high corrosion resistance seamless steel pipe
WO1999016921A1 (en) 1997-09-29 1999-04-08 Sumitomo Metal Industries, Ltd. Steel for oil well pipes with high wet carbon dioxide gas corrosion resistance and high seawater corrosion resistance, and seamless oil well pipe
JP3898814B2 (en) 1997-11-04 2007-03-28 新日本製鐵株式会社 Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
KR100245031B1 (en) 1997-12-27 2000-03-02 허영준 Car stabilizer bar manufacturing method using non heat treated steel
JP3344308B2 (en) 1998-02-09 2002-11-11 住友金属工業株式会社 Ultra-high-strength steel sheet for linepipe and its manufacturing method
JP4203143B2 (en) 1998-02-13 2008-12-24 新日本製鐵株式会社 Corrosion-resistant steel and anti-corrosion well pipe with excellent carbon dioxide corrosion resistance
US6044539A (en) 1998-04-02 2000-04-04 S & B Technical Products, Inc. Pipe gasket and method of installation
US6056324A (en) 1998-05-12 2000-05-02 Dril-Quip, Inc. Threaded connector
CN1094396C (en) 1998-07-21 2002-11-20 品川白炼瓦株式会社 Molding powder for continuous casting of thin slab
DE19834151C1 (en) 1998-07-29 2000-04-13 Neheim Goeke & Co Metall Valve for hot water systems
JP2000063940A (en) 1998-08-12 2000-02-29 Sumitomo Metal Ind Ltd Production of high strength steel excellent in sulfide stress cracking resistance
UA66876C2 (en) 1998-09-07 2004-06-15 Валлурек Маннесманн Ойл Енд Гес Франс Threaded joint of two metal pipes with a slot made in the threading
UA71575C2 (en) 1998-09-07 2004-12-15 Валлурек Маннесманн Ойл Енд Гес Франс Threaded joint of two metal tubes with large screwing moment
JP3562353B2 (en) 1998-12-09 2004-09-08 住友金属工業株式会社 Oil well steel excellent in sulfide stress corrosion cracking resistance and method for producing the same
US6299705B1 (en) 1998-09-25 2001-10-09 Mitsubishi Heavy Industries, Ltd. High-strength heat-resistant steel and process for producing high-strength heat-resistant steel
FR2784446B1 (en) 1998-10-13 2000-12-08 Vallourec Mannesmann Oil & Gas INTEGRAL THREADED ASSEMBLY OF TWO METAL TUBES
JP3800836B2 (en) 1998-12-15 2006-07-26 住友金属工業株式会社 Manufacturing method of steel with excellent strength and toughness
JP2000204442A (en) * 1999-01-14 2000-07-25 Sumitomo Metal Ind Ltd High strength electric resistance welded steel pipe excellent in toughness of electric resistance weld zone
JP4331300B2 (en) 1999-02-15 2009-09-16 日本発條株式会社 Method for manufacturing hollow stabilizer
IT1309704B1 (en) 1999-02-19 2002-01-30 Eni Spa INTEGRAL JUNCTION OF TWO PIPES
JP2000248337A (en) 1999-03-02 2000-09-12 Kansai Electric Power Co Inc:The Method for improving water vapor oxidation resistance of high chromium ferritic heat resistant steel for boiler and high chromium ferritic heat resistant steel for boiler excellent in water vapor oxidation resistance
US6173968B1 (en) 1999-04-27 2001-01-16 Trw Inc. Sealing ring assembly
JP3680628B2 (en) 1999-04-28 2005-08-10 住友金属工業株式会社 Manufacturing method of high strength oil well steel pipe with excellent resistance to sulfide cracking
CZ293084B6 (en) 1999-05-17 2004-02-18 Jinpo Plus A. S. Steel for creep-resisting and high-strength wrought parts, particularly pipes, plates and forgings
JP3083517B1 (en) 1999-06-28 2000-09-04 東尾メック株式会社 Pipe fittings
JP3514182B2 (en) 1999-08-31 2004-03-31 住友金属工業株式会社 Low Cr ferritic heat resistant steel excellent in high temperature strength and toughness and method for producing the same
CN1178015C (en) 1999-09-16 2004-12-01 西德尔卡有限公司 Screwed connection with high safety and stability
AR020495A1 (en) 1999-09-21 2002-05-15 Siderca Sa Ind & Com UNION THREADED HIGH RESISTANCE AND COMPRESSION UNION
JP4367588B2 (en) 1999-10-28 2009-11-18 住友金属工業株式会社 Steel pipe with excellent resistance to sulfide stress cracking
US6764108B2 (en) 1999-12-03 2004-07-20 Siderca S.A.I.C. Assembly of hollow torque transmitting sucker rods
US6991267B2 (en) 1999-12-03 2006-01-31 Siderca S.A.I.C. Assembly of hollow torque transmitting sucker rods and sealing nipple with improved seal and fluid flow
JP3545980B2 (en) 1999-12-06 2004-07-21 株式会社神戸製鋼所 Ultra high strength electric resistance welded steel pipe with excellent delayed fracture resistance and manufacturing method thereof
JP3543708B2 (en) 1999-12-15 2004-07-21 住友金属工業株式会社 Oil well steel with excellent resistance to sulfide stress corrosion cracking and method for producing oil well steel pipe using the same
EP1182268B1 (en) 2000-02-02 2004-09-29 JFE Steel Corporation High strength, high toughness, seamless steel pipe for line pipe
JP3506088B2 (en) 2000-02-03 2004-03-15 住友金属工業株式会社 Martensitic stainless steel with excellent fatigue resistance for coiled tubing and its production method
KR100514119B1 (en) 2000-02-28 2005-09-13 신닛뽄세이테쯔 카부시키카이샤 Steel pipe having excellent formability and method for production thereof
JP4379550B2 (en) 2000-03-24 2009-12-09 住友金属工業株式会社 Low alloy steel with excellent resistance to sulfide stress cracking and toughness
JP3518515B2 (en) 2000-03-30 2004-04-12 住友金属工業株式会社 Low / medium Cr heat resistant steel
FR2807095B1 (en) 2000-03-31 2002-08-30 Vallourec Mannesmann Oil & Gas DELAYED TUBULAR THREADED ELEMENT FOR FATIGUE-RESISTANT TUBULAR THREADED SEAL AND RESULTING TUBULAR THREADED SEAL
DE10019567A1 (en) 2000-04-20 2001-10-31 Busak & Shamban Gmbh & Co poetry
US6447025B1 (en) 2000-05-12 2002-09-10 Grant Prideco, L.P. Oilfield tubular connection
IT1317649B1 (en) 2000-05-19 2003-07-15 Dalmine Spa MARTENSITIC STAINLESS STEEL AND PIPES WITHOUT WELDING WITH IT PRODUCTS
CN1433510A (en) 2000-06-07 2003-07-30 住友金属工业株式会社 Taper threaded joint
US6632296B2 (en) 2000-06-07 2003-10-14 Nippon Steel Corporation Steel pipe having high formability and method for producing the same
IT1318179B1 (en) 2000-07-17 2003-07-23 Dalmine Spa INTEGRAL THREADED JOINT FOR PIPES.
IT1318753B1 (en) 2000-08-09 2003-09-10 Dalmine Spa INTEGRAL THREADED JOINT WITH CONTINUOUS PROFILE PIPES
US6558484B1 (en) 2001-04-23 2003-05-06 Hiroshi Onoe High strength screw
US6478344B2 (en) 2000-09-15 2002-11-12 Abb Vetco Gray Inc. Threaded connector
JP3959667B2 (en) 2000-09-20 2007-08-15 エヌケーケーシームレス鋼管株式会社 Manufacturing method of high strength steel pipe
US7108063B2 (en) 2000-09-25 2006-09-19 Carstensen Kenneth J Connectable rod system for driving downhole pumps for oil field installations
US6811189B1 (en) 2000-10-04 2004-11-02 Grant Prideco, L.P. Corrosion seal for threaded connections
US6857668B2 (en) 2000-10-04 2005-02-22 Grant Prideco, L.P. Replaceable corrosion seal for threaded connections
JP3524487B2 (en) 2000-10-25 2004-05-10 レッキス工業株式会社 Thin pipe fittings
IT1319028B1 (en) 2000-10-26 2003-09-19 Dalmine Spa THREADED JOINT FOR SLEEVE TYPE PIPES
CN1100159C (en) 2000-10-30 2003-01-29 宝山钢铁股份有限公司 Low-alloy steel for oil casing pipe capable of resisting corrosion of CO2 and sea water
US6494499B1 (en) 2000-10-31 2002-12-17 The Technologies Alliance, Inc. Threaded connector for pipe
US6384388B1 (en) 2000-11-17 2002-05-07 Meritor Suspension Systems Company Method of enhancing the bending process of a stabilizer bar
US7349867B2 (en) 2000-12-22 2008-03-25 Invenda Corporation Tracking transactions by using addresses in a communications network
WO2002068854A1 (en) 2001-01-20 2002-09-06 Otten, Gregory, K. Replaceable corrosion seal for threaded connections
CN1232672C (en) 2001-02-07 2005-12-21 杰富意钢铁株式会社 Sheet steel and method for producing thereof
FR2820806B1 (en) 2001-02-09 2004-02-20 Vallourec Mannesmann Oil & Gas TUBULAR THREAD JOINT WITH CONVEXED BOMBED THREAD SIDE
ATE382103T1 (en) 2001-03-07 2008-01-15 Nippon Steel Corp ELECTROWELDED STEEL TUBE FOR HOLLOW STABILIZER
AR027650A1 (en) 2001-03-13 2003-04-09 Siderca Sa Ind & Com LOW-ALLOY CARBON STEEL FOR THE MANUFACTURE OF PIPES FOR EXPLORATION AND PRODUCTION OF PETROLEUM AND / OR NATURAL GAS, WITH IMPROVED LACORROSION RESISTANCE, PROCEDURE FOR MANUFACTURING SEAMLESS PIPES AND SEWLESS TUBES OBTAINED
EP1375683B1 (en) 2001-03-29 2012-02-08 Sumitomo Metal Industries, Ltd. High strength steel tube for air bag and method for production thereof
US6527056B2 (en) 2001-04-02 2003-03-04 Ctes, L.C. Variable OD coiled tubing strings
US20020153671A1 (en) 2001-04-18 2002-10-24 Construction Polymers Company Tunnel gasket for elevated working pressure
US6550822B2 (en) 2001-04-25 2003-04-22 G. B. Tubulars, Inc. Threaded coupling with water exclusion seal system
WO2002093045A1 (en) 2001-05-11 2002-11-21 Msa Auer Gmbh Annular seal, in particular for plug-in connectors
US7618503B2 (en) 2001-06-29 2009-11-17 Mccrink Edward J Method for improving the performance of seam-welded joints using post-weld heat treatment
JP2003096534A (en) 2001-07-19 2003-04-03 Mitsubishi Heavy Ind Ltd High strength heat resistant steel, method of producing high strength heat resistant steel, and method of producing high strength heat resistant tube member
US6581940B2 (en) 2001-07-30 2003-06-24 S&B Technical Products, Inc. Concrete manhole connector gasket
JP2003041341A (en) 2001-08-02 2003-02-13 Sumitomo Metal Ind Ltd Steel material with high toughness and method for manufacturing steel pipe thereof
US6755447B2 (en) 2001-08-24 2004-06-29 The Technologies Alliance, Inc. Production riser connector
CN1151305C (en) 2001-08-28 2004-05-26 宝山钢铁股份有限公司 Carbon dioxide corrosion-resistant low alloy steel and oil casing
DE60231279D1 (en) 2001-08-29 2009-04-09 Jfe Steel Corp Method for producing seamless tubes of high-strength, high-strength, martensitic stainless steel
US6669789B1 (en) 2001-08-31 2003-12-30 Nucor Corporation Method for producing titanium-bearing microalloyed high-strength low-alloy steel
NO315284B1 (en) 2001-10-19 2003-08-11 Inocean As Riser pipe for connection between a vessel and a point on the seabed
DE60210191T2 (en) 2001-11-08 2006-11-09 Sumitomo Rubber Industries Ltd., Kobe Pneumatic radial tire
FR2833335B1 (en) 2001-12-07 2007-05-18 Vallourec Mannesmann Oil & Gas UPPER TUBULAR THREADING CONTAINING AT LEAST ONE THREADED ELEMENT WITH END LIP
US6709534B2 (en) 2001-12-14 2004-03-23 Mmfx Technologies Corporation Nano-composite martensitic steels
UA51138A (en) 2002-01-15 2002-11-15 Приазовський Державний Технічний Університет Method for steel thermal treatment
US6682101B2 (en) 2002-03-06 2004-01-27 Beverly Watts Ramos Wedgethread pipe connection
JP4806519B2 (en) 2002-03-13 2011-11-02 トマス スコルド Water based delivery system
DE60323076D1 (en) 2002-03-29 2008-10-02 Sumitomo Metal Ind LOW ALLOY STEEL
GB0208098D0 (en) 2002-04-09 2002-05-22 Gloway Internat Inc Pipe repair system and device
ITRM20020234A1 (en) 2002-04-30 2003-10-30 Tenaris Connections Bv THREADED JOINT FOR PIPES.
GB2388169A (en) 2002-05-01 2003-11-05 2H Offshore Engineering Ltd Pipe joint
US6666274B2 (en) 2002-05-15 2003-12-23 Sunstone Corporation Tubing containing electrical wiring insert
ITRM20020274A1 (en) 2002-05-16 2003-11-17 Tenaris Connections Bv THREADED JOINT FOR PIPES.
JP2004011009A (en) 2002-06-11 2004-01-15 Nippon Steel Corp Electric resistance welded steel tube for hollow stabilizer
US6669285B1 (en) 2002-07-02 2003-12-30 Eric Park Headrest mounted video display
US6883804B2 (en) 2002-07-11 2005-04-26 Parker-Hannifin Corporation Seal ring having secondary sealing lips
FR2844023B1 (en) 2002-08-29 2005-05-06 Vallourec Mannesmann Oil & Gas THREADED TUBULAR THREAD SEAL WITH RESPECT TO THE OUTER ENVIRONMENT
ITRM20020445A1 (en) 2002-09-06 2004-03-07 Tenaris Connections Bv THREADED JOINT FOR PIPES.
CN1229511C (en) 2002-09-30 2005-11-30 宝山钢铁股份有限公司 Low alloy steel resisting CO2 and H2S corrosion
JP2004176172A (en) 2002-10-01 2004-06-24 Sumitomo Metal Ind Ltd High strength seamless steel pipe with excellent hic (hydrogen-induced cracking) resistance, and its manufacturing method
ITRM20020512A1 (en) 2002-10-10 2004-04-11 Tenaris Connections Bv THREADED PIPE WITH SURFACE TREATMENT.
US20050012278A1 (en) 2002-11-07 2005-01-20 Delange Richard W. Metal sleeve seal for threaded connections
FR2848282B1 (en) 2002-12-09 2006-12-29 Vallourec Mannesmann Oil & Gas METHOD OF MAKING A SEALED TUBULAR THREAD SEAL WITH RESPECT TO OUTSIDE
CA2414822A1 (en) 2002-12-18 2004-06-18 Ipsco Inc. Hydrogen-induced cracking and sulphide stress cracking resistant steel alloy
US7074286B2 (en) 2002-12-18 2006-07-11 Ut-Battelle, Llc Wrought Cr—W—V bainitic/ferritic steel compositions
US6817633B2 (en) 2002-12-20 2004-11-16 Lone Star Steel Company Tubular members and threaded connections for casing drilling and method
US7010950B2 (en) 2003-01-17 2006-03-14 Visteon Global Technologies, Inc. Suspension component having localized material strengthening
RU2235628C1 (en) * 2003-01-27 2004-09-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт токов высокой частоты им. В.П. Вологдина" Method for making welded articles of low-carbon, low-alloy and plain steels
ITRM20030065A1 (en) 2003-02-13 2004-08-14 Tenaris Connections Bv THREADED JOINT FOR PIPES.
WO2004097059A1 (en) 2003-04-25 2004-11-11 Tubos De Acero De Mexico, S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
FR2855587B1 (en) 2003-05-30 2006-12-29 Vallourec Mannesmann Oil & Gas TUBULAR THREADED JOINT WITH PROGRESSIVE AXIAL THREAD
UA82694C2 (en) 2003-06-06 2008-05-12 Sumitomo Metal Ind Threaded joint for steel pipes
US7431347B2 (en) 2003-09-24 2008-10-07 Siderca S.A.I.C. Hollow sucker rod connection with second torque shoulder
US20050076975A1 (en) 2003-10-10 2005-04-14 Tenaris Connections A.G. Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
US20050087269A1 (en) 2003-10-22 2005-04-28 Merwin Matthew J. Method for producing line pipe
US20050093250A1 (en) 2003-11-05 2005-05-05 Santi Nestor J. High-strength sealed connection for expandable tubulars
AR047467A1 (en) 2004-01-30 2006-01-18 Sumitomo Metal Ind STEEL TUBE WITHOUT SEWING FOR OIL WELLS AND PROCEDURE TO MANUFACTURE
CN1922433B (en) 2004-02-02 2013-09-11 特纳瑞斯连接股份公司 Thread protector for tubular members
JP2005221038A (en) 2004-02-06 2005-08-18 Sumitomo Metal Ind Ltd Oil well pipe screw joint and method for manufacturing the same
ATE510031T1 (en) 2004-03-24 2011-06-15 Sumitomo Metal Ind PROCESS FOR PRODUCING LOW ALLOY STEEL WITH EXCELLENT CORROSION RESISTANCE
JP4140556B2 (en) 2004-06-14 2008-08-27 住友金属工業株式会社 Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking
JP4135691B2 (en) 2004-07-20 2008-08-20 住友金属工業株式会社 Nitride inclusion control steel
JP2006037147A (en) 2004-07-26 2006-02-09 Sumitomo Metal Ind Ltd Steel material for oil well pipe
US20060021410A1 (en) 2004-07-30 2006-02-02 Sonats-Societe Des Nouvelles Applications Des Techniques De Surfaces Shot, devices, and installations for ultrasonic peening, and parts treated thereby
US20060169368A1 (en) 2004-10-05 2006-08-03 Tenaris Conncections A.G. (A Liechtenstein Corporation) Low carbon alloy steel tube having ultra high strength and excellent toughness at low temperature and method of manufacturing the same
US7310867B2 (en) 2004-10-06 2007-12-25 S&B Technical Products, Inc. Snap in place gasket installation method
US7566416B2 (en) 2004-10-29 2009-07-28 Sumitomo Metal Industries, Ltd. Steel pipe for an airbag inflator and a process for its manufacture
US7214278B2 (en) 2004-12-29 2007-05-08 Mmfx Technologies Corporation High-strength four-phase steel alloys
US20060157539A1 (en) 2005-01-19 2006-07-20 Dubois Jon D Hot reduced coil tubing
JP2006210843A (en) 2005-01-31 2006-08-10 Fujitsu Ltd Variable capacitor and manufacturing method thereof
ITRM20050069A1 (en) 2005-02-17 2006-08-18 Tenaris Connections Ag THREADED JOINT FOR TUBES PROVIDED WITH SEALING.
US20060214421A1 (en) 2005-03-22 2006-09-28 Intelliserv Fatigue Resistant Rotary Shouldered Connection and Method
JP2006265668A (en) 2005-03-25 2006-10-05 Sumitomo Metal Ind Ltd Seamless steel tube for oil well
JP4792778B2 (en) 2005-03-29 2011-10-12 住友金属工業株式会社 Manufacturing method of thick-walled seamless steel pipe for line pipe
US20060243355A1 (en) 2005-04-29 2006-11-02 Meritor Suspension System Company, U.S. Stabilizer bar
US7478842B2 (en) 2005-05-18 2009-01-20 Hydril Llc Coupled connection with an externally supported pin nose seal
US7182140B2 (en) 2005-06-24 2007-02-27 Xtreme Coil Drilling Corp. Coiled tubing/top drive rig and method
CA2613120A1 (en) 2005-06-27 2007-01-04 Swagelok Company Tube fitting
EP1902241B1 (en) 2005-07-13 2011-06-22 Beele Engineering B.V. System for sealing a space between an inner wall of a tabular opening and at least one tube or duct at least partly received in the opening
JP4635764B2 (en) 2005-07-25 2011-02-23 住友金属工業株式会社 Seamless steel pipe manufacturing method
JP4945946B2 (en) 2005-07-26 2012-06-06 住友金属工業株式会社 Seamless steel pipe and manufacturing method thereof
MXPA05008339A (en) 2005-08-04 2007-02-05 Tenaris Connections Ag High-strength steel for seamless, weldable steel pipes.
FR2889727B1 (en) 2005-08-09 2007-09-28 Vallourec Mannesmann Oil Gas F TUBULAR THREAD SEALED WITH LIQUIDS AND GASES
BRPI0615215B1 (en) 2005-08-22 2014-10-07 Nippon Steel & Sumitomo Metal Corp SEWLESS STEEL PIPE FOR LINE PIPE AND PROCESS FOR YOUR PRODUCTION
EP1767659A1 (en) 2005-09-21 2007-03-28 ARCELOR France Method of manufacturing multi phase microstructured steel piece
AR057940A1 (en) 2005-11-30 2007-12-26 Tenaris Connections Ag THREADED CONNECTIONS WITH HIGH AND LOW FRICTION COATINGS
JP4997753B2 (en) 2005-12-16 2012-08-08 タカタ株式会社 Crew restraint system
AR058961A1 (en) 2006-01-10 2008-03-05 Siderca Sa Ind & Com CONNECTION FOR PUMPING ROD WITH HIGHER RESISTANCE TO THE AFFECTION OBTAINED BY APPLYING DIAMETER INTERFERENCE TO REDUCE AXIAL INTERFERENCE
US7744708B2 (en) 2006-03-14 2010-06-29 Tenaris Connections Limited Methods of producing high-strength metal tubular bars possessing improved cold formability
JP4751224B2 (en) 2006-03-28 2011-08-17 新日本製鐵株式会社 High strength seamless steel pipe for machine structure with excellent toughness and weldability and method for producing the same
US20070246219A1 (en) 2006-04-19 2007-10-25 Mannella Eugene J Seal for a fluid assembly
US8027667B2 (en) 2006-06-29 2011-09-27 Mobilesphere Holdings LLC System and method for wireless coupon transactions
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
RU2404280C2 (en) 2006-07-13 2010-11-20 Сумитомо Метал Индастриз, Лтд. Hot-bent pipe and its manufacturing method
US8322754B2 (en) 2006-12-01 2012-12-04 Tenaris Connections Limited Nanocomposite coatings for threaded connections
RU2429093C2 (en) * 2007-03-02 2011-09-20 Ниппон Стил Корпорейшн RESISTANCE WELDING PROCEDURE FOR PRODUCTION OF ELECTRIC WELDED STEEL PIPE AND ELECTRIC WELDED STEEL PIPE WITH HIGH CONTENT OF Si OR HIGH CONTENT OF Cr
FR2913746B1 (en) 2007-03-14 2011-06-24 Vallourec Mannesmann Oil & Gas SEALED TUBULAR THREAD SEAL FOR INTERNAL AND EXTERNAL PRESSURE SOLUTIONS
US20080226396A1 (en) 2007-03-15 2008-09-18 Tubos De Acero De Mexico S.A. Seamless steel tube for use as a steel catenary riser in the touch down zone
CN101514433A (en) 2007-03-16 2009-08-26 株式会社神户制钢所 Automobile high-strength electric resistance welded steel pipe with excellent low-temperature impact property and method of manufacturing the same
ATE543922T1 (en) 2007-03-30 2012-02-15 Sumitomo Metal Ind LOW ALLOY STEEL, SEAMLESS STEEL TUBE FOR AN OIL WELL AND METHOD FOR PRODUCING THE SEAMLESS STEEL TUBE
MX2007004600A (en) 2007-04-17 2008-12-01 Tubos De Acero De Mexico S A Seamless steel pipe for use as vertical work-over sections.
DE102007023306A1 (en) 2007-05-16 2008-11-20 Benteler Stahl/Rohr Gmbh Use of a steel alloy for jacket pipes for perforation of borehole casings and jacket pipe
AR061224A1 (en) 2007-06-05 2008-08-13 Tenaris Connections Ag A HIGH RESISTANCE THREADED UNION, PREFERENTLY FOR TUBES WITH INTERNAL COATING.
EP2006589B1 (en) 2007-06-22 2011-08-31 Tenaris Connections Aktiengesellschaft Threaded joint with energizable seal
DE602007011046D1 (en) 2007-06-27 2011-01-20 Tenaris Connections Ag Threaded connection with pressurizable seal
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
EP2017507B1 (en) 2007-07-16 2016-06-01 Tenaris Connections Limited Threaded joint with resilient seal ring
DE602007013892D1 (en) 2007-08-24 2011-05-26 Tenaris Connections Ag Threaded connector with high radial load and differently treated surfaces
DE602007008890D1 (en) 2007-08-24 2010-10-14 Tenaris Connections Ag Method for increasing the fatigue resistance of a screw connection
AU2008320179B2 (en) * 2007-10-30 2011-10-13 Nippon Steel Corporation Steel pipe with excellent expandability and method for producing the same
JP2009138174A (en) 2007-11-14 2009-06-25 Agri Bioindustry:Kk Method for producing polymer
EP2238272B1 (en) 2007-11-19 2019-03-06 Tenaris Connections B.V. High strength bainitic steel for octg applications
EA017703B1 (en) 2007-12-04 2013-02-28 Сумитомо Метал Индастриз, Лтд. Pipe screw joint
US8877121B2 (en) * 2007-12-20 2014-11-04 Ati Properties, Inc. Corrosion resistant lean austenitic stainless steel
JP5353256B2 (en) 2008-01-21 2013-11-27 Jfeスチール株式会社 Hollow member and manufacturing method thereof
DE602008001552D1 (en) 2008-02-29 2010-07-29 Tenaris Connections Ag Threaded connector with improved elastic sealing rings
CN102056752B (en) 2008-06-04 2013-11-13 Ntn株式会社 Bearing device for driving wheels
US8261841B2 (en) 2009-02-17 2012-09-11 Exxonmobil Research And Engineering Company Coated oil and gas well production devices
MX2009012811A (en) 2008-11-25 2010-05-26 Maverick Tube Llc Compact strip or thin slab processing of boron/titanium steels.
WO2010061882A1 (en) 2008-11-26 2010-06-03 住友金属工業株式会社 Seamless steel pipe and method for manufacturing same
CN101413089B (en) 2008-12-04 2010-11-03 天津钢管集团股份有限公司 High-strength low-chromium anti-corrosion petroleum pipe special for low CO2 environment
RU2478124C1 (en) * 2009-01-30 2013-03-27 ДжФЕ СТИЛ КОРПОРЕЙШН Thick-wall high-strength hot-rolled steel sheet with high tensile strength, high-temperature toughness, and method of its production
CN103276291A (en) 2009-01-30 2013-09-04 杰富意钢铁株式会社 Heavy gauge, high tensile strength, hot rolled steel sheet with excellent HIC resistance and manufacturing method therefor
CN101480671B (en) 2009-02-13 2010-12-29 西安兰方实业有限公司 Technique for producing double-layer copper brazing steel tube for air-conditioner
US20140021244A1 (en) 2009-03-30 2014-01-23 Global Tubing Llc Method of Manufacturing Coil Tubing Using Friction Stir Welding
EP2243920A1 (en) 2009-04-22 2010-10-27 Tenaris Connections Aktiengesellschaft Threaded joint for tubes, pipes and the like
JP5573325B2 (en) 2009-04-23 2014-08-20 新日鐵住金株式会社 Continuous heat treatment method for steel pipes
US20100319814A1 (en) 2009-06-17 2010-12-23 Teresa Estela Perez Bainitic steels with boron
JP5728836B2 (en) 2009-06-24 2015-06-03 Jfeスチール株式会社 Manufacturing method of high strength seamless steel pipe for oil wells with excellent resistance to sulfide stress cracking
CN101613829B (en) 2009-07-17 2011-09-28 天津钢管集团股份有限公司 Steel pipe for borehole operation of 150ksi steel grade high toughness oil and gas well and production method thereof
US9541224B2 (en) 2009-08-17 2017-01-10 Global Tubing, Llc Method of manufacturing coiled tubing using multi-pass friction stir welding
EP2325435B2 (en) 2009-11-24 2020-09-30 Tenaris Connections B.V. Threaded joint sealed to [ultra high] internal and external pressures
BR112012016517B1 (en) 2010-01-27 2020-02-11 Nippon Steel Corporation METHOD FOR MANUFACTURING A SEAMLESS STEEL TUBE FOR DRIVING TUBES AND SEAMLESS STEEL TUBE FOR DRIVING TUBES
CA2790278C (en) 2010-03-18 2016-05-17 Sumitomo Metal Industries, Ltd. Seamless steel pipe for steam injection and method for manufacturing the same
EP2372208B1 (en) 2010-03-25 2013-05-29 Tenaris Connections Limited Threaded joint with elastomeric seal flange
EP2372211B1 (en) 2010-03-26 2015-06-03 Tenaris Connections Ltd. Thin-walled pipe joint and method to couple a first pipe to a second pipe
JP4911265B2 (en) 2010-06-02 2012-04-04 住友金属工業株式会社 Seamless steel pipe for line pipe and manufacturing method thereof
CN101898295B (en) 2010-08-12 2011-12-07 中国石油天然气集团公司 Manufacturing method of high-strength and high-plasticity continuous tube
US9163296B2 (en) * 2011-01-25 2015-10-20 Tenaris Coiled Tubes, Llc Coiled tube with varying mechanical properties for superior performance and methods to produce the same by a continuous heat treatment
IT1403688B1 (en) 2011-02-07 2013-10-31 Dalmine Spa STEEL TUBES WITH THICK WALLS WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER TENSIONING FROM SULFUR.
IT1403689B1 (en) 2011-02-07 2013-10-31 Dalmine Spa HIGH-RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE SENSORS.
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US8636856B2 (en) * 2011-02-18 2014-01-28 Siderca S.A.I.C. High strength steel having good toughness
JP6047947B2 (en) 2011-06-30 2016-12-21 Jfeスチール株式会社 Thick high-strength seamless steel pipe for line pipes with excellent sour resistance and method for producing the same
CN103649355B (en) 2011-07-10 2016-08-17 塔塔钢铁艾默伊登有限责任公司 Have the HAZ-of improvement soften repellence hot-rolled high-strength steel band and the method that produces described steel
JP2013129879A (en) 2011-12-22 2013-07-04 Jfe Steel Corp High-strength seamless steel tube for oil well with superior sulfide stress cracking resistance, and method for producing the same
US9340847B2 (en) * 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
AU2013372439B2 (en) 2013-01-11 2018-03-01 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
EP2789701A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
EP2789700A1 (en) 2013-04-08 2014-10-15 DALMINE S.p.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
KR102197204B1 (en) 2013-06-25 2021-01-04 테나리스 커넥션즈 비.브이. High-chromium heat-resistant steel
US9745640B2 (en) 2015-03-17 2017-08-29 Tenaris Coiled Tubes, Llc Quenching tank system and method of use
US20160281188A1 (en) 2015-03-27 2016-09-29 Tenaris Coiled Tubes, Llc Heat treated coiled tubing
US20160305192A1 (en) 2015-04-14 2016-10-20 Tenaris Connections Limited Ultra-fine grained steels having corrosion-fatigue resistance
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
CN109609747B (en) * 2018-12-11 2022-01-25 信达科创(唐山)石油设备有限公司 Homogenizing treatment process for coiled tubing

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080286504A1 (en) * 2004-02-19 2008-11-20 Hitoshi Asahi Steel Plate or Steel Pipe with Small Occurrence of Bauschinger Effect and Methods of Production of Same
US9803256B2 (en) * 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing
US10378075B2 (en) * 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US11833561B2 (en) 2017-01-17 2023-12-05 Forum Us, Inc. Method of manufacturing a coiled tubing string

Also Published As

Publication number Publication date
BR102014006157A2 (en) 2016-01-26
US10378074B2 (en) 2019-08-13
US20170335421A1 (en) 2017-11-23
EP2778239B1 (en) 2020-08-12
US20190360064A1 (en) 2019-11-28
DK2778239T3 (en) 2020-11-16
RU2018127869A (en) 2019-03-13
US9803256B2 (en) 2017-10-31
RU2014109873A (en) 2015-09-20
RU2018127869A3 (en) 2022-01-21
JP2014208888A (en) 2014-11-06
US11377704B2 (en) 2022-07-05
MX2014003224A (en) 2014-12-09
EP2778239A1 (en) 2014-09-17
RU2664347C2 (en) 2018-08-16
CA2845471C (en) 2021-07-06
US10378075B2 (en) 2019-08-13
MX360596B (en) 2018-11-09
US20180223384A1 (en) 2018-08-09
BR102014006157B1 (en) 2020-03-17
CN104046918A (en) 2014-09-17
PL2778239T3 (en) 2021-04-19
EP3845672A1 (en) 2021-07-07
US20190360063A1 (en) 2019-11-28
US20140272448A1 (en) 2014-09-18
JP6431675B2 (en) 2018-11-28
CA2845471A1 (en) 2014-09-14
CN104046918B (en) 2017-10-24

Similar Documents

Publication Publication Date Title
US11377704B2 (en) High performance material for coiled tubing applications and the method of producing the same
US8709174B2 (en) Seamless steel pipe for line pipe and method for manufacturing the same
US8765269B2 (en) High strength steel pipe for low-temperature usage having excellent buckling resistance and toughness of welded heat affected zone and method for producing the same
CA2749409C (en) Thick high-tensile-strength hot-rolled steel sheet having excellent low-temperature toughness and manufacturing method thereof
KR101410588B1 (en) Thick welded steel pipe having excellent low-temperature toughness, method for producing thick welded steel pipe having excellent low-temperature toughness, and steel sheet for producing thick welded steel pipe
CA2980424C (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP6521197B2 (en) High strength steel plate for sour line pipe, manufacturing method thereof and high strength steel pipe using high strength steel plate for sour line pipe
JP4905240B2 (en) Manufacturing method of hot-rolled steel sheet with excellent surface quality, fracture toughness and sour resistance
JP6844691B2 (en) High-strength steel sheets for sour-resistant pipes and their manufacturing methods, and high-strength steel pipes using high-strength steel sheets for sour-resistant pipes
JP5151233B2 (en) Hot-rolled steel sheet excellent in surface quality and ductile crack propagation characteristics and method for producing the same
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP2019116658A (en) Electroseamed steel pipe excellent in fatigue strength, and manufacturing method therefor
JP2018168441A (en) High strength steel sheet for sour linepipe resistance, manufacturing method therefor and high strength steel pipe using high strength steel sheet for sour linepipe resistance
RU2798180C2 (en) High-quality material for flexible long-dimensional pipes and method for its manufacture
KR102492994B1 (en) Steel sheet and steel pipe having uniforme tensile properties and excellent transverse crack resistance onto welded part and method for manufacturing thereof
JP2013047392A (en) Hot-rolled steel sheet excellent in surface quality and ductile crack propagation property and manufacturing method therefor

Legal Events

Date Code Title Description
AS Assignment

Owner name: TENARIS COILED TUBES, LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VALDEZ, MARTIN;GOMEZ, GONZALO;MITRE, JORGE;AND OTHERS;SIGNING DATES FROM 20140303 TO 20140310;REEL/FRAME:044715/0304

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION