JPS5819439A - Production of high strength steel pipe having excellent low temperature toughness - Google Patents

Production of high strength steel pipe having excellent low temperature toughness

Info

Publication number
JPS5819439A
JPS5819439A JP11791681A JP11791681A JPS5819439A JP S5819439 A JPS5819439 A JP S5819439A JP 11791681 A JP11791681 A JP 11791681A JP 11791681 A JP11791681 A JP 11791681A JP S5819439 A JPS5819439 A JP S5819439A
Authority
JP
Japan
Prior art keywords
less
temperature
steel pipe
minutes
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11791681A
Other languages
Japanese (ja)
Inventor
Yasubumi Fujishiro
藤城 泰文
Yasuo Otani
大谷 泰夫
Tamotsu Hashimoto
保 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11791681A priority Critical patent/JPS5819439A/en
Publication of JPS5819439A publication Critical patent/JPS5819439A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To produce a high strength steel pipe having excellent low temp. toughness by subjecting a welded steel pipe contg. specific ratios of C, Si, Mn, solAl, P, S to hardening and tempering treatments under specific conditions. CONSTITUTION:The entire part of a welded steel pipe or seamless steel pipe having either or both of base material parts and weld zones contg., by wt%, <=0.30% C, <=0.80% Si, 0.5-2.0% Mn, <=0.10% solAl, <=0.025% P, <=0.015% S, and consisting of the balance Fe and unavoidable impurities is heated from the Ac3 transformation point up to the heating temp. within a 1,050 deg.C temp. range within 2min above the Ac3 transformation point and before the holding time (t) exceeds the value of the equation, the pipe is hardened. After the pipe is heated to 150-500 deg.C in <8min heating time from ordinary temp., the pipe is subjected to tempering treatment by water or air cooling before the holding time exceeds 5min.

Description

【発明の詳細な説明】 この発明は、高強度を有し、かつ低温靭性のすぐれた鋼
管の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a steel pipe that has high strength and excellent low-temperature toughness.

1パ 近年、世界のエネルギー需要の増大によシ、アラスカ、
カナダ、北極圏、シベリア、および北海等の苛酷な気象
条件の地にも、大規模な油田、天然ガス田が発見され、
それを開発するための油井用鋼管および輸送用鋼管の需
要も急増しつつあるが、その開発規模の大型化傾向や使
用環境のきびしさと相まって、高強度および高靭性の性
能を同時に併せ持つ鋼管に対する要求が益々強くなって
きている。
1. In recent years, due to the increase in global energy demand, Alaska,
Large-scale oil and natural gas fields have been discovered in places with harsh weather conditions such as Canada, the Arctic Circle, Siberia, and the North Sea.
The demand for steel pipes for oil wells and steel pipes for transportation to develop these pipes is rapidly increasing, but as the scale of development tends to increase and the environment in which they are used becomes more severe, there is a demand for steel pipes that have both high strength and high toughness. is becoming stronger and stronger.

従来、高強度で高靭性、特に低温靭性のすぐれた鋼管を
得るためには、素材鋼に、強度を上げかつ靭性をも向上
するNi、 Cr、 MO等の種々の合金元素を多量に
添加する場合が多いが、これらの添加元素は高価格であ
って鋼管自身のコストを高めることを避けることができ
なかった。
Conventionally, in order to obtain steel pipes with high strength and high toughness, especially excellent low-temperature toughness, large amounts of various alloying elements such as Ni, Cr, and MO, which increase strength and toughness, are added to the steel material. However, these additive elements are expensive and inevitably increase the cost of the steel pipe itself.

本発明者等は、上述のような観点から、高価な合金元素
を多量に添加することなく、例えばアメリカ石油協会規
格のAPI5LU80〜1・00の如き高降伏強度を有
し、かつ破面遷移温度(VTs)が−45℃以下の高強
度とすぐれた低温靭性を有するアラスカ極北部に適用出
来るような焼入れ焼戻しタイプの鋼管を低コストで製造
すぺく、特に、非常に短時間に加熱が行なわれ、保持時
間も短く、しかも同一炭素当量の鋼であっても高強度を
得やすいという特徴を持つ誘導加熱による急速加熱・短
時間熱処理の焼入れ焼戻しに着目して研究誉行なった結
果、従来の炉加熱と異る誘導加熱等による急速加熱・短
時間保持の焼入れを行ない、オーステナイト結晶粒の細
粒化をはかシ、さらに焼戻し時に急速加熱し、低温に短
時間保持する処理を行なうと、鋼管の強度低下が少なく
、靭性が大巾に改善されるという知見を得たのである。
From the above-mentioned viewpoints, the present inventors have achieved a high yield strength, such as API5LU80 to 1.00 of the American Petroleum Institute standard, and a fracture surface transition temperature without adding large amounts of expensive alloying elements. In order to manufacture quenched and tempered steel pipes at low cost, which have high strength (VTs) of -45°C or less and excellent low-temperature toughness, and which can be applied to the far northern part of Alaska, we are particularly interested in producing steel pipes that can be heated in a very short period of time. As a result of our research, we focused on quenching and tempering, which is a rapid heating and short-time heat treatment using induction heating, which has short holding times and is easy to obtain high strength even with steel of the same carbon equivalent. When quenching is performed by rapid heating and holding for a short time using induction heating, which is different from heating, the austenite crystal grains are made finer, and when tempering is rapidly heated and held at a low temperature for a short time, steel pipes are They found that there was little decrease in strength and that toughness was greatly improved.

特に低温短時間焼戻し処理における強度・靭性の挙動を
検討した結果、昇温時間を含め1公租度の短時間焼戻し
においても靭性は十分回復し、その程度は大部分到達温
度で決tシ、成分の影響を受けず、特殊な元素を添加し
ない、例えば51−Mn鋼でも低温焼戻し脆性がほとん
ど生じず、加熱時間も含めた短時間低温焼戻しによシ、
高強度・高靭性の鋼管の製造出来る知見を得たのである
;この現象は短時間低温焼戻しによって焼入れで生じた
過剰な格子欠陥が消滅し、かつPが粒界へ拡散する時間
が確保されないためであると考えられる。
In particular, as a result of examining the behavior of strength and toughness during low-temperature, short-time tempering, it was found that the toughness was sufficiently recovered even during short-time tempering with one tolerance, including the temperature increase time, and the degree of toughness was largely determined by the temperature reached and the composition. For example, even in 51-Mn steel, which is not affected by the effects of heat and does not contain any special elements, low-temperature tempering embrittlement hardly occurs, and it can be tempered for a short time including heating time.
We obtained the knowledge that high-strength, high-toughness steel pipes can be manufactured; this phenomenon occurs because the excessive lattice defects caused by quenching are eliminated by short-time low-temperature tempering, and time is not secured for P to diffuse into grain boundaries. It is thought that.

すなわち、低コストにして、高強度で、かつ低温靭性の
すぐれた鋼−管が、鋼自身の化学成分を調整することと
:熱処理条件を規定することによシ製造できるとの知見
にもとづいてこの発明はなされたものであって、したが
って、この発明は、C:0.30%以下(以下チは重量
%とする)、Si: 0.80 %以下、 Mn : 0.5〜2.0%、 806M:o、loチ以下、 P:0.025(を以下、 S :O,O15チ以下、 を含有するか、あるいはさらに、 Cu:o、5チ以下、 Cr:lチリ下、 Ni:1俤以下、 Mo:0.5%以下、 Nl):0.196以下、 v:O,lls以下、 Ti:0.296以下、 のうちの1種以上を含有し、 Feおよび不可避不純物:残) からなる組成の母材部および溶接部のいずれが、または
両方を有する溶接鋼管、あるいは前記組成の継目無し鋼
管の全体を、AC3変態点から1050℃の温度域内の
加熱温度T It)まで、Ac3変態点以上を2分以内
で昇温し、保持時間t(分)が、t、=3.96X(1
,000−、−T)  −)−1を越えないうちに焼入
れしく水冷、油冷、あるいは空冷のいずれでもよい)、
さらに常温から、昇温時間を8分以内として150〜5
00℃まで昇温後、保持時間が5分を越えないうちに水
冷または空冷の焼戻し処理を施すことによシ、高強度と
良好な低温靭性を併せ持つ鋼管を、低コストで製造する
方法に特徴を有するものである。
In other words, based on the knowledge that low-cost steel pipes with high strength and excellent low-temperature toughness can be produced by adjusting the chemical composition of the steel itself and by specifying the heat treatment conditions. This invention has been made, and therefore, C: 0.30% or less (hereinafter, "ch" is weight %), Si: 0.80% or less, Mn: 0.5 to 2.0. %, 806 M: o, 15 or less, P: 0.025 (or less, S: O, O, 15 or less, or in addition, Cu: o, 5 or less, Cr: l, Ni : 1 or less, Mo: 0.5% or less, Nl): 0.196 or less, v: O,lls or less, Ti: 0.296 or less, Contains one or more of the following, Fe and inevitable impurities: A welded steel pipe having either or both of the base metal part and the welded part with the composition consisting of , the temperature is raised above the Ac3 transformation point within 2 minutes, and the holding time t (minutes) is t, = 3.96X (1
,000-,-T) -) Quench before the temperature exceeds -1 (water-cooling, oil-cooling, or air-cooling may be used),
Furthermore, from room temperature, increase the temperature to within 8 minutes to 150~5
This method is characterized by the low-cost manufacturing method of steel pipes that have both high strength and good low-temperature toughness by performing water-cooling or air-cooling tempering treatment after the temperature is raised to 00°C and the holding time does not exceed 5 minutes. It has the following.

つまり、この発明は、鋼管の急速加熱によシ、特にオー
ステナイトの細粒化をはかシ、短時間保持で局所的な結
晶粒の成長を防ぎ、均一微細なオーステナイト粒を作っ
て、これを焼入れし、ついで、低温短時間の焼戻しを行
なうことによって高強度高靭性の鋼管を製造するもので
あり、さらに、高強度・高靭性を付与するために、鋼管
中に、Cu。
In other words, this invention uses rapid heating of steel pipes to refine the austenite grains, prevents local crystal grain growth by holding the pipe for a short time, and creates uniform and fine austenite grains. A high-strength, high-toughness steel pipe is manufactured by quenching and then low-temperature, short-time tempering. Furthermore, in order to impart high strength and high toughness, Cu is added to the steel pipe.

Cr、 Ni、 Mo、 Nb、  V 、およびT1
の1種以上を組合せて含有させることができるものであ
る。
Cr, Ni, Mo, Nb, V, and T1
It is possible to contain one or more of these in combination.

ついで、この発明の熱処理鋼管の製造方法において、鋼
管の成分組成範囲および熱処理条件を上述のように限定
した理由を説明する。
Next, in the method for manufacturing a heat-treated steel pipe of the present invention, the reason why the composition range of the steel pipe and the heat treatment conditions are limited as described above will be explained.

a)C C成分には、鋼管の強度を高める作用があるが、その含
有量が0.30%を越えると靭性を劣化させるようにな
ることから、その含有量を0.30%以下と限定した。
a) C The C component has the effect of increasing the strength of steel pipes, but if its content exceeds 0.30%, the toughness deteriorates, so its content is limited to 0.30% or less. did.

b)Si Si成分は、鋼の脱酸成分として必要なものであるが、
その含有量が0.80%を越えると低温靭性が劣化する
ように々ることがら、その含有量を0.80チ以下と限
定した。
b) Si Si component is necessary as a deoxidizing component of steel,
If the content exceeds 0.80%, the low temperature toughness tends to deteriorate, so the content is limited to 0.80% or less.

c)Mn Mn成分には、鋼管の強度および靭性を向上させる作用
があるが、その含有量が0.5%未満では前記作用に所
望の効果が得られず、一方2.0%を越えて含有せしめ
ると溶接性が極端に悪化することから、その含有量を0
.5〜2.0%と限定した。
c) Mn The Mn component has the effect of improving the strength and toughness of steel pipes, but if its content is less than 0.5%, the desired effect cannot be obtained; on the other hand, if its content exceeds 2.0%, If it is contained, weldability will be extremely deteriorated, so its content should be reduced to 0.
.. It was limited to 5-2.0%.

d)  sol、A11 soL、Al成分は、脱酸剤として必要なものであるが
、その含有量が0.10%を越えても脱酸剤・とじての
効果が飽和してしまい、また介在物の増大により靭性が
劣化するようになることから、その含有量を0.10%
以下と限定した。
d) sol, A11 soL, Al components are necessary as deoxidizing agents, but even if their content exceeds 0.10%, the deoxidizing agent/binding effect will be saturated, and the intervening As the toughness deteriorates due to the increase in the content, the content was reduced to 0.10%.
Limited to the following.

鋼の低温脆性を著しく低下させるために、その寅有量を
0.025 %以下と限定した。
In order to significantly reduce the low-temperature brittleness of steel, its content was limited to 0.025% or less.

f) S メ騙の含有量が0.015%を越えると、鋼管周方向の
衝撃吸収エネルギーを著しく低下させることになること
から、その含有量を0.015%以下と限定した。
f) If the S content exceeds 0.015%, the impact absorption energy in the circumferential direction of the steel pipe will be significantly reduced, so the content was limited to 0.015% or less.

g) Cu、 Or、 Ni、 Mo、 Nb、 V 
、およびTlCu、 Cr、Ni 、 Mo、 Nb、
 V、およびT1成分は、いずれも鋼管の強度上昇と靭
性向上のために有効なものであるが、CU酸成分含有量
が0.5%を越えると熱間脆性による表面欠陥の発生が
みられるようになり、Cr成分が1チを越えて含有され
たり 、 M。
g) Cu, Or, Ni, Mo, Nb, V
, and TlCu, Cr, Ni, Mo, Nb,
Both V and T1 components are effective for increasing the strength and toughness of steel pipes, but when the CU acid component content exceeds 0.5%, surface defects due to hot embrittlement occur. If the Cr component is contained in excess of 1 inch, or M.

成分が0.5 %を越えて含有されると、あるいは、N
b、 YおよびT1の含有量が0.1チを越えたりする
と靭性に悪影響を及ぼすようになり、そしてl”Ii酸
成分1%を越えて含有されてもコスト上昇に見合うだけ
の強度上昇や靭性向上がみられなくなることから、Cu
成分含有量を0.5%以下、Cr成分およびN1成分含
有量を1%以下、MO成分含有量を0.5チ以下、そし
て、Nb、およびV成分含有量を0.1チ以下、Ti成
分含有量を0.2%以下とそれぞれ限定した。
If the component is contained in excess of 0.5%, or
If the content of b, Y, and T1 exceeds 0.1%, it will have a negative effect on toughness, and even if the content exceeds 1% of the l"Ii acid component, the strength will not increase enough to justify the increase in cost. Since no improvement in toughness is observed, Cu
The component content is 0.5% or less, the Cr component and N1 component content is 1% or less, the MO component content is 0.5 inch or less, the Nb and V component content is 0.1 inch or less, and Ti The component content was limited to 0.2% or less.

h)熱処理条件 焼入れ加熱温度TをAC3点〜1050℃の温度域とし
た理由は、この温度範囲からの焼入れによって細粒の焼
入組織が得られるからであるが−特に、1050℃を越
えた温度からの焼入れは、第1図の加熱温度とオーステ
ナイト粒径との関係を示した線図からも明らかなように
、結晶粒の粗大化を生じ靭性の劣化を招くことになるの
で好ましくない。
h) Heat treatment conditions The reason why the quenching heating temperature T was set in the temperature range from AC3 point to 1050°C is that a fine-grained quenched structure can be obtained by quenching from this temperature range - especially when the temperature exceeds 1050°C. As is clear from the diagram in FIG. 1 showing the relationship between heating temperature and austenite grain size, hardening at a higher temperature is not preferable because it causes coarsening of crystal grains and deterioration of toughness.

この焼入れ処理における常温からの昇温時間を2分以内
とし、昇温後の保持時間t(分)を3.96X(100
0〜T)  +1 を越えない時間としたのは、昇温時
間が2分を越えると第2図に示すように結晶粒の成長が
生じ、靭性が悪化するためであり、保持時間t(分)が
3.96X(1000−Tf°4+1(この式は種々の
実験の結果にもとづいて経験的に定めたものである)を
越えると、部分的に100μ以上の異常成長粒が生じて
靭性の劣化を招くととKなるからである。
In this quenching process, the heating time from room temperature is within 2 minutes, and the holding time t (minutes) after heating is 3.96X (100
The reason for setting the time not to exceed 0 to T) +1 is because if the heating time exceeds 2 minutes, grain growth will occur as shown in Figure 2, and toughness will deteriorate. ) exceeds 3.96 This is because it would cause deterioration.

焼戻し温度を150〜500℃とした理由は、この範囲
の温度における焼戻し処理によって、焼入れままからの
強度低下を抑制しつつ靭性回復を行なうことができるか
らであシ、その温度が150℃未満では、第3図に示す
線図からも明らかなように、靭性回復を図ることが難し
く、一方その温度が500℃を越えた場合には、第4図
から明らかなように、強度低下が著しくなるのである。
The reason why the tempering temperature is set to 150 to 500°C is that tempering at a temperature in this range can recover toughness while suppressing the decrease in strength from as-quenched. As is clear from the diagram shown in Figure 3, it is difficult to recover the toughness, and on the other hand, when the temperature exceeds 500°C, as is clear from Figure 4, the strength decreases significantly. It is.

この焼戻し処理における常温からの昇温時間を8分以内
とし、昇温後の保持時間を5分以内としたのは、これ以
上の昇温時間や保持時間を費すと、焼入れままからの強
度低下が大きくなり、所望の高強度を得ることが困難と
なる理由からである。
In this tempering process, the heating time from room temperature was set to within 8 minutes, and the holding time after heating was set to within 5 minutes. This is because the decrease becomes large and it becomes difficult to obtain the desired high strength.

なお、この発明の方法における鋼管中に含まれる不可避
不純物たるNKついては、通常100ヨ p、pm、以下、好ましくは50p、p、m、以下に抑
えるのがよい。
Note that NK, which is an unavoidable impurity contained in the steel pipe in the method of the present invention, is usually suppressed to 100 p, pm or less, preferably 50 p, p, m or less.

以上の如く、化学成分組成、および熱処理条件を選択す
ることにより、低コストでかつ高強度・高靭性を有する
鋼管を製造することができるのである。
As described above, by selecting the chemical composition and heat treatment conditions, it is possible to manufacture a steel pipe with high strength and toughness at low cost.

つぎに、この発明を実施例により比較例と対比しながら
説明する。
Next, the present invention will be explained using examples and comparing with comparative examples.

実施例 それぞれ第1表に示される通シの成分組成を有する継目
無し鋼管を通常の方法にて製造し、ついでこれらの鋼管
を同じく第1表に示される条件にてそれぞれ熱処理(焼
入れおよび焼戻し処理時の冷却はいずれも水冷)するこ
とによって本発明鋼管1〜14および比較鋼管1〜6を
それぞれ製造した。なお、比較鋼管1〜6は、いずれも
熱処理条件がこの発明の範囲から外れた条件(第1表に
※印にて表示)で製造したものである。また、第1表に
はこの結果得られた各種鋼管の機械的性質も合せて示し
た。
In each of the examples, seamless steel pipes having the chemical composition shown in Table 1 were manufactured by a conventional method, and then these steel pipes were heat-treated (quenching and tempering treatment) under the conditions also shown in Table 1. Inventive steel pipes 1 to 14 and comparative steel pipes 1 to 6 were manufactured by cooling the pipes by water cooling. Note that Comparative Steel Pipes 1 to 6 were all manufactured under heat treatment conditions outside the scope of the present invention (indicated by * in Table 1). Table 1 also shows the mechanical properties of the various steel pipes obtained as a result.

第1表に示す結果からも、本発明の方法によって、高強
度で、かつ低温靭性にすぐれた鋼管が得られることが明
らかである。
It is clear from the results shown in Table 1 that steel pipes with high strength and excellent low-temperature toughness can be obtained by the method of the present invention.

上述のように、この発明によれば、比較的簡単な方法で
、苛酷な使用環境に耐え得る高強度とすぐれた低温靭性
を兼ね備えた鋼管を、低コストで得ることができるなど
、工業上有用な効果がもたらされるのである。
As described above, according to the present invention, it is possible to obtain a steel pipe with high strength that can withstand harsh usage environments and excellent low-temperature toughness by a relatively simple method at a low cost, which is useful for industrial purposes. This brings about a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼入時の加熱温度とオーステナイト粒径との関
係を示す線図、第2図は昇温時間とオーステナイト粒径
との関係を示す線図、第3図は焼戻し温度とシャルピー
破面遷移温度との関係を示す線図、第4図は焼戻し温度
と降伏強度との関係を示す線図である。 出願人  住友金属工業株式会社 代理人  富  1) 和  夫 第1図 焼入時がp終温J(’C) 年2図 Ac5AALeiのqAB’1Mc/9j)第3図 第4図 涼、戻“し温Jl (’C)
Figure 1 is a diagram showing the relationship between heating temperature during quenching and austenite grain size, Figure 2 is a diagram showing the relationship between heating time and austenite grain size, and Figure 3 is a diagram showing the relationship between tempering temperature and Charpy fracture. A diagram showing the relationship between surface transition temperature and FIG. 4 is a diagram showing the relationship between tempering temperature and yield strength. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo Figure 1 The final temperature during quenching is p Shion Jl ('C)

Claims (2)

【特許請求の範囲】[Claims] (1)  C: 0.30係以下、 Si: 0.80’(76以下、 Mn: 0.5〜2.0 %、 soL、A1: 0.10 %以下、 P:0.025チ以下。 9:0.015%以下、 Feおよび不可避不純物:残シ、 (以上重量%)からなる組成の母材部および溶接部のい
ずれか、または両方を有する溶接鋼管、あるいは前記組
成の継目無し鋼管の全体を、Act変態点から1050
℃の温度域内の加熱温度TcQiで、AC3変態点以上
を2分以内で昇温し、保持時間t(分)が、を瞠3.9
6X(1000−T)  −)11− を越えないうちに焼入れし、ついで常温から、昇温時間
を8分以内として150〜500℃まで昇温後、保持時
間が5分を越えないうちに水冷または空冷の焼戻し処理
を施すことを特徴とする低温靭性のすぐれた高強度鋼管
の製造方法。
(1) C: 0.30 or less, Si: 0.80' (76 or less, Mn: 0.5 to 2.0%, soL, A1: 0.10% or less, P: 0.025 or less. 9: 0.015% or less, Fe and unavoidable impurities: residue, (more than % by weight) Welded steel pipes having either or both of the base metal part and welded parts, or seamless steel pipes with the above composition. The whole is 1050 from the Act metamorphosis point.
At a heating temperature TcQi within the temperature range of °C, the temperature was raised above the AC3 transformation point within 2 minutes, and the holding time t (minutes) was 3.9.
6X (1000-T) -) 11-, then heated from room temperature to 150-500℃ within 8 minutes, and water cooled before holding time exceeds 5 minutes. Alternatively, a method for producing a high-strength steel pipe with excellent low-temperature toughness, characterized by subjecting it to air-cooled tempering treatment.
(2)C:0130%以下、 81:0.80−以下、 Mn: 0.5〜2.0 %、 soL、Al : O,l O%以下、P :0.02
5チ以下、 f3 :O,O15チ以下、 を含有するとともに、さらに、 Cu:0.5%以下、 Cr:1%以下、 Ni:1%以下、 Mo:0.5−以下、 Nb:0.1チ以下、 V:0.1チ以下、 Ti:o、2%以下、 のうちの1種以上を含有し。 Feおよび不可避不純物:残シ、 (以上重量%)からなる組成の母材部および溶接部のい
ずれか、または両方を有する溶接鋼管、あるいは前記組
成の継目無し鋼管の全体を、AC3変態点から1050
℃の温度域内の加熱温度T(6)まで、AO3変態点以
上を2分以内で昇温し、保持時間t(分)が、 t−3,96X(1000〜T)  −)−1を越え々
いうちに焼入れし、ついで常温から、昇温時間を8分以
内として150〜500℃まで昇温後、保持時間が5分
を越えないうちに水冷または空冷の焼戻し処理を施すこ
とを特徴とする低温靭性のすぐれた高強度鋼管の製造方
法。
(2) C: 0130% or less, 81: 0.80- or less, Mn: 0.5-2.0%, soL, Al: O, l O% or less, P: 0.02
5% or less, f3: O, O15% or less, Cu: 0.5% or less, Cr: 1% or less, Ni: 1% or less, Mo: 0.5- or less, Nb: 0 Contains one or more of the following: .1 inch or less, V: 0.1 inch or less, Ti: o, 2% or less. A welded steel pipe having either or both of a base metal part and a welded part having a composition consisting of Fe and unavoidable impurities (at least % by weight), or a seamless steel pipe having the above composition, is heated to 1050°C from the AC3 transformation point.
The temperature is raised above the AO3 transformation point within 2 minutes to the heating temperature T(6) within the temperature range of ℃, and the holding time t (minutes) exceeds t-3,96X(1000~T)-)-1. It is characterized by quenching the material for a while, then raising the temperature from room temperature to 150-500°C within 8 minutes, and then subjecting it to water-cooling or air-cooling tempering treatment before the holding time exceeds 5 minutes. A method for manufacturing high-strength steel pipes with excellent low-temperature toughness.
JP11791681A 1981-07-28 1981-07-28 Production of high strength steel pipe having excellent low temperature toughness Pending JPS5819439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11791681A JPS5819439A (en) 1981-07-28 1981-07-28 Production of high strength steel pipe having excellent low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11791681A JPS5819439A (en) 1981-07-28 1981-07-28 Production of high strength steel pipe having excellent low temperature toughness

Publications (1)

Publication Number Publication Date
JPS5819439A true JPS5819439A (en) 1983-02-04

Family

ID=14723346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11791681A Pending JPS5819439A (en) 1981-07-28 1981-07-28 Production of high strength steel pipe having excellent low temperature toughness

Country Status (1)

Country Link
JP (1) JPS5819439A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020055279A (en) * 2000-12-28 2002-07-08 이계안 Cold work embrittlement free high strength steel sheet
CN104694846A (en) * 2015-04-08 2015-06-10 攀钢集团成都钢钒有限公司 Low-temperature seamless steel tube and production method thereof
CN107338396A (en) * 2017-06-28 2017-11-10 包头钢铁(集团)有限责任公司 High-hardenability gas storage seamless steel pipe and its production method
JP2018532883A (en) * 2015-09-24 2018-11-08 バオシャン アイアン アンド スティール カンパニー リミテッド High toughness seamless steel pipe and manufacturing method thereof
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US11833561B2 (en) 2017-01-17 2023-12-05 Forum Us, Inc. Method of manufacturing a coiled tubing string

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354118A (en) * 1976-10-28 1978-05-17 Nippon Steel Corp Production of high tensile steel sheet with excellent brittleness crackpropagation stopping properties
JPS5417318A (en) * 1977-07-08 1979-02-08 Kawasaki Steel Co Method of making steel pipe having homogenous quality* highhstrengh and good golddtoughness for use in pipe lines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354118A (en) * 1976-10-28 1978-05-17 Nippon Steel Corp Production of high tensile steel sheet with excellent brittleness crackpropagation stopping properties
JPS5417318A (en) * 1977-07-08 1979-02-08 Kawasaki Steel Co Method of making steel pipe having homogenous quality* highhstrengh and good golddtoughness for use in pipe lines

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020055279A (en) * 2000-12-28 2002-07-08 이계안 Cold work embrittlement free high strength steel sheet
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
CN104694846A (en) * 2015-04-08 2015-06-10 攀钢集团成都钢钒有限公司 Low-temperature seamless steel tube and production method thereof
JP2018532883A (en) * 2015-09-24 2018-11-08 バオシャン アイアン アンド スティール カンパニー リミテッド High toughness seamless steel pipe and manufacturing method thereof
US11833561B2 (en) 2017-01-17 2023-12-05 Forum Us, Inc. Method of manufacturing a coiled tubing string
CN107338396A (en) * 2017-06-28 2017-11-10 包头钢铁(集团)有限责任公司 High-hardenability gas storage seamless steel pipe and its production method

Similar Documents

Publication Publication Date Title
KR101094310B1 (en) Weldable ultra-high strength steel with excellent low-temperature toughness, and manufacturing method thereof
JP2001511479A (en) Method for producing weldable super-strength steel with excellent toughness
USRE28523E (en) High strength alloy steel compositions and process of producing high strength steel including hot-cold working
JP3550726B2 (en) Method for producing high strength steel with excellent low temperature toughness
JP3160329B2 (en) Manufacturing method of heat resistant high strength bolt
JPS5819439A (en) Production of high strength steel pipe having excellent low temperature toughness
US3330705A (en) Method to improve impact properties of steels
JPS6164815A (en) Manufacture of high strength steel excellent in delay breakdown resistance
JP4344126B2 (en) Induction tempered steel with excellent torsional properties
JPS5819438A (en) Production of steel pipe having high strength and high toughness
JPS59182918A (en) Production of two-phase stainless steel oil well pipe having high strength
JPH0741855A (en) Production of low yield radio and high toughness seamless steel pipe showing metallic structure essentially consisting of fine-grained ferrite
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPS61174321A (en) Spheroidizing annealing method of machine structural steel
JPS6056019A (en) Production of strong and tough steel
JP3297107B2 (en) Method for producing low temperature steel with excellent weldability
JP2564425B2 (en) Manufacturing method of high toughness 40kg class steel pipe with excellent SSC resistance
KR920008685B1 (en) Making process for high tensile steel plate
JPH0351779B2 (en)
JPS581020A (en) Production of steel bar
JPS58199819A (en) Manufacture of high strength steel pipe for oil well
JPH10237588A (en) High carbon steel excellent in spheroidizing treatment property
KR101095911B1 (en) Weldable ultra-high strength steel with excellent low-temperature toughness
JPH0116283B2 (en)
KR101572319B1 (en) Method of manufacturing hot-rolled steel sheet and high strength steel pipe