JPH0116283B2 - - Google Patents

Info

Publication number
JPH0116283B2
JPH0116283B2 JP59275263A JP27526384A JPH0116283B2 JP H0116283 B2 JPH0116283 B2 JP H0116283B2 JP 59275263 A JP59275263 A JP 59275263A JP 27526384 A JP27526384 A JP 27526384A JP H0116283 B2 JPH0116283 B2 JP H0116283B2
Authority
JP
Japan
Prior art keywords
temperature
less
steel
toughness
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59275263A
Other languages
Japanese (ja)
Other versions
JPS61149430A (en
Inventor
Asao Narimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP27526384A priority Critical patent/JPS61149430A/en
Publication of JPS61149430A publication Critical patent/JPS61149430A/en
Publication of JPH0116283B2 publication Critical patent/JPH0116283B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 大型産業機械、溶接鋼管その他、海洋構造物、
橋粱などの使途に適合すべきり溶接構造物用高張
力鋼材の有利な製造に関しこの明細書に述べる技
術内容は、溶接鋼構造物の大型化にともなう高強
度、高じん性でしかも優れた溶接性の兼備につい
ての要請を満たすための研究の所産を提案すると
ころにある。 ここに溶接性を向上させるためには低C化が有
効であるが、反面高強度化の要請が損なわれる。 このため、低C化した場合に他の方法で強度を
補う必要がある。その1つの方法としてCuの析
出硬化作用を利用することができる。 (従来の技術) Cuの析出硬化の利用に関しては例えばASTM
A710や、米国特許第3692514号明細書にその例が
見られる。しかし、Cu析出硬化を利用して高強
度化を図るとき、低温じん性が害われる。 ここに含Cu鋼で低温じん性を確保する1つの
方法としては、Cu析出温度を最硬化条件(例え
ば550℃)より高く(例えば670℃)することが考
えられるが、これではCuの析出による高強度化
の作用が失われて本来の目的が達成され得ない。 (発明が解決しようとする問題点) Cuの析出硬化作用を損なうことなく低温じん
性を著しく改善させることにより、低温じん性お
よび溶接性に優れた、YP:49Kgf/mm2以上の高
張力鋼の有利な製造方法を確保することがここに
述べる開発研究の目的である。 (問題点を解決するための手段) (1) 溶接性を向上させるためC量を0.01〜0.10wt
%に低減する。 (2) 高強度化するため、Cuを0.7〜1.5wt%含有さ
せる。 (3) 上記Cuの含有の下で析出硬化処理に由来す
るじん性劣化を防ぎ、低温じん性は向上させる
ために、制御圧延を行う。 以上は上記問題解決のための基本の要因であつ
て、この圧延のあと、そのまま、または、再加熱
焼入れもしくは直接焼入れの適切な組合わせを経
てすなわち上記したこの発明の目的とするところ
は、 C:0.0〜0.10wt%、Si:0.40wt%以下 Mn:0.5〜2.0wt%、Cu:0.7〜1.5wt% Ni:0.5〜2.0wt%、Nb:0.005〜0.06wt% およびAl:0.01〜0.10wt%を 含有する組成又はさらにCr及び/又はMo:
1.0wt%以下を含有する組成とした上でこれらの
鋼に、900℃以下700℃以上で30%以上の圧下を加
えて圧延を終了するまでの工程は共通するが、 その後500℃〜650℃の範囲でCu析出処理を
施すこと、 圧延を終了して一たん冷却したのち、AC3
AC3+30℃の範囲に再加熱後、水冷してその後
に500℃〜650℃の範囲でCu析出処理を施すこ
と、又は、 圧延を終了してから直ちに平均冷却速度2.5
℃/s以上で室温まで冷却して、その後に500
℃〜650℃の範囲でCu析出処理を施すことかの
何れかの過程を経ることによりによつて達成さ
れ、低温じん性および溶接性に優れた溶接構造
物用高張力鋼の製造が安定に可能となる。 (作用) C量は0.01wt%以上0.10wt%以下であつて各発
明を通じた特徴の一つである。C量は0.01wt%未
満では必要強度が得られず0.10wt%をこえると、
溶接性が損なわれからである。 Siは鋼精錬時の脱酸上不可欠の元素であり、ま
た安価な鋼強化元素でもあるが、0.60wt%を超え
ると鋼の清浄度が損なわれて溶接性やじん性の低
下をもたらす。一方0.02wt%未満では上記の効果
が得られない。従つて、Siの範囲を0.02wt%〜
0.6wt%とした。 Mnはじん性を低下させることなく強度を高め
る元素であり、そのためには0.5wt%以上の添加
が必要である。しかし、2.0wt%を超えると溶接
性が損なわれる。従つてMnの添加範囲を0.5〜
2.0wt%とした。 Cuの含有も各発明を通した特徴の一つであり、
その析出硬化作用を利用して高強度を達成する。
ここにCuが0.7wt%未満では析出硬化作用がなく
一方、1.5wt%をこえると低温じん性が損なわれ
る。したがつてCu含有量を0.7wt%〜1.5wt%に
限定した。 Niは、Cuの含有による熱間加工性の低下を防
ぐ作用があり、また低温じん性を改善させる効果
を0.5%以上にてあらわすが、2.0wt%をこえる過
剰な添加による効果の増強はないので経済的でな
い。 Nbは制御圧延による微粒化作用をもたらす元
素である。しかし、0.005wt%未満ではその作用
が十分でなくまた0.06wt%を越えると低温じん性
を損なう。 Alは脱酸およびオーステナイトの微粒化のた
めに必要な元素であり、そのためには0.010wt%
以上必要であるが0.10wt%をこえると鋼の清浄度
を害する。 以上の元素の他に、さらに高強度化するために
Cr,Moの1種または2種を添加することができ
る。これらの元素は固溶硬化、析出硬化あるいは
焼入性を増加させることにより強度を上昇させ
る。しかし、それぞれ1.0wt%、を越えるとじん
性を損なうので、上限を規制した。 これらの他の成分として強度上昇のため
V0.001〜0.10wt%、B0.0005〜0.0025wt%、溶接
性の改善のためにTi0.003〜0.05wt%、介在物形
状制御のためにCa,REM0.05〜0.10%、などを
添加しても効果は損なわれない。 P,Sは母材および溶接部じんせいを著しく損
なう不純物元素であるが不可避的な混入はやむを
得ないので実害を生じない限度としてそれぞれ
0.015wt%以下、0.010wt%以下ならば許容され
る。 つぎに圧延条件について述べる。 圧延仕上温度は900℃以下とする。900℃をこえ
る温度では粒が粗大化しじん性が劣化する。また
圧延仕上げ温度を700℃よりも低くするとじん性
がそこなわれるため下限を700℃とした。この温
度域での圧下は30%以上を要し、30%未満では十
分な細粒組織が得られない。 Cu析出処理は500℃〜650℃の温度で行う、500
℃〜600℃に限定した理由はこの温度範囲外では
Cuの析出硬化作用が損なわれるからである。 このCu析出処理に先立つて、制御圧延のあと
再加熱焼入れを施す場合、その再加熱温度はAC3
〜AC3+30℃として水冷を行うことが焼入後の組
織を微細化するために必要である。また制御圧延
の終了後に直接焼入れを行うときその冷却速度は
2.5℃/sec以上とする。その理由は2.5/secより
遅い冷却では高強度が得られないからである。 (実施例) 実施例 1 供試鋼の化学組成を表1に示す。 【表】 【表】 各供試鋼を、オーステナイト域に加熱し、仕上
温度800℃で25mmまで圧延(圧下率75%)し、そ
の後600℃で1時間のCu析出処理を行つた。 そのときの強度とじん性を表2に示す、なお表
2には圧延を920℃で仕上げたときのデータを付
記した。 【表】 第1、第2各発明により優れた強度および低温
じん性が得られることがわかる。 次に供試鋼(E)について圧延終了温度を650
〜950℃の範囲の種々な温度に変えて上記Cu析出
処理後のじん性値vE―60に及ぼす影響を調べ第
1図の成績を得た。またさらに圧延終了温度を
850℃とした場合についてCu析出処理を450〜675
℃の種々な条件に変えY.S.に及ぼす影響を調べて
第2図の成績を得た。 実施例 2 供試鋼の化学組成を比較例とともに表3に示
す。 【表】 り、(S)、(T)鋼は比較のための成分例であ
る。
各供試鋼をオーステナイト域に加熱し、仕上温
度800℃で25mmまで圧延(圧下率75%)し、空冷
後、900℃に加熱し焼入れ処理した。その後550℃
で1時間Cuの析出処理を行つた。そのときの強
度とじん性を表4において太線区画で囲つて第
3,4各発明に従う成績を区別して示す。 なお表4には920℃で圧延を終了し、焼入温度
を960℃としたときのデータも付記した。 【表】 【表】 第3,4各発明によつても優れた強度および低
温じん性が得られることがわかる。 次に供試鋼Jについて焼入れ温度のみを800℃
〜1000℃の範囲の種々な温度に変えて上記した
Cu析出処理の後の低温じん性との関係を第3図
に示した。さらに焼入れ温度を900℃としたとき
におけるCu析出処理温度のY.S.に及ぼす影響を
第4図に示した。 実施例 3 次に表3に化学組成を示した各供試鋼をオース
テナイト域に加熱し、仕上温度800℃で25mmまで
に圧延(圧下率75%)しその後直ちに水焼入れし
た。その後550℃で1時間のCu析出処理を行つ
た。 そのときの強度、じん性を表5に示す。なお表
5には920℃で圧延を終了し直接焼入したときの
比較データを付記した。 【表】 第5,6各発明により、優れた強度および低温
じん性が得られることがわかる。 第5図、第6図にCu含有量によるY.S,T.S.の
依存性、Ni含有量のvTrsに及びす影響を示し、
第7図にて供試鋼Pにつき、Cu析出処理温度を
400〜700℃に変えたときのY.S.に及ぼす影響を示
した。 (発明の効果) 第1〜第6発明の何れにあつてもCを0.01〜
0.10wt%に低減し、Cuを0.7〜1.5wt%添加含有す
る特色のもとで成分組成範囲を特定した鋼を仕上
温度900〜700℃で圧延したのちには、500〜650℃
でCu析出処理するか、圧延したのち、一たんAC3
〜AC3+30℃の範囲に再加熱し焼入れを施してか
ら、500〜650℃でCu析出処理するか、圧延した
後直ちに焼入れを行つてから500〜650℃の温度で
Cu析出処理するかの何れかにより、溶接性を損
なうことなく優れた強度および低温じん性を有す
る鋼を安定して製造することができた。
[Detailed description of the invention] (Industrial application field) Large industrial machines, welded steel pipes and others, marine structures,
The technical content described in this specification regarding the advantageous production of high-strength steel materials for shear welded structures that are suitable for uses such as bridges, etc. The aim is to propose the results of research to meet the demands for sexual compatibility. In order to improve weldability, lowering C is effective, but on the other hand, the requirement for higher strength is impaired. For this reason, when lowering C, it is necessary to supplement the strength by other methods. One method is to utilize the precipitation hardening effect of Cu. (Prior art) Regarding the use of precipitation hardening of Cu, for example, ASTM
Examples can be found in A710 and US Pat. No. 3,692,514. However, when trying to increase strength by utilizing Cu precipitation hardening, low-temperature toughness is impaired. One way to ensure low-temperature toughness in Cu-containing steel is to set the Cu precipitation temperature higher (e.g., 670°C) than the maximum hardening condition (e.g., 550°C), but this would result in a lower temperature due to Cu precipitation. The effect of increasing strength is lost and the original purpose cannot be achieved. (Problem to be solved by the invention) High tensile strength steel with YP: 49Kgf/mm 2 or higher, which has excellent low-temperature toughness and weldability by significantly improving low-temperature toughness without impairing the precipitation hardening effect of Cu. The purpose of the development research described here is to secure an advantageous manufacturing method for. (Means to solve the problem) (1) Increase the amount of C from 0.01 to 0.10wt to improve weldability.
Reduce to %. (2) To increase strength, 0.7 to 1.5 wt% of Cu is included. (3) Controlled rolling is performed in order to prevent toughness deterioration resulting from precipitation hardening treatment and improve low-temperature toughness under the presence of Cu. The above are the basic factors for solving the above problem, and after this rolling, the object of the present invention is to achieve C. : 0.0-0.10wt%, Si: 0.40wt% or less Mn: 0.5-2.0wt%, Cu: 0.7-1.5wt% Ni: 0.5-2.0wt%, Nb: 0.005-0.06wt% and Al: 0.01-0.10wt Composition containing % or further Cr and/or Mo:
The process of forming these steels into a composition containing 1.0wt% or less and applying a reduction of 30% or more at temperatures below 900°C and above 700°C until rolling is completed is common; Apply Cu precipitation treatment in the range of A C3 ~ After finishing the rolling and cooling it once.
A C3 After reheating to +30℃, cooling with water and then performing Cu precipitation treatment in the range of 500℃ to 650℃, or immediately after finishing rolling at an average cooling rate of 2.5
Cool to room temperature at ℃/s or more, then 500℃
This is achieved by either performing Cu precipitation treatment in the temperature range of 650°C to 650°C, allowing stable production of high-strength steel for welded structures with excellent low-temperature toughness and weldability. It becomes possible. (Function) The amount of C is 0.01wt% or more and 0.10wt% or less, which is one of the characteristics of each invention. If the C content is less than 0.01wt%, the required strength cannot be obtained, and if it exceeds 0.10wt%,
This is because weldability is impaired. Si is an essential element for deoxidizing during steel refining, and is also an inexpensive steel-strengthening element, but if it exceeds 0.60 wt%, the cleanliness of the steel will be impaired, resulting in a decrease in weldability and toughness. On the other hand, if it is less than 0.02wt%, the above effects cannot be obtained. Therefore, the range of Si is 0.02wt%~
It was set to 0.6wt%. Mn is an element that increases strength without reducing toughness, and for this purpose it is necessary to add 0.5 wt% or more. However, if it exceeds 2.0wt%, weldability will be impaired. Therefore, the addition range of Mn should be 0.5~
It was set to 2.0wt%. The inclusion of Cu is also one of the characteristics of each invention.
High strength is achieved by utilizing its precipitation hardening effect.
Here, if Cu is less than 0.7 wt%, there is no precipitation hardening effect, while if it exceeds 1.5 wt%, low temperature toughness is impaired. Therefore, the Cu content was limited to 0.7wt% to 1.5wt%. Ni has the effect of preventing the deterioration of hot workability due to Cu content, and has the effect of improving low-temperature toughness at 0.5% or more, but the effect is not enhanced by excessive addition exceeding 2.0wt%. Therefore, it is not economical. Nb is an element that brings about the atomization effect by controlled rolling. However, if it is less than 0.005wt%, its effect is insufficient, and if it exceeds 0.06wt%, low temperature toughness is impaired. Al is an element necessary for deoxidation and austenite atomization, and for this purpose 0.010wt%
Although more than 0.10wt% is necessary, the cleanliness of the steel will be impaired. In addition to the above elements, in order to further increase the strength
One or both of Cr and Mo can be added. These elements increase strength by increasing solid solution hardening, precipitation hardening, or hardenability. However, if each exceeds 1.0wt%, the toughness will be impaired, so upper limits were regulated. For strength increase as these other ingredients
Addition of V0.001~0.10wt%, B0.0005~0.0025wt%, Ti0.003~0.05wt% to improve weldability, Ca, REM0.05~0.10% to control inclusion shape, etc. However, the effect remains unchanged. P and S are impurity elements that seriously damage the base metal and the weld zone dust, but their unavoidable contamination is unavoidable, so each should be kept within the limits that do not cause actual damage.
It is acceptable if it is 0.015wt% or less, 0.010wt% or less. Next, the rolling conditions will be described. The rolling finishing temperature shall be 900℃ or less. At temperatures exceeding 900℃, the grains become coarse and toughness deteriorates. Furthermore, if the finishing rolling temperature is lower than 700°C, the toughness will be impaired, so the lower limit was set at 700°C. The reduction in this temperature range requires a reduction of 30% or more, and if it is less than 30%, a sufficient fine grain structure cannot be obtained. Cu precipitation treatment is carried out at a temperature of 500℃~650℃, 500℃
The reason why we limited it to ℃~600℃ is that outside this temperature range,
This is because the precipitation hardening effect of Cu is impaired. Prior to this Cu precipitation treatment, when reheating and quenching is performed after controlled rolling, the reheating temperature is A C3
~A C3 It is necessary to perform water cooling at +30°C in order to refine the structure after quenching. Also, when direct quenching is performed after controlled rolling, the cooling rate is
2.5℃/sec or more. The reason is that high strength cannot be obtained with cooling slower than 2.5/sec. (Example) Example 1 The chemical composition of the test steel is shown in Table 1. [Table] [Table] Each sample steel was heated to the austenite region, rolled to 25 mm at a finishing temperature of 800°C (reduction ratio of 75%), and then subjected to Cu precipitation treatment at 600°C for 1 hour. The strength and toughness at that time are shown in Table 2. Table 2 also includes data when the rolling was finished at 920°C. [Table] It can be seen that excellent strength and low temperature toughness can be obtained by each of the first and second inventions. Next, the rolling end temperature of the test steel (E) was set to 650.
The effect on the toughness value vE-60 after the Cu precipitation treatment was investigated at various temperatures in the range of ~950°C, and the results shown in Figure 1 were obtained. Furthermore, the rolling end temperature is
Regarding the case of 850℃, Cu precipitation treatment is 450 to 675
The results shown in Figure 2 were obtained by changing the temperature to various conditions and investigating the effects on YS. Example 2 The chemical composition of the test steel is shown in Table 3 along with comparative examples. [Table] RI, (S), and (T) steel are examples of components for comparison.
Each test steel was heated to the austenite region, rolled to 25 mm at a finishing temperature of 800°C (reduction ratio of 75%), cooled in air, and then heated to 900°C for quenching. then 550℃
Cu precipitation treatment was performed for 1 hour. The strength and toughness at that time are shown in Table 4, with the results according to the third and fourth inventions being shown separately, surrounded by thick line sections. Table 4 also includes data when rolling was completed at 920°C and the quenching temperature was 960°C. [Table] [Table] It can be seen that excellent strength and low-temperature toughness can be obtained by each of the third and fourth inventions. Next, for sample steel J, only the quenching temperature was set to 800℃.
above at various temperatures ranging from ~1000°C.
Figure 3 shows the relationship with low temperature toughness after Cu precipitation treatment. Furthermore, Figure 4 shows the effect of the Cu precipitation treatment temperature on YS when the quenching temperature was 900°C. Example 3 Next, each test steel whose chemical composition is shown in Table 3 was heated to the austenite region, rolled to 25 mm at a finishing temperature of 800° C. (reduction ratio of 75%), and then immediately water quenched. Thereafter, Cu precipitation treatment was performed at 550°C for 1 hour. Table 5 shows the strength and toughness at that time. Table 5 also includes comparative data when rolling was completed at 920°C and direct quenching was performed. [Table] It can be seen that the fifth and sixth inventions provide excellent strength and low-temperature toughness. Figures 5 and 6 show the dependence of YS and TS on Cu content and the influence of Ni content on vTrs.
Figure 7 shows the Cu precipitation treatment temperature for sample steel P.
The effect on YS when changing the temperature from 400 to 700℃ was shown. (Effect of the invention) In any of the first to sixth inventions, C is 0.01 or more.
After rolling a steel with a specified composition range based on the characteristics of reducing Cu to 0.10wt% and adding 0.7 to 1.5wt% Cu at a finishing temperature of 900 to 700℃,
After Cu precipitation treatment or rolling, A C3
~A C3 After being reheated to +30℃ and quenched, Cu precipitation treatment is performed at 500 to 650℃, or immediately after rolling, quenching is performed and then quenched at a temperature of 500 to 650℃.
By either Cu precipitation treatment, it was possible to stably produce steel with excellent strength and low-temperature toughness without impairing weldability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は圧延終了温度が低温じん性に及ぼす影
響を示す線図、第2図はCu析出処理温度がY.S.
に及ぼす影響を示す線図であり、第3図は圧延後
の再加熱焼入れ温度と低温じん性の関係線図、第
4図はこの場合のCu析出処理温度とY.S.との関
係線図であり、第5図は直接焼入れの場合におけ
るCu含有量と強度の関係グラフ、第6図はNi含
有量とじん性の関係グラフであり、第7図はCu
析出温度と強度の関係グラフである。
Figure 1 is a diagram showing the effect of rolling end temperature on low-temperature toughness, and Figure 2 is a diagram showing the effect of rolling finish temperature on low-temperature toughness.
Figure 3 is a diagram showing the relationship between reheating and quenching temperature after rolling and low temperature toughness, and Figure 4 is a diagram showing the relationship between Cu precipitation treatment temperature and YS in this case. , Fig. 5 is a graph of the relationship between Cu content and strength in the case of direct quenching, Fig. 6 is a graph of the relationship between Ni content and toughness, and Fig. 7 is a graph of the relationship between Cu content and toughness in the case of direct quenching.
It is a graph showing the relationship between precipitation temperature and strength.

Claims (1)

【特許請求の範囲】 1 C:0.01〜0.10wt%、Si:0.40wt%以下、
Mn:0.5〜2.0wt%、Cu:0.7〜1.5wt%、Ni:0.5
〜2.0wt%、Nb:0.005〜0.06wt%、及びAl:
0.01〜0.10wt%を含有する組成の鋼に、 900℃以下700℃以上で30%以上の圧下を加えて
圧延を終了し、 その後500℃〜650℃の範囲でCu析出処理を施
す、 ことを特徴とする低温じん性および溶接性に優れ
た溶接構造物用高張力鋼の製造方法。 2 C:0.01〜0.10wt%、Si:0.40wt%以下、
Mn:0.5〜2.0wt%、Cu:0.7〜1.5wt%、Ni:0.5
〜2.0wt%、Nb:0.005〜0.06wt%、及びAl:
0.01〜0.10wt%とさらにCr:1.0wt%以下、Mo:
1.0wt%以下のうち1種以上 とを含有する組成の鋼に、 900℃以下700℃以上で30%以上の圧下を加えて
圧延を終了し、 その後500℃〜650℃の範囲でCu析出処理を施
す、 ことを特徴とする低温じん性および溶接性に優れ
た溶接構造物用高張力鋼の製造方法。 3 C:0.01〜0.10wt%、Si:0.40wt%以下、
Mn:0.5〜2.0wt%、Cu:0.7〜1.5wt%、Ni:0.5
〜2.0wt%、Nb:0.005〜0.06wt%、及びAl:
0.01〜0.10wt%を含有する組成の鋼に、 900℃以下700℃以上で30%以上の圧下を加えて
圧延を終了し、 一たん冷却したのち、AC3〜AC3+30℃の範囲
に再加熱後、水冷し、 その後500℃〜650℃の範囲でCu析出処理を施
す、 ことを特徴とする低温じん性および溶接性に優れ
た溶接構造物用高張力鋼の製造方法。 4 C:0.01〜0.10wt%、Si:0.40wt%以下、
Mn:0.5〜2.0wt%、Cu:0.7〜1.5wt%、Ni:0.5
〜2.0wt%、Nb:0.005〜0.06wt%、及びAl:
0.01〜0.10wt%とさらにCr:1.0wt%以下、Mo:
1.0wt%以下のうち1種以上 とを含有する組成の鋼に、 900℃以下700℃以上で30%以上の圧下を加えて
圧延を終了し、 一たん冷却したのち、AC3〜AC3+30℃の範囲
に再加熱後、水冷し、 その後500℃〜650℃の範囲でCu析出処理を施
す、 ことを特徴とする低温じん性および溶接性に優れ
た溶接構造物用高張力鋼の製造方法。 5 C:0.01〜0.10wt%、Si:0.40wt%以下、
Mn:0.5〜2.0wt%、Cu:0.7〜1.5wt%、Ni:0.5
〜2.0wt%、Nb:0.005〜0.06wt%、及びAl:
0.01〜0.10wt% を含有する組成の鋼に、 900℃以下700℃以上で30%以上の圧下を加えて
圧延を終了し、 直ちに平均冷却速度2.5℃/s以上で室温まで
冷却し、 その後500℃〜650℃の範囲でCu析出処理を施
す、 ことを特徴とする、低温じん性および溶接性に優
れた溶接構造物用高張力鋼の製造方法。 6 C:0.01〜0.10wt%、Si:0.40wt%以下、
Mn:0.5〜2.0wt%、Cu:0.7〜1.5wt%、Ni:0.5
〜2.0wt%、Nb:0.005〜0.06wt%、及びAl:
0.01〜0.10wt%とさらにCr:1.0wt%以下、Mo:
1.0wt%以下のうち1種以上とを含有する組成の
鋼に、 900℃以下700℃以上で30%以上の圧下を加えて
圧延を終了し、 直ちに平均冷却速度2.5℃/s以上で室温まで
冷却し、 その後500℃〜650℃の範囲でCu析出処理を施
す、 ことを特徴とする、低温じん性および溶接性に優
れた溶接構造物用高張力鋼の製造方法。
[Claims] 1 C: 0.01 to 0.10wt%, Si: 0.40wt% or less,
Mn: 0.5-2.0wt%, Cu: 0.7-1.5wt%, Ni: 0.5
~2.0wt%, Nb: 0.005~0.06wt%, and Al:
Steel with a composition containing 0.01 to 0.10 wt% is rolled by applying a reduction of 30% or more at temperatures below 900°C and above 700°C, and then subjected to Cu precipitation treatment in the range of 500°C to 650°C. A method for manufacturing high-strength steel for welded structures, which is characterized by excellent low-temperature toughness and weldability. 2 C: 0.01 to 0.10wt%, Si: 0.40wt% or less,
Mn: 0.5-2.0wt%, Cu: 0.7-1.5wt%, Ni: 0.5
~2.0wt%, Nb: 0.005~0.06wt%, and Al:
0.01~0.10wt% and further Cr: 1.0wt% or less, Mo:
Steel with a composition containing one or more of the following: 1.0wt% or less is rolled by applying a reduction of 30% or more at temperatures below 900°C and above 700°C, and then subjected to Cu precipitation treatment in the range of 500°C to 650°C. A method for producing high-strength steel for welded structures having excellent low-temperature toughness and weldability, characterized by: 3 C: 0.01 to 0.10wt%, Si: 0.40wt% or less,
Mn: 0.5-2.0wt%, Cu: 0.7-1.5wt%, Ni: 0.5
~2.0wt%, Nb: 0.005~0.06wt%, and Al:
Steel with a composition containing 0.01 to 0.10wt% is rolled by applying a reduction of 30% or more at temperatures below 900℃ and above 700℃, cooled once, and then reheated to a temperature range of A C3 to A C3 +30℃. A method for producing high-strength steel for welded structures with excellent low-temperature toughness and weldability, which comprises heating, water-cooling, and then performing Cu precipitation treatment at a temperature in the range of 500°C to 650°C. 4 C: 0.01 to 0.10wt%, Si: 0.40wt% or less,
Mn: 0.5-2.0wt%, Cu: 0.7-1.5wt%, Ni: 0.5
~2.0wt%, Nb: 0.005~0.06wt%, and Al:
0.01~0.10wt% and further Cr: 1.0wt% or less, Mo:
Steel with a composition containing one or more of 1.0wt% or less is rolled by applying a reduction of 30% or more at temperatures below 900℃ and above 700℃, and after cooling once, A C3 ~ A C3 +30 A method for manufacturing high-strength steel for welded structures with excellent low-temperature toughness and weldability, characterized by reheating the steel to a temperature range of 100°C, cooling it with water, and then subjecting it to Cu precipitation treatment at a temperature of 500°C to 650°C. . 5 C: 0.01 to 0.10wt%, Si: 0.40wt% or less,
Mn: 0.5-2.0wt%, Cu: 0.7-1.5wt%, Ni: 0.5
~2.0wt%, Nb: 0.005~0.06wt%, and Al:
Steel with a composition containing 0.01 to 0.10wt% is rolled by applying a reduction of 30% or more at a temperature of 900℃ or lower and 700℃ or higher, immediately cooled to room temperature at an average cooling rate of 2.5℃/s or higher, and then 500℃ A method for producing high-strength steel for welded structures with excellent low-temperature toughness and weldability, characterized by performing Cu precipitation treatment in the range of ℃ to 650℃. 6 C: 0.01 to 0.10wt%, Si: 0.40wt% or less,
Mn: 0.5-2.0wt%, Cu: 0.7-1.5wt%, Ni: 0.5
~2.0wt%, Nb: 0.005~0.06wt%, and Al:
0.01~0.10wt% and further Cr: 1.0wt% or less, Mo:
Steel with a composition containing one or more of the following: 1.0 wt% or less is rolled by applying a reduction of 30% or more at a temperature of 900°C or lower and 700°C or higher, and then immediately cooled to room temperature at an average cooling rate of 2.5°C/s or higher. A method for producing high-strength steel for welded structures with excellent low-temperature toughness and weldability, characterized by cooling and then subjecting it to Cu precipitation treatment at a temperature of 500°C to 650°C.
JP27526384A 1984-12-25 1984-12-25 Manufacture of low c-cu precipitation type high tension steel having superior toughness at low temperature and superior weldability Granted JPS61149430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27526384A JPS61149430A (en) 1984-12-25 1984-12-25 Manufacture of low c-cu precipitation type high tension steel having superior toughness at low temperature and superior weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27526384A JPS61149430A (en) 1984-12-25 1984-12-25 Manufacture of low c-cu precipitation type high tension steel having superior toughness at low temperature and superior weldability

Publications (2)

Publication Number Publication Date
JPS61149430A JPS61149430A (en) 1986-07-08
JPH0116283B2 true JPH0116283B2 (en) 1989-03-23

Family

ID=17552976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27526384A Granted JPS61149430A (en) 1984-12-25 1984-12-25 Manufacture of low c-cu precipitation type high tension steel having superior toughness at low temperature and superior weldability

Country Status (1)

Country Link
JP (1) JPS61149430A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668126B2 (en) * 1988-07-15 1994-08-31 川崎製鉄株式会社 Manufacturing method of steel plate with excellent toughness of welded joint
JP5284075B2 (en) * 2008-12-25 2013-09-11 株式会社神戸製鋼所 Structural steel plate with excellent brittle crack propagation stopping properties
JP6242415B2 (en) 2016-02-25 2017-12-06 株式会社日本製鋼所 Cu-containing low alloy steel excellent in strength-low temperature toughness balance and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059018A (en) * 1983-08-03 1985-04-05 Nippon Steel Corp Production of cu-added steel having excellent weldability and low-temperature toughness

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059018A (en) * 1983-08-03 1985-04-05 Nippon Steel Corp Production of cu-added steel having excellent weldability and low-temperature toughness

Also Published As

Publication number Publication date
JPS61149430A (en) 1986-07-08

Similar Documents

Publication Publication Date Title
JPH0432514A (en) Production of soft wire rod free from surface abnormal phase in as-rolled state
JPS6410564B2 (en)
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPS5810442B2 (en) Manufacturing method for high-toughness, high-strength steel with excellent workability
JPS6141968B2 (en)
JPS6223929A (en) Manufacture of steel for cold forging
KR20000043762A (en) Method of manufacturing super high-strength cold-rolled steel sheet improved in ductility
JPH0116283B2 (en)
JPH0225968B2 (en)
JPS6286122A (en) Production of structural steel having high strength and high weldability
JPH02310313A (en) Production of weather-resisting steel
JPH09291312A (en) Production of high strength non-heat treated wire rod for bolt
JPS63277721A (en) Manufacture of rail combining high strength with high toughness
JPS6365021A (en) Production of b-containing non-tempered high tensile steel sheet having excellent low-temperature toughness
JPS6213523A (en) Production of steel bar for low temperature use
JPS6046318A (en) Preparation of steel excellent in sulfide cracking resistance
JPS62149814A (en) Production of low-carbon high-strength seamless steel pipe by direct hardening method
JPH05163527A (en) Manufacture of high tension steel superior in weldability
JPS59153841A (en) Production of high-tension electric welded steel pipe having uniform strength
JP2626421B2 (en) Manufacturing method of high strength steel with excellent weldability
JPS6350424A (en) Manufacture of thick high-tensile steel plate excellent in toughness at low temperature and weldability
JPS63128117A (en) Production of unnormalized high tensile steel
JPH0570885A (en) Hardened steel with low yield point for bulb bow and its production
JPS58120727A (en) Manufacture of high toughness nontempered high tensile steel sheet superior in weldability and causing less separation
JPH027368B2 (en)