JPH02310313A - Production of weather-resisting steel - Google Patents

Production of weather-resisting steel

Info

Publication number
JPH02310313A
JPH02310313A JP13359289A JP13359289A JPH02310313A JP H02310313 A JPH02310313 A JP H02310313A JP 13359289 A JP13359289 A JP 13359289A JP 13359289 A JP13359289 A JP 13359289A JP H02310313 A JPH02310313 A JP H02310313A
Authority
JP
Japan
Prior art keywords
steel
rolling
temperature range
added
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13359289A
Other languages
Japanese (ja)
Inventor
Nobutsugu Takashima
高嶋 修嗣
Takashi Shimohata
下畑 隆司
Mitsuru Ikeda
充 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP13359289A priority Critical patent/JPH02310313A/en
Publication of JPH02310313A publication Critical patent/JPH02310313A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a weather-resisting steel improved in strength by controlling N content in a steel in which Cu, Cr, Nb, and Ti are combinedly added and also specifying treating conditions. CONSTITUTION:A slab of a steel having a composition which consists of 0.01-0.20% C, <=0.50% Si, 0.3-2.0% Mn, 0.01-0.10% Al, 0.20-0.50% Cu, 0.30-0.75% Cr, 0.005-0.050% Nb, 0.005-0.020% Ti, and the balance Fe with inevitable impurities and in which N content is controlled to 0.001-0.003% is prepared. This steel slab is heated up to 1000-1250 deg.C and subjected to rollings including rolling reduction at >=30% rolling reduction at 750-850 deg.C, and, after the rolling is completed at 750-850 deg.C, cooling is carried out without delay down to 400-600 deg.C at 2-20 deg.C/sec cooling rate. If necessary, <=0.30% Ni is added to the above composition. Further, it is desirable that 0.01-0.10% V and/or 0.0005-0.0035% B is contained in the above composition.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、加速冷却法を適用した耐候性鋼の製造方法に
関し、詳しくは、Cu、 Cr、 Nb、 Tiまたは
Cu、 Ni、、Cr、 Nb、 Tiを複合添加した
鋼において鋼中のN量を制御することにより低い炭素当
量においても、高張力化を可能とする耐候性鋼の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing weathering steel using an accelerated cooling method. The present invention relates to a method for manufacturing weathering steel that enables high tensile strength even at low carbon equivalents by controlling the amount of N in steel to which Nb and Ti are added in combination.

(従来の技術) 耐候性鋼はCu、 Ni、 Cr等の耐候性向上元素を
含有しているため、Ceq (炭素当量)が高く、溶接
性が悪いという問題点がある。これを改善するために、
製造工程において圧延仕上)温度の低下、その後の冷却
過程における冷却速度の上昇、冷却停止温度の低下等に
より強度の上昇を図り、この強度上昇に見合う合金元素
を削減し、Ceqの低減を図る方法が検討されてきた。
(Prior Art) Since weathering steel contains weathering improving elements such as Cu, Ni, and Cr, it has a problem of high Ceq (carbon equivalent) and poor weldability. To improve this,
A method in which the strength is increased by lowering the rolling finishing temperature in the manufacturing process, increasing the cooling rate in the subsequent cooling process, lowering the cooling stop temperature, etc., and reducing the amount of alloying elements commensurate with this increase in strength to reduce Ceq. has been considered.

この例として、JIS G3114−1988溶接構造
用耐候性熱間圧延鋼材があり、ここでは熱加工制御(J
IS G 0201鉄鋼熱処理用語 番号1112)所
謂制御圧延、制御冷却が綱材の要求品質を確保するため
の一つの方法として規定されている。
An example of this is JIS G3114-1988 weather-resistant hot-rolled steel for welded structures, where thermal processing control (J
IS G 0201 Steel Heat Treatment Terminology No. 1112) So-called controlled rolling and controlled cooling are specified as one method to ensure the required quality of the steel rod.

(発明が解決しようとする課題) しかし、圧延仕上温度を著しく低下させることは、材質
の異方性を増大し、母材靭性を劣化させることになる。
(Problems to be Solved by the Invention) However, significantly lowering the finishing rolling temperature increases the anisotropy of the material and deteriorates the toughness of the base material.

また、圧延後の冷却速度の大幅な上昇、冷却停止温度の
低下は鋼材内部の残留応力の増大を招くことになり綱材
本来の特性を損なうという問題がある。
Further, a significant increase in the cooling rate after rolling and a decrease in the cooling stop temperature lead to an increase in residual stress inside the steel material, which poses the problem of impairing the original properties of the steel material.

(課題を解決するための手段) そこで、本発明者らは堰冷却の加速冷却の適用を前提と
し、耐候性網の高張力化を図るべく広範囲な研究を重ね
た結果、耐候性付与元素であるCu、Cr、 Nb、 
TiまたはCuSNi、 Cr、 Nb、 Tiを複合
添加した鋼においては、鋼中のN量を制御することによ
って、引張強さを上昇させることが可能であることを見
出して本発明に至ったものである。
(Means for Solving the Problems) Therefore, the inventors of the present invention assumed the application of accelerated cooling by weir cooling, and as a result of conducting extensive research in order to increase the tensile strength of weather-resistant nets, we found that Some Cu, Cr, Nb,
The present invention was achieved by discovering that it is possible to increase the tensile strength of steel containing Ti or CuSNi, Cr, Nb, and Ti in combination by controlling the amount of N in the steel. be.

その第1発明は、C:0.01〜0.20%、Si:0
.50%以下、Mn:0.3〜2.0%、AI:0.0
1〜0.10%、Cu:0.20〜O,’50%、Cr
:0.30〜0.75%、Nb:0.005〜0゜05
0%、Ti:0.005〜o、 020%を含み、がっ
、N:0゜001〜0.003%の範囲に制御し、残部
Feおよび不可避的不純物から成る鋼片を、1000〜
1250℃の温度範囲に加熱した後、750〜850℃
の温度範囲で圧下率30%以上の圧下を含む圧延を行い
、750〜850℃の温度範囲にて圧延を完了し、直ち
に、2〜20°(: /secの冷却速度で400〜6
00 ℃の温度範囲まで冷却する耐候性鋼の製造方法で
ある。
The first invention is C: 0.01-0.20%, Si: 0
.. 50% or less, Mn: 0.3-2.0%, AI: 0.0
1~0.10%, Cu:0.20~O,'50%, Cr
:0.30~0.75%, Nb:0.005~0°05
0%, Ti: 0.005 to 0.020%, Ga, N: controlled to a range of 0.001 to 0.003%, and the balance consisting of Fe and unavoidable impurities.
After heating to a temperature range of 1250℃, 750-850℃
Rolling including reduction with a reduction rate of 30% or more is carried out in a temperature range of 2 to 20 degrees (: 400 to 6
This is a method for producing weathering steel that is cooled to a temperature range of 0.000C.

第2発明は、C:0.01〜0.20%、Si:0.5
0%以下、Mn:0.3〜2.0  %、八l:0.0
1 〜0.10%、Cu:0.20〜0.50%、Ni
:0.30%以下、Cr:0.30〜0.75%、Nb
:0.005〜0.050%、T i : 0 、00
5〜0.020%を含み、かつ、N:0.00L〜0.
003%の範囲に制御し、残部Feおよび不可避的不純
物から成る鋼片を、1000〜1250℃の温度範囲に
加熱した後、750〜850℃の温度範囲で圧下率30
%以上の圧下を含む圧延を行い、750〜850℃の温
度範囲にて圧延を完了し、直ちに、2〜20℃:、 /
secの冷却速度で400〜600℃の温度範囲まで冷
却する耐候性鋼の製造方法である。
The second invention is C: 0.01 to 0.20%, Si: 0.5
0% or less, Mn: 0.3-2.0%, 8l: 0.0
1 - 0.10%, Cu: 0.20 - 0.50%, Ni
: 0.30% or less, Cr: 0.30-0.75%, Nb
: 0.005-0.050%, Ti: 0,00
5-0.020%, and N: 0.00L-0.
After heating a steel piece consisting of Fe and unavoidable impurities to a temperature range of 1000 to 1250°C, a rolling reduction rate of 30% was applied in a temperature range of 750 to 850°C.
% or more, complete the rolling in a temperature range of 750 to 850°C, and immediately reduce the rolling to 2 to 20°C:, /
This is a method for manufacturing weathering steel in which the steel is cooled to a temperature range of 400 to 600° C. at a cooling rate of sec.

ある。be.

第3発明は、V:0.01〜0.10%、B:O,00
05〜0゜0035%の内から選んだ1種または2種を
含む請求項(1)または請求項(2)の製造方法である
The third invention is V: 0.01 to 0.10%, B: O, 00
The method of claim (1) or claim (2) includes one or two selected from 0.05 to 0.0035%.

(作用) 以下、本発明の作用について詳述していくことにする。(effect) Hereinafter, the effects of the present invention will be explained in detail.

先ずは、本発明の骨子について説明する。First, the gist of the present invention will be explained.

従来、鋼中のNは、その含有量の増大に伴ってその固溶
強化あるいは鋼中に窒化物生成元素がある場合には、窒
化物の生成による析出強化によって強度を上昇させるこ
とが知られている。
Conventionally, it has been known that N in steel increases its strength by solid solution strengthening as its content increases, or by precipitation strengthening due to the formation of nitrides if the steel contains nitride-forming elements. ing.

しかし、本発明者らは、CuSCr、 Nb、、Tiま
たはCu、 Ni、 Cr、 Nb、 Tiを複合添加
した鋼を制御圧延および加速冷却して鋼材にする場合、
鋼中のNlを低減させることによって、上記制御圧延お
よび加速冷却の条件を一定にしたままで、鋼材強度を大
幅に上昇させることができると言う新しい知見を得てい
る。
However, the present inventors found that when a steel containing CuSCr, Nb, Ti or a composite of Cu, Ni, Cr, Nb, and Ti is subjected to controlled rolling and accelerated cooling to produce a steel material,
We have obtained new knowledge that by reducing Nl in steel, the strength of the steel material can be significantly increased while keeping the conditions of controlled rolling and accelerated cooling constant.

第1図は、Cu−Cr−Nb−Ti系およびCu−Ni
−Nb−Ti系鋼について、引張強さに及ぼすN’rJ
の影ツを示したものである。同図から明らかなように、
Nff1の低減が強度上昇に太き(寄与することがわか
る。これらの現象についてさらに詳しく説明する。
Figure 1 shows Cu-Cr-Nb-Ti system and Cu-Ni system.
-N'rJ effect on tensile strength for Nb-Ti steel
This shows the shadow of As is clear from the figure,
It can be seen that the reduction in Nff1 greatly contributes to the increase in strength. These phenomena will be explained in more detail.

本発明においては、Cu、 Cr、 Nbを必須元素と
して含有している。これらの元素は、固溶状態において
はオーステナイト粒界に偏析して、粒界でのフェライト
核生成の駆動力を低減し、フェライト変態を抑制すると
ともに、ベイナイト変態を促進する作用をし、Cu、 
Cr、 Nbの共存状態において、この効果が一層高め
られると考えられる。なかでもNbは、鋼の焼入れ性を
最も向上させる作用をしているものとみられるので、圧
延の完了時に固溶状態にて存在するNb量によって、鋼
の焼入れ性がほぼ決定されるとみられる。
In the present invention, Cu, Cr, and Nb are contained as essential elements. In a solid solution state, these elements segregate at austenite grain boundaries, reduce the driving force for ferrite nucleation at grain boundaries, suppress ferrite transformation, and promote bainite transformation.
It is thought that this effect is further enhanced when Cr and Nb coexist. Among them, Nb seems to have the effect of most improving the hardenability of steel, so it seems that the hardenability of steel is almost determined by the amount of Nb present in solid solution at the completion of rolling.

−IIQに、固溶状態で存在する元素量は化合物の生成
の難易によって大きく影響されることは良く知られてい
るが、本発明の方法においては、上記Nbは溶解度積か
らみて、窒化物を形成しやすい元素であるので、圧延完
了時に固溶状態にて存在するNb量は鋼中のN量によっ
て大きく影響され、その結果、鋼の焼入れ性、ひいては
鋼の強度が鋼中のNiによって決定されるのであろう。
It is well known that the amount of elements present in solid solution in -IIQ is greatly influenced by the difficulty of forming the compound, but in the method of the present invention, the above Nb is Since it is an element that is easily formed, the amount of Nb present in solid solution at the completion of rolling is greatly influenced by the amount of N in the steel, and as a result, the hardenability of steel and, ultimately, the strength of steel are determined by Ni in steel. It will probably be done.

つぎに、本発明の方法における個々の化学成分の限定理
由について説明する。
Next, the reasons for limiting the individual chemical components in the method of the present invention will be explained.

Cは、鋼の強度を確保するために必要な元素であって、
0.03%より少ないときはこの効果に乏しい。しかし
、0.20%を超えて過多に添加するときは低温靭性お
よび溶接性を劣化させる。このため、その添、加重は0
.03〜0.20%とする。
C is an element necessary to ensure the strength of steel,
When it is less than 0.03%, this effect is poor. However, when added in excess of 0.20%, low temperature toughness and weldability deteriorate. Therefore, its index and weight are 0
.. 03 to 0.20%.

Stは、鋼の溶製時の脱酸のために添加される。St is added for deoxidation during melting of steel.

しかし、0.50%を超えて添加すると靭性にを害な影
響を及ぼす、このため、その添加量は0.50%以下と
する。
However, adding more than 0.50% will have a detrimental effect on toughness, so the amount added should be 0.50% or less.

Mnは、鋼の強度の確保のために、少な(とも0゜3%
を添加する必要がある。しかし、2.0%を超えて添加
すると靭性を損なうため、その添加量は0.3〜2.0
%とする。
In order to ensure the strength of the steel, Mn must be contained in a small amount (0.3%).
need to be added. However, adding more than 2.0% will impair toughness, so the amount added should be 0.3 to 2.0%.
%.

^lは、鋼の脱酸剤として不可欠であるとともに、鋼中
の固溶NをAINとして固定し、鋼の靭性の向上に効果
を有する。さらに、AINは、鋼片の加熱時のオーステ
ナイト粒の粗大化を抑制し、鋼の靭性を高める効果を有
する。かかる効果を有効に得るためには、0.01%以
上の添加を必要とするが、0.10%を超えて多量に添
加するときは、酸化物系介在物を形成して、かえって靭
性を劣化させる。従って、その添加量は0.01〜0.
10%とする。
^l is essential as a deoxidizing agent for steel, and also fixes solid solution N in steel as AIN, which is effective in improving the toughness of steel. Furthermore, AIN has the effect of suppressing coarsening of austenite grains during heating of the steel billet and improving the toughness of the steel. In order to effectively obtain this effect, it is necessary to add 0.01% or more, but when adding in a large amount exceeding 0.10%, oxide inclusions may be formed and the toughness may be adversely affected. deteriorate. Therefore, the amount added is 0.01 to 0.
10%.

Cuは、耐候性を確保するために必要であり、0゜20
%より少ないときはこの効果に乏しい。しかし、0.5
0%を超えて過多に添加すると溶接性を劣化させる。こ
のため、その添加量はO4?0〜0.50%とする。
Cu is necessary to ensure weather resistance and is 0°20
%, this effect is poor. However, 0.5
When added in excess of more than 0%, weldability deteriorates. Therefore, the amount of O4 added is 0 to 0.50%.

Niは、靭性の向上、に有効な元素であるとともに、C
u、 Crとの複合添加によって耐候性を向上させる元
素であり、要求される特性に応して添加れる。しかし、
経済性の観点から添加量の上限を0.30%とする。
Ni is an element that is effective in improving toughness, and is also effective in improving toughness.
It is an element that improves weather resistance when added in combination with u and Cr, and is added depending on the required characteristics. but,
From the viewpoint of economy, the upper limit of the amount added is set at 0.30%.

Crは、耐候性を確保するために必要な元素であり、0
.30%より少ないときはこの効果に乏しい。
Cr is an element necessary to ensure weather resistance, and 0
.. When the amount is less than 30%, this effect is poor.

しかし、0.75%を超えて過多に添加するときは溶接
性を劣化させる。このため、その添加量は0,30〜0
.75%とする。
However, when added in excess of 0.75%, weldability deteriorates. Therefore, the amount added is 0.30~0
.. It shall be 75%.

Nbは、固溶状態で鋼の焼入れ性を著しく高めることが
できる元素であり、フェライト生成温度の低下によるフ
ェライト粒の微細化およびベイナイト変態の促進を通じ
て、靭性の向上に有効に作用する。かかる効果を有効に
得るには、本発明においては、Nbを0.005%以上
を添加する必要がある。しかし、過多に添加するときは
溶接性の劣化等を招くので、その添加量はo、oos〜
0.050%とする。
Nb is an element that can significantly improve the hardenability of steel in a solid solution state, and effectively works to improve toughness by reducing the ferrite formation temperature to refine ferrite grains and promote bainite transformation. In order to effectively obtain such an effect, in the present invention, it is necessary to add Nb in an amount of 0.005% or more. However, if too much is added, it will cause deterioration of weldability, so the amount of addition should be o, oos ~
It shall be 0.050%.

Tiは、TiNの形成を通して、鋼片の加熱時のオース
テナイト粒粗大化の抑制およびフェライト)亥生成の促
進の効果を有する。これらの効果を十分に発揮させるに
は、その添加量はo、oos〜0.020%とする。
Through the formation of TiN, Ti has the effect of suppressing coarsening of austenite grains during heating of a steel billet and promoting the formation of ferrite. In order to fully exhibit these effects, the amount added should be from o,oos to 0.020%.

Nは、上記のAIおよびTiとともに、窒化物を形成し
て組織の微細化を促進し、靭性を改善する効果を有する
。しかし、過多に添加すると低N化による十分な強度上
昇効果が得られなくなる。従って、本発明においてはそ
の添加量は0.001〜0.003%とする。
N, together with the above-mentioned AI and Ti, forms nitrides, promotes microstructural refinement, and has the effect of improving toughness. However, if it is added in excess, a sufficient strength-increasing effect due to the low N content cannot be obtained. Therefore, in the present invention, the amount added is 0.001 to 0.003%.

上記の元素の他に、強度上昇の点から下記の元素を1種
または2種を添加しても本発明の効果は損なわれるもの
ではない。
In addition to the above-mentioned elements, the effects of the present invention will not be impaired even if one or two of the following elements are added in order to increase the strength.

Vは、強度上昇効果を有する元素であり、そのためには
少な(とも0.01%を添加する必要がある。しかし、
o、 io%を超えて過多に添加すると溶接性を劣化さ
せる。このため、その添加量は0.01〜0.10%と
する。
V is an element that has the effect of increasing strength, and for that purpose it is necessary to add a small amount (0.01%. However,
If added in excess of more than 0.0% or io%, weldability will deteriorate. Therefore, the amount added is 0.01 to 0.10%.

Bは、微量の添加によって焼入れ性を向上させるが、そ
の添加量が0.0005%よりも少ないときは、その効
果が乏しく、一方、0.0035%を超えて過多に添加
するとかえって焼入れ性が低下する。このため、その添
加量は0.0005〜0.0035%とする。
B improves hardenability when added in a trace amount, but when the amount added is less than 0.0005%, the effect is poor; on the other hand, when added in excess of 0.0035%, the hardenability is improved. descend. Therefore, the amount added is 0.0005 to 0.0035%.

つぎに、製造条件の限定理由について説明する加熱温度
の上限を1250℃とした理由は、これ以上の温度では
加熱時のオーステナイト粒が粗大化し、その後の圧延で
の細粒化効果が十分得られず製品の靭性を劣化させるた
めである。また、加熱温度の下限を1ooo’cとした
理由は、1000℃未満ではオーステナイト粒への加工
歪みの付与に必要な固)容Nbが得られないためである
。従って、加熱温度は1000〜1250℃の範囲とす
る。
Next, we will explain the reason for limiting the manufacturing conditions.The reason why the upper limit of the heating temperature was set at 1250°C is that at temperatures higher than this, the austenite grains during heating will become coarse, and the subsequent rolling will not be able to obtain a sufficient grain refining effect. This is because it deteriorates the toughness of the product. Further, the reason why the lower limit of the heating temperature is set to 100'C is that if it is less than 1000C, the solid volume Nb necessary for imparting processing strain to the austenite grains cannot be obtained. Therefore, the heating temperature is in the range of 1000 to 1250°C.

オーステナイト粒への加工歪みの付与には、オーステナ
イト低温域での圧延が有効でり、そのためには、750
〜850℃の温度範囲で少なくとも30%以上の圧下が
必要である。従って、圧下は750〜850℃の温度範
囲で30%以上と規定する。
Rolling in the austenite low temperature range is effective for imparting processing strain to austenite grains, and for this purpose rolling at 750
A pressure reduction of at least 30% or more is required at a temperature range of ~850°C. Therefore, the reduction is defined as 30% or more in the temperature range of 750 to 850°C.

圧延完了温度は、750℃未満では材質の異方性が増大
し靭性も劣化し、また、850℃を超えても靭性が劣化
する。このため、圧延完了温度は750〜850℃の温
度範囲とする。
If the rolling completion temperature is less than 750°C, the anisotropy of the material will increase and the toughness will deteriorate, and if it exceeds 850°C, the toughness will deteriorate. Therefore, the rolling completion temperature is in the temperature range of 750 to 850°C.

冷却速度は2℃/sec未満では加速冷却による十分な
強度上昇効果がなく、また、20℃/secを超えると
鋼材内部の残留応力が増大する。このため、冷却速度は
2〜20℃/secの範囲とする。
If the cooling rate is less than 2°C/sec, accelerated cooling will not have a sufficient strength increasing effect, and if it exceeds 20°C/sec, residual stress inside the steel material will increase. Therefore, the cooling rate is set in a range of 2 to 20°C/sec.

冷却停止温度は400℃未満では鋼材内部の残留応力が
増大し、600″Cを超えると加速冷却による十分な強
度上昇効果が得られない。このため、冷却停止温度は4
00〜600℃の温度範囲とする。
If the cooling stop temperature is less than 400°C, the residual stress inside the steel material will increase, and if it exceeds 600"C, a sufficient strength increase effect cannot be obtained by accelerated cooling. Therefore, the cooling stop temperature is 4
The temperature range is 00 to 600°C.

(実施例) 本発明の構成は上記の通りであるが、以下に実施例につ
いて説明する。
(Example) Although the configuration of the present invention is as described above, an example will be described below.

供試鋼板は第1表に示す化学成分を有する鋼を常法によ
り溶製、鋳造し、得られた鋼片を第2表に示す加熱、圧
延条件および冷却条件にしたがい、所定の厚さにしたも
のである。
The test steel plates were made by melting and casting steel having the chemical composition shown in Table 1 using conventional methods, and rolling the obtained steel slabs to the specified thickness according to the heating, rolling and cooling conditions shown in Table 2. This is what I did.

これらの鋼板から試験片を採取し、引張試験を行った。Test pieces were taken from these steel plates and subjected to a tensile test.

その結果を第2表に併記する。The results are also listed in Table 2.

第1表には本発明法および比較法の化学成分、Ceqを
、第2表には加熱温度、圧延条件、冷却条件および引張
特性をそれぞれ示す。
Table 1 shows the chemical components and Ceq of the method of the present invention and the comparative method, and Table 2 shows the heating temperature, rolling conditions, cooling conditions, and tensile properties, respectively.

”(以下余白) 第2表の線番号1〜3はCu−Cr−Nb−Ti系、線
番号4〜6はCu−Ni−Cr−Nb−Ti系、線番号
7.8はCu−N1−Cr−Nb−Ti−B系、線番号
9.10はCu−Cr−Nb−Ti−V系、線番号11
.12はCu−N1−Cr−Nb−Ti−V系、線番号
13.14はCu−Cr−Nb−Ti−B系においてN
iのみを変化させたものである。ただし、加熱温度、圧
延条件、冷却条件は各成分系で一定である。
(Left below) Wire numbers 1 to 3 in Table 2 are Cu-Cr-Nb-Ti system, wire numbers 4 to 6 are Cu-Ni-Cr-Nb-Ti system, and wire number 7.8 is Cu-N1. -Cr-Nb-Ti-B system, wire number 9.10 is Cu-Cr-Nb-Ti-V system, wire number 11
.. 12 is Cu-N1-Cr-Nb-Ti-V system, and wire number 13.14 is Cu-Cr-Nb-Ti-B system.
Only i is changed. However, the heating temperature, rolling conditions, and cooling conditions are constant for each component system.

本発明法の線番号1.4.7.9.11.13は成分系
はそれぞれ異なっているが、いずれの場合も、引張強さ
、降伏強さは鋼中のN量の低下により増大していること
が明らかである。一方、比較法の線番号2.3.5.6
.8.10.12.14は、N量が本発明の規定値より
も多いため、引張強さ、降伏強さとも本発明法のそれら
よりも低下している。
The wire numbers 1.4.7.9.11.13 of the present invention have different compositions, but in all cases, the tensile strength and yield strength increase due to the decrease in the amount of N in the steel. It is clear that On the other hand, line number 2.3.5.6 of the comparative method
.. In No. 8.10.12.14, since the amount of N was higher than the specified value of the present invention, both the tensile strength and yield strength were lower than those of the method of the present invention.

以上の実施例からも明らかなように、本発明に係わる耐
候性鋼の製造方法は、Niを0.003%以下にするこ
とにより、大幅な強度上昇効果を得ることができる。
As is clear from the above examples, the method for manufacturing weathering steel according to the present invention can significantly increase strength by reducing Ni to 0.003% or less.

なお、上記実施例は厚鋼板の製造方法についてのもので
あるが、本発明は他の鋼製品、例えば条鋼、形鋼の製造
にも適応し得ることはいうまでもない。
It should be noted that although the above-mentioned embodiment relates to a method for manufacturing thick steel plates, it goes without saying that the present invention can also be applied to the manufacturing of other steel products, such as long steel and shaped steel.

(発明の効果) 以上説明したように、本発明に係わる耐候性鋼の製造方
法は、上記の構成であるから、鋼中のN量を低減するこ
とにより、大きな強度上昇効果を得ることができるため
、強度上昇に見合う合金元素が低減でき、Ceqも低く
することが可能で、ひいては、大幅に溶接性を向上させ
ることができ、また緩冷却のため鋼材内部の残留応力を
低下させるという優れた効果を有するものである。
(Effects of the Invention) As explained above, since the method for manufacturing weathering steel according to the present invention has the above configuration, it is possible to obtain a large strength increasing effect by reducing the amount of N in the steel. Therefore, the amount of alloying elements commensurate with the increase in strength can be reduced, Ceq can also be lowered, and weldability can be significantly improved.Also, due to slow cooling, residual stress inside the steel material can be reduced. It is effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCu−Cr−Nb−Ti系およびCu−Ni−
Cr−Nb4i系鋼についてのNiと引張強さとの関係
を示すグラフである。
Figure 1 shows Cu-Cr-Nb-Ti and Cu-Ni-
It is a graph showing the relationship between Ni and tensile strength for Cr-Nb4i steel.

Claims (3)

【特許請求の範囲】[Claims] (1)C:0.01〜0.20%、Si:0.50%以
下、Mn:0.3〜2.0%、Al:0.01〜0.1
0%、Cu:0.20〜0.50%、Cr:0.30〜
0.75%、Nb:0.005〜0.050%、Ti:
0.005〜0.020%を含み、かつ、N:0.00
1〜0.003%の範囲に制御し、残部Feおよび不可
避的不純物から成る鋼片を、1000〜1250℃の温
度範囲に加熱した後、750〜850℃の温度範囲で圧
下率30%以上の圧下を含む圧延を行い、750〜85
0℃の温度範囲にて圧延を完了し、直ちに、2〜20℃
/secの冷却速度で400〜600℃の温度範囲まで
冷却することを特徴とする耐候性鋼の製造方法。
(1) C: 0.01-0.20%, Si: 0.50% or less, Mn: 0.3-2.0%, Al: 0.01-0.1
0%, Cu: 0.20~0.50%, Cr: 0.30~
0.75%, Nb: 0.005-0.050%, Ti:
Contains 0.005 to 0.020%, and N: 0.00
After heating a steel piece consisting of Fe and unavoidable impurities to a temperature range of 1000 to 1250°C, with a reduction rate of 30% or more in a temperature range of 750 to 850°C. Rolling including reduction is carried out to 750-85
Rolling is completed in the temperature range of 0°C, and immediately the temperature is reduced to 2 to 20°C.
A method for producing weathering steel, characterized by cooling to a temperature range of 400 to 600°C at a cooling rate of /sec.
(2)C:0.01〜0.20%、Si:0.50%以
下、Mn:0.3〜2.0%、Al:0.01〜0.1
0%、Cu:0.20〜0.50%、Ni:0.30%
以下、Cr:0.30〜0.75%、Nb:0.005
〜0.050%、Ti:0.005〜0.020%を含
み、かつ、N:0.001〜0.003%の範囲に制御
し、残部Feおよび不可避的不純物から成る鋼片を、1
000〜1250℃の温度範囲に加熱した後、750〜
850℃の温度範囲で圧下率30%以上の圧下を含む圧
延を行い、750〜850℃の温度範囲にて圧延を完了
し、直ちに、2〜20℃/secの冷却速度で400〜
600℃の温度範囲まで冷却することを特徴とする耐候
性鋼の製造方法。
(2) C: 0.01-0.20%, Si: 0.50% or less, Mn: 0.3-2.0%, Al: 0.01-0.1
0%, Cu: 0.20-0.50%, Ni: 0.30%
Below, Cr: 0.30-0.75%, Nb: 0.005
~0.050%, Ti: 0.005~0.020%, N: controlled within the range of 0.001~0.003%, and the balance consisting of Fe and unavoidable impurities.
After heating to a temperature range of 000~1250℃, 750~
Rolling including reduction with a rolling reduction rate of 30% or more is performed in a temperature range of 850°C, and rolling is completed in a temperature range of 750 to 850°C. Immediately, rolling is performed at a cooling rate of 2 to 20°C/sec.
A method for producing weathering steel, characterized by cooling to a temperature range of 600°C.
(3)V:0.01〜0.10%、B:0.0005〜
0.0035%の内から選んだ1種または2種を含む請
求項(1)または請求項(2)の製造方法。
(3) V: 0.01~0.10%, B: 0.0005~
The manufacturing method according to claim (1) or claim (2), containing one or two selected from 0.0035%.
JP13359289A 1989-05-25 1989-05-25 Production of weather-resisting steel Pending JPH02310313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13359289A JPH02310313A (en) 1989-05-25 1989-05-25 Production of weather-resisting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13359289A JPH02310313A (en) 1989-05-25 1989-05-25 Production of weather-resisting steel

Publications (1)

Publication Number Publication Date
JPH02310313A true JPH02310313A (en) 1990-12-26

Family

ID=15108414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13359289A Pending JPH02310313A (en) 1989-05-25 1989-05-25 Production of weather-resisting steel

Country Status (1)

Country Link
JP (1) JPH02310313A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000043561A1 (en) * 1999-01-20 2000-07-27 Bethlehem Steel Corporation Method of making an as-rolled multi-purpose weathering steel plate and product therefrom
KR100435428B1 (en) * 1999-06-17 2004-06-10 주식회사 포스코 Method of making an As-rolled multi-purpose weathering steel plate and product therefrom
KR100554756B1 (en) * 2001-12-27 2006-02-24 주식회사 포스코 A Method of Manufacturing the Fine-Grained Ferrite High-Strength Steel
CN106191672A (en) * 2016-07-12 2016-12-07 山东钢铁股份有限公司 The weathering steel of a kind of electric power tunnel use and manufacture method thereof
CN108251737A (en) * 2018-02-23 2018-07-06 柳州钢铁股份有限公司 A kind of manufacturing method of yield strength 550MPa grade high-strength weathering steels

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000043561A1 (en) * 1999-01-20 2000-07-27 Bethlehem Steel Corporation Method of making an as-rolled multi-purpose weathering steel plate and product therefrom
AU772626B2 (en) * 1999-01-20 2004-05-06 Isg Technologies Method of making an as-rolled multi-purpose weathering steel plate and product therefrom
KR100435428B1 (en) * 1999-06-17 2004-06-10 주식회사 포스코 Method of making an As-rolled multi-purpose weathering steel plate and product therefrom
KR100554756B1 (en) * 2001-12-27 2006-02-24 주식회사 포스코 A Method of Manufacturing the Fine-Grained Ferrite High-Strength Steel
CN106191672A (en) * 2016-07-12 2016-12-07 山东钢铁股份有限公司 The weathering steel of a kind of electric power tunnel use and manufacture method thereof
CN108251737A (en) * 2018-02-23 2018-07-06 柳州钢铁股份有限公司 A kind of manufacturing method of yield strength 550MPa grade high-strength weathering steels
CN108251737B (en) * 2018-02-23 2019-12-17 柳州钢铁股份有限公司 Manufacturing method of high-strength weathering steel with yield strength of 550MPa

Similar Documents

Publication Publication Date Title
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JP2834276B2 (en) Manufacturing method of high strength steel with excellent sulfide stress cracking resistance
JPS59211528A (en) Production of non-tempered steel having low yield ratio
JPS6366368B2 (en)
JPS6141968B2 (en)
JPH02310313A (en) Production of weather-resisting steel
JPH05105957A (en) Production of heat resistant high strength bolt
JPH0573803B2 (en)
JPH0696742B2 (en) High strength / high toughness non-heat treated steel manufacturing method
JPH10287957A (en) High strength pc steel bar and its manufacture
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JPH083636A (en) Production of low yield ratio high toughness steel
JP3692565B2 (en) Method for producing B-added high-strength steel
JPH0116283B2 (en)
JP2529042B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JPS6410565B2 (en)
JPS6286122A (en) Production of structural steel having high strength and high weldability
JPH06340924A (en) Production of low yield ratio high tensile strength steel
KR100276312B1 (en) The manufacturing method of 80kg grade direct quenching type high strength steel sheet with excellent toughness
JP2915691B2 (en) High ductility austenitic-ferrite dual phase heat resistant steel and method for producing the same
JPS6350424A (en) Manufacture of thick high-tensile steel plate excellent in toughness at low temperature and weldability
JPH07118741A (en) Production of extremely thick refined high strength steel plate
JPS6254018A (en) Manufacture of high tensile steel superior in material characteristic after warm working
JPS58120727A (en) Manufacture of high toughness nontempered high tensile steel sheet superior in weldability and causing less separation
JPH04362126A (en) Production of high strength steel plate excellent in toughness