JPS6254018A - Manufacture of high tensile steel superior in material characteristic after warm working - Google Patents
Manufacture of high tensile steel superior in material characteristic after warm workingInfo
- Publication number
- JPS6254018A JPS6254018A JP3821786A JP3821786A JPS6254018A JP S6254018 A JPS6254018 A JP S6254018A JP 3821786 A JP3821786 A JP 3821786A JP 3821786 A JP3821786 A JP 3821786A JP S6254018 A JPS6254018 A JP S6254018A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- temperature
- warm working
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は高張力鋼の製造方法に関し、所ii4TMc
P(Thermomechanical Contro
l Process)により製造され、温間加工後も優
れた材質特性を示す鋼を製造し得る方法を提供しようと
するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing high-strength steel, and
P (Thermomechanical Control
The purpose of the present invention is to provide a method for producing steel that is produced by a 100% process and exhibits excellent material properties even after warm working.
海洋構造物等に用いる鋼は高強度、高靭性を要求され、
従来この株の鋼は規準や焼入−焼戻処理により製造され
ていた。しかし近年。Steel used for offshore structures etc. is required to have high strength and toughness.
Previously, this type of steel was produced by standard or hardening-tempering processes. But in recent years.
制御圧延や加速冷却などの厚板製造技術が進歩し・、所
謂TMCPとして普及しつつあり。Plate manufacturing technology such as controlled rolling and accelerated cooling has progressed and is becoming popular as so-called TMCP.
海洋構造物用鋼への適用も増えつつある。このTMCP
型の鋼は、オーステナイト低温域や(α+γ)二相領域
の圧延により、或は圧゛延後の加速冷却によりオーステ
ナイトからフェライトへの変態を制御することで高強度
。Its application to steel for offshore structures is also increasing. This TMCP
This type of steel has high strength by controlling the transformation from austenite to ferrite by rolling in the austenite low-temperature region or (α + γ) two-phase region, or by accelerated cooling after rolling.
高靭性を得ている。Obtains high toughness.
ところで、海洋構造物等に用いる鋼は、組立て時に曲げ
加工等をうけることが多く、薄肉の鋼や低強度の鋼では
冷間加工が、厚鋼板では熱間加工が一般的である。By the way, steel used for marine structures and the like is often subjected to bending processing and the like during assembly, and cold working is common for thin-walled steel and low-strength steel, and hot working is common for thick steel plates.
しかし、TMCP型鋼の場合、熱間加工時にオーステナ
イト域に再加熱すると、従来付以上に材質劣化を起こす
欠点がある。また冷間加工の場合はこのような材質上の
問題はないものの、TMCPの進歩により、高強度・厚
内の鋼が製造可能になってくると、プレス能力の上から
冷間加工が出来ないという問題が生じている。However, in the case of TMCP type steel, if it is reheated to the austenite region during hot working, there is a drawback that the material deteriorates more than conventional steel. In addition, although there are no problems with the material quality when cold working, advances in TMCP have made it possible to manufacture high-strength, thick steel, making cold working impossible due to pressing capacity. This problem has arisen.
このような点に鎌み、α高温域や(α+γ)二相領域に
加熱した後に加工を加える直間加工が、高強度あるいは
厚肉のTMCP鋼に用いられるようlこなりつつあり、
この技術について種々提案もなされているが、温間加工
後の特性を含めて検討した提案はまだなされていない。Taking advantage of this point, direct processing, which involves processing after heating to the α high temperature region or (α + γ) two-phase region, is becoming increasingly used for high-strength or thick-walled TMCP steel.
Although various proposals have been made regarding this technology, no proposal has yet been made that considers the characteristics after warm working.
本発明は上記した従来技術の現状に鑑みてなされたもの
で、鋼の組成、熱間圧延、温間加工の条件を夫々限定す
ることにより、温間加工後の特性に優れた鋼を得ようと
するものである。The present invention has been made in view of the current state of the prior art described above, and aims to obtain steel with excellent properties after warm working by limiting the composition of steel, hot rolling, and warm working conditions. That is.
即ち、談ず本発明法にセいて1組成はC:0.03〜0
.20’4、si:o、a%以下、Mn : 0.5〜
2.0チ、5oLu : 0.005〜0.08チ、残
部鉄および不可避的不純物から成る鋼に限定される・上
記成分に加えて、更にNb : 0.005〜0.1
%、 V :0.005〜0.15チ、Ti : 0.
005〜0.15 %、cu:1.0%以下、Cr:1
.0%以下、Ni : a、s tlb以下、Mo:1
.0%以下、B : 0.0005〜0.00396
(7)うち1種又は2種以上を必要に応じて添加させて
も良い。That is, according to the method of the present invention, one composition has C: 0.03 to 0.
.. 20'4, si: o, a% or less, Mn: 0.5~
2.0chi, 5oLu: 0.005-0.08chi, limited to steel consisting of balance iron and unavoidable impurities - In addition to the above components, further Nb: 0.005-0.1
%, V: 0.005-0.15chi, Ti: 0.
005-0.15%, cu: 1.0% or less, Cr: 1
.. 0% or less, Ni: a, stlb or less, Mo: 1
.. 0% or less, B: 0.0005 to 0.00396
(7) One or more of these may be added as necessary.
そして、このような成分の鋼に制御圧延を施すわけであ
るが、その条件を900℃以下の累積圧下率を30−以
上に限定する。制御圧延後はそのままか或は加速冷却を
行っても良い。この場合、空冷以上〜100 ℃/ 3
ee の冷却速度で少なくとも変態が終了する温度まで
加速冷却するものとする。Controlled rolling is then performed on the steel having such components, but the conditions are limited to 900° C. or less and a cumulative reduction rate of 30 − or more. After controlled rolling, it may be left as is or accelerated cooling may be performed. In this case, air cooling or higher ~100℃/3
It is assumed that accelerated cooling is performed at a cooling rate of ee to at least the temperature at which transformation ends.
その後750〜40011:の範囲に加熱し、直ちに或
は放冷後750〜250℃の温度で加工を施す。Thereafter, it is heated to a temperature in the range of 750 to 40011°C, and processed immediately or at a temperature of 750 to 250°C after being allowed to cool.
以上の方法により温間加工後の材質特性に優れた鋼を得
ることができる。By the above method, steel with excellent material properties after warm working can be obtained.
ここで1本発明法の最も特徴的な温間加工条件について
先に説明する。Here, the most characteristic warm working conditions of the method of the present invention will be explained first.
第1囚は従来の規準材(○印)と制御圧延後加速冷却を
施したTMCP材(△印)を、500〜750℃の各温
度に加熱後500℃にて10饅の温間加工を施した場合
の各機械的性質をプロットしたものである。このグラフ
かられかるように、50O〜650℃ではTMCP材は
規準材に比べて優れた材質を示すものの、750℃にな
ると規準材と同レベルの材質になってしまう、これはA
cl以下の加熱温度では制御圧延や加速冷却の効果が維
持され高材質が得られるのに対し、AC1以上の(α−
トγ)二相領域に再加熱されると組織が変化し、制御圧
延や加速冷却の効果が消滅するためであると考えられる
。The first case is a conventional standard material (marked with ○) and a TMCP material subjected to accelerated cooling after controlled rolling (marked with △), heated to various temperatures from 500 to 750°C, and then warm worked for 10 times at 500°C. This is a plot of each mechanical property when applied. As can be seen from this graph, the TMCP material exhibits superior material quality compared to the standard material at 500 to 650°C, but at 750°C, it becomes the same level as the standard material, which is A.
At heating temperatures below AC1, the effects of controlled rolling and accelerated cooling are maintained and high quality material is obtained;
This is thought to be because the structure changes when the steel is reheated to the two-phase region, and the effects of controlled rolling and accelerated cooling disappear.
次に第2図に加工温度と材質の関係を示す。Next, Figure 2 shows the relationship between processing temperature and material quality.
上記した規準材(○印)、TMCP材(Δ印。The above-mentioned standard materials (marked with ○) and TMCP materials (marked with Δ).
0印)を650℃に加熱後1時間保持した後。0 mark) was heated to 650°C and held for 1 hour.
各温度で加工を施したものである。この図からTMCP
型の鋼材(△9口0)では、規準材(O印)に比べいず
れも靭性に優れ、Nb添加の鋼(△印)ではYSも高い
ことがわかる。Processed at various temperatures. From this figure, TMCP
It can be seen that the type steel materials (△9 mouths 0) are superior in toughness compared to the reference material (O mark), and the Nb-added steel (△ mark) also has a high YS.
加工温度が400〜250℃と低くなっても、良好な材
質が得られ、割れなども認められない。Even when the processing temperature is as low as 400 to 250°C, a good material is obtained and no cracks are observed.
なお、上記規準材(○印)とTMCP材(△2口0)の
組成を下記に示す。The compositions of the reference material (○ mark) and the TMCP material (Δ2 0) are shown below.
以上の結果から、適正な制御圧延或は加速冷却条件によ
り製造された鋼を適正な条件下にて温間加工することに
より、従来材では得られない極めて優れた材質の鋼を製
造可能であるとの知見に至り、本発明法では温間加工条
件として加熱温度を750〜400℃に、望ましくはA
c1〜400℃に限定し、加工温度を750〜250℃
、望ま゛しくはAel〜400℃に限定するものである
。ここで温度の上限の限定理由は上記した通りであるが
、下限は加熱温度については400℃以下になると、加
工温度が低下し温間加工のメリットが少なくなるためで
ある。加工温度については250℃未満ではやはち加工
温度が低下し温間加工のメリットが少なくなるのでこれ
を下限とし、背熱脆性域を避けるため望ましくは400
℃を下限としたものである。From the above results, it is possible to manufacture steel of extremely superior quality that cannot be obtained with conventional materials by warm working steel manufactured under appropriate controlled rolling or accelerated cooling conditions under appropriate conditions. This led to the knowledge that, in the method of the present invention, the heating temperature is set to 750 to 400°C as warm processing conditions, preferably A
c1~400℃, processing temperature 750~250℃
, preferably limited to Ael to 400°C. The reason for limiting the upper limit of the temperature here is as described above, but the lower limit is because when the heating temperature is 400° C. or less, the processing temperature decreases and the merits of warm processing are reduced. Regarding the processing temperature, if it is less than 250°C, the processing temperature will drop and the benefits of warm processing will be reduced, so this is the lower limit, and it is preferably 400°C to avoid the back heat brittle region.
The lower limit is ℃.
なお、上記温度に加熱後、温間加工は直ちに行っても放
冷後行っても良く、上記限定した温度内で行えば本発明
の効果を得ることができる。また、温間加工後の冷却速
度については、材質に与える影響が小さいことから特に
限定しない。In addition, after heating to the above temperature, the warm working may be performed immediately or after being allowed to cool, and the effects of the present invention can be obtained as long as it is performed within the above limited temperature. Further, the cooling rate after warm working is not particularly limited since it has little effect on the material quality.
次に1本発明法における成分限度理由及び他の製造条件
について説明する。Next, the reason for limiting the components in the method of the present invention and other manufacturing conditions will be explained.
C:この糧の鋼の強度を最も安価に効果的に付与するた
めに0.03%が必要であるが、0.2俤を超えると溶
接性を著しく損なうため0.03〜0.2チと限定する
。C: 0.03% is necessary to effectively impart strength to this basic steel at the lowest cost, but if it exceeds 0.2%, weldability will be significantly impaired, so 0.03% to 0.2% is necessary. limited to.
si : stは固溶強化を通じて高強反化に有効であ
るが、多量の添加は溶接性を損なうので0.6%以下に
限定する◎
Mn : Mnは銅の強度および靭性向上に有効な鋼の
基本元素として添加されるが、0.5チ未満ではその効
果が小さく、また2、0−を超えると溶接性を著しく損
なうことになるため0.5〜2.0%とする。si: ST is effective for high strength reaction through solid solution strengthening, but addition of a large amount impairs weldability, so limit it to 0.6% or less. ◎ Mn: Mn is a steel additive that is effective for improving the strength and toughness of copper. It is added as a basic element, but if it is less than 0.5%, its effect will be small, and if it exceeds 2,0 -, the weldability will be significantly impaired, so it is set at 0.5 to 2.0%.
SolAl:鋼の脱酸に最低o、oos%の5OtAt
が必要である1才たSoムtが0.08チを超えるとこ
の効果が飽和することから、o、o o s〜0.08
%とする◎
上記基本成分に加えて、更に下記元素を必要に応じて1
種又は2種以上添加することが可能である。SolAl: 5OtAt of minimum o, oos% for deoxidizing steel
This effect is saturated when the required Somt exceeds 0.08, so o, o o s ~ 0.08
%◎ In addition to the above basic ingredients, the following elements may be added as needed:
It is possible to add a species or two or more species.
Cu 、 Cr 、 Ni 、 Mo :これらは添加
することにより固溶強化と、併せて鋼の焼入性増大に基
づく組織変化を通じて靭性を損なわずに強化が図れるが
、溶接性および経済性の点からcu 、 Cr 、 M
Oは1.0チを、Niについては3.5チを上限とした
。Cu, Cr, Ni, Mo: By adding these, it is possible to strengthen the steel without impairing toughness through solid solution strengthening and structural changes based on increased hardenability of the steel, but from the viewpoint of weldability and economic efficiency. cu, Cr, M
The upper limit was 1.0 inch for O, and 3.5 inch for Ni.
Nb、V、Ti:これら元素は析出強化による強度上昇
と低温靭性の改善に著しい効果があり必要に応じて添加
されるが、この効果を発揮させるためにはいずれか一種
を0.005%以上添加することが必要であり。Nb, V, Ti: These elements have a remarkable effect on increasing strength through precipitation strengthening and improving low-temperature toughness, and are added as necessary, but in order to achieve this effect, 0.005% or more of any one of them is required. It is necessary to add
これを下限とした。また、これらはいずれも添加量が大
となると溶接性を損なうので、 Nbについては上限を
0.10%、またv 、 ’rtについては上限を各々
0.15%とした。This was taken as the lower limit. Further, since any of these impairs weldability when added in large amounts, the upper limit for Nb was set at 0.10%, and the upper limit for v and 'rt was set at 0.15% each.
B:Bは鋼の焼入性を増大させ強度上昇に大きな効果を
有するものの、O,0O05%未満ではこの効果が小さ
く、また0、003%を超えると溶接性を害するためこ
の範囲に限定する。B: B increases the hardenability of steel and has a great effect on increasing strength, but if it is less than 0.05% O,000, this effect is small, and if it exceeds 0.003%, it impairs weldability, so it is limited to this range. .
以上のように成分調整した鋼を、本発明法では900℃
以下の累積圧下率が30%以上となるように熱間圧延を
施す。これ以下の圧下率では十分な制御圧延の効果が得
られず、強度・靭性が不十分となるからである。即ち。In the method of the present invention, steel whose composition has been adjusted as described above is heated to 900°C.
Hot rolling is performed so that the following cumulative rolling reduction ratio becomes 30% or more. This is because if the rolling reduction ratio is lower than this, a sufficient controlled rolling effect cannot be obtained, resulting in insufficient strength and toughness. That is.
実用鋼の制御圧延に際してはオーステナイト未再結晶域
での圧下を加え、変態組成を細粒化させることが重要で
あり、 Nb、V、 Ti等を含有する鋼においてはオ
ーステナイト未再結晶域の上限温度は900℃であるた
め、この温度を上限とした。Nb、 V、 TL等を含
有しない鋼においては、この未再結晶域上限温度は90
0℃よりも50℃程度低いものの、実操業面では900
℃以下としても差は少ないためやはりこれを上限とした
。熱間圧延後はそのままでも良いし、また加速冷却を行
っても良い、この熱間圧延後の加速冷却条件については
、変態域を放冷よりも速く冷却することで材質改善効果
が認められるため、冷却温度範囲については少なくとも
変態が終了する温度域まで、また冷却速度の下限も空冷
より速ければ良く、上限も設備的に許容される100℃
/secとする。During controlled rolling of practical steel, it is important to apply rolling in the austenite non-recrystallized region to refine the transformation composition, and in steels containing Nb, V, Ti, etc., the upper limit of the austenite non-recrystallized region Since the temperature was 900°C, this temperature was set as the upper limit. In steels that do not contain Nb, V, TL, etc., the upper limit temperature of this unrecrystallized region is 90
Although it is about 50°C lower than 0°C, in actual operation it is 900°C.
Since there is little difference even if it is below ℃, this was set as the upper limit. After hot rolling, the material may be left as it is, or it may be subjected to accelerated cooling.The accelerated cooling conditions after hot rolling are effective in improving the material quality by cooling the transformation region faster than when cooling is done. The cooling temperature range should be at least up to the temperature range where transformation ends, and the lower limit of the cooling rate should be faster than air cooling, and the upper limit should be 100°C, which is allowed by the equipment.
/sec.
このように制御圧延まま、または加速冷却後温間加工を
上述した条件で行えば、材質特性の優れた鋼を得ること
ができる。If the controlled rolling as-is or warm working after accelerated cooling is performed under the above-mentioned conditions, steel with excellent material properties can be obtained.
第1表に示す成分の鋼1〜8を第2表に示す条件で熱間
圧延し、第3表に示す条件で温間加工し、その機械的性
質を調べた。その結果を第3表に示す。Steels 1 to 8 having the components shown in Table 1 were hot rolled under the conditions shown in Table 2, warm worked under the conditions shown in Table 3, and their mechanical properties were investigated. The results are shown in Table 3.
鋼1及び鋼6は制御圧延を行わずに規準処理したもので
ある。鋼2,3.5及び8は制御圧延後加速冷却したも
の、鋼4と7は制御圧延ままのものである。Steel 1 and Steel 6 were standard processed without controlled rolling. Steels 2, 3.5, and 8 were accelerated cooled after controlled rolling, and steels 4 and 7 were as-controlled rolled.
第3表かられかるように、制御圧延後本発明の条件で温
間加工を施したものはいずれも優れた材質特性を有し、
特に靭性において規準材である鋼1及び6よりも優れた
値を示している。また比較材■■は制御圧延後加速冷却
を行ったものであるが、温間加工温度が本発明の範囲外
となっているため靭性が大幅に劣化している。As can be seen from Table 3, all the products subjected to warm working under the conditions of the present invention after controlled rolling have excellent material properties.
Especially in terms of toughness, it shows a value superior to that of steels 1 and 6, which are standard materials. Comparative material (■) was subjected to accelerated cooling after controlled rolling, but since the warm working temperature was outside the range of the present invention, the toughness was significantly deteriorated.
また、第3表中には、温間加工時の歪み量の材質への影
響、温間加工後の応力除去焼鈍(SR)の影響を調べた
結果もそれぞれ示しである。これらの結果は通常の加工
率である10チまでの歪み量およびSR処理は、TMC
P鋼の温間加工後の特性に大きな影響を与えないことを
表わしている・Table 3 also shows the results of investigating the influence of the amount of strain during warm working on the material quality and the influence of stress relief annealing (SR) after warm working. These results show that the amount of distortion up to 10 inches, which is the normal processing rate, and the SR processing are
This indicates that it does not have a major effect on the properties of P steel after warm working.
第1図はTMCP材と規準材の加熱温度による材質特性
の変化を示すグラフ、第2図は加工温度と材質特性の関
係を示すグラフである。FIG. 1 is a graph showing changes in material properties depending on heating temperature of TMCP material and reference material, and FIG. 2 is a graph showing the relationship between processing temperature and material properties.
Claims (1)
Mn:0.5〜2.0%、SolAl:0.005〜0
.08%、残部鉄および不可避的不純物からなる鋼 に、900℃以下の累積圧下率を少なく とも30%以上とした熱間圧延を施し、 更に温間加工に際し750〜400℃の範囲に加熱し、
直ちに或は放冷後750〜250℃間にて加工すること
を特徴とする温間 加工後の材質特性に優れた高張力鋼の製 造方法。 2、C:0.03〜0.20%、Si:0.6%以下、
Mn:0.5〜2.0%、SolAl:0.005〜0
.08%、更にNb:0.005〜0.1%、V:0.
005〜0.15%、Ti:0.005〜0.15%、
Cu:1.0%以下、Cr:1.0%以下、Ni:3.
5%以下、Mo:1.0%以下、B:0.0005〜0
.003%のうち1種又は2種以上を含有し、残部 鉄および不可避的不純物からなる鋼に、 900℃以下の累積圧下率を少なくとも 30%以上とした熱間圧延を施し、更に 温間加工に際し750〜400℃の範囲に加熱し、直ち
に或いは放冷後750〜250℃間にて加工することを
特徴とする温間加 工後の材質特性に優れた高張力鋼の製造 方法。 3、C:0.03〜0.20%、Si:0.6%以下、
Mn:0.5〜2.0%、SolAl:0.005〜0
.08%、残部鉄および不可避的不純物からなる鋼 に、900℃以下の累積圧下率を少なく とも30%以上とした熱間圧延を施した 後、空冷以上〜100℃/secの冷却速度にて少なく
とも変態が終了する温度まで加 速冷却し、更に温間加工に際し750〜 400℃の範囲に加熱し、直ちに或は放 冷後750〜250℃間にて加工すること を特徴とする温間加工後の材質特性に優 れた高張力鋼の製造方法。 4、C:0.03〜0.20%、Si:0.6%以下、
Mn:0.5〜2.0%、SolAl:0.005〜0
.08%、更にNb:0.005〜0.1%、V:0.
005〜0.15%、Ti:0.005〜0.15%、
Cu:1.0%以下、Cr:1.0%以下、Ni:3.
5%以下、Mo:1.0%以下、B:0.0005〜0
.003%のうち1種又は2種以上を含有し、残 部鉄および不可避的不純物からなる鋼に、 900℃以下の累積圧下率を少なくとも 30%以上とした熱間圧延を施した後、 空冷以上〜100℃/secの冷却速度にて少なくとも
変態が終了する温度まで加速冷 却し、更に温間加工に際し750〜400 ℃の範囲に加熱し、直ちに或は放冷後 750〜250℃間にて加工することを特徴とする温間
加工後の材質特性に優れた高 張力鋼の製造方法。[Claims] 1. C: 0.03 to 0.20%, Si: 0.6% or less,
Mn: 0.5-2.0%, SolAl: 0.005-0
.. 08%, the balance being iron and unavoidable impurities, hot rolling is carried out at a cumulative reduction rate of at least 30% at 900°C or less, and further heated to a range of 750 to 400°C during warm working,
A method for producing high-strength steel having excellent material properties after warm working, characterized by working immediately or at a temperature of 750 to 250°C after cooling. 2, C: 0.03 to 0.20%, Si: 0.6% or less,
Mn: 0.5-2.0%, SolAl: 0.005-0
.. 08%, further Nb: 0.005 to 0.1%, V: 0.
005-0.15%, Ti: 0.005-0.15%,
Cu: 1.0% or less, Cr: 1.0% or less, Ni: 3.
5% or less, Mo: 1.0% or less, B: 0.0005 to 0
.. Steel containing one or more of 0.003% and the balance consisting of iron and unavoidable impurities is subjected to hot rolling at a temperature of 900°C or less with a cumulative reduction rate of at least 30%, and further during warm working. A method for producing high-strength steel with excellent material properties after warm working, characterized by heating to a range of 750 to 400°C and processing immediately or at a temperature of 750 to 250°C after cooling. 3, C: 0.03 to 0.20%, Si: 0.6% or less,
Mn: 0.5-2.0%, SolAl: 0.005-0
.. 08%, the balance iron and unavoidable impurities is subjected to hot rolling at a cumulative reduction rate of at least 30% at 900°C or lower, and then undergoes at least transformation at a cooling rate of at least air cooling to 100°C/sec. A material after warm processing, characterized by accelerated cooling to a temperature at which the temperature of A method of manufacturing high-strength steel with excellent properties. 4, C: 0.03 to 0.20%, Si: 0.6% or less,
Mn: 0.5-2.0%, SolAl: 0.005-0
.. 08%, further Nb: 0.005 to 0.1%, V: 0.
005-0.15%, Ti: 0.005-0.15%,
Cu: 1.0% or less, Cr: 1.0% or less, Ni: 3.
5% or less, Mo: 1.0% or less, B: 0.0005 to 0
.. Steel containing one or more of 0.003% and the balance consisting of iron and unavoidable impurities is subjected to hot rolling at a cumulative reduction rate of at least 30% at 900°C or less, and then air-cooled or more. Accelerate cooling at a cooling rate of 100°C/sec to at least the temperature at which transformation ends, further heat to a range of 750 to 400°C during warm processing, and process at 750 to 250°C immediately or after cooling. A method for manufacturing high-strength steel with excellent material properties after warm working.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/847,288 US4720307A (en) | 1985-05-17 | 1986-04-02 | Method for producing high strength steel excellent in properties after warm working |
FR868606262A FR2582017B1 (en) | 1985-05-17 | 1986-04-30 | PROCESS FOR PRODUCING HIGH STRENGTH STEEL HAVING EXCELLENT PROPERTIES AFTER HOT MECHANICAL WORK |
GB08611760A GB2175314B (en) | 1985-05-17 | 1986-05-14 | A method for producing high strength steel excellent in properties after warm working |
DE19863616518 DE3616518A1 (en) | 1985-05-17 | 1986-05-16 | METHOD FOR PRODUCING A HIGH-STRENGTH STEEL |
CA000509391A CA1253055A (en) | 1985-05-17 | 1986-05-16 | Method for producing high strength steel excellent in properties after warm working |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60-103843 | 1985-05-17 | ||
JP10384385 | 1985-05-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6254018A true JPS6254018A (en) | 1987-03-09 |
Family
ID=14364710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3821786A Pending JPS6254018A (en) | 1985-05-17 | 1986-02-25 | Manufacture of high tensile steel superior in material characteristic after warm working |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6254018A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0285337A (en) * | 1988-09-20 | 1990-03-26 | Kobe Steel Ltd | Steel for warm forging |
JP2002256388A (en) * | 2001-03-01 | 2002-09-11 | Sumitomo Metal Ind Ltd | High tensile strength steel sheet for warm forming and forming method therefor |
CN103243270A (en) * | 2012-12-30 | 2013-08-14 | 南阳汉冶特钢有限公司 | Novel low-cost, wear-resistant and high-strength Q460B steel plate and production method thereof |
-
1986
- 1986-02-25 JP JP3821786A patent/JPS6254018A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0285337A (en) * | 1988-09-20 | 1990-03-26 | Kobe Steel Ltd | Steel for warm forging |
JP2002256388A (en) * | 2001-03-01 | 2002-09-11 | Sumitomo Metal Ind Ltd | High tensile strength steel sheet for warm forming and forming method therefor |
JP4506005B2 (en) * | 2001-03-01 | 2010-07-21 | 住友金属工業株式会社 | High strength steel sheet for warm forming and forming method thereof |
CN103243270A (en) * | 2012-12-30 | 2013-08-14 | 南阳汉冶特钢有限公司 | Novel low-cost, wear-resistant and high-strength Q460B steel plate and production method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2567150B2 (en) | Manufacturing method of high strength low yield ratio line pipe material for low temperature | |
JPS59211528A (en) | Production of non-tempered steel having low yield ratio | |
US4720307A (en) | Method for producing high strength steel excellent in properties after warm working | |
JPH0320408A (en) | Production of high tensile steel stock excellent in toughness at low temperature | |
JPS6254018A (en) | Manufacture of high tensile steel superior in material characteristic after warm working | |
JP2828303B2 (en) | Manufacturing method of tough steel plate | |
JP2875572B2 (en) | Soaking process in the production of tough steel | |
JP3022279B2 (en) | Manufacturing method of steel for rebar with excellent earthquake resistance | |
JP3043519B2 (en) | Manufacturing method of high strength hot rolled steel sheet | |
JPH083636A (en) | Production of low yield ratio high toughness steel | |
JPS59123741A (en) | Hot-rolled high-tension wire rod requiring no heat treatment | |
JP2529042B2 (en) | Manufacturing method of low yield ratio steel pipe for building by cold forming. | |
JPS6324013A (en) | Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method | |
JP3297090B2 (en) | Processing method of high tensile strength steel with little increase in yield ratio | |
JPH05345917A (en) | Production of high strength hot rolled steel plate | |
JPH06340924A (en) | Production of low yield ratio high tensile strength steel | |
JPH0641633A (en) | Method for working high tensile strength steel small in rise of yield ratio | |
JPS6324012A (en) | Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method | |
JPS61149430A (en) | Manufacture of low c-cu precipitation type high tension steel having superior toughness at low temperature and superior weldability | |
JPH0559433A (en) | Production of refractory steel plate with low yield ratio for building construction use | |
JPH0747777B2 (en) | Manufacturing method of hot-rolled steel sheet with excellent low temperature heat hardening | |
JPH0559171B2 (en) | ||
JPS6157889B2 (en) | ||
JPH07207335A (en) | Production of high tensile steel which is excellent in weldability and high in uniform elongation | |
JPH027368B2 (en) |