JPS6324013A - Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method - Google Patents

Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method

Info

Publication number
JPS6324013A
JPS6324013A JP16858686A JP16858686A JPS6324013A JP S6324013 A JPS6324013 A JP S6324013A JP 16858686 A JP16858686 A JP 16858686A JP 16858686 A JP16858686 A JP 16858686A JP S6324013 A JPS6324013 A JP S6324013A
Authority
JP
Japan
Prior art keywords
steel
tensile strength
yield ratio
steel plate
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16858686A
Other languages
Japanese (ja)
Inventor
Shunichi Hashimoto
俊一 橋本
Kenji Koide
憲司 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP16858686A priority Critical patent/JPS6324013A/en
Publication of JPS6324013A publication Critical patent/JPS6324013A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a steel plate suitable for welded structures having a low yielding ratio and high tensile strength by working a specifically composed steel in an unrecrystallized austenite region at a specific draft, then forcibly cooling thereof, then subjecting the worked steel to direct hardening and tempering treatments. CONSTITUTION:The steel consisting of 0.05-0.2wt% C, 0.03-0.5% Si, 0.5-2.3% Mn, 0.01-0.1% Al, 0.1-0.5% Mo, 0.01-0.05% Nb, and the balance Fe and inevitable impurities is worked in the unrecrystallized austenite region at >=30% draft. The steel is then quickly cooled at >=10 deg.C/sec cooling rate and in succession thereof, the steel is quickly cooled by a direct hardening method and is subjected to the tempering treatment in a 300-700 deg.C range. The low yielding ratio high tensile steel plate having 80-90% yielding ratio and >=70kgf/mm<2> tensile strength is obtd. by the above-mentioned method. >=1 kinds among 0.3-1.5% Ni, 0.3-1.5% Cu and 0.3-1.5% Cr and further 0.01-0.05% Ti and 0.005-0.003% B are incorporated at need into such steel compsn.

Description

【発明の詳細な説明】 童叉上■程ユ立国 本発明は、直接焼入れ焼戻し法による低降伏比高張力鋼
板の製造方法に関し、詳しくは、溶接構造物の隠れた安
全性を高めると共に、構造物の軽量化を実現させること
ができ、従って、橋梁用溶接構造物はか、ベントストッ
ク等の溶接構造用鋼板として好適であるる低降伏比高張
力鋼板の製造方法に関する。
[Detailed Description of the Invention] The present invention relates to a method for producing a low yield ratio high tensile strength steel plate by direct quenching and tempering. The present invention relates to a method for manufacturing a low yield ratio high tensile strength steel plate that can realize weight reduction and is therefore suitable as a steel plate for welded structures such as bridge welded structures and bent stocks.

l米傅侠米 従来、70〜80 kgf/mm”級橋梁用厚鋼板は、
熱間圧延後、強制冷却することなく、室温まで冷却した
後、焼入れ焼戻し処理して製造されており、降伏比は9
5%程度である。最近に至って、制御圧延及び加速冷却
の後、フェライト・オーステナイト2相域まで再加熱し
た後、焼入れ焼戻し処理することによって、降伏比を8
5%程度まで下げた鋼板を製造する方法が提案されてい
るが(佐原ら、溶接学会論文集、第3巻第3号第589
頁(1985) 、本発明者らは、制御冷却後、直接焼
入れ法にて急冷した後、焼戻し処理のみを施すことによ
って、上記従来の方法と同程度又はそれ以上の低降伏比
鋼板を製造し得ることを見出して、本発明に至ったもの
である。
Traditionally, 70-80 kgf/mm'' class thick steel plates for bridges are
After hot rolling, it is cooled to room temperature without forced cooling, and then quenched and tempered, and the yield ratio is 9.
It is about 5%. Recently, after controlled rolling and accelerated cooling, the yield ratio has been increased to 8 by reheating to the ferrite-austenite two-phase region and then quenching and tempering.
A method of manufacturing steel plates with a reduction in the percentage of carbon dioxide to about 5% has been proposed (Sahara et al., Proceedings of the Welding Society, Vol. 3, No. 3, No. 589).
(1985), the present inventors manufactured a steel plate with a low yield ratio comparable to or higher than that of the conventional method by performing controlled cooling, rapid cooling using a direct quenching method, and then performing only a tempering treatment. The present invention has been developed based on this discovery.

近年、溶接構造用高張力鋼板の技術進歩は著しく、引張
強さ100kgf/mm2級まで実用化されつつあるが
、橋梁関係においては、従来の70kgf7mm”級及
び80kgf/mm2級鋼は、降伏比が高く、降伏後、
破壊に至るまでの耐負荷が小さいために、隠れた安全性
の点において必ずしも満足できるものではなく、従って
、橋梁用途においては、従来、80 kgf/mm”扱
高張力鋼板はその使用が極端に制限されている。しかし
ながら、橋梁の分野においても、鋼板の軽量化の要求は
強く、隠れた安全性にすぐれる低降伏比の70kgf/
mm2級以上の高張力鋼板が要望されている。
In recent years, technological advances in high-strength steel plates for welded structures have been remarkable, and tensile strength up to 100 kgf/mm2 class is being put into practical use. However, in bridge-related applications, conventional 70 kgf7mm" class and 80 kgf/mm2 class steels have a yield ratio that is low. High, after surrender;
Because the load resistance up to failure is small, it is not necessarily satisfactory in terms of hidden safety.Therefore, in bridge applications, the use of high-strength steel plates that can handle 80 kgf/mm has been extremely difficult. However, in the field of bridges as well, there is a strong demand for lighter steel plates, and 70kgf/Low yield ratio, which has excellent hidden safety, has been developed.
There is a demand for high tensile strength steel plates of mm2 class or higher.

冷延鋼板及び熱延鋼板においてば、これら鋼板がフェラ
イトと5〜30%のマルテンサイト、場合によっては、
ベイナイトや残留オーステナイトを含む組織をもつ点に
特徴を有し、このマルテンサイトの存在が降伏比を下げ
るために有効であることが古くから知られている。
In the case of cold-rolled steel sheets and hot-rolled steel sheets, these steel sheets contain ferrite and 5 to 30% martensite, and in some cases,
It is characterized by a structure containing bainite and retained austenite, and it has long been known that the presence of martensite is effective in lowering the yield ratio.

本発明者らも、かかる考え方に基づいて、成分及び製造
条件を広い範囲にわたって研究したところ、低降伏比は
達成することができるものの、橋梁用構造材として具備
しなければならない低遷移温度、高アッパーシェルフエ
ネルギー、溶接部の硬度分布、靭性等において致命的な
欠陥を有することを見出した。特に、本発明者らは、靭
性値劣化の原因が軟質のフェライトと硬質のマルテンサ
イトが粗く分散することにあることを見出し、かかる知
見に基づいて、靭性にすぐれる低降伏比高張力鋼板を得
るためには、可能な限りに微細で且つ所望の降伏比を得
ることができる範囲内において、各相間の硬度の均質化
を図ると共に、加熱温度の低減を図ることが有効であり
、更に、NbやMoの添加が微細なベイナイト組織を形
成するために有効であることを見出した。
Based on this idea, the present inventors studied the components and manufacturing conditions over a wide range, and found that although it is possible to achieve a low yield ratio, the low transition temperature, high It was discovered that this material had fatal defects in upper shelf energy, hardness distribution of the welded part, toughness, etc. In particular, the present inventors discovered that the cause of toughness deterioration is the coarse dispersion of soft ferrite and hard martensite, and based on this knowledge, we developed a low yield ratio high tensile strength steel sheet with excellent toughness. In order to obtain this, it is effective to homogenize the hardness between each phase and reduce the heating temperature within the range where the desired yield ratio can be obtained as finely as possible. It has been found that the addition of Nb and Mo is effective for forming a fine bainite structure.

副題点を解ンするための手段 本発明による直接焼入れ焼戻し法による低降伏比高張力
鋼板の製造方法は、重量%で C0.05〜0.2%、 Si0.03〜0.8%、 Mn  0.5〜2.5%、 AAo、01〜0.1%、 Mo  0.1〜0.5%、 Nb0.01〜0.05%、 残部鉄及び不可避的不純物よりなる鋼を未再結晶オース
テナイト域において圧下率30%以上にて加工した後、
10°C/秒以上の冷却速度にで冷却して、直接焼入れ
し、次いで、300 ’Cがら7゜0℃の範囲で焼戻し
処理を施して、降伏比80〜90%、引張強さ70 k
gf/mm”以上の低降伏比高張力鋼板を製造すること
を特徴とする。
Means for solving the sub-problem The method of manufacturing a low yield ratio high tensile strength steel plate by the direct quenching and tempering method according to the present invention contains 0.05 to 0.2% by weight of C, 0.03 to 0.8% of Si, and Mn. 0.5-2.5%, AAo, 01-0.1%, Mo 0.1-0.5%, Nb 0.01-0.05%, balance iron and unavoidable impurities. After processing at a reduction rate of 30% or more in the austenite region,
It is directly quenched by cooling at a cooling rate of 10°C/second or more, and then tempered at a temperature of 300°C to 7°0°C to achieve a yield ratio of 80-90% and a tensile strength of 70K.
The method is characterized by producing a high tensile strength steel plate with a low yield ratio of 10 gf/mm" or more.

先ず、本発明において化学成分を限定する理由を説明す
る。
First, the reason for limiting the chemical components in the present invention will be explained.

Cは、強度の確保に有効であり、そのためには少なくと
も0゜05%の添加を必要とするが、0.2%を越えて
過多に添加するときは、靭性の劣化を招くので、C量は
0.05〜0.2%の範囲とする。
C is effective in securing strength, and for that purpose it is necessary to add at least 0.05%, but if added in excess of 0.2%, it will cause deterioration of toughness, so the amount of C should be increased. is in the range of 0.05 to 0.2%.

Siは、圧延終了後のオーステナイトの変態過程におい
て、残留するオーステナイト相へのCの濃縮を促進し、
急速冷却時に所要の変態相を得るのに有効に作用し、こ
のように、組織制御に有効である。このような効果を有
効に発揮させるためには、少なくとも0.03%の添加
を必要とするが、過多に添加するときは、靭性の劣化を
招くので、添加量の上限は0.8%とする。
Si promotes the concentration of C into the remaining austenite phase in the austenite transformation process after rolling,
It acts effectively to obtain the required transformed phase during rapid cooling, and is thus effective in controlling the structure. In order to effectively exhibit this effect, it is necessary to add at least 0.03%, but adding too much will lead to deterioration of toughness, so the upper limit of the amount added is 0.8%. do.

Mnも、Siと同様にam制御に有効であって、少なく
とも0.5%の添加を必要とするが、過多に添加すると
きは、バンド状組織を形成して、C方向及びZ方向の靭
性の劣化を招くので、添加量の上限は2.5%とする。
Like Si, Mn is also effective in controlling am and requires addition of at least 0.5%, but when added in excess, it forms a band-like structure and reduces the toughness in the C and Z directions. Therefore, the upper limit of the amount added is set at 2.5%.

A7!は、鋼の脱酸のために0.01%以上を添加する
ことが必要であるが、0.1%を越えて過多に添加して
しも、脱酸剤としての効果が飽和する。
A7! It is necessary to add 0.01% or more for deoxidizing steel, but even if it is added in excess of 0.1%, the effect as a deoxidizing agent will be saturated.

従って、Aβの添加量は0.01〜0.1%の範囲とす
る。
Therefore, the amount of Aβ added is in the range of 0.01 to 0.1%.

Moは、ベイナイト組織の形成及び靭性値の向上に有効
であり、かかる効果を有効に得るために、本発明におい
ては、0.1%以上を添加する。しかし、0.5%を越
えて過多に添加しても、上記効果が飽和するので、添加
量の上限は0.5%とする。
Mo is effective in forming a bainite structure and improving toughness, and in order to effectively obtain such effects, in the present invention, 0.1% or more is added. However, even if added in excess of 0.5%, the above effects will be saturated, so the upper limit of the amount added is set at 0.5%.

Nbは、オーステナイト粒を微細化し、未再結晶圧延領
域を拡大して、ベイナイト組織の微細化によって強度を
向上させる効果を有する。かがる効果を有効に得るため
には、少なくとも0.01%を添加することが必要であ
る。しかし、過多に添加しても、効果が飽和するので、
添加量の上限は0.OS%とする。
Nb has the effect of refining austenite grains, expanding the non-recrystallized rolling region, and improving strength by refining the bainite structure. In order to effectively obtain the darning effect, it is necessary to add at least 0.01%. However, even if you add too much, the effect will be saturated, so
The upper limit of the amount added is 0. Let it be OS%.

本発明においては、鋼は上記した元素に加えて、Ni0
.3〜1.5%、 Cu  0.3〜1.5%、及び Cr   0.3〜1.5% よりなる群から選ばれる少なくとも1種の元素すること
ができる。
In the present invention, the steel contains Ni0 in addition to the above-mentioned elements.
.. 3 to 1.5%, Cu 0.3 to 1.5%, and Cr 0.3 to 1.5%.

Ni及びCuは、鋼の溶接性と靭性の向上に効果を有し
、この効果を有効に得るためには、少なくとも0.3%
を添加することが必要である。しかし、過多に添加して
も、いずれの元素もその効果が飽和するので、添加量の
上限は、それぞれの元素について1.5%とする。
Ni and Cu have the effect of improving the weldability and toughness of steel, and in order to effectively obtain this effect, at least 0.3% of Ni and Cu are required.
It is necessary to add However, even if excessively added, the effect of each element is saturated, so the upper limit of the amount added is set to 1.5% for each element.

Crは、前記した組織制御と強度向上に有効であり、そ
のために0.3%以上を添加する必要があるが、1.5
%を越えて過多に添加しても、その効果が飽和するので
、添加量の上限は1.5%とする。
Cr is effective for the above-mentioned structure control and strength improvement, and for this purpose it is necessary to add 0.3% or more, but 1.5% or more is necessary.
Even if it is added in excess of 1.5%, the effect will be saturated, so the upper limit of the amount added is 1.5%.

更に、本発明においては、鋼は、上記した元素と共に、
又はそれらとは独立して、 Ti0.01〜0.05%、及び B   0.0005〜0.003% を含有することができる。
Furthermore, in the present invention, the steel together with the above-mentioned elements,
Or independently of them, Ti0.01-0.05% and B 0.0005-0.003% can be contained.

Bは、組織制御と強度向上に有効であり、この効果を有
効に得るためには、0.0005%以上を添加する必要
があるが、0.003%を越えて過多に添加しても、効
果力l色和する。。
B is effective in controlling structure and improving strength, and in order to effectively obtain this effect, it is necessary to add 0.0005% or more, but even if it is added in excess of 0.003%, Effect power l color harmonizes. .

Tiは、鋼中のNを固定して、Bの上記効果を有効に活
用するために必要な元素であって、そのためには少なく
とも0.01%を添加することが必要である。しかし、
過多に添加しても、上記効果が飽和するので、添加量の
上限は0.05%とする。
Ti is an element necessary to fix N in steel and effectively utilize the above-mentioned effects of B, and for this purpose, it is necessary to add at least 0.01%. but,
Even if it is added in excess, the above effect will be saturated, so the upper limit of the amount added is set at 0.05%.

TiはBと共に併用することが必要である。It is necessary to use Ti together with B.

本発明による低降伏比高張力鋼板の製造方法は、上記し
た化学成分を有する綱を未再結晶オーステナイト域にお
いて圧下率30%以上にて加工した後、10℃/秒以上
の冷却速度にて冷却して、直接焼入れし、次いで、30
0℃から700°Cの範囲で焼戻し処理を施すものであ
る。
The method for producing a high-strength steel sheet with a low yield ratio according to the present invention involves processing a steel having the above-mentioned chemical composition at a reduction rate of 30% or more in the unrecrystallized austenite region, and then cooling it at a cooling rate of 10°C/second or more. directly quenched, then 30
Tempering treatment is performed at a temperature ranging from 0°C to 700°C.

本発明の方法においては、先ず、鋼の熱間圧延に際して
、鋼スラブの加熱温度は、900〜1)50℃の範囲が
好ましい。特に、低温域で加熱するとき、オーステナイ
ト粒が微細となって、変態後に微細な組織を得ることが
でき、かくして、靭性の向上を得ることができる。従っ
て、圧延機の能力にもよるが、仕上温度が確保される範
囲内で低温に加熱することが好ましい。また、オーステ
ナイト粒の微細化及びオーステナイト粒内への変形帯の
導入は、変態後の組織を微細化し、靭性の向上に有効で
あるので、本発明においては、未再結晶域にて30%以
上の圧下を行なうことが必要である。
In the method of the present invention, first, during hot rolling of steel, the heating temperature of the steel slab is preferably in the range of 900 to 1) 50°C. In particular, when heating in a low temperature range, austenite grains become fine and a fine structure can be obtained after transformation, thus improving toughness. Therefore, although it depends on the capacity of the rolling mill, it is preferable to heat to a low temperature within a range that ensures the finishing temperature. In addition, the refinement of austenite grains and the introduction of deformation bands within austenite grains are effective in refining the structure after transformation and improving toughness. It is necessary to perform a reduction of

次いで、本発明においては、直接焼入れする。Next, in the present invention, direct hardening is performed.

橋梁に用いられる鋼材の板厚は、通常、10〜50關程
度であり、特に、15〜30龍の範囲が最も多い。厚板
工場における直接焼入れ装置は、水量制御等によって広
い範囲の冷却速度が得られるように設計されているもの
の、多くは、通板板厚によって決定される。しかしなが
ら、できるだけ低成分系で直接焼入れ後の強度を得るの
ことがコスト的に有利であるので、できる限り速い速度
で冷却し、焼入れ後の強度を高くしておくのが有利であ
る。このために、本発明においては、冷却速度を10℃
/秒以上とする。
The plate thickness of steel materials used for bridges is usually about 10 to 50 mm, most often in the range of 15 to 30 mm. Direct quenching equipment in plate factories is designed to provide a wide range of cooling rates through water flow control, etc., but in most cases the cooling rate is determined by the plate thickness. However, since it is advantageous in terms of cost to obtain strength after direct quenching using a system with as few components as possible, it is advantageous to cool as quickly as possible to increase the strength after quenching. For this reason, in the present invention, the cooling rate is set to 10°C.
/second or more.

次いで、本発明の方法によれば、かかる熱延鋼板を30
0〜700℃の範囲で焼戻し処理を行なう。焼戻し温度
が300°Cよりも低いときは、特に、処理前の降伏比
が低い場合、焼戻し処理によって、降伏比が80%以下
となるので、所要の特性を得ることができない。
Then, according to the method of the present invention, the hot rolled steel sheet is
Tempering treatment is performed in the range of 0 to 700°C. When the tempering temperature is lower than 300° C., especially when the yield ratio before the treatment is low, the yield ratio becomes 80% or less after the tempering treatment, making it impossible to obtain the desired properties.

第1表にその化学成分を示す鋼B及び鋼Kを用いて、こ
れらをそれぞれ1000°Cに加熱し、850℃以下の
圧下率50%、仕上温度780 ’C1冷却速度40℃
/秒で2On+厚の厚鋼板を製造し、これら鋼板につい
て、その焼戻し温度を種々に変えた場合の機械的性質を
第1図に示す。焼戻し温度が300℃よりも低いときは
、降伏比は母材のそれと殆ど変わらず、約70%と低い
値である。
Using Steel B and Steel K, whose chemical compositions are shown in Table 1, they were heated to 1000°C, respectively, and the reduction rate was 50% below 850°C, and the finishing temperature was 780' C1 cooling rate was 40°C.
Fig. 1 shows the mechanical properties of these steel plates obtained by producing thick steel plates with a thickness of 2 On+ at various tempering temperatures. When the tempering temperature is lower than 300°C, the yield ratio is almost the same as that of the base material, and is as low as about 70%.

しかし、焼戻し温度が300〜700 ’Cの範囲であ
るとき、目標とする降伏比80〜90%を得ることがで
き、かつ、降伏点伸びも生じている。
However, when the tempering temperature is in the range of 300 to 700'C, the target yield ratio of 80 to 90% can be obtained, and elongation at the yield point has also occurred.

他方、焼戻し温度が700℃を越えるときは、フェライ
ト・オーステナイト2相域に入り、冷却条件や成分によ
っては、焼戻し後にフェライト・マルテンサイト組織を
生じて、降伏点の低下及び引張強さの減少や、或いは反
対にこれらの増大が認められ、更に、これらが変化しな
い場合も認められ、得られる鋼板の性質が安定しない。
On the other hand, when the tempering temperature exceeds 700°C, it enters the ferrite-austenite two-phase region, and depending on the cooling conditions and components, a ferrite-martensitic structure may occur after tempering, resulting in a lower yield point and tensile strength. , or conversely, an increase in these is observed, and furthermore, there are cases in which these do not change, and the properties of the obtained steel sheet are not stable.

焼戻し温度が前記したように、300〜700℃の範囲
であるときは、成分によって僅かの変化は認められるが
、しかし、焼戻し温度をT ’Cとするとき、引張強さ
の減少量はATS=0.35xTで得られ、降伏比が上
昇する。
As mentioned above, when the tempering temperature is in the range of 300 to 700°C, slight changes are observed depending on the components, but when the tempering temperature is T'C, the amount of decrease in tensile strength is ATS = It can be obtained at 0.35xT, increasing the yield ratio.

発明の効果 以上のように、本発明の方法によれば、鋼板を再加熱と
その後の焼入れ焼戻し処理によらずして、制御冷却後、
直接焼入れ法にて急冷し、次いで、焼戻し処理のみを施
すことによって、従来の方法と等程度又はそれ以上の低
降伏比を有する高張力鋼板を得ることができる。
Effects of the Invention As described above, according to the method of the present invention, the steel plate can be cooled after controlled cooling without reheating and subsequent quenching and tempering treatment.
By rapidly cooling by direct quenching and then only performing tempering treatment, it is possible to obtain a high-strength steel plate having a yield ratio as low as or higher than that of conventional methods.

実施例 以下に実施例を挙げて本発明を説明するが、本発明はこ
れら実施例により何ら限定されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way.

第1表に示す化学成分を有する鋼からなる100璽1厚
のスラブを900°Cから1)50℃の範囲の種々の温
度に加熱し、厚さ201)の鋼板に仕上げた。仕上温度
は800 ’Cを目標として、殆どの場合、その付近の
温度で仕上げたが、スラブ加熱温度が900°Cのとき
は、仕上温度は770°C程度とした。また、いずれの
場合も、900℃以下での圧下率は50%以上とした。
A 100 mm thick slab made of steel having the chemical composition shown in Table 1 was heated to various temperatures ranging from 900° C. to 1)50° C. to produce a steel plate with a thickness of 201° C. The finishing temperature was targeted at 800'C, and in most cases finishing was done around that temperature, but when the slab heating temperature was 900°C, the finishing temperature was about 770°C. Further, in both cases, the rolling reduction ratio at 900° C. or lower was 50% or higher.

熱間圧延終了後、40℃/秒の冷却速度にて室温まで冷
却し、種々の温度で1時間保持した後、空冷する焼戻し
処理を行なった。
After the hot rolling was completed, the samples were cooled to room temperature at a cooling rate of 40° C./sec, held at various temperatures for 1 hour, and then air-cooled for tempering.

このようにして得られた鋼板の機械的性質を第2表に示
す。
The mechanical properties of the steel plate thus obtained are shown in Table 2.

比較鋼2及び13は、本発明が規定する範囲の化学成分
を有するが、焼戻し処理をしていないために、いずれも
降伏比が約70%である。比較鋼19及び21は、MO
を含まないために、靭性が著しく低(、また、引張強さ
も低い。比較鋼20はMoを含まない反面、Cを過多に
含んでおり、靭性が著しく低い。
Comparative Steels 2 and 13 have chemical components within the range specified by the present invention, but because they are not tempered, both have a yield ratio of about 70%. Comparative steels 19 and 21 are MO
Because it does not contain Mo, its toughness is extremely low (and its tensile strength is also low. Comparative Steel 20 does not contain Mo, but it contains an excessive amount of C, and its toughness is extremely low.

これに対して、本発明による綱は、引張強さ70 kg
f/mm”以上、低降伏比であって、しかも、靭性にす
ぐれることが明らかである。
In contrast, the rope according to the invention has a tensile strength of 70 kg
It is clear that it has a low yield ratio of f/mm'' or more and has excellent toughness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明において規定する化学成分を有する鋼
スラブを低温加熱し、制御冷却し、冷却速度40℃/秒
にて直接焼入れして得られた泪仮について、焼戻し温度
と得られる機械的性質との関係を示すグラフである。
Figure 1 shows the tempering temperature and the resulting machine for the steel slab obtained by heating a steel slab having the chemical composition specified in the present invention at a low temperature, cooling it in a controlled manner, and directly quenching it at a cooling rate of 40°C/sec. It is a graph showing the relationship with the physical properties.

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で C 0.05〜0.2%、 Si 0.03〜0.8%、 Mn 0.5〜2.5%、 Al 0.01〜0.1%、 Mo 0.1〜0.5%、 Nb 0.01〜0.05%、 残部鉄及び不可避的不純物よりなる鋼を未再結晶オース
テナイト域において圧下率30%以上にて加工した後、
10℃/秒以上の冷却速度にて冷却して、直接焼入れし
、次いで、300℃から700℃の範囲で焼戻し処理を
施すことを特徴とする降伏比80〜90%、引張強さ7
0kgf/mm^2以上の低降伏比高張力鋼板の製造方
法。
(1) In weight%, C 0.05-0.2%, Si 0.03-0.8%, Mn 0.5-2.5%, Al 0.01-0.1%, Mo 0.1 ~0.5%, Nb 0.01~0.05%, balance iron and unavoidable impurities, after processing the steel in the unrecrystallized austenite region at a reduction rate of 30% or more
Yield ratio 80-90%, tensile strength 7, characterized by cooling at a cooling rate of 10°C/second or more, directly quenching, and then tempering in the range of 300°C to 700°C.
A method for producing a high tensile strength steel plate with a low yield ratio of 0 kgf/mm^2 or more.
(2)重量%で (a)C 0.05〜0.2%、 Si 0.03〜0.8%、 Mn 0.5〜2.5%、 Al 0.01〜0.1%、 Mo 0.1〜0.5%、及び Nb 0.01〜0.05% を含有し、更に、 (b)Ni 0.3〜1.5%、 Cu 0.3〜1.5%、及び Cr 0.3〜1.5% よりなる群から選ばれる少なくとも1種の元素を含有し
、 残部鉄及び不可避的不純物よりなる鋼を未再結晶オース
テナイト域において圧下率30%以上にて加工した後、
10℃/秒以上の冷却速度にて冷却して、直接焼入れし
、次いで、300℃から700℃の範囲で焼戻し処理を
施すことを特徴とする降伏比80〜90%、引張強さ7
0kgf/mm^2以上の低降伏比高張力鋼板の製造方
法。
(2) In weight% (a) C 0.05-0.2%, Si 0.03-0.8%, Mn 0.5-2.5%, Al 0.01-0.1%, Mo (b) Ni 0.3-1.5%, Cu 0.3-1.5%, and Cr After processing a steel containing at least one element selected from the group consisting of 0.3 to 1.5% and the balance consisting of iron and unavoidable impurities in the unrecrystallized austenite region at a reduction rate of 30% or more,
Yield ratio 80-90%, tensile strength 7, characterized by cooling at a cooling rate of 10°C/second or more, directly quenching, and then tempering in the range of 300°C to 700°C.
A method for producing a high tensile strength steel plate with a low yield ratio of 0 kgf/mm^2 or more.
(3)重量%で (a)C 0.05〜0.2%、 Si 0.03〜0.8%、 Mn 0.5〜2.5%、 Al 0.01〜0.1%、 Mo 0.1〜0.5%、及び Nb 0.01〜0.05% を含有し、更に、 (b)Ti 0.01〜0.05%、及び B 0.0005〜0.003% を含有し、 残部鉄及び不可避的不純物よりなる鋼を未再結晶オース
テナイト域において圧下率30%以上にて加工した後、
10℃/秒以上の冷却速度にて冷却して、直接焼入れし
、次いで、300℃から700℃の範囲で焼戻し処理を
施すことを特徴とする降伏比80〜90%、引張強さ7
0kgf/mm^2以上の低降伏比高張力鋼板の製造方
法。
(3) In weight% (a) C 0.05-0.2%, Si 0.03-0.8%, Mn 0.5-2.5%, Al 0.01-0.1%, Mo 0.1-0.5% and Nb 0.01-0.05%, and further contains (b) Ti 0.01-0.05% and B 0.0005-0.003% However, after processing the steel consisting of residual iron and unavoidable impurities in the unrecrystallized austenite region at a reduction rate of 30% or more,
Yield ratio 80-90%, tensile strength 7, characterized by cooling at a cooling rate of 10°C/second or more, directly quenching, and then tempering in the range of 300°C to 700°C.
A method for producing a high tensile strength steel plate with a low yield ratio of 0 kgf/mm^2 or more.
(4)重量%で (a)C 0.05〜0.2%、 Si 0.03〜0.8%、 Mn 0.5〜2.5%、 Al 0.01〜0.1%、 Mo 0.1〜0.5%、及び Nb 0.01〜0.05% を含有し、更に、 (b)Ni 0.3〜1.5%、 Cu 0.3〜1.5%、及び Cr 0.3〜1.5% よりなる群から選ばれる少なくとも1種の元素と、 (c)Ti 0.01〜0.05%、及び B 0.0005〜0.003% とを含有し、 残部鉄及び不可避的不純物よりなる鋼を未再結晶オース
テナイト域に、おいて圧下率30%以上にて加工した後
、10℃/秒以上の冷却速度にて冷却して、直接焼入れ
し、次いで、300℃から700℃の範囲で焼戻し処理
を施すことを特徴とする降伏比80〜90%、引張強さ
70kgf/mm^2以上の低降伏比高張力鋼板の製造
方法。
(4) In weight% (a) C 0.05-0.2%, Si 0.03-0.8%, Mn 0.5-2.5%, Al 0.01-0.1%, Mo (b) Ni 0.3-1.5%, Cu 0.3-1.5%, and Cr Contains at least one element selected from the group consisting of 0.3 to 1.5%, (c) Ti 0.01 to 0.05%, and B 0.0005 to 0.003%, the remainder Steel consisting of iron and unavoidable impurities is worked into the unrecrystallized austenite region at a reduction rate of 30% or more, then cooled at a cooling rate of 10°C/sec or more, directly quenched, and then A method for producing a low yield ratio high tensile strength steel plate having a yield ratio of 80 to 90% and a tensile strength of 70 kgf/mm^2 or more, the method comprising performing a tempering treatment at a temperature in the range of 700°C to 700°C.
JP16858686A 1986-07-16 1986-07-16 Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method Pending JPS6324013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16858686A JPS6324013A (en) 1986-07-16 1986-07-16 Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16858686A JPS6324013A (en) 1986-07-16 1986-07-16 Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method

Publications (1)

Publication Number Publication Date
JPS6324013A true JPS6324013A (en) 1988-02-01

Family

ID=15870802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16858686A Pending JPS6324013A (en) 1986-07-16 1986-07-16 Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method

Country Status (1)

Country Link
JP (1) JPS6324013A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229817A (en) * 1990-02-02 1991-10-11 Nippon Steel Corp Production of 80kgf/mm2 high tensile strength steel excellent in galvanizing crack resistance in weld heat-affected zone
JPH05255743A (en) * 1992-03-09 1993-10-05 Nippon Steel Corp Production of high tensile strength steel plate by rapid tempering
EP1681363A1 (en) * 2003-09-30 2006-07-19 Nippon Steel Corporation High-yield-ratio high-strength thin steel sheet and high-yield-ratio high-strength hot-dip galvanized thin steel sheet excelling in weldability and ductility as well as high-yield-ratio high-strength alloyed hot-dip galvanized thin steel sheet and process for producing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229817A (en) * 1990-02-02 1991-10-11 Nippon Steel Corp Production of 80kgf/mm2 high tensile strength steel excellent in galvanizing crack resistance in weld heat-affected zone
JPH05255743A (en) * 1992-03-09 1993-10-05 Nippon Steel Corp Production of high tensile strength steel plate by rapid tempering
EP1681363A1 (en) * 2003-09-30 2006-07-19 Nippon Steel Corporation High-yield-ratio high-strength thin steel sheet and high-yield-ratio high-strength hot-dip galvanized thin steel sheet excelling in weldability and ductility as well as high-yield-ratio high-strength alloyed hot-dip galvanized thin steel sheet and process for producing the same
EP1681363A4 (en) * 2003-09-30 2009-11-25 Nippon Steel Corp High-yield-ratio high-strength thin steel sheet and high-yield-ratio high-strength hot-dip galvanized thin steel sheet excelling in weldability and ductility as well as high-yield-ratio high-strength alloyed hot-dip galvanized thin steel sheet and process for producing the same
EP2309012A1 (en) * 2003-09-30 2011-04-13 Nippon Steel Corporation High yield ratio and high-strength cold rolled thin steel sheet superior in weldability and ductility, high-yield ratio high-strength hot-dip galvanized cold rolled thin steel sheet, high-yield ratio high-strength hot-dip galvannealed cold rolled thin steel sheet, and methods of production of same
US8084143B2 (en) 2003-09-30 2011-12-27 Nippon Steel Corporation High-yield-ratio and high-strength thin steel sheet superior in weldability and ductility, high-yield-ratio high-strength hot-dip galvanized thin steel sheet, high-yield ratio high-strength hot-dip galvannealed thin steel sheet, and methods of production of same
US8747577B2 (en) 2003-09-30 2014-06-10 Nippon Steel & Sumitomo Metal Corporation High yield ratio and high-strength thin steel sheet superior in weldability and ductility, high-yield ratio high-strength hot-dip galvanized thin steel sheet, high-yield ratio high-strength hot-dip galvannealed thin steel sheet, and methods of production of same

Similar Documents

Publication Publication Date Title
US4776900A (en) Process for producing nickel steels with high crack-arresting capability
JPS62174322A (en) Manufacture of low yield ratio high tension steel plate superior in cold workability
JPH08176659A (en) Production of high tensile strength steel with low yield ratio
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH05105957A (en) Production of heat resistant high strength bolt
JPH01176027A (en) Manufacture of steel plate for welding construction having low yield ratio and high tensile strength
JPS6324013A (en) Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method
JPH0452225A (en) Production of steel plate having low yield ratio and high tensile strength
JPS6320414A (en) Production of high-toughness high-tensile steel plate
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JPH03207814A (en) Manufacture of low yield ratio high tensile strength steel plate
JPS6324012A (en) Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method
JPH0445227A (en) Production of steel product with low yield ratio
JPH07233414A (en) Production of low yield ratio high tensile strength steel plate excellent in uniform elongation
JPH01176030A (en) Manufacture of high-tensile steel plate with low yield ratio by accelerated cooling method
JPS60152654A (en) Steel material having superior resistance to hydrogen induced cracking, high strength, ductility and toughness and its manufacture
JP2000096137A (en) Production of steel having fine crystal grain structure
JPH02175817A (en) Manufacture of hot-rolled high-tensile steel plate having dual-phase structure and excellent in workability
JPS6286122A (en) Production of structural steel having high strength and high weldability
JPS6254018A (en) Manufacture of high tensile steel superior in material characteristic after warm working
JPH02301517A (en) Production of high tensile steel plate with low yield ratio
JPH06340924A (en) Production of low yield ratio high tensile strength steel
JPH02213411A (en) Production of high tensile steel with low yield radio
JPH04173922A (en) Production of high strength steel for reinforcing bar having high yield elongation
JPS634019A (en) Production of steel for using at low temperature