JPH01176030A - Manufacture of high-tensile steel plate with low yield ratio by accelerated cooling method - Google Patents

Manufacture of high-tensile steel plate with low yield ratio by accelerated cooling method

Info

Publication number
JPH01176030A
JPH01176030A JP33649187A JP33649187A JPH01176030A JP H01176030 A JPH01176030 A JP H01176030A JP 33649187 A JP33649187 A JP 33649187A JP 33649187 A JP33649187 A JP 33649187A JP H01176030 A JPH01176030 A JP H01176030A
Authority
JP
Japan
Prior art keywords
yield ratio
cooling
steel
low yield
accelerated cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33649187A
Other languages
Japanese (ja)
Inventor
Masaaki Horie
正明 堀江
Kenji Koide
憲司 小出
Yoshihisa Kitagawa
北川 喜久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33649187A priority Critical patent/JPH01176030A/en
Publication of JPH01176030A publication Critical patent/JPH01176030A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the desired low yield ratio, high strength, and high toughness by subjecting an Nb-containing steel with a specific composition to hot rolling under specific conditions and then to accelerated cooling down to a specific temp. CONSTITUTION:A steel having a composition consisting of, by weight, 0.03-0.2% C, 0.03-0.5% Si, 0.4-2.3% Mn, 0.01-0.1% Al, 0.1-0.5% Mo, 0.01-0.05% Nb, 0.3-1.5% Ni, and the balance Fe with inevitable impurities is cast. This steel is hot-rolled so that draft in an unrecrystallized austenite region and finish rolling-finishing temp. are regulated to >=30% and >=Ar3 point, respectively. After rolling, cooling is applied to the above weight delay from >=Ar3 point at 2-40 deg.C/sec cooling rate, and cooling is stopped at a temp. between 300 and 700 deg.C. If necessary, one or more kinds among 0.3-1.5% Cr, 0.2-1.3% Cu, 0.0003-0.0030% B, and 0.005-0.03% Ti are incorporated to the above steel. By using this high-tensile steel plate with low yield ratio, the safety of welding construction can be increased.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は加速冷却法による低降伏比高張力鋼板の製造法
に関し、さらに詳しくは、降伏比65〜75%で70 
Kgr/me”以上の引張り強さを有する厚鋼板を加速
冷却法により製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing high-strength steel sheets with a low yield ratio by an accelerated cooling method, and more specifically,
The present invention relates to a method of producing a thick steel plate having a tensile strength of Kgr/me" or more by an accelerated cooling method.

[従来技術] 従来c7) 70 Kgf/ mm”ffl、80 K
gf/mm”級橋梁用厚鋼板は強制冷却することなく室
温まで冷却した後、焼入れ、焼戻し処理によって製造さ
れており、降伏比は95%a度であった。
[Prior art] Conventional c7) 70 Kgf/mm”ffl, 80 K
gf/mm'' class thick steel plates for bridges were manufactured by cooling to room temperature without forced cooling, followed by quenching and tempering, and the yield ratio was 95% a degree.

近年、85%まで降伏比を下げた鋼板を制御圧延、加速
冷却、焼入れ、焼戻し法により製造する方法が提案され
ており、(溶接学会論文集、Vol。
In recent years, a method has been proposed to produce steel plates with a yield ratio as low as 85% by controlled rolling, accelerated cooling, quenching, and tempering (Proceedings of the Welding Society of Japan, Vol.

3.1985.No、3.P2S5)、また、60kg
f/mra”板鋼では、圧延仕上後Ar3点以下まで空
冷し、所定量の初析フェライトを析出させた後、加速冷
却して、降伏比70%未満の低降伏比鋼を得る方法が提
案されている(特開昭59−211528号公報)。
3.1985. No, 3. P2S5), also 60kg
f/mra" plate steel, a method has been proposed that after rolling is finished, the steel is air-cooled to an Ar point of 3 or less to precipitate a predetermined amount of pro-eutectoid ferrite, and then accelerated cooling is performed to obtain a low-yield ratio steel with a yield ratio of less than 70%. (Japanese Unexamined Patent Publication No. 59-211528).

しかし、降伏比70%前後の極めて低い70kgf/m
m”級以上の低降伏比高張力鋼板の製造法は提案されて
いない。
However, the yield ratio is extremely low at 70kgf/m, around 70%.
No method has been proposed for producing high-strength steel sheets with low yield ratios of m'' class or higher.

近年、溶接構造用高張力鋼板の進歩は著しく、引張強さ
l OOKgf/mm”級まで実用化されつつあるが、
橋梁関係では従来の70 Kg4/mm”、80Kgf
/a+r級鋼は降伏比が高く、降伏後破壊に至るまでの
耐負荷が小さいため、隠れた安全性という観点では不安
材料があり、これまで80Kgf/a+m”扱高張力鋼
のこの分野での使用は極端に制限されていた。そして、
この分野においても軽量化の要求が大きく、隠れた安全
性を有する低降伏比の70 Kgr/am”級以上の高
張力鋼板の出現が望まれていた。
In recent years, high-strength steel plates for welded structures have made remarkable progress, and are now being put into practical use with tensile strength of lOOKgf/mm'' class.
For bridges, conventional 70 Kg4/mm”, 80 Kgf
/a+r class steel has a high yield ratio and a low load capacity after yielding until it breaks, so there is a cause for concern from the perspective of hidden safety. Its use was extremely limited, and
In this field as well, there is a strong demand for weight reduction, and the emergence of high-strength steel plates of 70 Kgr/am'' class or higher with a low yield ratio and hidden safety has been desired.

[発明が解決しようとする問題点] 本発明は上記に説明した従来における低降伏比の高張力
鋼板の製造法の問題点に鑑み、本発明者が鋭意研究を行
った結果、例えば、橋梁等の溶接構造物の隠れた安全性
を高め、かつ、構造物の軽量化を実現させるための加速
冷却法による低降伏比高張力鋼板の製造法を開発され、
冷間圧延鋼板、熱間圧延鋼板の分野においては鋼の降伏
比を下げる方法は開発、実用化されているが、これらの
鋼板はフェライトと5〜30%のマルテンサイトおよび
状況によってはベイナイトや残留オーステナイトを含む
組織構成を有しており、このマルテンサイトの存在が降
伏比を下げる上で有効とされているが、この方法や上記
特開昭59−211528号公報を70 kgr/II
Im”級以上の厚鋼板に適用しても、低降伏比は得られ
るが橋梁材として具備しなければならない低い遷移温度
、高いアッパーシェルフエネルギー、溶接部の硬度分布
、靭性等において致命的な欠点のあることがわかり、特
に、靭性値劣化の原因が軟質のフェライトと硬質のマル
テンサイトが粗く分散することを見出だし、さらに、N
b含有と適切な加速冷却速度を採用することにより、フ
ェライトを加速冷却中に極めて微細に析出させ、かつ、
残部も微細なベイナイト+マルテンサイト組織とするこ
とにより、所望の低降伏比、高強度、高靭性が得られる
加速冷却法による低降伏比高張力鋼板の製造法を開発し
たのである。
[Problems to be Solved by the Invention] In view of the above-described problems in the conventional manufacturing method of high-strength steel sheets with a low yield ratio, the present inventor has conducted extensive research, and as a result, the present invention has been developed to Developed a method for manufacturing high-strength steel plates with a low yield ratio using an accelerated cooling method to increase the hidden safety of welded structures and reduce the weight of the structures.
In the fields of cold-rolled steel sheets and hot-rolled steel sheets, methods to lower the yield ratio of steel have been developed and put into practical use, but these steel sheets contain ferrite and 5 to 30% martensite, and depending on the situation, bainite and residual It has a structure containing austenite, and the presence of this martensite is said to be effective in lowering the yield ratio.
Although a low yield ratio can be obtained even when applied to thick steel plates of Im'' grade or higher, it has fatal drawbacks such as low transition temperature, high upper shelf energy, hardness distribution of welded parts, toughness, etc. that must be provided for bridge materials. In particular, it was found that the cause of the deterioration of toughness value was the coarse dispersion of soft ferrite and hard martensite.
By using b content and an appropriate accelerated cooling rate, ferrite can be precipitated extremely finely during accelerated cooling, and
By making the remaining part a fine bainite + martensite structure, we developed a method for manufacturing high-strength steel sheets with a low yield ratio using an accelerated cooling method that achieves the desired low yield ratio, high strength, and high toughness.

[問題点を解決するための手段] 本発明に係る加速冷却法による低降伏比高張力鋼板の本
製造法は、 (1)  C0.03〜0.2wt%、S i 0.0
3〜0.5wt%、Mn 0.4〜2.3wt%、Al
 0.01〜0.1wt%、Mo 0.1〜0.5wt
%、Nb 0.01〜0.05wt%、Ni  0.3
〜1.5wt% を含有し、残部Feおよび不可避不純物からなる綱を、
未再結晶オーステナイト域での圧下率が30%以上で、
かつ、仕上圧延終了温度がAr8以上となるように熱間
圧延した後、直ちに、Ar3以上の温度から2〜b 冷却し、300〜700℃の間の温度で冷却停止を行う
ことを特徴とする加速冷却法による低降伏比高張力鋼板
の製造法を第1の発明とし、(2)  C0.03〜0
,2wt%、5iO103〜0.5wt%、Mn 0.
4〜2.3wt%、Al 0.01〜0.iwt%、M
o 0.1〜0.5wt%、Nb 0.01〜0.05
wt%、Ni 0.3〜1.5wt% を含有し、さらに、 Or、0.3〜1.5wt%、Cu 0.2〜1.3w
t%、B 0.0003〜0.003wt%、T i 
0.005〜0.03wt% の1種または2種以上 を含有し、残部Feおよび不可避不純物からなる綱を、
未再結晶オーステナイト域での圧下率か30%以上で、
かつ、仕上圧延終了温度がAr、以上となるように熱間
圧延した後、直ちに、Ars以上の温度から2〜b 冷却し、300〜700℃の間の温度で冷却停止を行う
ことを特徴とする加速冷却法による低降伏比高張力鋼板
の製造法を第2の発明とする2つの発明からなるもので
ある。
[Means for Solving the Problems] This manufacturing method of a low yield ratio high tensile strength steel plate by the accelerated cooling method according to the present invention is as follows: (1) C0.03 to 0.2wt%, Si 0.0
3-0.5wt%, Mn 0.4-2.3wt%, Al
0.01-0.1wt%, Mo 0.1-0.5wt
%, Nb 0.01-0.05wt%, Ni 0.3
~1.5wt%, with the balance consisting of Fe and unavoidable impurities,
The rolling reduction in the unrecrystallized austenite region is 30% or more,
And, after hot rolling so that the finish rolling end temperature becomes Ar8 or higher, it is immediately cooled from a temperature of Ar3 or higher by 2-b, and cooling is stopped at a temperature between 300 and 700°C. The first invention is a method for manufacturing a high-strength steel plate with a low yield ratio by an accelerated cooling method, and (2) C0.03 to 0.
, 2wt%, 5iO103~0.5wt%, Mn 0.
4 to 2.3 wt%, Al 0.01 to 0. iwt%, M
o 0.1-0.5wt%, Nb 0.01-0.05
wt%, Ni 0.3-1.5wt%, and further contains Or, 0.3-1.5wt%, Cu 0.2-1.3w
t%, B 0.0003-0.003wt%, T i
A wire containing one or more of 0.005 to 0.03 wt%, with the balance consisting of Fe and unavoidable impurities,
At a reduction rate of 30% or more in the unrecrystallized austenite region,
And, after hot rolling so that the finish rolling end temperature is Ar or higher, it is immediately cooled from a temperature of Ars or higher by 2 to 150°C, and a cooling stop is performed at a temperature of 300 to 700°C. This invention consists of two inventions, the second invention being a method for manufacturing a low yield ratio high tensile strength steel plate by an accelerated cooling method.

本発明に係る加速冷却法による低降伏比高張力鋼板の製
造法について以下詳細に説明する。
A method for manufacturing a low yield ratio high tensile strength steel sheet using an accelerated cooling method according to the present invention will be described in detail below.

先ず、本発明に係る加速冷却法による低降伏比高張力鋼
板の製造法(以下単に本発明製造法ということがある。
First, a method for manufacturing a low yield ratio high tensile strength steel plate by an accelerated cooling method according to the present invention (hereinafter sometimes simply referred to as the manufacturing method of the present invention).

)において使用する鋼の含有成分および含有割合につい
て説明する。
) The contained components and content ratio of the steel used in the above will be explained.

Cは強度上昇に有効な元素であり、含有量が0.03w
t%未満では強度上界効果は少なく、また、0.2wt
%を越えて含有されると溶接性を劣化する。
C is an element effective in increasing strength, and the content is 0.03w
Below t%, the strength upper limit effect is small, and 0.2wt
If the content exceeds %, weldability deteriorates.

よって、C含有量は0.03〜0.2wt%とする。Therefore, the C content is set to 0.03 to 0.2 wt%.

Stは組織制御に有効な元素であり、含有量が0.03
wt%未満では組織制御効果が発揮できず、また、0.
5wt%を越えて含有されると靭性の劣化を招来する。
St is an effective element for structure control, and the content is 0.03
If it is less than 0.0 wt%, no tissue control effect can be achieved, and if it is less than 0.
If the content exceeds 5 wt%, the toughness will deteriorate.

よって、St含有量は0.03〜0.5wt%とする。Therefore, the St content is set to 0.03 to 0.5 wt%.

MnはSlと同じく組織制御に有効な元素であり、含有
量が0.4vt%未満では組織制御の効果は少なく、ま
た、2.3wL%を越えて含有されるとバンド状組織を
生成し、C方向、Z方向の靭性の劣化を招来する。よっ
て、Mn含有量は0.4〜2,3wt%とする。
Like Sl, Mn is an element effective in controlling the structure, and if the content is less than 0.4 vt%, the effect of controlling the structure is small, and if the content exceeds 2.3 wL%, a band-like structure is generated. This leads to deterioration of toughness in the C direction and Z direction. Therefore, the Mn content is set to 0.4 to 2.3 wt%.

Alは脱酸剤として必要な元素であり、含有量が0.0
1wt%未満では脱酸剤としての効果はなく、また、0
.1wt%を越えて含有されるとこの効果は飽和する。
Al is an element necessary as a deoxidizing agent, and the content is 0.0
If it is less than 1 wt%, it has no effect as a deoxidizing agent, and 0
.. This effect is saturated when the content exceeds 1 wt%.

上って、Al含有量はQ、QL〜0.1wt%とする。In addition, the Al content is Q, QL ~ 0.1 wt%.

Moはベイナイト組織の生成に有効で、かつ、靭性値向
上に有効な元素であり、含有量が0.1vt%未満では
これらの効果は少なく、また、0.5wj%を越えて含
有されるとこれらの効果は飽和してしまう。よって、M
OC含有量0,1〜0.5wt%とすNbはγ粒径を微
細化し、未再結晶圧延領域の拡大が図れ、かつ、ベイナ
イト組織の微細化および強度上昇に寄与する元素であり
、含有mが0.01wt%未満ではこれらの効果を発揮
することはできず、また、0.05wt%を越えて含有
されると効果は飽和してしまう。よって、Nb含有量は
0.01−0゜05wt%とする。
Mo is an element that is effective in generating a bainite structure and improving toughness.If the content is less than 0.1vt%, these effects will be small, and if the content exceeds 0.5wj%, These effects become saturated. Therefore, M
When the OC content is 0.1 to 0.5 wt%, Nb is an element that refines the γ grain size, expands the non-recrystallized rolling area, and contributes to the refinement of the bainite structure and increase in strength. If m is less than 0.01 wt%, these effects cannot be exhibited, and if m is contained in excess of 0.05 wt%, the effects are saturated. Therefore, the Nb content is set to 0.01-0.05 wt%.

Niは溶接性と靭性の向上に有効な元素であり、含有量
が0.3wt%未満ではこの効果は少なく、また、l 
、 5wt%を越えて含有されると効果は飽和する。よ
って、Ni含有量は0.3〜1.5wt%とする。
Ni is an element effective in improving weldability and toughness, and if the content is less than 0.3 wt%, this effect is small, and l
If the content exceeds 5 wt%, the effect will be saturated. Therefore, the Ni content is set to 0.3 to 1.5 wt%.

Crは組織制御に有効で、かつ、強度上昇に寄与する元
素であり、含有量が 0.3wt%未満ではこのような
効果は少なく、また、1 、5wt%を越えて含有され
ると効果のそれ以上の上昇は望めない。
Cr is an element that is effective in controlling the structure and contributes to increasing strength.If the content is less than 0.3 wt%, this effect will be small, and if the content exceeds 1.5 wt%, the effect will be reduced. No further increase can be expected.

よって、Cr含有量は0.3〜1.5wt%とする。Therefore, the Cr content is set to 0.3 to 1.5 wt%.

Cuは溶接性および靭性の向上に有効な元素であり、含
有量が0.2wt%未満ではこの効果は少なく、また、
1.3wt%を越えると効果は飽和する。
Cu is an element effective in improving weldability and toughness, and if the content is less than 0.2 wt%, this effect is small, and
If it exceeds 1.3 wt%, the effect is saturated.

よって、Cu含有rItは0.2〜1.3賓t%とする
Therefore, the Cu-containing rIt is set to 0.2 to 1.3 t%.

Bは組織制御に有効で、かつ、強度上昇に寄与する元素
であり、含有量が0.0003wt%未満ではこの効果
は少なく、また、0.003wt%を越えると効果は飽
和する。よって、B含有量は0.0003〜0.003
wj%とする。
B is an element that is effective in controlling the structure and contributes to increasing strength. If the content is less than 0.0003 wt%, this effect is small, and if the content exceeds 0.003 wt%, the effect is saturated. Therefore, the B content is 0.0003 to 0.003
wj%.

TiはNを固定し、かつ、Bの効果を有効に活用させる
のに寄与する元素であり、含有量が(1,005wt5
未満ではこのような効果は少なく、また、0.03wt
%を越えて含有されるとこの効果は飽和してしまう。よ
って、Ti含有量はo、oos〜0.03wt%とする
Ti is an element that fixes N and contributes to effectively utilizing the effect of B, and its content is (1,005wt5
If it is less than 0.03wt, this effect is small, and if it is less than 0.03wt.
If the content exceeds %, this effect will be saturated. Therefore, the Ti content is set to o, oos to 0.03 wt%.

次に、本発明製造法における製法について説明する。Next, the manufacturing method according to the present invention will be explained.

上記に説明した含有成分および含有割合の綱の加熱温度
は900〜1150℃とするのが良く、特に、低温域で
加熱した方がγ粒が微細となり、変態後に得られる組織
が微細となり、靭性向上に有効であり、従って、圧延機
の能力、仕上温度の確保の許容される範囲で低温に加熱
することが望ましい。
The heating temperature of the steel with the above-mentioned components and content ratios is preferably 900 to 1150°C. In particular, heating in a low temperature range results in finer γ grains, a finer structure obtained after transformation, and improved toughness. Therefore, it is desirable to heat to a low temperature within the allowable range of rolling mill capacity and finishing temperature.

熱間加工条件は、γ粒の微細化、γ粒内への変形帯の導
入は、変態後の組織を微細化し、靭性向上に有効である
ことから、オーステナイトの未再結晶域で30%以上の
加工が必要で、例えば、熱間圧延を行う。
The hot working conditions are such that the refinement of the γ grains and the introduction of deformation bands within the γ grains are effective in refining the structure after transformation and improving toughness. For example, hot rolling is required.

冷却条件は、加速冷却開始温度がArs未満では空冷中
に粗大な初析フェライトが析出し、靭性が劣化しく第1
図)、従って、加速冷却の開始も、熱間圧延後直ちに行
なわれることが重要である。
Regarding the cooling conditions, if the accelerated cooling start temperature is less than Ars, coarse pro-eutectoid ferrite will precipitate during air cooling, and the toughness will deteriorate.
Therefore, it is important to start accelerated cooling immediately after hot rolling.

また、冷却速度が2℃/see未満では初析フェライト
が多量に、かつ、粗大に析出するため、強度、靭性とも
に低くなり、また、40℃/secを越えると100%
ベイナイト+マルテンサイト組織となって、降伏比が高
くなり過ぎる。
In addition, if the cooling rate is less than 2°C/sec, pro-eutectoid ferrite will precipitate in large quantities and coarsely, resulting in low strength and toughness, and if it exceeds 40°C/sec, the
It becomes a bainite + martensite structure, and the yield ratio becomes too high.

そして、組織中に適量の初析フェライトを析出させるた
めの、適正冷却速度は、綱の含有成分および含有割合に
依存する。この適正冷却速度の範囲は、次式を用いて求
めることができる。
The appropriate cooling rate for precipitating an appropriate amount of pro-eutectoid ferrite in the structure depends on the components and content ratio of the steel. This appropriate cooling rate range can be determined using the following equation.

・ボロン無含有鋼 −17,5−Ceq+10.2<1nR(”C/s)<
−17,5Ceq+ 12.6 ・ボロン含有鋼 −17,5・Ceq+9.5<1nR(”C/s)<−
17,5Ceq+11.9 ただし、 Ceq=C+Si/24+Mn/6+Nt/40+Cr
15+Mo/4+V/14 しかして、冷却停止温度が300℃未満では温度制御が
困難になるばかりでなく、レベラー工程における圧延圧
力が多大となり好ましくなく、停止温度が低いとDua
l Phasew4に近い組織となり、降伏比は約60
%と求める範囲より低く、300℃を越える停止温度で
は80 Kgr/mQ+”扱銅の強度が得られ、降伏比
も求める値の70%前後の値であり、また、停止温度が
700℃を越える高い温度になると、フェライト−パー
ライト組織となり、引張強さが70 Kgf/aus’
を下回るようになる。このことは、第1表の鋼」を一つ
の例として採用して冷却停止温度とTS、YRの関係に
ついて調査し、その結果を第2図に示しである。この第
2図から本発明製造法のように冷却停止温度を300〜
700℃の範囲とすることが好適であることがわかる。
・Boron-free steel-17,5-Ceq+10.2<1nR("C/s)<
-17,5Ceq+ 12.6 ・Boron-containing steel -17,5・Ceq+9.5<1nR("C/s)<-
17.5Ceq+11.9 However, Ceq=C+Si/24+Mn/6+Nt/40+Cr
15+Mo/4+V/14 However, if the cooling stop temperature is less than 300°C, not only will it be difficult to control the temperature, but the rolling pressure in the leveler process will be large, which is undesirable.
l The structure is close to Phase 4, and the yield ratio is approximately 60.
% and at a stopping temperature exceeding 300°C, a strength of 80 Kgr/mQ+” is obtained, and the yield ratio is around 70% of the required value, and when the stopping temperature exceeds 700°C. At high temperatures, it becomes a ferrite-pearlite structure with a tensile strength of 70 Kgf/aus'
It will become below. To find out this, the relationship between the cooling stop temperature, TS, and YR was investigated using the steel shown in Table 1 as an example, and the results are shown in FIG. From this figure 2, it can be seen that the cooling stop temperature is 300~
It can be seen that a temperature range of 700°C is suitable.

また、加速冷却のままの状態では、即ち、熱間圧延−冷
却のままでは、殆どの場合降伏点伸びは零で、いずれも
連続降伏現象であり、特に、橋梁等の設計を行う際に、
降伏点伸びを付与したい場合は、100〜300℃の温
度の焼戻し処理を行う必要があるが、第3図に示すよう
に焼戻し温度が300℃を越えるとYRが上限の75%
以上となって、求める低降伏比が得られなくなり、また
、焼戻し温度が100℃未満では実質的効果は得られな
くなる。
In addition, in the state of accelerated cooling, that is, in the state of hot rolling and cooling, the elongation at yield point is zero in most cases, and it is a continuous yielding phenomenon.Especially when designing bridges, etc.
If you want to give yield point elongation, it is necessary to perform tempering treatment at a temperature of 100 to 300°C, but as shown in Figure 3, if the tempering temperature exceeds 300°C, YR will be 75% of the upper limit.
As a result, the desired low yield ratio cannot be obtained, and if the tempering temperature is less than 100° C., no substantial effect can be obtained.

[実 施 例] 本発明に係る加速冷却法による低降伏比高張力鋼板の製
造法の実施例を説明する。
[Example] An example of a method for manufacturing a low yield ratio high tensile strength steel plate by an accelerated cooling method according to the present invention will be described.

実施例 第1表に示す含有成分および含有割合の鋼を通常の製法
により溶解、鋳造した鋼を900℃から1100℃の間
の各種の加熱温度において100s+mtの鋼(スラブ
)を加熱し、20韻を厚の鋼板に圧延し、900℃以下
の圧下率を50%とした。熱間圧延終了後各種の冷却速
度で冷却した。必要に応じて焼戻し処理を行ったが、所
定の温度に1時間保持後空冷した。
Example Steel having the components and content ratios shown in Table 1 was melted and cast using a normal manufacturing method, and a steel (slab) of 100 s + mt was heated at various heating temperatures between 900°C and 1100°C, and then heated for 20 times. was rolled into a thick steel plate, and the rolling reduction at 900°C or less was set to 50%. After the hot rolling was completed, the specimens were cooled at various cooling rates. A tempering treatment was performed as necessary, and the sample was kept at a predetermined temperature for 1 hour and then cooled in air.

第2表に各鋼種の機械的性質を示す。Table 2 shows the mechanical properties of each steel type.

この第2表より本発明製造法により製造された鋼は、比
較例に比して、65〜75%の低い降伏比、かつ、高靭
性であり、その他の機械的性質は比較例と同等かそれ以
上であり、優れていることがわかる。
From Table 2, the steel manufactured by the manufacturing method of the present invention has a lower yield ratio of 65 to 75% and higher toughness than the comparative example, and other mechanical properties are equivalent to the comparative example. It's more than that, and you can see that it's superior.

[R明の効果コ 以上説明したように、本発明に係る加速冷却法による低
降伏比高張力鋼板の製造法は上記の構成であるから、溶
接溝造物の安全性が高い、70Kgf/mm”以上であ
り、かつ、降伏比が65〜75%と低い高張力調板を効
果的に製造することができる優れた製造法である。
[Effects of R-light] As explained above, the method for manufacturing a low yield ratio high-strength steel plate by the accelerated cooling method according to the present invention has the above-mentioned configuration, so the welded groove structure can be produced with high safety of 70 Kgf/mm. This is an excellent manufacturing method that can effectively manufacture a high tensile strength plate with a low yield ratio of 65 to 75%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加速冷却開始温度とT、S、、vTrsの関係
を示す図、第2図は冷却停止温度とTSSYRの関係を
示す図、第3図は焼戻し温度とTS。 Yrt、YPEIの関係を示す図である。 才3図
Fig. 1 is a diagram showing the relationship between accelerated cooling start temperature and T, S, vTrs, Fig. 2 is a diagram showing the relationship between cooling stop temperature and TSSYR, and Fig. 3 is a diagram showing the relationship between tempering temperature and TS. It is a figure showing the relationship between Yrt and YPEI. 3rd figure

Claims (2)

【特許請求の範囲】[Claims] (1)C0.03〜0.2wt%、Si0.03〜0.
5wt%、Mn0.4〜2.3wt%、Al0.01〜
0.1wt%、Mo0.1〜0.5wt%、Nb0.0
1〜0.05wt%、Ni0.3〜1.5wt% を含有し、残部Feおよび不可避不純物からなる鋼を、
未再結晶オーステナイト域での圧下率が30%以上で、
かつ、仕上圧延終了温度がAr_3以上となるように熱
間圧延した後、直ちに、Ar_3以上の温度から2〜4
0℃/secの冷却速度で加速冷却し、300〜700
℃の間の温度で冷却停止を行うことを特徴とする加速冷
却法による低降伏比高張力鋼板の製造法。
(1) C0.03-0.2wt%, Si0.03-0.
5wt%, Mn0.4~2.3wt%, Al0.01~
0.1wt%, Mo0.1-0.5wt%, Nb0.0
Steel containing 1 to 0.05 wt%, 0.3 to 1.5 wt% Ni, and the balance consisting of Fe and unavoidable impurities,
The rolling reduction in the unrecrystallized austenite region is 30% or more,
And, immediately after hot rolling so that the finish rolling end temperature becomes Ar_3 or more, the temperature is reduced to 2 to 4 from Ar_3 or more.
Accelerated cooling at a cooling rate of 0°C/sec, 300-700
A method for manufacturing high-strength steel sheets with a low yield ratio by an accelerated cooling method characterized by stopping cooling at a temperature between ℃.
(2)C0.03〜0.2wt%、Si0.03〜0.
5wt%、Mn0.4〜2.3wt%、Al0.01〜
0.1wt%、Mo0.1〜0.5wt%、Nb0.0
1〜1.5wt%、Ni0.3〜1.5wt%、 を含有し、さらに、 Cr0.3〜1.5wt%、Cu0.2〜1.3wt%
、B0.0003〜0.003wt%、 Ti0.005〜0.03wt% の1種または2種以上 を含有し、残部Feおよび不可避不純物からなる鋼を、
未再結晶オーステナイト域での圧下率が30%以上で、
かつ、仕上圧延終了温度がAr_3以上となるように熱
間圧延した後、直ちに、Ar_3以上の温度から2〜4
0℃/secの冷却速度で加速冷却し、300〜700
℃の間の温度で冷却停止を行うことを特徴とする加速冷
却法による低降伏比高張力鋼板の製造法。
(2) C0.03-0.2wt%, Si0.03-0.
5wt%, Mn0.4~2.3wt%, Al0.01~
0.1wt%, Mo0.1-0.5wt%, Nb0.0
1 to 1.5 wt%, Ni0.3 to 1.5 wt%, and further contains Cr0.3 to 1.5 wt%, Cu0.2 to 1.3 wt%.
, B0.0003~0.003wt%, Ti0.005~0.03wt%, and the balance is Fe and unavoidable impurities.
The rolling reduction in the unrecrystallized austenite region is 30% or more,
And, immediately after hot rolling so that the finish rolling end temperature becomes Ar_3 or more, the temperature is reduced to 2 to 4 from Ar_3 or more.
Accelerated cooling at a cooling rate of 0°C/sec, 300-700
A method for manufacturing high-strength steel sheets with a low yield ratio by an accelerated cooling method characterized by stopping cooling at a temperature between ℃.
JP33649187A 1987-12-28 1987-12-28 Manufacture of high-tensile steel plate with low yield ratio by accelerated cooling method Pending JPH01176030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33649187A JPH01176030A (en) 1987-12-28 1987-12-28 Manufacture of high-tensile steel plate with low yield ratio by accelerated cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33649187A JPH01176030A (en) 1987-12-28 1987-12-28 Manufacture of high-tensile steel plate with low yield ratio by accelerated cooling method

Publications (1)

Publication Number Publication Date
JPH01176030A true JPH01176030A (en) 1989-07-12

Family

ID=18299680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33649187A Pending JPH01176030A (en) 1987-12-28 1987-12-28 Manufacture of high-tensile steel plate with low yield ratio by accelerated cooling method

Country Status (1)

Country Link
JP (1) JPH01176030A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452225A (en) * 1990-06-19 1992-02-20 Sumitomo Metal Ind Ltd Production of steel plate having low yield ratio and high tensile strength
EP0786533A1 (en) * 1993-09-20 1997-07-30 Nippon Steel Corporation Steel plate having low welding strain and good bending workability by linear heating and method for producing the same, and welding material and method for producing the same
EP1681363A1 (en) * 2003-09-30 2006-07-19 Nippon Steel Corporation High-yield-ratio high-strength thin steel sheet and high-yield-ratio high-strength hot-dip galvanized thin steel sheet excelling in weldability and ductility as well as high-yield-ratio high-strength alloyed hot-dip galvanized thin steel sheet and process for producing the same
JP2006342421A (en) * 2005-05-13 2006-12-21 Nippon Steel Corp Method for producing high-tension steel excellent in weld crack resistance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452225A (en) * 1990-06-19 1992-02-20 Sumitomo Metal Ind Ltd Production of steel plate having low yield ratio and high tensile strength
EP0786533A1 (en) * 1993-09-20 1997-07-30 Nippon Steel Corporation Steel plate having low welding strain and good bending workability by linear heating and method for producing the same, and welding material and method for producing the same
EP0786533A4 (en) * 1993-09-20 1997-07-30
US5718776A (en) * 1993-09-20 1998-02-17 Nippon Steel Corporation Steel plate less susceptible to welding distortion and highly bendable by lineal heating, process for producing said steel plate, welding material, and welding method using said welding material
EP1681363A1 (en) * 2003-09-30 2006-07-19 Nippon Steel Corporation High-yield-ratio high-strength thin steel sheet and high-yield-ratio high-strength hot-dip galvanized thin steel sheet excelling in weldability and ductility as well as high-yield-ratio high-strength alloyed hot-dip galvanized thin steel sheet and process for producing the same
EP1681363A4 (en) * 2003-09-30 2009-11-25 Nippon Steel Corp High-yield-ratio high-strength thin steel sheet and high-yield-ratio high-strength hot-dip galvanized thin steel sheet excelling in weldability and ductility as well as high-yield-ratio high-strength alloyed hot-dip galvanized thin steel sheet and process for producing the same
EP2309012A1 (en) * 2003-09-30 2011-04-13 Nippon Steel Corporation High yield ratio and high-strength cold rolled thin steel sheet superior in weldability and ductility, high-yield ratio high-strength hot-dip galvanized cold rolled thin steel sheet, high-yield ratio high-strength hot-dip galvannealed cold rolled thin steel sheet, and methods of production of same
US8084143B2 (en) 2003-09-30 2011-12-27 Nippon Steel Corporation High-yield-ratio and high-strength thin steel sheet superior in weldability and ductility, high-yield-ratio high-strength hot-dip galvanized thin steel sheet, high-yield ratio high-strength hot-dip galvannealed thin steel sheet, and methods of production of same
US8747577B2 (en) 2003-09-30 2014-06-10 Nippon Steel & Sumitomo Metal Corporation High yield ratio and high-strength thin steel sheet superior in weldability and ductility, high-yield ratio high-strength hot-dip galvanized thin steel sheet, high-yield ratio high-strength hot-dip galvannealed thin steel sheet, and methods of production of same
JP2006342421A (en) * 2005-05-13 2006-12-21 Nippon Steel Corp Method for producing high-tension steel excellent in weld crack resistance

Similar Documents

Publication Publication Date Title
KR100340507B1 (en) Method for manufacturing high strength and high formability hot-rolled transformation induced plasticity steel containing copper
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH07316650A (en) Production of high strength hot rolled steel plate with low yield ratio
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3772686B2 (en) High-tensile steel plate and manufacturing method thereof
JPH01176030A (en) Manufacture of high-tensile steel plate with low yield ratio by accelerated cooling method
JPH01176029A (en) Manufacture of high-tensile steel plate with low yield ratio by accelerated cooling method
JPH02149646A (en) High strength hot rolled steel sheet having excellent workability and weldability
JPS63199821A (en) Manufacture of accelerated cooling-type high-tensile steel plate
JPS6119733A (en) Preparation of super 70kg grade high strength hot rolled steel plate excellent in elongation flange property
JPH09111396A (en) High tensile strength hot rolled steel plate and high tensile strength cold rolled steel sheet for automobile use, excellent in impact resistance, and their production
JPH0445227A (en) Production of steel product with low yield ratio
JPS6367524B2 (en)
KR100276300B1 (en) The manufacturing method of high strength hot rolling steel sheet with having low tensil strength
JP3290019B2 (en) Manufacturing method of high strength hot rolled steel sheet with excellent fatigue properties and stretch flangeability
JPS6318020A (en) Manufacture of high-tensile steel plate with low yielding ratio by accelerated cooling method
JPH05271770A (en) Manufacture of fine-grained thick steel plate
JPH022929B2 (en)
JPH0762487A (en) High strength and high workability steel sheet for can producing excellent in baking hardenability, aging resistance and non-earing
JPS6286122A (en) Production of structural steel having high strength and high weldability
KR950003547B1 (en) Making method of low temperature ni-steel
JP2528395B2 (en) Manufacturing method of ultra high strength cold rolled steel sheet for ERW pipe
JPS6324013A (en) Production of low yielding ratio high-tensile steel plate by direct hardening and tempering method
JPH0920921A (en) Production of high toughness steel plate by means of separation