JPS58120727A - Manufacture of high toughness nontempered high tensile steel sheet superior in weldability and causing less separation - Google Patents

Manufacture of high toughness nontempered high tensile steel sheet superior in weldability and causing less separation

Info

Publication number
JPS58120727A
JPS58120727A JP281482A JP281482A JPS58120727A JP S58120727 A JPS58120727 A JP S58120727A JP 281482 A JP281482 A JP 281482A JP 281482 A JP281482 A JP 281482A JP S58120727 A JPS58120727 A JP S58120727A
Authority
JP
Japan
Prior art keywords
rolling
steel
toughness
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP281482A
Other languages
Japanese (ja)
Inventor
Kenichi Amano
天野 「あ」一
Chiaki Shiga
千晃 志賀
Taneo Hatomura
波戸村 太根生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP281482A priority Critical patent/JPS58120727A/en
Publication of JPS58120727A publication Critical patent/JPS58120727A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the titled high tensile steel sheet by heating the steel containing specified amount of C, Si, Mn, Al to the specified temp. range, performing two stage rolling with the specified cumulative draft and cooling at the specified cooling rate. CONSTITUTION:The steel consists of, by weight %, 0.03-2 C, 0.03-0.6 Si, 0.5- 2 Mn, 0.005-0.06 Al if necessary, one or >=2 kinds among and the balance Fe with inevitable impurities (where <0.008 S in the inevitable impurities). This steel is heated to 900-1,150 deg.C, then rolled with the cumulative draft R satisfying the equation calculated for the heating temp. T when the heated temp. is above 900 deg.C until it is decreased to 900 deg.C; then rolling is continued with the cumulative draft above 50% during the temp. is reduced from 900 deg.C to Ar3 point and the rolling is finished at below Ar3 temp. This steel is then cooled at the rate of 2-25 deg.C/sec.

Description

【発明の詳細な説明】 本発明は、セパレーションの少ない溶接性にすぐれ友高
靭性非調質高張力鋼板の製造方法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a non-temperature treated high tensile strength steel plate with less separation, excellent weldability, and high toughness.

前記セパレーションは衝撃試験片の破面上に観察され、
破面に垂直に現われる層状剥離のことである。
The separation is observed on the fracture surface of the impact test specimen,
This refers to delamination that appears perpendicular to the fracture surface.

従来実施されている溶接性にすぐれ友高靭性非調質高張
力鋼板の製造方法の一つとしてはいわゆる制御圧延法が
ある。しかしながら、制御正弧においては高靭性化およ
び高張力化の目的により、オーステナイトとフェライト
のコ相域で圧下を付与するため、セパレーションが増加
してくる。これを避けるためオーステナイト域で圧延を
終了すると必要な強度を得ることが困難になシ、この困
―を克服するKは合金成分の増加が必要とされ、いわゆ
る炭素当量(Ceq )が上昇し溶接性が損なわれるこ
とが知られている。
A so-called controlled rolling method is one of the conventionally practiced methods for producing high-strength, non-thermal-treated high-strength steel sheets with excellent weldability and high toughness. However, in the controlled positive arc, separation is increased because reduction is applied in the co-phase region of austenite and ferrite for the purpose of increasing toughness and increasing tensile strength. In order to avoid this, it becomes difficult to obtain the necessary strength if the rolling is finished in the austenite region.To overcome this problem, an increase in the alloying component of K is required, and the so-called carbon equivalent (Ceq) increases, making it difficult to weld. It is known that sex is impaired.

なお、セパレーションが溶接構造物の安全性に及ぼす影
響に関しては未だに明らかにされていない。しかしなが
ら板厚方向における靭性劣化、耐応力腐食割れ特性低下
、あるいは不安定延性破壊などの原因の一つがセパレー
ションによるという考、を方もあってセパレーションの
ないことが望まれており、従ってセパレーションの少な
い溶接性に優れた高靭性高張力鋼板の非調質製造方法の
確立が従来要請されていた。
Note that the effect of separation on the safety of welded structures has not yet been clarified. However, there is a belief that separation is one of the causes of deterioration of toughness in the thickness direction, deterioration of stress corrosion cracking resistance, or unstable ductile fracture, so it is desirable to have no separation, and therefore, it is desirable to have no separation. There has been a demand for the establishment of a non-temperature manufacturing method for high-toughness, high-strength steel sheets with excellent weldability.

ところで前述のように制御圧延においてコ相域圧下金付
与せずに高張度化できる方法があれば、セパレーション
の少い溶接性に優れた鋼板の製造が可能であると考えら
れ、これらの考えに従って、従来からr域で圧延を終了
し、圧電後加速冷却する方法が知られている。しかしな
がら、これらの加速冷却法においては冷却停止温度はS
OO℃以上としているため、強度の上昇はそれほど大き
くはないという欠点がある。
By the way, as mentioned above, if there is a method that can increase the tensile strength in controlled rolling without applying reduction gold in the co-phase region, it is thought that it is possible to manufacture steel sheets with less separation and excellent weldability. Conventionally, a method has been known in which rolling is finished in the r region and accelerated cooling is performed after piezoelectricity. However, in these accelerated cooling methods, the cooling stop temperature is S
Since the temperature is OO°C or higher, there is a drawback that the increase in strength is not so large.

従来、加速冷却の加篤冷却停止温度を500℃以下にす
るとフェライト地中にマルテンサイトが混入し高強度化
はするものの靭性の劣化は避けられないとされていた。
Conventionally, it has been thought that if the accelerated cooling stop temperature is set to 500° C. or lower, martensite will be mixed into the ferrite ground, and although the strength will be increased, deterioration of toughness will be unavoidable.

しかし本発明者らは、先にyb含有鋼において加速冷却
の冷却停止温度を200℃以下としても導入されるマル
テンサイトが微細であれば靭性の劣化を伴なわず高強度
化が可能であることを見出し、その加熱−正弧一冷却条
件を検討して特願昭34− /l/&’1号により特許
出願した。
However, the present inventors have previously discovered that even if the cooling stop temperature of accelerated cooling is set to 200°C or less in Yb-containing steel, if the introduced martensite is fine, high strength can be achieved without deterioration of toughness. After discovering the heating, forward arc and cooling conditions, a patent application was filed in Japanese Patent Application No. 1973/1/&'1.

しかし、前記発明によればNbを鋼に含有させることが
必要であった。
However, according to the invention, it was necessary to incorporate Nb into the steel.

本発明は、前記従来方法の有する欠点を除去、改善し九
セパレーションの少ない溶接性にすぐれた高靭性非調質
高張力鋼板の製造方法を提供することを目的とし、特許
請求の範囲記載の方法を提供することによって前記目的
を達成することができる。
An object of the present invention is to provide a method for producing a high-toughness, non-heat-treated high-strength steel plate that eliminates and improves the drawbacks of the conventional method and has less separation and excellent weldability. The above objective can be achieved by providing the following.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

周知のようにWb含有鋼にあっては微細化が達成されや
すいが、本発明者らはNl)を含有せしめなくても加熱
−圧延条件を適切化することにより冷却停止温度を50
0℃以下として微細なマルテンサイトを混入せしめ靭性
の劣化を伴なうことなく高強度化が可能であることをあ
きらかにして本発明を完成させたのである。
As is well known, refinement is easily achieved in Wb-containing steel, but the present inventors have achieved a cooling stop temperature of 50% by optimizing heating and rolling conditions even without containing Nl.
The present invention was completed by demonstrating that it is possible to increase the strength without deteriorating toughness by incorporating fine martensite at temperatures below 0°C.

本発明の研究経過を研究結果と共に以下に説明する。The progress of research into the present invention will be explained below along with the research results.

先ずこの発明の研究において加速冷却の停止温度が強度
と靭性に及ぼす影響を調べた。
First, in research for this invention, the influence of the stopping temperature of accelerated cooling on strength and toughness was investigated.

第1表に示す鋼lを1ioo℃に加熱し、/100℃〜
qoo℃で1,0*の累積圧下率で圧延を施した後、q
oo℃から再び圧延を開始して110℃において圧延を
終了し、この間の累積圧下率を43%となし、その後の
冷却速度をio @c/sとしたときの冷却停止温度が
強度と靭性ならびにセパレーション長さの合計に及ばず
影響を調べた。その結果を第1図に示す。なお、上記強
度と靭性は圧延直角方向すなわちC方向の値である。ま
たこの鋼のAr3点は100℃であシ、上記圧延はムr
5点以上で終了している。
Steel l shown in Table 1 is heated to 1ioo℃, /100℃~
After rolling at qoo°C with a cumulative reduction rate of 1,0*, q
Rolling is started again from oo℃ and finished at 110℃, the cumulative reduction rate during this period is 43%, and the cooling stop temperature when the subsequent cooling rate is io@c/s is the strength, toughness, and The effect on the total separation length was investigated. The results are shown in FIG. Note that the above strength and toughness are values in the direction perpendicular to rolling, that is, the C direction. Also, the Ar3 point of this steel is 100℃, and the above rolling is uneven.
Finished with 5 points or more.

第1表 供試鋼の成分 同図よシ加速冷却の停止温度をSOO℃以下とした時に
は圧延後空冷した場合に比べてj = ak泊−’もの
70日の上昇があシ、しかも靭性は劣化しないことが判
る。また、加速冷却の停止温度を200℃以上とした場
合に比べても3〜qkgシーも高強度化されている。さ
らにセパレーション長さの合計についてみても、冷却停
止温度を下げても増加することなく非常に少ない。これ
は同図中■印で示した鋼/をコ相域で圧下を30−加え
てtlIo℃で仕上げた制御圧延材に生ずるセパレーシ
ョンの合計長さに比べてもわかる。すなわち加速冷却を
上記条件で行うとセパレーションを増すことなく高強度
化、高靭性化が可能である。さらに、1+高強度化した
分だけ合金成分を減少せしめて低Ceq化が可能となる
Table 1: Composition of the sample steel According to the same figure, when the stop temperature of accelerated cooling is set to below SOO℃, the toughness increases by J = ak 70 days compared to the case where air cooling is performed after rolling, and the toughness decreases. It turns out that it does not deteriorate. Moreover, the strength is also increased by 3 to q kg compared to the case where the stop temperature of accelerated cooling is set to 200° C. or higher. Furthermore, the total separation length does not increase even if the cooling stop temperature is lowered and remains very small. This can also be seen by comparing the total length of separations that occur in a controlled rolled material of steel indicated by a black mark in the same figure, which is rolled by 30° in the co-phase region and finished at tlIo°C. That is, if accelerated cooling is performed under the above conditions, it is possible to increase the strength and toughness without increasing separation. Furthermore, by reducing the alloy components by the amount of 1+ increased strength, it is possible to lower Ceq.

したがって、この発明の構成要件の第1の要部はその加
熱−圧延条件にある。
Therefore, the first essential component of the present invention is its heating and rolling conditions.

この発明によればスラブ加熱温度は900〜/ /!r
O℃とする。スラブ加熱温度はAc、点以上であれば加
熱時にオーステナイト粒径を小さくするという観点から
は低いほど良いが、セパレーションヲ少くするという観
点から圧延をムr5以上で仕上げる丸め、必要な累積圧
下率を確保するためには900℃以上が必要である。と
ころで現状のスラブ加熱炉はこのような低温加熱には向
いていないので、さらに高い加熱温度を採用せざるを得
ない場合が往々にしである。そのような場合には後述す
るようにツク0℃以上での圧延を適切にすることにより
冷却前すなわち正弧終了時のオーステナイト粒を微細化
することが可能であるが、1130℃を越えて加熱する
と加熱時のオーステナイト粒径が大きくなシすぎ圧延で
粒径を小さくして、粒径が大きいことの欠点を補なうこ
とが不可能となるため上限を1110℃とした。
According to this invention, the slab heating temperature is 900 ~ / /! r
Set to 0°C. If the slab heating temperature is Ac, the lower the better from the point of view of reducing the austenite grain size during heating, but from the point of view of reducing separation, the required cumulative rolling reduction rate should be In order to ensure this, a temperature of 900°C or higher is required. However, since current slab heating furnaces are not suitable for such low-temperature heating, it is often necessary to use even higher heating temperatures. In such cases, it is possible to refine the austenite grains before cooling, that is, at the end of the positive arc, by appropriately rolling at temperatures above 0°C, as described below, but heating above 1130°C This makes it impossible to reduce the grain size by over-rolling, where the austenite grain size during heating is large, and compensate for the drawbacks of the large grain size, so the upper limit was set at 1110°C.

上記条件で加熱され九スラブは少くとも100〜100
℃の温度範囲で累積圧下率で50−以上となるまで繰返
して圧延する。この温度範囲での50チ以上の圧下によ
シ加速冷却後の靭性が保証される。
Nine slabs heated under the above conditions have at least 100-100
Rolling is repeated in a temperature range of .degree. C. until the cumulative reduction ratio reaches 50 or more. Toughness after accelerated cooling is guaranteed by a reduction of 50 inches or more in this temperature range.

第一図は第7表に示す鋼/ (Ars温度100℃)K
ついて/ 100℃に加熱後/100−900℃で60
−の累積圧下率で圧延した後、デ00〜110℃の範囲
内で累積圧下率を変化させて110℃で圧延を終了し、
引続きlO℃hでwoo oClで冷却したときの靭性
の変化を示す図である。この図からSOチ以上の累積圧
下率を必要とすることが理解される。このオーステナイ
ト未再結晶温度領域を含む温度域での強圧下は引続く冷
却後においてこの発明の目的を達成するための必須条件
の一つであって、この条件がみたされないと冷却後の組
織に粗大な低温変態組織(ベイナイトやマルテンサイト
)が混入し靭性が著るしく害される。
Figure 1 shows the steel shown in Table 7/ (Ars temperature 100℃)K
/ After heating to 100℃ / 60 at 100-900℃
After rolling at a cumulative reduction rate of -, the cumulative reduction rate is changed within the range of 00 to 110°C and rolling is finished at 110°C,
It is a figure which shows the change of toughness when cooling with woooCl at 10 degreeCh. From this figure, it is understood that a cumulative reduction rate of SOchi or higher is required. Strong pressure in a temperature range including this austenite non-recrystallization temperature range is one of the essential conditions for achieving the object of the present invention after subsequent cooling, and if this condition is not met, the structure after cooling will deteriorate. Coarse low-temperature transformed structures (bainite and martensite) are mixed in and the toughness is significantly impaired.

なお加熱温度を本発明の特許請求の範囲内で高il&(
具体的には93O〜//!0℃)としたときには、上記
の90θ℃〜ムr3でのよθチ以上の圧下だけでは冷却
後の組織に粗大な低温度変態生成物が混入する。それを
防ぐためには加熱温度T (℃)〜100℃の温度範囲
内で累積圧下率(−)RをR2O,コ1IT−コ/6(
チ) となるように圧延する必要がある。第3図は表1の鋼l
を用いて加熱ff1度τ℃を9!rO−/−00℃まで
変化させ、加熱@1m’I”Cから900℃までの温度
範囲において累積圧下率を種々変化させた後100〜1
10℃で41%の累積圧下を付与して110℃で圧延を
終了し、ただちにio℃/SでダOO℃まで加速冷却し
た鋼について、テ00℃加熱→bst4圧下tコ0℃仕
上→10℃油でgoo℃冷却停止材との比較において同
等の靭性が得られた場合を○印、靭性が劣化し九場合を
・印で示した。 この図から900℃以上で加熱を行う
場合には加熱温度〜qoo ociでの温度範囲に2い
て累積圧下率R〉0. :1ダT −J/A (剣。
Note that the heating temperature is set to a high temperature within the scope of the claims of the present invention.
Specifically, 93O~//! 0° C.), coarse low-temperature transformation products will be mixed into the structure after cooling if the pressure is only reduced by more than θ as in the range of 90° C. to r3. In order to prevent this, the cumulative rolling reduction rate (-) R should be set within the temperature range of heating temperature T (℃) to 100℃.
h) It is necessary to roll it so that it becomes. Figure 3 shows the steel l in Table 1.
Heating using ff1 degree τ℃9! After varying the cumulative reduction rate in the temperature range from heating @ 1 m'I''C to 900 °C,
For steel that applied a cumulative reduction of 41% at 10°C, finished rolling at 110°C, and immediately accelerated cooling to 00°C at io°C/S, heated to 00°C → bst 4 reduction, finished at 0°C → 10 In comparison with the goo C cooled material, the case where the same toughness was obtained with °C oil is indicated by ○, and the case where toughness deteriorated is indicated by . From this figure, when heating is performed at 900°C or higher, the temperature range is between the heating temperature and qoo oci, and the cumulative rolling reduction ratio R>0. :1 da T-J/A (Sword.

(T:加熱温度(C) )の条件で圧延を行う必要のあ
ることがわかる。
It can be seen that it is necessary to perform rolling under the following conditions (T: heating temperature (C)).

次にこの発明の構成要件中の第コの要部は上記加熱圧砥
後の冷却にある。すなわち、上記圧延に続いて直ちに加
速冷却を開始するが、その冷却速度をコ〜コT、Aの範
囲にする必要がある。本発明によれば、フェライト組織
中に微細なマルテンサイトやベイナイトを混入させる必
要のあることは前述通りであり、かかる組織とするため
に上記冷却速度の範囲を限定するが、その理由は冷却速
度が2!r ℃/sより速いと焼入組織となって、焼戻
処理が必要となり、非調質鋼の製造方法とはならな−。
Next, the main part of the constituent elements of this invention is cooling after the above-mentioned heating and pressure polishing. That is, accelerated cooling is started immediately following the above-mentioned rolling, but it is necessary to keep the cooling rate in the range of C to T and A. According to the present invention, as described above, it is necessary to mix fine martensite or bainite into the ferrite structure, and in order to create such a structure, the range of the cooling rate is limited. 2! If the speed is faster than r °C/s, a hardened structure will result, requiring tempering treatment, which is not a method for producing non-tempered steel.

一方冷却速度がコ”C,/8よシ遅いと加速冷却の効果
がみられなくなる。以上の理由から冷却速度の範囲をコ
〜コ℃邊と限定した。
On the other hand, if the cooling rate is slower than ℃/8, the effect of accelerated cooling will not be seen.For the above reasons, the range of the cooling rate was limited to around ℃ to ℃.

さらに、−〜x”Q/lsの冷却速度による加速冷却は
SOO℃以下まで続ける必要がある。これは前述のよう
に500℃以上で冷却を停止する従来法よりもさらに高
強度化するためであシ、前記圧延条件を採用する限りに
おいて、靭性の劣化を伴なわず高張力化が可能となる。
Furthermore, accelerated cooling at a cooling rate of -~x"Q/ls must be continued until below SOO℃. This is because, as mentioned above, the strength is even higher than the conventional method in which cooling is stopped at 500℃ or higher. As long as the above rolling conditions are adopted, high tensile strength can be achieved without deterioration of toughness.

なお冷却は圧延終了後直ちに行うことが必要であり、具
体的にはAr3点以上から冷却を開始するのが望ましい
。しかしながら冷却開始までに時間を要して鋼板の温度
がA r s点を下廻ってもAr5〜ダθ℃までの間な
らば、その空冷時にAr5点を切ってから析出するフェ
ライトの粒成長は事実上無視できるので微細化の目的は
達成できる。
Note that it is necessary to perform cooling immediately after the rolling is completed, and specifically, it is desirable to start cooling from the Ar point 3 or higher. However, even if it takes time to start cooling and the temperature of the steel plate falls below the Ars point, if it is between Ar5 and θ℃, it is true that the ferrite grains that precipitate after the Ar5 point is reached during air cooling will grow. Since the above can be ignored, the purpose of miniaturization can be achieved.

この発明によれば上記の如く加熱−圧延−冷却条件を限
定する必要があるが、さらになお鋼の成分組成を限定す
る必要があり、次にその理由を説明する。
According to the present invention, it is necessary to limit the heating-rolling-cooling conditions as described above, but it is also necessary to limit the chemical composition of the steel, and the reason for this will be explained next.

Cはその含有量がo、oy*未満の場合には高強度が得
られず、かつ溶接熱影響部(以下HAZと略記)の軟化
が大きいこと、またそれが0.20−以上の場合には溶
接性が害されるとともに、この発明における加熱−圧延
−冷却条件では焼入組織となって靭性が害され、焼戻し
工程が必要となるので0.03〜0.20−とする必要
がある。
If the C content is less than o, oy*, high strength cannot be obtained, and the weld heat affected zone (hereinafter abbreviated as HAZ) will be greatly softened, and if it is more than 0.20- The weldability is impaired, and the heating-rolling-cooling conditions of the present invention result in a quenched structure, which impairs the toughness and requires a tempering process, so it is necessary to set it to 0.03 to 0.20.

Slは鋼の脱酸を促進し、また強度を上昇させるので少
くともO0θ3Is以上添加する。しかしあまシ多いと
靭性や溶接性が著しく損なわれるため最大で0.40憾
にとどめる。
Sl promotes deoxidation of steel and increases strength, so it is added in an amount of at least O0θ3Is. However, if there is too much slack, toughness and weldability will be significantly impaired, so it should be kept at a maximum of 0.40.

MnはO0!−未満では鋼板の強度および靭性が低下す
ること、そして■ム2の軟化が大きくなる喪め下限を0
.3−とした。一方Mnが多すぎるとHAZの靭性が劣
化するため上限を2.O−とした。
Mn is O0! If the lower limit is less than 0, the strength and toughness of the steel plate will decrease, and the softening of the steel sheet will increase.
.. It was set as 3-. On the other hand, if too much Mn is present, the toughness of the HAZ will deteriorate, so the upper limit should be set at 2. It was set to O-.

ムlは鋼の脱酸上最低o、 oos IGの添加含有が
必要であり、一方固溶ムlがo、obs以上になるとI
IIAZの靭性のみならず溶接金属の靭性も著しく劣化
する。このためsoj Juはo、 oos〜o、 o
bo優とじ九。
For the deoxidation of steel, it is necessary to add IG to the minimum level of o, oos, and on the other hand, when the solid solution mulch exceeds o, obs, I
Not only the toughness of IIAZ but also the toughness of the weld metal deteriorates significantly. Therefore, soj Ju is o, oos〜o, o
bo Yutojiku.

8はθ、 00g−より多いと衝撃吸収エネルギー特に
C方向と2方向(厚さ方向)のそれが低下し不利である
ばかシでなく、セパレーションの面からもo、 oot
 s以上存在すると介在物が多くなり多発し、本発明の
目的を達成できない。
8 is θ, 00g- If it is more than 00g, the impact absorption energy, especially in the C direction and the 2-direction (thickness direction), will decrease, which is not a disadvantage, but also from the standpoint of separation.
If more than s is present, inclusions will increase and occur frequently, making it impossible to achieve the object of the present invention.

さらに上記のとおりの基本成分系のほかに、高張力化あ
るいはその他の効果を達成するために必要に応じてTi
、Ni、Mo、(!u、V、Or、Oaのうちから選ん
だ少くとも7種を添加含有させることができる。これら
元素を添加してもこの発明の特徴は何も失われることな
く、上記諸元素の添加によシそれぞれ適正に発揮される
高張力化あるいは下記の諸効果が達成できるので有効で
ある。
Furthermore, in addition to the basic component system as described above, Ti may be added as necessary to achieve high tensile strength or other effects.
, Ni, Mo, (!u, V, Or, and Oa) can be added. Even if these elements are added, the features of the present invention are not lost. The addition of the above elements is effective because it can increase the tension appropriately and achieve the following effects.

次に上記成分の添加の目的と添加量を哄定する理由を説
明する。
Next, the purpose of adding the above components and the reason for determining the amount added will be explained.

T1はr粒の微細化効果による靭性向上を目的として添
加する。しかしo、 o4I−を越えるとかえって靭性
が劣化するのでo、oII−以下とし友。
T1 is added for the purpose of improving toughness by refining the r grains. However, if it exceeds o, o4I-, the toughness will deteriorate, so it should be less than o, oII-.

N1はHAZの硬化性および靭性に悪い影響を与えるこ
となく母材の強度と靭性を向上させるので添加するが、
高価であるので7.0チを上限とした。
N1 is added because it improves the strength and toughness of the base metal without adversely affecting the hardenability and toughness of HAZ.
Since it is expensive, the upper limit was set at 7.0 inches.

CuはN1とほぼ同様の効果があるだけでなく、耐食性
も向上させるがo、zotsを越えると熱間脆性を生じ
やすく、鋼板の表面性状が劣化するのでθ、jQ−を上
限とする。
Cu not only has almost the same effect as N1, but also improves corrosion resistance, but if it exceeds o, zots, it tends to cause hot embrittlement and the surface quality of the steel sheet deteriorates, so the upper limit is set at θ, jQ-.

MOは圧延時のオーステナイト粒を微細かつ整粒化し、
なおかつ黴細なベイナイト、マルテンサイトを生成する
ので強度と靭性を向上させるが、高価であるので上限を
0.50−とした。
MO makes the austenite grains fine and regular during rolling,
Furthermore, since it produces fine bainite and martensite, it improves strength and toughness, but it is expensive, so the upper limit was set at 0.50-.

■は強度と靭性向上のためおよび溶接継手強度確保のた
め添加するが、0.10−を越えて添加すると母材とH
AZの靭性を著しく劣化させるので0、 IOIIIを
上限とする。
■ is added to improve strength and toughness and to ensure weld joint strength, but if added in excess of 0.10-
Since it significantly deteriorates the toughness of AZ, the upper limit is set at 0 and IOIII.

Orは微細なベイナイトやマルテンサイトを生成し強度
と靭性を向上させるがO,SO−以上の添加は溶接性を
害するので上限をO,SOチとした。
Or produces fine bainite and martensite and improves strength and toughness, but addition of more than O and SO impairs weldability, so the upper limit was set to O and SO.

CaとRIMはMnSの形態制御をしC方向の靭性向上
に効果かあp、i@または両種の複合添加を行うが、そ
れぞれ0.0/*を越えるCaおよび0.104を越え
るRICMの添加は鋼の清浄度を悪くし内部欠陥の原因
となるのでそれぞれ上限を0.Ol−および0,10−
とした。
Ca and RIM are effective in controlling the morphology of MnS and improving the toughness in the C direction.Ap, i@, or a combination of both is added, but when Ca exceeds 0.0/* and RICM exceeds 0.104, respectively. Additions impair the cleanliness of the steel and cause internal defects, so the upper limit for each is set at 0. Ol- and 0,10-
And so.

次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

実施例 第1表に示す成分組成に鋼/−5を溶製した。Example Steel/-5 was melted to have the composition shown in Table 1.

次にこれら各供試鋼は造塊後、分塊圧延してから、ある
いは連続鋳造により必要厚みを有するスラブとなし、こ
れらスラブをそれぞれ第2表に示す通やの加熱−圧延−
冷却条件で処理した。得られ九鋼板の強度、靭性、およ
び−9℃のシャルピー破面ニオケるセパレーションの合
計長さをill定し友ところ第1表に示す通りであった
Next, each of these test steels is made into slabs having the required thickness by ingot formation, blooming rolling, or continuous casting, and these slabs are heated, rolled, and heated in the manner shown in Table 2.
Processed under cooling conditions. The strength, toughness, and total length of the separation on the Charpy fracture surface at -9°C of the nine steel plates obtained were determined and were as shown in Table 1.

なお最終板厚はt5x、およびコ■とし、試験片は圧風
直角方向に採取し、引張試験211I Vノツチ衝撃試
験を行った。各鋼板における数字/−jはそれぞれ第1
表に示す調香/〜Sの鋼を使用したことを意味し、サフ
ィックスのアルファベット文字は製造条件を示す。
The final plate thickness was t5x and C2, and test pieces were taken in the direction perpendicular to the air pressure and subjected to a tensile test 211I V-notch impact test. The number /-j in each steel plate is the first
This means that the steel of fragrance/~S shown in the table was used, and the alphabetic characters in the suffix indicate the manufacturing conditions.

/JJ /Fおよび/Gは従来鋼であり、11は加速冷
却の停止温度を300℃以上としたもの、/Gは(α+
γ)コ相域における圧延量を多くしたいわゆる厳しい制
御圧延を施したものである。
/JJ /F and /G are conventional steels, 11 is a steel with an accelerated cooling stop temperature of 300°C or higher, /G is (α+
γ) So-called strict control rolling is performed in which the amount of rolling in the co-phase region is increased.

また/1はいわゆる通常圧延を施した本のである。Also, /1 is a book that has been subjected to so-called normal rolling.

/H,/工、/Jは比較例であって、lJ社デo。/H, /E, and /J are comparative examples, and are manufactured by IJ Company.

〜Ar5の温度範囲における累積圧下量、/Hは加熱温
度、/Xは加熱温度からtoo ’Ctでの累積圧下量
においてそれぞれこの発明の範囲を外れているものであ
って、これに対し/ム、 /B、 /(1!。
The cumulative reduction amount in the temperature range of ~Ar5, /H is the heating temperature, and /X is the cumulative reduction amount from the heating temperature to too 'Ct, which are outside the scope of the present invention. , /B, /(1!.

/D、コム、3ム、ダム、コムはこの発明による鋼板で
ある。なお上記の関係をわかりやすくするため第2表中
に、この発明の範囲を外れている条件のものをアンダー
ラインで示した。
/D, com, 3mu, dam, com are steel plates according to the present invention. In order to make the above relationship easier to understand, conditions outside the scope of the present invention are underlined in Table 2.

鋼lはOeq = 0.30であって第一表中で従来法
による鋼板/Rでみられるように通常圧延のままではτ
、8=ダクゆ12. vTra =−侵℃にしか達しな
い。ここでト鋼/を用いて、T、8ンgoゆf/aI2
゜vTrs < −40℃、−J℃でのセパレーション
長さくjWを満足する鋼板を製造することを目標として
いる。すなわちCeq 0.30 %というきわめて低
いOeqで靭性の優れた!rOkQ f/sm2鋼をセ
パレーションがきわめて少ない条件で製造するのである
The steel l has Oeq = 0.30, and as seen in the conventional steel plate/R in Table 1, if it is normally rolled, τ
, 8 = Dakuyu 12. It only reaches vTra = - invasive °C. Here, using the steel/
The aim is to manufacture a steel plate that satisfies the separation length jW at ゜vTrs < -40°C and -J°C. In other words, it has an extremely low Oeq of 0.30% Ceq and excellent toughness! rOkQ f/sm2 steel is manufactured under conditions with very little separation.

従来法による7Fは加速冷却の停止温度が500℃以上
であるため/Bに比べれば高強度化するものの!O’に
9 f/、@” には達していない。ま九従来法による
/Gは厳しい制御圧延を実施し友ものであって、強度は
十分であるが、セパレーションが多発している。ま丸打
熱温度においてこの発明の範囲をはずれている鋼板/H
シよび、圧延条件においてこの発明の範囲をはずれてい
る鋼板l工、/Jはともに靭性が十分でない。
7F using the conventional method has a stop temperature of 500°C or higher for accelerated cooling, so it has higher strength than /B! O' does not reach 9 f/, @''. The conventional method of /G involves strict control rolling and has sufficient strength, but separation occurs frequently. Steel plate/H that is out of the range of this invention in round beating temperature
Steel plates 1 and 1 and /J, whose rolling conditions are outside the scope of the present invention, both have insufficient toughness.

一方この発明による鋼板 */ム、/B、/C。On the other hand, steel plates according to the present invention */mu, /B, /C.

/Dはいずれも十分な強度と靭性を示し、ま友とくにセ
パレーションが増加することもない。すなわち以上の例
かられかるように、本発明の方法によれば、低Ceqで
すなわち溶接性に優れる高張力。
/D all exhibit sufficient strength and toughness, and there is no increase in separation in particular. That is, as can be seen from the above examples, according to the method of the present invention, high tension with low Ceq and excellent weldability can be achieved.

高靭性鋼をセパレーションがでない条件で、しかも非調
質で製造できるのである。
High-toughness steel can be produced without separation and without heat refining.

鋼板コム、3ム、ダム、jAにおいてはさらに板厚を増
加させた例であっていずれも低Oeqであす、セパレー
ションも少ない。
The steel plates comb, 3mu, dam, and jA are examples in which the plate thickness is further increased, and all have low Oeq and less separation.

なお、本発明によれば、従来の制御圧延の如き圧延能率
を低下させることもなくすぐれ良生産性を確保できるこ
とも則次的効果の一つである。
In addition, according to the present invention, one of the regular effects is that excellent productivity can be ensured without reducing rolling efficiency as in conventional controlled rolling.

第1図は本発明鋼の実施例における加速冷却の冷却停止
温度が鋼板の機械的性質に及ぼす影響を示す図、第2図
は本発明鋼の実施例における灼℃〜Ar3間の累積圧下
量が鋼板の靭性に及ぼす影響を示す図、第3図は、本発
明鋼の実施例における加熱温度と、加熱温度〜900℃
間の累積圧下量が鋼板の靭性に及ぼす影響を示す図であ
る。
Fig. 1 is a diagram showing the influence of the cooling stop temperature of accelerated cooling on the mechanical properties of the steel plate in an example of the steel of the present invention, and Fig. 2 is a diagram showing the cumulative reduction between 0°C and Ar3 in the example of the steel of the invention. Figure 3 shows the effect of heating temperature on the toughness of the steel plate, and the heating temperature in the example of the steel of the present invention and the heating temperature ~ 900 ° C.
FIG. 3 is a diagram showing the influence of the cumulative reduction amount during the time on the toughness of a steel plate.

特許出願人 川崎製鉄株式会社 代理人弁理士 村  1) 政  治Patent applicant: Kawasaki Steel Corporation Representative patent attorney Mura 1) Masaharu

Claims (1)

【特許請求の範囲】 l Cθ、03〜0.コO囁、BLO−03〜0.AO
チ。 Mn O,! 〜コ、0 % 、 Aj O,00!r
 〜0.01a *を含へ必要によりT10.0ダチ以
下、N1/、0チ以下。 cu o、 ! S以下、 Moa、411以下、vo
、l*以下、cro、s%*以下 ca o、ot %
以下、 RIMo、 to JIG以下のうちから選ば
れる何れか/11またはコ攬以上を含有し、残部Feと
不可避的不純物、但し該不純物中の8はo、ooi−以
下、とよりなる鋼をデ00〜//jθ℃の温度範囲内に
加熱し、前記加熱温度が900℃を越える場合は900
℃まで降下する閣に加熱温度(”C)↑より算出される
下記式を満足する累積圧下率(チ)Rで圧延を施し、引
続いてデ00℃〜Ar。 点までの温度範囲をSOS以上の累積圧下率で圧延を施
して低くともAr3温度で圧延を終了し、直ちに高くと
もzoo ’Cまでに至る関會コ〜コツBの冷却速度の
もとで冷却することを%黴とするセパレーションの少な
い溶接性に優れた高靭性非調質高張力鋼板の製造方法。 R(*)>0.−参丁一コ16 但し900℃(T < 1110℃
[Claims] l Cθ, 03-0. Koo whisper, BLO-03~0. A.O.
blood. Mn O,! ~ko, 0%, Aj O,00! r
~0.01a *Including T10.0 or less, N1/, 0 or less as necessary. cuo, ! S and below, Moa, 411 and below, vo
, l* or less, cro, s%* or less ca o, ot %
Hereinafter, a steel containing any one selected from the following RIMo, to JIG, or 11 or more, with the balance being Fe and unavoidable impurities, provided that 8 of the impurities is o, ooi- or less is referred to as a steel. 00~//jθ℃, and if the heating temperature exceeds 900℃, 900℃
Rolling is performed at the cumulative rolling reduction rate (chi) R that satisfies the following formula calculated from the heating temperature ("C) ↑, and then the temperature range from 00 °C to Ar. Rolling is performed at the above cumulative reduction rate, finishing the rolling at a temperature of at least Ar3, and immediately cooling at the cooling rate of Sekikai Tips B to reach zoo'C at the most. A method for manufacturing a high-toughness non-tempered high-strength steel plate with excellent weldability with little separation.
JP281482A 1982-01-13 1982-01-13 Manufacture of high toughness nontempered high tensile steel sheet superior in weldability and causing less separation Pending JPS58120727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP281482A JPS58120727A (en) 1982-01-13 1982-01-13 Manufacture of high toughness nontempered high tensile steel sheet superior in weldability and causing less separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP281482A JPS58120727A (en) 1982-01-13 1982-01-13 Manufacture of high toughness nontempered high tensile steel sheet superior in weldability and causing less separation

Publications (1)

Publication Number Publication Date
JPS58120727A true JPS58120727A (en) 1983-07-18

Family

ID=11539859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP281482A Pending JPS58120727A (en) 1982-01-13 1982-01-13 Manufacture of high toughness nontempered high tensile steel sheet superior in weldability and causing less separation

Country Status (1)

Country Link
JP (1) JPS58120727A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170220A (en) * 1983-03-18 1984-09-26 Nippon Kokan Kk <Nkk> Production of un-tempered type low temperature steel plate
US5527401A (en) * 1993-06-30 1996-06-18 Samsung Heavy Industry Co., Ltd. High toughness and high strength untempered steel and processing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170220A (en) * 1983-03-18 1984-09-26 Nippon Kokan Kk <Nkk> Production of un-tempered type low temperature steel plate
US5527401A (en) * 1993-06-30 1996-06-18 Samsung Heavy Industry Co., Ltd. High toughness and high strength untempered steel and processing method thereof

Similar Documents

Publication Publication Date Title
US5743972A (en) Heavy-wall structural steel and method
EP0796921A1 (en) Method of manufacturing thick steel product of high strength and high toughness having excellent weldability and minimal variation of structure and physical properties
JPS6155572B2 (en)
JP2876968B2 (en) High-strength steel sheet having high ductility and method for producing the same
JP2000178645A (en) Production of steel excellent in strength and toughness
JPS59211528A (en) Production of non-tempered steel having low yield ratio
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JPS63286517A (en) Manufacture of high-tensile steel with low yielding ratio
JPH09279233A (en) Production of high tension steel excellent in toughness
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH0693332A (en) Production of high tensile strength and high toughness fine bainitic steel
JPS63145745A (en) Hot rolled high tensile steel plate and its production
CN115989327A (en) Thick steel plate and method for producing same
JP2000104116A (en) Production of steel excellent in strength and toughness
JPS58120727A (en) Manufacture of high toughness nontempered high tensile steel sheet superior in weldability and causing less separation
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JPH07216451A (en) Production of stainless steel material having high welding softening resistance, high strength, and high ductility
JPH083636A (en) Production of low yield ratio high toughness steel
JPS60181229A (en) Production of low-yield ratio high-tension thick steel plate
JPH0717947B2 (en) Low yield ratio high strength steel sheet manufacturing method
JPS6286122A (en) Production of structural steel having high strength and high weldability
JPH07268561A (en) High strength stainless steel excellent in hot workability and free from welding softening
JPH07233414A (en) Production of low yield ratio high tensile strength steel plate excellent in uniform elongation
JP3692565B2 (en) Method for producing B-added high-strength steel
JPH0920921A (en) Production of high toughness steel plate by means of separation