KR101095911B1 - Weldable ultra-high strength steel with excellent low-temperature toughness - Google Patents

Weldable ultra-high strength steel with excellent low-temperature toughness Download PDF

Info

Publication number
KR101095911B1
KR101095911B1 KR1020110098812A KR20110098812A KR101095911B1 KR 101095911 B1 KR101095911 B1 KR 101095911B1 KR 1020110098812 A KR1020110098812 A KR 1020110098812A KR 20110098812 A KR20110098812 A KR 20110098812A KR 101095911 B1 KR101095911 B1 KR 101095911B1
Authority
KR
South Korea
Prior art keywords
high strength
strength steel
steel
less
tempered
Prior art date
Application number
KR1020110098812A
Other languages
Korean (ko)
Other versions
KR20110111357A (en
Inventor
황병철
이창길
이태호
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020110098812A priority Critical patent/KR101095911B1/en
Publication of KR20110111357A publication Critical patent/KR20110111357A/en
Application granted granted Critical
Publication of KR101095911B1 publication Critical patent/KR101095911B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Abstract

본 발명은 저탄소-저합금계의 강에 친환경 저가원소인 구리(Cu)와 붕소(B)를 첨가하여 제조된 저온인성이 우수한 용접성 초고강도강을 제공한다. 그 초고강도강은 중량 %로, C:0.05-0.1%, Si:0.1-0.5%, Mn:1.5-2.5%, Ni:0.2-0.5%, Cu:0.5-2.0%, Cr:0.1-0.5%, Mo:0.1-0.5%, Nb:0.01-0.05%, V:0.01-0.1%, Ti:0.01-0.03%, Al:0.05% 이하, B:0.0005-0.002% 이고, 나머지는 Fe와 기타 불가피한 불순물로 이루어지고, Ceq(탄소당량)가 0.3 내지 0.6이고, Pcm(용접균열 감수성 지수)이 0.3 이하이며, 템퍼링된 마르텐사이트와 템퍼링된 베이나이트의 혼합조직의 부피분율이 90% 이상인 것을 특징으로 한다. The present invention provides a weldable super high strength steel excellent in low temperature toughness manufactured by adding copper (Cu) and boron (B), which are environmentally-friendly low cost elements, to a low carbon-low alloy steel. The ultra high strength steel is% by weight, C: 0.05-0.1%, Si: 0.1-0.5%, Mn: 1.5-2.5%, Ni: 0.2-0.5%, Cu: 0.5-2.0%, Cr: 0.1-0.5% , Mo: 0.1-0.5%, Nb: 0.01-0.05%, V: 0.01-0.1%, Ti: 0.01-0.03%, Al: 0.05% or less, B: 0.0005-0.002%, the remainder is Fe and other unavoidable impurities Ceq (carbon equivalent) is 0.3 to 0.6, Pcm (welding crack susceptibility index) is 0.3 or less, characterized in that the volume fraction of the mixed structure of tempered martensite and tempered bainite is 90% or more. .

Description

저온인성이 우수한 용접성 초고강도강{Weldable ultra-high strength steel with excellent low-temperature toughness}Weldable ultra-high strength steel with excellent low-temperature toughness

본 발명은 저온인성(low-temperature toughness)이 우수한 용접성 초고강도강(ultra-high strength)에 관한 것으로, 보다 상세하게는 저탄소-저합금계의 강에 친환경 저가원소인 구리(Cu)와 붕소(B)를 첨가하여 항복강도가 1.1GPa 이상이고 저온 충격에너지가 200J 이상인 초고강도강에 관한 것이다. The present invention relates to weldable ultra-high strength having excellent low-temperature toughness, and more particularly, to low-carbon-low alloy steels, which are environmentally friendly low-cost elements such as copper (Cu) and boron ( It is related to ultra high strength steel with the yield strength of 1.1GPa or more and low temperature impact energy of 200J or more by adding B).

현재 건축용, 조선용, 해양구조용, 압력용기용, 강관용이나 산업 기계용으로 사용되는 구조용 강재는 경제성과 안정성의 관점에서 우수한 용접성과 인성을 가지면서 초고강도화 되고 있다. 또한 조선용이나 해양구조용, 강관용 강들의 사용 환경이 점차 가혹해짐에 따라 -20oC 이하의 저온에서도 구조적인 안정성을 확보하기 위하여 우수한 저온인성에 대한 요구가 커지고 있다.At present, structural steels used in construction, shipbuilding, offshore structures, pressure vessels, steel pipes, or industrial machinery are becoming extremely high strength with excellent weldability and toughness in terms of economics and stability. In addition, as the usage environment of shipbuilding, offshore structural and steel pipe steels becomes more severe, the demand for excellent low temperature toughness is increasing to secure structural stability even at low temperatures below -20 ° C.

저온에서의 구조용 강으로 널리 사용되는 니켈 함유강(일반적으로 약 3.0중량% Ni 이상)은 저온인성이 우수하지만, 비교적 낮은 인장강도로 인해 큰 하중을 견디기 위해 이중(二重) 어닐링 열처리를 수행하거나 니켈 함유량을 높이거나 두께를 증가시키는 등으로 인해 비용이 크게 상승하는 단점이 있다. Nickel-containing steels, which are widely used as structural steels at low temperatures (usually about 3.0% by weight Ni or more), have good low temperature toughness, but due to their relatively low tensile strength they can be subjected to double annealing heat treatments to withstand large loads or There is a disadvantage in that the cost is greatly increased due to the increase in the nickel content or increase in thickness.

한편 대표적인 고강도 고인성강으로 잘 알려진 HY-80 및 HY-100 강 등은 강도는 높지만, 탄소함량이 0.12-0.20중량%이고, Ceq가 0.8 내지 0.9 범위로 인해 용접성이 매우 열악하다. 이후 다양하게 개발된 고강도 저합금(HSLA, high-strength low-alloy) 강들은 탄소함량의 감소, Nb 첨가에 의한 결정립 미세화, Mn, Ni, Cr, Mo 첨가를 통한 경화능 증가, 구리 석출물에 의한 석출강화 등의 다양한 방법을 통해 용접성이 저하되지 않고 강도가 크게 향상되었다. Meanwhile, HY-80 and HY-100 steels, which are well known as representative high-strength high toughness steels, have high strength, but have a very low weldability due to the carbon content of 0.12-0.20% by weight and Ceq range of 0.8 to 0.9. Since then, high-strength low-alloy (HSLA) steels have been developed in various ways, such as reduction of carbon content, grain refinement by addition of Nb, increase of hardenability by addition of Mn, Ni, Cr, Mo, and copper precipitates. Through various methods such as precipitation strengthening, the weldability was not deteriorated and the strength was greatly improved.

그러나 일반 HSLA 강들은 대부분 저온인성이 낮기 때문에 우수한 저온인성과 함께 고강도를 얻기 위해서 Ni, Mo 등의 고가(高價)의 합금원소가 많이 첨가되며, 대부분 강도가 증가함에 따라 용접성과 저온인성은 감소하는 문제점이 있다. 현재 미국등록특허 6,264,760, 미국등록특허 5,876,521 및 미국등록특허 6,159,312 등에 제시된 바와 같이, 하부 베이나이트나 템퍼드 마르텐사이트, 2상 조직 등의 다양한 미세조직학적 접근법을 통해 우수한 저온인성과 용접성을 갖는 최신의 HSLA 강, 즉 강관용 초고강도강이 개발되었으나 아직도 고가의 합금원소 첨가량이 많은 편이며, 최대 항복강도는 830MPa (API 규격 120에 해당) 정도에 그치고 있는 실정이다. However, since most of HSLA steels have low low temperature toughness, many expensive alloying elements such as Ni and Mo are added to obtain high strength with excellent low temperature toughness. There is a problem. As shown in US Pat. No. 6,264,760, US Pat. No. 5,876,521 and US Pat. No. 6,159,312, various microhistological approaches, such as lower bainite, tempered martensite, biphasic tissue, etc. Although HSLA steel, that is, super high strength steel for steel pipes, has been developed, there is still a large amount of expensive alloying elements added, and the maximum yield strength is only about 830 MPa (corresponding to API standard 120).

또한 최근 자원 재활용, 지구 온난화와 같은 환경적인 문제와 함께 원자재비 상승, 고유가에 따른 경제적인 측면이 크게 부각되면서 보다 친환경적이고 경제적인 방법으로 초고강도강을 제조하려는 공학적인 요구가 더욱 커지고 있다. 따라서 구리나 붕소 등과 같은 친환경 저가원소를 활용하여 고가의 합금원소를 최소화시킴으로써 보다 친환경적이고 경제적인 방법으로 용접성과 저온인성이 우수한 1.1GPa 이상의 초고강도강을 제조할 필요가 있다. In addition, with the recent environmental problems such as resource recycling and global warming, the economic aspect of raw material costs and high oil prices has been highlighted, and engineering demands for manufacturing ultra-high strength steel in a more eco-friendly and economic way are increasing. Therefore, it is necessary to manufacture 1.1GPa or more ultra-high strength steel having excellent weldability and low temperature toughness in a more eco-friendly and economical way by minimizing expensive alloying elements by using eco-friendly low-cost elements such as copper or boron.

따라서 본 발명이 이루고자 하는 기술적 과제는 고가의 합금원소를 최소화할 목적으로 친환경 저가원소인 구리와 붕소를 첨가하여 저비용으로 저온인성이 우수한 용접성 초고강도강을 제공하는 데 있다. Therefore, the technical problem to be achieved by the present invention is to provide a weldable ultra-high strength steel having excellent low temperature toughness at low cost by adding copper and boron, which are eco-friendly low cost elements, in order to minimize expensive alloying elements.

상기 과제를 달성하기 위한 본 발명의 초고강도강은 중량 %로, C:0.05-0.1%, Si:0.1-0.5%, Mn:1.5-2.5%, Ni:0.2-0.5%, Cu:0.5-2.0%, Cr:0.1-0.5%, Mo:0.1-0.5%, Nb:0.01-0.05%, V:0.01-0.1%, Ti:0.01-0.03%, Al:0.05% 이하, B:0.0005-0.002% 이고, 나머지는 Fe와 기타 불가피한 불순물로 이루어지고, Ceq(탄소당량)가 0.3 내지 0.6이고, Pcm(용접균열 감수성 지수)이 0.3 이하이며, 템퍼링된 마르텐사이트와 템퍼링된 베이나이트의 혼합조직의 부피분율이 90% 이상이다.Ultra high strength steel of the present invention for achieving the above object by weight, C: 0.05-0.1%, Si: 0.1-0.5%, Mn: 1.5-2.5%, Ni: 0.2-0.5%, Cu: 0.5-2.0 %, Cr: 0.1-0.5%, Mo: 0.1-0.5%, Nb: 0.01-0.05%, V: 0.01-0.1%, Ti: 0.01-0.03%, Al: 0.05% or less, B: 0.0005-0.002% and , The remainder consists of Fe and other unavoidable impurities, Ceq (carbon equivalent) of 0.3 to 0.6, Pcm (welding crack susceptibility index) of 0.3 or less, volume fraction of mixed tissue of tempered martensite and tempered bainite This is over 90%.

또한, 상기 초고강도강은 상온과 -20℃에서의 충격에너지가 200J 이상이고, 항복강도가 1.1GPa 이상이며, 중량 %로, ECO 합금지수 (Mn% + 2Ni% + 0.5Cu% + 4Mo%)가 4.5 이하이다.In addition, the ultra-high strength steel has an impact energy of 200J or more at room temperature and -20 ° C or more, yield strength of 1.1GPa or more, and in weight%, ECO alloy index (Mn% + 2Ni% + 0.5Cu% + 4Mo%) Is 4.5 or less.

본 발명의 저온인성이 우수한 용접성 초고강도강에 의하면, 0.5-2.0중량%의 구리와 극미량의 붕소를 첨가하여 템퍼링된 마르텐사이트와 템퍼링된 베이나이트의 혼합조직으로 구성된 초고강도강을 제조함으로써, Ni, Mo 등의 고가의 합금원소를 최소화하는 경제적인 방법으로 1.1GPa (API 규격 150 초과) 이상의 매우 높은 항복강도와 -20oC에서 200J 이상의 높은 충격에너지를 동시에 확보할 수 있다. According to the weldable ultra high strength steel having excellent low temperature toughness of the present invention, by adding 0.5-2.0% by weight of copper and an extremely small amount of boron to prepare an ultra high strength steel composed of a mixed structure of tempered martensite and tempered bainite, Ni As an economical method of minimizing expensive alloying elements such as Mo and Mo, it is possible to secure very high yield strength of 1.1GPa (above API standard 150) and high impact energy of 200J at -20 ° C.

도 1은 본 발명에 의한 저온인성이 우수한 용접성 초고강도강의 제조방법을 개략적으로 나타낸 제조 공정도이다.
도 2는 본 발명에 따른 용접성 초고강도강의 항복강도와 저온 충격에너지를 템퍼링 온도에 따라 나타낸 그래프이다.
도 3은 본 발명에 따른 450oC에서 템퍼링된 강 2의 미세조직을 보여주는 투과전자현미경 사진이다.
1 is a manufacturing process diagram schematically showing a method for manufacturing a weldable ultra high strength steel having excellent low temperature toughness according to the present invention.
Figure 2 is a graph showing the yield strength and low temperature impact energy of the weldable ultra high strength steel according to the present invention according to the tempering temperature.
3 is a transmission electron micrograph showing the microstructure of steel 2 tempered at 450 ° C according to the present invention.

이하 첨부된 도면을 참조하면서 본 발명의 바람직한 실시예를 상세히 설명한다. 다음에서 설명되는 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술되는 실시예에 한정되는 것은 아니다. 본 발명의 실시예들은 당 분야에서 통상의 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The embodiments described below may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below. Embodiments of the present invention are provided to more fully explain the present invention to those skilled in the art.

이하 본 발명의 실시예에서는 저온인성이 우수한 용접성 초고강도강과 이를 제조하는 방법으로 구분하여 설명할 것이다. 상기 강과 그 제조방법은 다음과 같은 주요한 특징을 갖는다. In the following embodiment of the present invention will be described by dividing the weldability ultra-high strength steel excellent in low temperature toughness and the method of manufacturing the same. The steel and its manufacturing method have the following main features.

본 발명에 의한 저온인성이 우수한 용접성 초고강도강은 중량 %로 0.5-2.0%의 구리와 극미량의 붕소를 함유하며, 그 외 C, Si, Mn, Ni, Cr, Mo, Nb, V, Ti, 및 Al의 일부 또는 모두를 포함한 Fe로 구성된다. 이때 상기 강은 항복강도가 1.1GPa (API 규격 150 초과) 이상이고, 상온과 -20oC에서 샤르피 V-노치 충격시험에 의해 측정된 흡수에너지가 200J 이상인 것을 특징으로 한다. The weldable ultra high strength steel having excellent low temperature toughness according to the present invention contains 0.5% to 2.0% of copper and a trace amount of boron, and other C, Si, Mn, Ni, Cr, Mo, Nb, V, Ti, And Fe including some or all of Al. At this time, the steel has a yield strength of 1.1 GPa (more than API standard 150) or more, and the absorbed energy measured by Charpy V-notch impact test at room temperature and -20 ° C. is characterized in that 200J or more.

구리는 전기로 조업시 스크랩에 필연적으로 함유되어 제거하기가 매우 어렵지만, 기계적 성질 향상에 유용하게 활용할 경우 재활용성이 우수한 원소이다. 붕소는 0.0005-0.002중량%의 극미량 첨가로도 강의 경화능을 매우 크게 향상시키므로 Ni, Mo 등과 같은 고가의 경화능 원소를 대체하기 위해 초고강도강의 제조에 많이 사용되고 있다. 따라서 본 발명에서는 탄소강을 기준으로 고가의 합금원소인 Mn, Ni, Cu, Mo 함량을 가격에 가중치를 둔 Mn 함량으로 표기한 ECO 합금지수(중량 %로, Mn% + 2Ni% + 0.5Cu% + 4Mo%)를 사용하여 친환경적이고 경제적인 성능을 평가할 때, ECO 합금지수를 4.5 이하로 하고, 산업적으로 용접성을 표현하기 위해 널리 사용되는 Ceq(탄소 당량)와 Pcm(용접균열 감수성 지수) 값을 낮추어 용접성과 저온인성이 우수한 초고강도강을 친환경적이고 저비용의 경제적인 방법으로 제조하고자 하였다. Copper is very difficult to remove because it is inevitably contained in the scrap during the operation of the electric furnace, but when it is useful to improve the mechanical properties, it is an excellent recyclability element. Boron is used in the manufacture of ultra high strength steel to replace expensive hardenable elements such as Ni, Mo, etc., because it greatly improves the hardenability of the steel even with a very small amount of 0.0005-0.002% by weight. Therefore, in the present invention, the ECO alloy index (in weight%, Mn% + 2Ni% + 0.5 Cu% +) expressed as Mn content weighted on the price of Mn, Ni, Cu, and Mo, which are expensive alloying elements, based on carbon steel When evaluating eco-friendly and economical performance using 4 Mo%), the ECO alloy index is 4.5 or less, and the values of Ceq (carbon equivalent) and Pcm (welding crack susceptibility index), which are widely used for industrially expressing weldability, We tried to manufacture ultra high strength steel with excellent weldability and low temperature toughness in an eco-friendly and low cost way.

본 발명에 의한 초고강도강은 0.5-2.0중량%의 구리와 극미량의 붕소를 함유한 슬라브를 재가열한 후 제어압연, 가속냉각, 그리고 템퍼링에 의해 제조되며, 이에 따라 템퍼링된 마르텐사이트와 베이나이트의 혼합조직의 부피분율이 90% 이상으로 구성된 저온인성이 우수한 용접성 초고강도강을 얻을 수 있다. The ultra high strength steel according to the present invention is prepared by reheating a slab containing 0.5-2.0% by weight of copper and trace amounts of boron, and then by controlled rolling, accelerated cooling, and tempering, thereby producing tempered martensite and bainite. Weldable ultra high strength steel with excellent low temperature toughness composed of 90% or more of the volume fraction of the mixed structure can be obtained.

<강의 조성><Lecture composition>

본 발명의 강재는 다음과 같은 조성을 가지며, 여기서는 각각의 조성에 따른 수치한정 이유를 함께 설명하기로 한다. 이때, %는 중량%를 나타내며, ECO 합금지수, Ceq(탄소 당량)와 Pcm(용접균열 감수성 지수)은 다음과 같이 정의된다. Steel of the present invention has the following composition, and the reason for numerical limitation according to each composition will be described together. In this case,% represents weight%, and the ECO alloy index, Ceq (carbon equivalent) and Pcm (welding crack sensitivity index) are defined as follows.

ECO 합금지수 = Mn% + 2Ni% + 0.5Cu% + 4Mo%ECO Alloy Index = Mn% + 2Ni% + 0.5Cu% + 4Mo%

Ceq = C% + Mn%/6 + (Cr% + Mo% + V%)/5 + (Ni% + Cu%)/15 Ceq = C% + Mn% / 6 + (Cr% + Mo% + V%) / 5 + (Ni% + Cu%) / 15

Pcm = C% + Si%/30 + (Mn% + Cu% + Cr%)/20 + Ni%/60 + Mo%/15 + V%/10 + 5B%.Pcm = C% + Si% / 30 + (Mn% + Cu% + Cr%) / 20 + Ni% / 60 + Mo% / 15 + V% / 10 + 5B%.

ECO 합금지수는 고가의 합금원소인 Mn, Ni, Cu, Mo 함량을 가격에 가중치를 둔 Mn 함량으로 표기하며, 합금지수가 낮을수록 친환경적이고 경제적이다. Ceq와 Pcm은 용접성을 나타내는 지표로 산업체에서 널리 사용되고 있으며, 이 값들이 낮을수록 용접성이 우수한 것으로 평가된다. The ECO alloy index represents Mn, Ni, Cu and Mo contents, which are expensive alloying elements, as Mn contents weighted at a price. The lower the alloy index, the more environmentally friendly and economic it is. Ceq and Pcm are widely used in the industry as indicators of weldability, and the lower these values, the better the weldability.

(1) 탄소(C) : 0.05-0.1%(1) Carbon (C): 0.05-0.1%

C의 함량이 0.05% 보다 작으면, 템퍼링된 마르텐사이트와 베이나이트의 혼합조직으로 900MPa 이상의 항복강도를 확보하기 어려우며, 0.1%보다 많으면 인성과 용접성이 나빠지는 단점이 있다. If the content of C is less than 0.05%, it is difficult to secure a yield strength of 900MPa or more as a mixed structure of tempered martensite and bainite, and if it is more than 0.1%, the toughness and weldability deteriorate.

(2) 실리콘(Si) : 0.01-0.5%(2) Silicon (Si): 0.01-0.5%

탈산 및 강도향상을 위해 첨가하며, 0.01% 보다 작을 때에는 탈산효과가 불충분하고, 0.50%보다 많이 첨가되면 인성과 용접성이 저하된다. It is added for deoxidation and strength improvement, and when it is less than 0.01%, the deoxidation effect is insufficient, and when it is added more than 0.50%, toughness and weldability are deteriorated.

(3) 망간(Mn) : 1.5-2.5%(3) Manganese (Mn): 1.5-2.5%

낮은 C 함량에 의해 감소된 경화능을 보상하여 마르텐사이트와 베이나이트계 조직의 형성을 촉진한다. 높은 강도를 얻기 위하여 1.5% 이상 첨가하며, 인성과 용접성의 저하 및 편석을 방지하기 위해 2.5% 이하로 제한된다. The low C content compensates for the reduced hardenability to promote the formation of martensite and bainite-based tissues. 1.5% or more is added to obtain high strength, and is limited to 2.5% or less in order to prevent degradation and segregation of toughness and weldability.

(4) 니켈(Ni) : 0.2-0.5%(4) Nickel (Ni): 0.2-0.5%

강도와 인성 향상에 효과적인 원소이지만, 많이 첨가되면 비용이 증가하기 때문에 열간압연 중 표면균열에 대한 구리의 유해한 효과를 줄이기 위해 위의 범위로 소량 첨가된다. Although it is an effective element for improving strength and toughness, a large amount is added, so a small amount is added in the above range to reduce the harmful effect of copper on surface cracking during hot rolling.

(5) 구리(Cu) : 0.5-2.0% (5) Copper (Cu): 0.5-2.0%

본 발명의 중요한 특징을 갖도록 하는 합금원소로서 강도와 인성을 향상시키기 위해 0.5% 이상이 첨가되지만, 많이 첨가되면 열간 압연 중에 표면 균열이 발생하기 쉽고, 용접성이 저하되므로 그 첨가량은 2.0% 이하로 제한된다. As an alloying element having an important characteristic of the present invention, 0.5% or more is added to improve strength and toughness, but when it is added a large amount, the surface crack easily occurs during hot rolling, and the weldability is lowered, so the amount of addition is limited to 2.0% or less. do.

(6) 크롬(Cr) : 0.1-0.5%(6) Chromium (Cr): 0.1-0.5%

급랭시 충분한 경화능을 확보하기 위해 0.1% 이상 첨가되며, 많이 첨가되면 인성과 용접성이 저하되므로 0.5% 이하로 제한된다. 0.1% or more is added to secure sufficient hardenability during quenching, and when it is added a lot, the toughness and weldability are lowered, so it is limited to 0.5% or less.

(7) 몰리브덴(Mo) : 0.1-0.5%(7) Molybdenum (Mo): 0.1-0.5%

Cr과 같이 경화능을 증가시키는 원소로서 많이 첨가되면 비용이 증가하고 인성과 용접성이 저하되기 때문에 0.5% 이하로 제한된다. 템퍼링시 탄화물 입자를 형성하여 석출강화에 기여한다. If it is added as an element to increase the hardenability, such as Cr, the cost is increased and the toughness and weldability are reduced, so it is limited to 0.5% or less. When tempering, carbide particles are formed, contributing to precipitation strengthening.

(8) 니오븀(Nb) : 0.01-0.05%(8) Niobium (Nb): 0.01-0.05%

열간압연 중 탄질화물로 석출되어 재결정을 억제시키고, 결정립 성장을 방해하여 오스테나이트 결정립을 미세화시킴으로써 강도와 인성을 모두 향상시킨다. 0.01% 이하에서는 효과가 매우 작으며, 0.05%보다 많이 첨가되면 인성이 저하된다. 또한 냉각이나 템퍼링시 석출물을 형성시켜 추가적으로 강도를 증가시킨다. Precipitates as carbonitride during hot rolling to inhibit recrystallization, inhibit grain growth and refine austenite grains, thereby improving both strength and toughness. In 0.01% or less, the effect is very small, and when added more than 0.05%, toughness falls. It also increases the strength by forming precipitates upon cooling or tempering.

(9) 바나듐(V) : 0.01-0.1%(9) Vanadium (V): 0.01-0.1%

템퍼링시 또는 용접 후 냉각시 탄화물을 형성하여 강도 증가에 기여한다. 0.01%보다 작으면 효과가 작으며, 0.10%보다 많으면 인성과 용접성이 저하된다. At tempering or cooling after welding, carbides are formed, contributing to the increase in strength. If it is less than 0.01%, the effect is small, and if it is more than 0.10%, the toughness and weldability deteriorate.

(10) 티타늄(Ti) : 0.01-0.03%(10) Titanium (Ti): 0.01-0.03%

0.01% 이상 첨가되면 석출물을 형성하여 강도 향상에 기여하지만, 0.03%보다 많으면 석출물이 조대화되어 인성이 저하된다. When 0.01% or more is added, it forms a precipitate and contributes to the strength improvement, but when it is more than 0.03%, the precipitate coarsens and the toughness decreases.

(11) 알루미늄(Al) : 0.05% 이하(11) Aluminum (Al): 0.05% or less

Si와 같이 탈산제로 첨가되며, 0.05%보다 많이 첨가되면 비금속산화물인 Al2O3을 형성하여 모재와 용접부의 인성을 저하시킨다.When added as a deoxidizer like Si, when added more than 0.05% to form a non-metal oxide Al 2 O 3 to reduce the toughness of the base material and the weld.

(12) 붕소(B) : 0.0005-0.002%(12) Boron (B): 0.0005-0.002%

구리와 함께 본 발명의 중요한 특징을 갖도록 하는 합금원소로서 0.0005-0.002%의 극미량 첨가는 강의 경화능을 효과적으로 향상시키기 때문에 Ni, Cr, Mo와 같은 경화능 원소를 줄이더라도 20oC/초 이상의 속도로 가속냉각시 마르텐사이트와 베이나이트 혼합조직을 90% 이상 확보할 수 있다. 그러나 0.002% 보다 많이 첨가되면, Fe23(C,B)6와 같은 취약한 입자의 형성으로 인해 오히려 경화능이 감소된다. As an alloying element to have a significant feature of the present invention with the addition of a very small amount of copper is 0.0005-0.002%, even give a hardenability elements such as Ni, Cr, Mo, because it improves the hardenability Steel effectively 20 o C / sec or faster With accelerated cooling, more than 90% of martensite and bainite mixtures can be obtained. However, if more than 0.002% is added, the hardenability is rather reduced due to the formation of fragile particles such as Fe 23 (C, B) 6 .

(13) 기타 불가피하게 첨가되는 불순물인 인(P), 황(S), 질소(N) 등은 최소화되는 것이 바람직하다. (13) It is desirable to minimize the inevitable addition of phosphorus (P), sulfur (S), nitrogen (N) and the like.

본 발명에 따른 저온인성이 우수한 용접성 초고강도강에서 ECO 합금지수는 4.5 이하가 되는 것이 경제적이며, 강도의 확보와 용접성 측면을 동시에 고려할 때 Ceq가 0.3-0.6이고, Pcm이 0.3 이하가 되도록 하는 것이 바람직하다. In the weldable ultra high strength steel having excellent low temperature toughness according to the present invention, the ECO alloy index is economically less than 4.5, and considering the securing of strength and weldability simultaneously, Ceq is 0.3-0.6 and Pcm is 0.3 or less. desirable.

<제조방법><Manufacturing Method>

도 1은 본 발명에 의한 저온인성이 우수한 용접성 초고강도강의 제조방법을 개략적으로 나타낸 제조 공정도이다. 1 is a manufacturing process diagram schematically showing a method for manufacturing a weldable ultra high strength steel having excellent low temperature toughness according to the present invention.

도 1을 참조하면, 저온인성이 우수한 용접성 초고강도강의 제조방법은, 중량%로, C:0.05-0.1%, Si:0.1-0.5%, Mn:1.5-2.5%, Ni:0.2-0.5%, Cu:0.5-2.0%, Cr:0.1-0.5%, Mo:0.1-0.5%, Nb:0.01-0.05%, V:0.01-0.1%, Ti:0.01-0.03%, Al:0.05% 이하, B:0.0005-0.002% 이고, 나머지는 Fe와 기타 불가피한 불순물로 구성되는 강의 슬라브를 통상 1,000oC 이상으로 가열한다. 이는 재가열 단계(S100)에 해당된다. 그후, 오스테나이트가 재결정화되는 온도와 그 이하에서 열간압연한다. 이는 제어압연 단계(S200)에 해당된다. 열간압연된 강재를 20oC/초 이상의 속도로 300oC 이하까지 급랭시킨다. 이는 가속냉각 단계(S300)에 해당된다. 이어서 냉각된 강재를 400oC와 600oC 사이의 온도에서 10분 이상 템퍼링한다. 이는 템퍼링 단계(S400)에 해당된다. Referring to Figure 1, the manufacturing method of the weldable ultra-high strength steel excellent in low temperature toughness, in weight%, C: 0.05-0.1%, Si: 0.1-0.5%, Mn: 1.5-2.5%, Ni: 0.2-0.5%, Cu: 0.5-2.0%, Cr: 0.1-0.5%, Mo: 0.1-0.5%, Nb: 0.01-0.05%, V: 0.01-0.1%, Ti: 0.01-0.03%, Al: 0.05% or less, B: 0.0005-0.002% and the rest of the steel slab consisting of Fe and other unavoidable impurities is usually heated to at least 1,000 o C. This corresponds to the reheating step (S100). Thereafter, hot rolling is carried out at and below the temperature at which the austenite is recrystallized. This corresponds to the control rolling step (S200). The hot rolled steel is quenched to 300 o C or lower at a rate of 20 o C / sec or higher. This corresponds to the accelerated cooling step (S300). The cooled steel is then tempered for at least 10 minutes at temperatures between 400 ° C. and 600 ° C. This corresponds to the tempering step (S400).

상기 재가열 단계에서는 강의 슬라브 내에 있는 (V,Nb)(C,N) 등의 모든 탄화물 또는 탄질화물이 완전히 용해되도록 한다. In the reheating step, all carbides or carbonitrides such as (V, Nb) (C, N) in the slab of the steel are completely dissolved.

상기 제어압연 단계에서는 재가열된 강의 슬라브를 오스테나이트가 재결정화되는 온도 이상과 그 이하에서 각각 40% 이상의 압하를 가하여 열간압연한다. 왜냐하면 가속냉각 전에 오스테나이트 결정립을 미세화시키고, 오스테나이트 내부에 전위나 변형띠와 같은 결함들을 생성시켜 오스테나이트에서 페라이트로의 변태를 촉진함으로써 최종적인 미세조직의 결정학적 크기를 감소시켜 강도와 인성을 모두 향상시키기 위함이다. 모든 열간압연은 Ar3 이상의 온도에서 마무리 되며, 이때 오스테나이트의 결정립 크기는 10 ㎛ 이하가 되어야 한다. In the control rolling step, the slab of the reheated steel is hot rolled by applying a reduction of 40% or more at temperatures above and below the temperature at which austenite is recrystallized. Because austenite grains are refined before accelerated cooling, and defects such as dislocations and strain bands are formed inside the austenite to promote the transformation of austenite to ferrite, thereby reducing the crystallographic size of the final microstructure, thereby improving strength and toughness. To improve them all. All hot rolling is finished at temperatures above Ar3, with the austenite grain size being less than 10 µm.

가속냉각 단계는 열간압연된 강재를 Ar3 이상의 온도에서 20oC/초 이상의 속도로 300oC 이하까지 급랭시키는 과정이다. 상기 과정동안 오스테나이트로부터 마르텐사이트가 주로 형성되며, 급랭되는 마무리 온도가 낮을수록 마르텐사이트의 부피분율은 증가한다. 이후 급랭된 강재를 상온으로 공랭하는 과정 중에 베이나이트가 추가적으로 형성된다. The accelerated cooling step is the process of quenching the hot rolled steel to 300 o C or less at a rate of 20 o C / sec or more at a temperature of Ar 3 or higher. Martensite is mainly formed from austenite during this process, and the lower the quenching finishing temperature, the higher the volume fraction of martensite. Thereafter, bainite is additionally formed during the air cooling of the quenched steel to room temperature.

템퍼링 단계는 가속냉각된 강을 400-600oC의 온도에서 10분 이상 가열한 후 냉각하는 과정이다. 상기 과정동안 템퍼링된 마르텐사이트와 베이나이트의 혼합조직으로 구성되며, 이전 단계에 비해 실질적으로 균일한 미세조직과 특성을 제공한다. The tempering step is a process in which the accelerated cooled steel is heated at a temperature of 400-600 ° C. for at least 10 minutes and then cooled. It consists of a mixed structure of martensite and bainite tempered during the process, providing a substantially uniform microstructure and properties compared to the previous step.

상기와 같은 과정에 따라 제조된 강의 미세조직은 템퍼링된 마르텐사이트와 베이나이트의 혼합조직으로 그 부피분율은 90% 이상인 것을 특징으로 한다. The microstructure of the steel produced according to the above process is a mixed structure of tempered martensite and bainite, the volume fraction of which is more than 90%.

이와 같은 본 발명에 따르면 고가의 함금원소 첨가량을 최소화하고, 0.5-2.0중량%의 구리와 극미량의 붕소를 함유한 템퍼링된 마르텐사이트와 베이나이트의 혼합조직에 의해 저온인성이 우수한 용접성 초고강도강의 제조가 가능하다.According to the present invention, it is possible to minimize the addition of expensive alloying elements and to produce weldable super high strength steel having excellent low temperature toughness by mixing the tempered martensite and bainite containing 0.5-2.0 wt% of copper and trace amounts of boron. Is possible.

이하에서는 실시예를 통하여 본 발명을 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

<실시예><Examples>

표 1은 본 발명의 실시예가 적용된 템퍼링재와 상기 템퍼링재와 비교되는 미템퍼링재의 화학조성, ECO 합금지수, 냉각속도 및 냉각종료온도를 나타낸다. 여기서, 미템퍼링재는 템퍼링 공정을 거치지 않은 강을 지칭한다. Table 1 shows the chemical composition, the ECO alloy index, the cooling rate and the cooling end temperature of the tempering material to which the embodiment of the present invention is applied and the non-tempering material compared with the tempering material. Here, the non-tempering material refers to steel that has not undergone a tempering process.

표 1에 의하면, 강 1 내지 강 3을 기재된 바와 같이 조성되는 100mm 두께의 강재로 하여 1,150oC에서 2시간 정도 재가열한 후 오스테나이트가 재결정화되는 온도와 그 이하에서 각각 50-60% 정도의 압하를 가하여 15mm의 두께까지 열간압연하였다. 이어 상기 열간압연된 판재를 Ar3 이상의 온도에서 300oC 이하까지 20oC/초 이상의 속도로 냉각시켜 미템퍼링재를 제조하거나 상기 미템퍼링재를 450oC, 550oC, 650oC의 온도에서 각각 30분간 템퍼링을 실시하여 3 종류의 템퍼링재를 제조하였다. According to Table 1, steels 1 to 3 are 100 mm thick steels as described, and reheated at 1,150 o C for about 2 hours, and then 50-60% of the austenite is recrystallized at or below the temperature. Rolling was applied and hot rolled to a thickness of 15 mm. Subsequently, the hot-rolled sheet is cooled to a rate of 20 o C / sec or more at a temperature of Ar 3 or higher to 300 o C or lower to prepare a non-tempered material, or the non-tempered material of 450 o C, 550 o C, 650 o C Tempering was performed for 30 minutes at temperature, respectively, to prepare three types of tempering materials.

Figure 112011076115860-pat00001
Figure 112011076115860-pat00001

한편, 표 1과 같이 제조된 강재에 대한 항복강도, 인장강도, 연신율, 그리고 상온과 -20oC에서 표준 샤르피 V-노치 충격시편의 흡수에너지를 측정하였으며, 그 결과를 표 2에 나타내었다. 표 2는 표 1의 템퍼링재와 미템퍼링재의 기계적 성질을 비교한 것이다.On the other hand, yield strength, tensile strength, elongation, and absorption energy of standard Charpy V-notched impact specimens at room temperature and -20 ° C. were measured as shown in Table 1, and the results are shown in Table 2. Table 2 compares the mechanical properties of the tempering material and the non-tempering material of Table 1.

Figure 112011076115860-pat00002
Figure 112011076115860-pat00002

(*는 -20oC에서 실시)(* Is carried out at -20 o C)

도 2는 표 1 및 표 2에 제시된 강재에 대한 용접성 초고강도강의 항복강도와 저온 충격에너지를 템퍼링 온도에 따라 나타낸 그래프이다.Figure 2 is a graph showing the yield strength and low-temperature impact energy of the weldable ultra high strength steel for the steels shown in Table 1 and Table 2 according to the tempering temperature.

상기 표 2와 도 2에서 알 수 있듯이, 템퍼링되지 않은 강 1 내지 강 3(미템퍼링재)은 항복강도가 1.1GPa 이하, 상온과 저온의 충격에너지가 100J 이하로 항복강도와 저온인성이 모두 열악하였다. 본 발명의 조성범위에 부합하는 템퍼링된 강(템퍼링재) 중에서 450oC에서 템퍼링된 강 2와 550oC에서 템퍼링된 강 3은 상온과 저온의 충격에너지가 200J 이상이고, 항복강도가 1.1GPa 이상으로 저온인성이 우수한 초고강도를 나타내고 있다. 그러나 본 발명의 조성범위에는 부합하지만, 450oC와 650oC에서 템퍼링된 강 3은 항복강도는 1.1GPa 이상이지만 상온과 저온의 충격에너지가 200J 이하이고, 550oC와 650oC에서 템퍼링된 강 2는 상온과 저온의 충격에너지가 200J 이상이지만 항복강도가 1.1GPa 이하로 나타나 저온인성과 항복강도가 동시에 우수하지는 못하였다. As can be seen in Table 2 and FIG. 2, the non-tempered steels 1 to 3 (un-tempered materials) have a yield strength of 1.1 GPa or less, impact energy at room temperature and low temperature of 100 J or less, and both yield strength and low temperature toughness are poor. It was. Among the tempered steels (tempering materials) conforming to the composition range of the present invention, the steels tempered at 450 ° C. and the steels 3 tempered at 550 ° C. have an impact energy of at least 200J at room temperature and low temperature, and a yield strength of 1.1GPa. The ultra high strength excellent in low-temperature toughness is shown above. However, the steel 3 tempered at 450 o C and 650 o C has a yield strength of 1.1 GPa or more, but the impact energy at room temperature and low temperature is 200 J or less, and is tempered at 550 o C and 650 o C. The steel 2 has a shock energy of more than 200J at room temperature and low temperature, but its yield strength is less than 1.1GPa.

또한 구리의 함량이 0.5중량% 이하로 본 발명의 조성범위를 벗어나지만, 450-650oC에서 템퍼링된 강 1은 상온과 저온의 충격에너지가 200J 이상으로 높지만, 항복강도는 1.1GPa에 미치지 못하였다. In addition, although the copper content is outside the composition range of the present invention at 0.5 wt% or less, the tempered steel 1 at 450-650 ° C. has a high impact energy of 200J or more at room temperature and low temperature, but the yield strength does not reach 1.1 GPa. It was.

따라서 본 발명에 의하면 항복강도가 1.1GPa 이상이고, 상온과 저온의 충격에너지가 200J 이상인 우수한 기계적 성질을 확보하기 위해서는 Cu의 함량을 0.5-2.0중량%로 하고, 400oC와 600oC 사이의 적절한 템퍼링 온도로 제조하여 템퍼링된 마르텐사이트와 베이나이트의 혼합조직을 형성할 필요가 있다. Therefore, according to the present invention, in order to secure excellent mechanical properties of yield strength of 1.1 GPa or more and impact energy of room temperature and low temperature of 200J or more, the content of Cu is 0.5-2.0% by weight, and between 400 o C and 600 o C It is necessary to prepare at an appropriate tempering temperature to form a mixed structure of tempered martensite and bainite.

도 3은 본 발명의 실시예에 의해 450oC에서 템퍼링된 강 2의 미세조직을 보여주는 투과전자현미경 사진이다. 사진에서와 같이 전위밀도가 낮아진 템퍼링된 마르텐사이트와 베이나이트의 모습을 볼 수 있었다. 특히, 본 발명의 실시예에 의하면 템퍼링된 마르텐사이트와 베이나이트의 혼합조직의 부피분율이 90% 이상인 것을 확인하였다. 3 is a transmission electron micrograph showing the microstructure of steel 2 tempered at 450 ° C by an embodiment of the present invention. As shown in the picture, the tempered martensite and bainite with lower dislocation densities can be seen. In particular, according to the embodiment of the present invention it was confirmed that the volume fraction of the mixed structure of the tempered martensite and bainite is 90% or more.

이상, 본 발명은 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않으며, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but many variations and modifications may be made without departing from the scope of the present invention. It is possible.

Claims (3)

중량 %로, C:0.05-0.1%, Si:0.1-0.5%, Mn:1.5-2.5%, Ni:0.2-0.5%, Cu:0.5-2.0%, Cr:0.1-0.5%, Mo:0.1-0.5%, Nb:0.01-0.05%, V:0.01-0.1%, Ti:0.01-0.03%, Al:0.05% 이하, B:0.0005-0.002% 이고, 나머지는 Fe와 기타 불가피한 불순물로 이루어지고, Ceq(탄소당량)가 0.3 내지 0.6이고, Pcm(용접균열 감수성 지수)이 0.3 이하이며, 템퍼링된 마르텐사이트와 템퍼링된 베이나이트의 혼합조직의 부피분율이 90% 이상인 것을 특징으로 하는 저온인성이 우수한 용접성 초고강도강.By weight%, C: 0.05-0.1%, Si: 0.1-0.5%, Mn: 1.5-2.5%, Ni: 0.2-0.5%, Cu: 0.5-2.0%, Cr: 0.1-0.5%, Mo: 0.1- 0.5%, Nb: 0.01-0.05%, V: 0.01-0.1%, Ti: 0.01-0.03%, Al: 0.05% or less, B: 0.0005-0.002%, the remainder is composed of Fe and other unavoidable impurities, Ceq Weldability with excellent low temperature toughness, characterized in that (carbon equivalent) is 0.3 to 0.6, Pcm (welding crack susceptibility index) is 0.3 or less, and the volume fraction of the mixed structure of tempered martensite and tempered bainite is 90% or more. Ultra high strength steel. 제1항에 있어서, 상기 초고강도강은 상온과 -20℃에서의 충격에너지가 200J 이상이고, 항복강도가 1.1GPa 이상인 저온인성이 우수한 용접성 초고강도강.The weldable ultra high strength steel of claim 1, wherein the ultra high strength steel has an impact energy of 200 J or more at room temperature and -20 ° C and a yield strength of 1.1 GPa or more. 제1항에 있어서, 상기 초고강도강은, 중량 %로, ECO 합금지수 (Mn% + 2Ni% + 0.5Cu% + 4Mo%)가 4.5 이하인 것을 특징으로 하는 저온인성이 우수한 용접성 초고강도강.The ultra-high strength steel of claim 1, wherein the ultra high strength steel has, by weight%, an ECO alloy index (Mn% + 2Ni% + 0.5Cu% + 4Mo%) of 4.5 or less.
KR1020110098812A 2011-09-29 2011-09-29 Weldable ultra-high strength steel with excellent low-temperature toughness KR101095911B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110098812A KR101095911B1 (en) 2011-09-29 2011-09-29 Weldable ultra-high strength steel with excellent low-temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110098812A KR101095911B1 (en) 2011-09-29 2011-09-29 Weldable ultra-high strength steel with excellent low-temperature toughness

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020080091399A Division KR101094310B1 (en) 2008-09-18 2008-09-18 Weldable ultra-high strength steel with excellent low-temperature toughness, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20110111357A KR20110111357A (en) 2011-10-11
KR101095911B1 true KR101095911B1 (en) 2011-12-21

Family

ID=45027524

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110098812A KR101095911B1 (en) 2011-09-29 2011-09-29 Weldable ultra-high strength steel with excellent low-temperature toughness

Country Status (1)

Country Link
KR (1) KR101095911B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545269A (en) 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method for producing ultra high strength, secondary hardening steels with superior toughness and weldability
KR100386767B1 (en) 1997-07-28 2003-06-09 닛폰 스틸 가부시키가이샤 Method for producing ultra-high strength, weldable steels with superior toughness
KR100406365B1 (en) 1998-12-21 2004-02-14 주식회사 포스코 A METHOD OF MANUFACTURING 600MPa GRADE HIGH STRENGTH STEEL WITH LOW YIELD RATION
JP2007262477A (en) 2006-03-28 2007-10-11 Jfe Steel Kk Low yield-ratio high-strength thick steel plate and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545269A (en) 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method for producing ultra high strength, secondary hardening steels with superior toughness and weldability
KR100386767B1 (en) 1997-07-28 2003-06-09 닛폰 스틸 가부시키가이샤 Method for producing ultra-high strength, weldable steels with superior toughness
KR100406365B1 (en) 1998-12-21 2004-02-14 주식회사 포스코 A METHOD OF MANUFACTURING 600MPa GRADE HIGH STRENGTH STEEL WITH LOW YIELD RATION
JP2007262477A (en) 2006-03-28 2007-10-11 Jfe Steel Kk Low yield-ratio high-strength thick steel plate and its production method

Also Published As

Publication number Publication date
KR20110111357A (en) 2011-10-11

Similar Documents

Publication Publication Date Title
KR101094310B1 (en) Weldable ultra-high strength steel with excellent low-temperature toughness, and manufacturing method thereof
KR102263332B1 (en) A high-hardness hot-rolled steel product, and a method of manufacturing the same
CN101535518B (en) Steel plate for linepipe having ultra-high strength and excellent low temperature toughness and manufacturing method of the same
KR101657828B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same
CN108368591B (en) Pressure vessel steel sheet having excellent resistance to post-weld heat treatment and method for manufacturing same
EP2520680B1 (en) High strength steel sheet having excellent resistance to post weld heat treatment and method for manufacturing same
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
CN104607819A (en) Ultrahigh strength gas protection welding wire and manufacturing method thereof
CN111996449B (en) Pipeline thick plate with excellent plastic toughness and production method thereof
CN104551441A (en) Ultrahigh-strength gas protection welding wire containing V and manufacturing method thereof
US8652273B2 (en) High tensile steel for deep drawing and manufacturing method thereof and high-pressure container produced thereof
KR101318227B1 (en) Cu-added complex bainitic steel and manufacturing method thereof
KR20160078624A (en) Hot rolled steel sheet for steel pipe having excellent low-temperature toughness and strength and method for manufacturing the same
JP6691967B2 (en) High hardness and wear resistant steel excellent in toughness and cutting crack resistance, and method for producing the same
JP2000178692A (en) 655Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH STRESS CORROSION CRACKING RESISTANCE, AND ITS MANUFACTURE
JP2000160300A (en) 655 Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH CORROSION RESISTANCE, AND ITS MANUFACTURE
KR101095911B1 (en) Weldable ultra-high strength steel with excellent low-temperature toughness
KR20160147153A (en) Manufacturing method of high strength steel plate for line pipe and high strength steel plate for line pipe
KR102275814B1 (en) Ultra thick steel plate and manufacturing method for offshore structure having ultra-high strength and high toughness
US20200347478A1 (en) High strength steel plate and manufacturing method therefor
KR102413841B1 (en) Steel having excellent strength and low-temperature toughness after PWHT and method of manufacturing the same
CN114341386B (en) Steel material excellent in strength and low-temperature impact toughness and method for producing same
KR102359299B1 (en) Ultra-high strength, high co-ni secondary hardening martensitic steel and its manufacturing method
KR101586883B1 (en) High strength steel and method of manufacturing the same
KR20140072246A (en) Steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150128

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150909

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160907

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161118

Year of fee payment: 17