JPH01259125A - Manufacture of high-strength oil well tube excellent in corrosion resistance - Google Patents

Manufacture of high-strength oil well tube excellent in corrosion resistance

Info

Publication number
JPH01259125A
JPH01259125A JP8884988A JP8884988A JPH01259125A JP H01259125 A JPH01259125 A JP H01259125A JP 8884988 A JP8884988 A JP 8884988A JP 8884988 A JP8884988 A JP 8884988A JP H01259125 A JPH01259125 A JP H01259125A
Authority
JP
Japan
Prior art keywords
tempering
quenching
resistance
strength
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8884988A
Other languages
Japanese (ja)
Inventor
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8884988A priority Critical patent/JPH01259125A/en
Publication of JPH01259125A publication Critical patent/JPH01259125A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high-strength oil well tube excellent in corrosion resistance by successively applying respective treatments of hardening, tempering, plastic working, hardening, and tempering to a tube of low alloy steel with a specific composition under respectively specified conditions. CONSTITUTION:Hardening is applied at 880-980 deg.C to a tube of a low alloy steel having a composition consisting of, by weight, 0.15-0.45% C, 0.1-1% Si, 0.3-1.8% Mn, <=0.01% SolAl, <=0.002% N, <=0.005% AlN, and the balance essentially Fe. Subsequently tempering is applied to the above tube at 600-730 deg.C, and also, plastic working is applied in the above temp. region once or plural times so that the total amount of strain reaches 1-20%. Further, the above tube is subjected to hardening at 800-950 deg.C and tempering at 600-730 deg.C. By this method, the high-strength oil well tube excellent in corrosion resistance, particularly in sulfide stress corrosion cracking resistance, can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐食性、特に耐硫化物応力腐食割れ性に優れた
高強度油井管の製造方法に関する。以丁、硫化物応力腐
食割れは5sccと称す。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing high-strength oil country tubular goods having excellent corrosion resistance, particularly resistance to sulfide stress corrosion cracking. In other words, sulfide stress corrosion cracking is called 5scc.

〔従来の技術〕[Conventional technology]

従来より、油井管は強度、耐5scc性および靭性の両
立を図るために、低合金鋼をヘースとしてこれに焼入れ
・焼戻しを施すことで製造するのが基本となっている。
Conventionally, in order to achieve both strength, 5SCC resistance, and toughness, oil country tubular goods have been basically manufactured by quenching and tempering low-alloy steel as a heath.

一方、最近の石油、天然ガス事情の逼迫から、油井、ガ
ス井においては深井戸化の傾向が著しく、また、産出物
中に湿潤な硫化水素の含まれるザヮーな油井、ガス井も
増加してきている。したがって、油井管には高強度であ
ること、耐5SCC性に優れること、の2点が従来にも
増し′(強く求められるようになった。
On the other hand, due to the recent tightening of the oil and natural gas situation, there is a marked trend toward deeper oil and gas wells, and the number of oil and gas wells that contain wet hydrogen sulfide in their output is also increasing. There is. Therefore, oil country tubular goods are now required to have high strength and excellent 5SCC resistance, more than ever before.

ところが、一般に鋼材は、強度の上昇とともに耐食性が
低下する傾向にあり、耐食性、なかでも耐5scc性が
特に重視される油井管においては、耐5scc確保の観
点から強度上の制限を強く受ける結果になっている。
However, as steel materials generally increase in strength, their corrosion resistance tends to decrease, and in oil country tubular goods, where corrosion resistance, especially 5scc resistance, is particularly important, there are strong restrictions on strength from the perspective of ensuring 5scc resistance. It has become.

ところで、耐5scc性の評価法については、シェル試
験、N A CIE、試験(定荷重法)、SSIンT試
験(低歪速度引張試験)の3種類がよく知られている。
By the way, three types of evaluation methods for 5scc resistance are well known: shell test, NA CIE test (constant load method), and SSINT test (low strain rate tensile test).

これらはいずれも同し傾向を示すが、厳しさは下記のシ
ェル試験が最大である。
All of these show the same tendency, but the shell test below is the most severe.

すなわち、シェル試験は、厚さ1.7朋、幅4.51の
試験片の長さ方向中央部に直径0.7mmの孔を2個設
け、この部分に3点曲げて応力を付加した状態で、特定
環境下(室温、0,5%CH,C00I]、1気圧1(
2S飽和)に200−50 (l h r保持して、割
れ限界応力をS c、値(1l114食性指数)で評価
するというものである。
In other words, in the shell test, two holes with a diameter of 0.7 mm are provided in the longitudinal center of a test piece with a thickness of 1.7 mm and a width of 4.5 mm, and stress is applied to this portion by bending it at three points. Under a specific environment (room temperature, 0.5% CH, C00I), 1 atm.
2S saturation) at 200-50 (l hr) and evaluate the cracking limit stress by S c, the value (1l114 eating index).

油井管における強度と要求される耐5scc性との関係
をこのSc値で見た場合、第1図に示されるように、割
れを防11−するためには材料強度の高いものほど高S
 c 4fiが必要とされており、強度が02%耐力で
80 k s i  (56kgf /+n2)級の場
合、Sc値は10.7以十が要求され、90ks i 
 (63kif 7mm” )級、l00ksi  (
70kf?f/n+2)級、] l Ok s i  
(71kqf /u+2)級になるとそれぞれSc、値
120以ヒ、13.3以上、147以トが要求される。
When looking at the relationship between the strength of oil country tubular goods and the required 5scc resistance in terms of the Sc value, as shown in Figure 1, in order to prevent cracking, the higher the material strength, the higher the SCC value.
c4fi is required, and if the strength is 80 ksi (56 kgf /+n2) class with 02% proof stress, the Sc value is required to be 10.7 or more, and 90 ksi
(63kif 7mm”) class, 100ksi (
70kf? f/n+2) class,] l Ok s i
(71 kqf /u+2) class requires Sc values of 120 or higher, 13.3 or higher, and 147 or higher, respectively.

この要求は、強度とiiJ S S CC性が相反する
関係にあることを嶌えれば非常に厳しいものであり、工
業的に可能な製造方法を採用する限りにおいては、1I
iJ S S CC性確保による制限から強度は90k
S l ([i 3 kgf /am’ )級が限度と
されている。
This requirement is extremely strict considering the contradictory relationship between strength and CC property, and as long as an industrially possible manufacturing method is adopted, 1I
iJ S S Strength is 90k due to restrictions due to CC property.
The limit is S l ([i 3 kgf /am') class.

この点を結晶粒度との関係にノンづき更に詳しく説明す
る。
This point will be explained in more detail with reference to the relationship with crystal grain size.

結晶lIを微細化ずれG:1高強度を確保しても傍れた
面4sscc性が得られることは、従来より周知である
It has been well known that even if the crystal II is refined with a deviation of G:1 and high strength is ensured, side surface 4sscc properties can be obtained.

第2図は油井管に通常使用される低合金鋼(111璽%
で0.27%C−0,2/I%5i−1,2%M n 
−0、[124%5off、Aj!−11,0032%
N)において、焼戻しによりY、Sを75 kgr /
東識’とした場合のSc、値と、旧オーステナイト粒の
結晶粒度番号との関係を示したものである。同図から明
らかなように、Y、Sが75 kgr / w+婁2で
も結晶粒度番号が10以−ヒであればSc値は13.3
を超え、1QQksi級の要求仕様を満たす。
Figure 2 shows the low alloy steel (111%) normally used for oil country tubular goods.
0.27%C-0,2/I%5i-1,2%Mn
-0, [124%5off, Aj! -11,0032%
N), Y and S were tempered to 75 kgr/
This figure shows the relationship between the Sc value and the grain size number of prior austenite grains, assuming that the value is 'Higashishiki'. As is clear from the figure, even if Y and S are 75 kgr/w+2, if the grain size number is 10 or more, the Sc value is 13.3.
exceeds the requirements of 1QQksi class.

そして、この観点に立って開発された耐S S CC性
改善対策が、成分面からのNb添加、熱処理面からの2
回焼入れ処理、加工面からの強度の冷間加工(注1.2
)または温間加工(注3)である。
Measures to improve S S CC resistance developed from this perspective include Nb addition from the component perspective and two-dimensional improvement from the heat treatment perspective.
Double quenching treatment, cold working for strength from the machined surface (Note 1.2
) or warm processing (Note 3).

ン主 ]  )  Recrystallizatio
n  and  Formation  of八へst
eniLe  in  Deformed  I+it
l+  martensiticStructure 
of low carbon’ 5teels。
Master ] ) Recrystallization
n and Formation of Hachihe st
EniLe in Deformed I+it
l+ martensiticStructure
of low carbon' 5teels.

M、TOKTZANIE、N、Mへ’rsUMUIンへ
、に、1’5UZAKl、T、MAKI。
M, TOKTZANIE, N, M to 'rsUMUIN, to, 1'5UZAKl, T, MAKI.

and l、TAMURA  : Metallur8
ical Tr+ins+1ctions八、vol 
 13八(1982)   pp、]3794388注
2)鋼の冷間圧延によるオーステナイト結晶粒の微細化
:高圧、飴山5時実:鉄と鋼、vol 73. NO,
5(1987) S 4fifi注3)低合金鋼の焼戻
し温間加工によるオーステナイト結晶粒微細化、松岡、
飴山3時実:鉄と鋼、vol 73.  Nb、5(1
987) S 467また、本発明者らは細粒化による
対策とは別に、低合金鋼中のN量の制限によりAffN
の生成を抑え、耐5scc性を高める対策を開発し提案
した(特願昭62−067023号)。
and l, TAMURA: Metalur8
ical Tr+ins+1ctions 8, vol.
138 (1982) pp, ] 3794388 Note 2) Refinement of austenite grains by cold rolling of steel: High pressure, Ameyama 5 Tokiji: Tetsu to Hagane, vol. 73. No,
5 (1987) S 4fifi Note 3) Austenite grain refinement by tempering warm working of low alloy steel, Matsuoka,
Ameyama 3 Tokimi: Tetsu to Hagane, vol 73. Nb, 5(1
987) S 467 In addition to the measures taken by grain refinement, the present inventors have also attempted to reduce AffN by limiting the amount of N in low alloy steel.
We have developed and proposed measures to suppress the generation of and improve the 5scc resistance (Japanese Patent Application No. 62-067023).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、従来の細粒化手段であるNbの添加や2回焼
入れ処理のみでは十分な細粒化は不可能であり、旧オー
ステナイト粒度番号で10以上は到達し得ない。したが
って強度は耐5scc性確保による制限から90 k 
s i級が限度となる。
However, it is not possible to achieve sufficient grain refinement using conventional grain refinement methods such as addition of Nb or double quenching treatment, and it is impossible to achieve a prior austenite grain size number of 10 or more. Therefore, the strength is limited to 90k due to the 5scc resistance.
The limit is s I class.

これに対し、冷間加工や温間加工による細粒化は旧オー
ステナイト粒度番号で10以上を達成する。しかし、そ
の効果は必すしも安定でなく、なによりも730 ’C
以下の温度にて50%以上、最小限でも30%の塑性加
工を必要とする。このため、生産設備面、生産コスト面
からの制約により工業的規模での実施が非常に困難とな
る。
On the other hand, grain refinement by cold working or warm working achieves a prior austenite grain size number of 10 or more. However, the effect is not necessarily stable, and above all, 730'C
Plastic working of 50% or more, at least 30%, is required at the following temperatures: Therefore, it is extremely difficult to implement this method on an industrial scale due to constraints in terms of production equipment and production costs.

また、本発明者らが開発した耐5scc性改善対策は、
通常の2回焼入れ処理と3;[I合ゼても10Qkis
級のグレードを可能にするが、製品ザイズ等により細粒
化は安定せず、必ずしも大量生産可能な方法ではなかっ
た。しかるに、もし効果的な細粒化処理と組合されるな
らばI O(l k s i級以トのグレードを安定的
に確保することが期待できる。
In addition, the measures to improve the 5scc resistance developed by the present inventors are as follows:
Normal double quenching treatment and 3;
However, depending on the product size, grain refinement was not stable, and it was not necessarily a method that could be mass-produced. However, if it is combined with an effective grain refining treatment, it can be expected to stably secure a grade of IO(l k s i or higher).

本発明は、この新規開発になる低合金鋼管をヘ−4,!
:して100kis級以上の強度とこれに要求される耐
5scc性が確保でき、しかも工業的規模での実施が容
易な油井管製造方法を提供することを目的とする。
The present invention utilizes this newly developed low-alloy steel pipe.
An object of the present invention is to provide a method for manufacturing oil country tubular goods that can ensure strength of 100 kis or higher and the 5 SCC resistance required for this, and that can be easily implemented on an industrial scale.

〔課題を解決するだめの手段〕[Failure to solve the problem]

結晶粒の微細化に強度の冷間加圧または温間加工がを効
なことは、前述したとおり周知である(注1.2.3)
As mentioned above, it is well known that strong cold pressing or warm working is effective in refining crystal grains (Note 1.2.3).
.

すなわち、焼入れで得たマルテンサイトに冷間または焼
入れ後の焼戻しく温間)で強度の加工を加えれば、焼戻
しにおいてフェライト再結晶温度か低下し、焼戻し条件
によっては微細な再結晶フ、ライトが生成する。このこ
とからすれば、微細な再結晶フェライトに再度焼入れを
施し、オーステナイト化を経てマルテンサイトとすれば
、微細な旧オーステナイト粒をイTするマルテンサイト
を得られることが推定される。
In other words, if the martensite obtained by quenching is subjected to strong processing (either cold or warm after quenching), the ferrite recrystallization temperature will decrease during tempering, and depending on the tempering conditions, fine recrystallization particles may appear. generate. Based on this, it is presumed that if fine recrystallized ferrite is hardened again and turned into martensite through austenitization, martensite can be obtained in which fine prior austenite grains are transformed.

しかしながら、本発明者らの調査によれば、冷間加[を
採用した場合には1回目の焼入れで生成した微細な旧オ
ーステナイト粒が2回目の焼入れで粒成長をおこし、安
定した微細粒は得られなかった。また、温間加圧を採用
する場合には、前述したように50%以上少なくとも3
0%以上の強度の加工を加えれば)lライI・粒の十分
な微細化はi■能である。しかしながら、このようなり
41力ロ丁「を低温で鋼管に加えることは装置」−の問
題があった。
However, according to the investigation by the present inventors, when cold working is adopted, the fine prior austenite grains generated in the first quenching cause grain growth in the second quenching, and the stable fine grains are I couldn't get it. In addition, when warm pressurization is adopted, as mentioned above, 50% or more or at least 3
If processing with a strength of 0% or more is added, it is possible to sufficiently refine the grains. However, there was a problem with the apparatus for applying 41 force to the steel pipe at low temperatures.

そごで、本発明者らは更に研究を続けた。その結果、焼
入れで得たマルテンザイ1へに対し6 (10〜730
℃の温間で20%以下、例えは10%程度のむしろ小さ
い塑性変形を加えるならば、容易に)J、ライ1〜の再
結晶が生し、しかも一部の炭化物の析出が塑性変形によ
り促進され、2回目の焼入れでの結晶粒の粗大化を防止
できることが判明した。また、残りの合金元素が基地中
に固溶し、これも2回目の焼入れにおける粒成長を防止
することが明らかとなった。
Therefore, the present inventors continued their research. As a result, 6 (10 to 730
If a rather small plastic deformation of 20% or less, for example about 10%, is applied at warm temperatures at ℃, recrystallization of J, Lie 1~ will easily occur, and some of the carbides will precipitate due to plastic deformation. It has been found that the coarsening of crystal grains during the second quenching can be prevented. It was also revealed that the remaining alloying elements were dissolved in the matrix and this also prevented grain growth during the second quenching.

すなわち、油井管の2回焼入れに軽度の温間塑性加工を
導入すれば、フェライトの再結晶促進と、再結晶粒の粗
大化防止とが効果的に図られ、2回焼入れだけでは得ら
れない微細な結晶粒が得られ、本発明者らが開発した前
記油井管用低合金鋼を使用した場合には100k s 
i  (70kxf /**2)縁板上の強度とこれに
要求される面4SSCC性が安定的に確保できるのであ
る。
In other words, if mild warm plastic working is introduced during double quenching of oil country tubular goods, it will be possible to effectively promote ferrite recrystallization and prevent coarsening of recrystallized grains, which cannot be achieved by double quenching alone. Fine crystal grains can be obtained, and when the above-mentioned low alloy steel for oil country tubular goods developed by the present inventors is used, the
i (70kxf /**2) The strength on the edge plate and the surface 4SSCC properties required for this can be stably ensured.

本発明の油井管製造方法は斯かる知見に基づき開発され
たもので、重量%でC:0.15〜0.45%、Si:
0゜1〜I%、Mn:0.3〜1.8%、So 7!、
Aj! :0.01%以ド、N:O,[102%以下、
AIN:0.005%以下を含み、更に必要に応しCr
:0.05〜2%、Mo :0.02〜0.8%、Nb
 :o、o 05〜0.2%、V :o、o (15〜
0.2%、B : O,O,0,0]〜0.003%の
1種または2種以上を含をし、残部実質的にFeからな
る低合金鋼管に対し、880〜980℃から焼入れを行
った後、600〜730℃で焼戻しを行うとともに、そ
の温度域において塑性加工を全歪量が1〜20%となる
よう1回または複数回行い、しかる後に800〜950
℃からの焼入れと600〜730℃での焼戻しとを行う
ものである。
The method for manufacturing oil country tubular goods of the present invention was developed based on such knowledge, and in terms of weight percentages, C: 0.15 to 0.45%, Si:
0°1~I%, Mn: 0.3~1.8%, So 7! ,
Aj! :0.01% or more, N:O, [102% or less,
AIN: Contains 0.005% or less, and further contains Cr as necessary.
:0.05~2%, Mo:0.02~0.8%, Nb
:o, o 05~0.2%, V:o,o (15~
0.2%, B: O, O, 0,0] to 0.003%, and the remainder substantially consists of Fe, from 880 to 980°C. After quenching, tempering is performed at 600 to 730°C, and plastic working is performed once or multiple times in that temperature range so that the total strain is 1 to 20%, and then to 800 to 950°C.
Hardening is performed at a temperature of 600 to 730°C.

第3図は車量%で0.25〜0.29%C−0,3%S
 i −0,5%Mn11.5%Cr −0,2%Mo
 −0゜03〜0.08%Zr−0,005〜0.06
%5off。
Figure 3 shows vehicle volume as %: 0.25-0.29%C-0.3%S
i -0,5%Mn11.5%Cr -0,2%Mo
-0°03~0.08%Zr-0,005~0.06
%5off.

Aβ−0,0008〜0.0 O84%Nからなる組成
の低合金鋼において、焼戻しにより02%耐力を75k
gf/**2とした場合の3 c、イ直と鈑1中/IN
量との関係を示したものである。同Mから明らかなよう
に、鋼中AβN量を低減さセることにより高強度を保持
したままでSc値が向トする。
Aβ-0,0008~0.0 In low alloy steel with a composition consisting of O84%N, the 02% yield strength is increased to 75k by tempering.
3 c when gf/**2, I-nao and board 1-chu/IN
This shows the relationship with quantity. As is clear from the same M, by reducing the amount of AβN in the steel, the Sc value can be improved while maintaining high strength.

本発明が対象とする低合金鋼管は鋼中NVの制限により
、A7!Nの生成を抑えて耐S S CC性を改善した
もので、従来の2回焼入れによる場合は100 k s
 i  (70kgf /*x2)の強度とこれに要求
されるsc4M<+s、3以l−)が確保でき、本発明
の軽度の塑性加工を含む焼入れ・焼戻しを行う場合には
、それ以上あるいは1IOksi(77kg f /1
n2)以上の強度とこれに要求されるSC値(14,’
7以上)を確保することが可能となる。
Due to the limitation of NV in steel, the low alloy steel pipe targeted by the present invention is A7! It suppresses the generation of N and improves S S CC resistance, and when conventional double quenching is used, it is 100 k s
i (70 kgf /* (77kg f/1
n2) or higher and the SC value required for this (14,'
7 or higher).

〔作  用〕[For production]

以下、本発明の製造方法における限定理由を鋼管の化学
成分、鋼管に加える熱処理および塑性加工の順で詳述す
る。
Below, the reasons for limitations in the manufacturing method of the present invention will be explained in detail in the order of the chemical composition of the steel pipe, the heat treatment applied to the steel pipe, and the plastic working.

■、化学成分 C: ]0Oks i  (70kgf/+am” )
以にの0.2%耐力を得るためと、耐S S CC性改
善を目的とした高温焼戻しにおいて強度・靭性を確保す
るために、0.15%以上を必要とする。しかし、0.
45%を超えると鋼管の焼入れ時に焼割れが発生しやす
くなる。このため0.15〜0.45%とする。
■, Chemical composition C: ]0Oks i (70kgf/+am”)
0.15% or more is required in order to obtain the 0.2% proof stress described above and to ensure strength and toughness in high temperature tempering for the purpose of improving S S CC resistance. However, 0.
If it exceeds 45%, quench cracking is likely to occur during quenching of the steel pipe. Therefore, it is set at 0.15 to 0.45%.

Si:それ自体は耐5scc性を変化さセない。Si: itself does not change the 5scc resistance.

しかしAlの添加量を少なくした時、Aj7Nを抑制し
て耐5scc性を改善する効果があり、また脱酸元素と
しても欠かせない成分である。0.1%未満では脱酸が
十分でなく、1%を超えると焼入れ後の旧オーステナイ
ト粒が粗大になり靭性を低下させる。したがって0.1
〜1%とする。
However, when the amount of Al added is reduced, it has the effect of suppressing Aj7N and improving the 5scc resistance, and is also an essential component as a deoxidizing element. If it is less than 0.1%, deoxidation will not be sufficient, and if it exceeds 1%, the prior austenite grains will become coarse after quenching, reducing toughness. Therefore 0.1
~1%.

Mn:焼入れ性を向上させ、焼戻し後のセメンタイトを
均一に分11りさせて靭性を向上さセる。Mnのごの効
果は1.8%を超えると飽和し、しかもミクロ偏析を大
きくして耐5scc性を劣化さゼる。
Mn: Improves hardenability and evenly distributes cementite after tempering to improve toughness. The effect of Mn becomes saturated when it exceeds 1.8%, and furthermore, it increases micro-segregation and deteriorates the 5scc resistance.

他の元素により十分な焼入れ性が確保されるなら、耐5
scc性確保の・点からはMnはルない方がよい。一方
、0.3%未満では焼入れ性の不足に起因して而=l 
s s c Cl’)、り・刃14をイ氏下させる。し
たがって0.3〜1.8%とする。たたし、薄肉材ある
いは他の元素で焼入れMが確保できるならば、0.(1
5%以」−でもよい。
If sufficient hardenability is ensured by other elements, the resistance to 5
From the point of view of ensuring scc property, it is better not to include Mn. On the other hand, if it is less than 0.3%, it is caused by insufficient hardenability.
s s c Cl') and lower the knife 14. Therefore, it is set at 0.3 to 1.8%. However, if quenching M can be ensured with thin-walled materials or other elements, 0. (1
5% or more.

Sob、A7!、N、AlN:従来の耐5scc性鋼管
は十分な焼入れ(’[を確保し、焼入れ後の焼戻しで炭
化物(主〇こセメンタイト)を均一・に分散させること
により耐S S CC性を向」ニさ〜lでおり、細粒化
もこの而、1s s c c(41i+l−1−に寄与
していた。
Sob, A7! , N, AlN: Conventional 5 SCC resistant steel pipes improve S S CC resistance by ensuring sufficient quenching and by uniformly dispersing carbides (mainly cementite) in tempering after quenching. The grain size was 2~l, and the grain refinement also contributed to 1s s c c (41i+l-1-).

しかしながら、耐5scc性については、゛セメンタイ
トよりも一段と微細な析出物(A ff N)が支配的
であることが、本発明者らの研究から判明した。すなわ
ち、第3図に示されるように、AlN量を制限すること
により耐5scc性の指標となるSC値が向上し、A7
!N≦0.005%(50ppm)以下で顕著なi−t
 S S c c性改善効果が得られる。以上のことか
ら、AlN量を0.005%以下とし、そのためにA7
!Nを構成する/l!、N量をそれぞれSOβ、Ap≦
0.01%、N22.002%に制限する。
However, the research conducted by the present inventors has revealed that the 5scc resistance is dominated by precipitates (A ff N) that are much finer than cementite. That is, as shown in FIG. 3, by limiting the amount of AlN, the SC value, which is an index of 5scc resistance, improves, and A7
! Noticeable i-t when N≦0.005% (50ppm) or less
The effect of improving S S c c properties can be obtained. Based on the above, the amount of AlN is set to 0.005% or less, and therefore A7
! Construct N/l! , the amount of N is SOβ, Ap≦
0.01%, N22.002%.

Cr、Mo、V、Nb、F3:いずれも必要に応じて添
加される元素である。
Cr, Mo, V, Nb, F3: All are elements added as necessary.

0、rは焼入れ性の改善に極めて有効であり、しかもM
n添加にともなって住じるようなミクロ偏析を生じさせ
ないため、耐5scc性改善に効果がある。0.05%
未満ではその効果がなく、2.0%を超えると焼入れ性
は一層向上するが、靭性が低下する。したがって0.0
5〜2.0%とする。
0, r is extremely effective in improving hardenability, and M
Since it does not cause micro-segregation that occurs with the addition of n, it is effective in improving the 5scc resistance. 0.05%
If it is less than 2.0%, there will be no effect, and if it exceeds 2.0%, the hardenability will further improve, but the toughness will decrease. Therefore 0.0
5 to 2.0%.

MOもCrと同様の理由で0.(12〜O,li%とず
る。
MO also has a value of 0.0 for the same reason as Cr. (Set as 12~O, li%.

■は高温焼戻し時の強度上昇に有効であり、0゜005
%未満ではその効果は十分でなく 、0.2%を超える
と靭性が低下する。したかってO,O’05〜0.2%
とする。
■ is effective in increasing the strength during high temperature tempering, and is 0°005
If it is less than 0.2%, the effect will not be sufficient, and if it exceeds 0.2%, the toughness will decrease. That's O, O'05~0.2%
shall be.

Nbは微細化により靭性向−ヒ、耐5scc性向トに有
効である。0.005%未満ではこの効果が得られず、
0.2%を超えると靭性が低下し、かつ微細化の効果が
飽和するとともにNbCm細析出物が増加し、耐5SC
C性を劣化させる。したがって0.005〜0.2%と
する。
Nb is effective in improving toughness and 5scc resistance by making it finer. If it is less than 0.005%, this effect cannot be obtained,
If it exceeds 0.2%, the toughness decreases, the refinement effect is saturated, NbCm fine precipitates increase, and the 5SC resistance decreases.
Degrades C properties. Therefore, it is set at 0.005 to 0.2%.

Bば焼入れ性を改善することから、靭性、耐SS CC
性改善に寄与するが、0.0001%未満ではその効果
がなく、0.003%を超えると焼戻し後の靭性を低下
さゼる。したがって0.0001〜0.003%とする
B: Improves hardenability, improves toughness, SS CC
However, if it is less than 0.0001%, it has no effect, and if it exceeds 0.003%, it reduces the toughness after tempering. Therefore, it is set at 0.0001 to 0.003%.

不純物:以上に述べた元素以外に不純物として含まれる
元素はP≦0.+125%、S≦0.005%、050
002%、Ni≦0.05%、Cu≦0.05%に制限
することが望まれる。すなわち、P、、Sの制限は主に
靭性低下防1F、ミクロ偏析による耐5scc性低下の
防止に有効であり、0の制限は靭性低下防止に有効であ
る。またNi、Cuの制限は孔食等の耐食性劣化の防止
に効果がある。
Impurities: Elements contained as impurities other than those mentioned above are P≦0. +125%, S≦0.005%, 050
It is desirable to limit the content to 0.002%, Ni≦0.05%, and Cu≦0.05%. That is, limiting P, , S is mainly effective in preventing a decrease in toughness by 1F and 5scc due to micro segregation, and limiting to 0 is effective in preventing a decrease in toughness. Furthermore, limiting Ni and Cu is effective in preventing deterioration of corrosion resistance such as pitting corrosion.

2、熱処理および塑性加工 01回目の焼入れ 完全にオーステナイト単相にするために880℃以上の
焼入れ温度を必要とする。しかし、焼入れ温度が高くな
りすぎると、焼入れ時に結晶粒の粗大化を生じるので、
980℃以下に焼入れ温度を制限する。なお、この場合
、次工程で微細なフェライト粒を得るためには、焼入れ
後に80%以上のマルテンサイト量を必要とする。
2. Heat treatment and plastic working 01st quenching A quenching temperature of 880° C. or higher is required to completely form the austenite single phase. However, if the quenching temperature becomes too high, the crystal grains will become coarser during quenching.
Limit the quenching temperature to 980°C or less. In this case, in order to obtain fine ferrite grains in the next step, a martensite content of 80% or more is required after quenching.

01回目の焼戻しおよび塑性加工 この工程で微細な再結晶フェライトを得るには600℃
以上の温度を必要とする。しかし、730℃を超えると
、オーステナイトが/4=成し、この部分は最終的には
粗大な結晶粒となる。したがって、600〜730℃の
温度域で焼戻しおよび塑性加工を行う。
01st tempering and plastic working 600℃ to obtain fine recrystallized ferrite in this process
or higher temperature is required. However, when the temperature exceeds 730° C., austenite forms at /4, and this portion eventually becomes coarse crystal grains. Therefore, tempering and plastic working are performed in a temperature range of 600 to 730°C.

塑性加工は600〜730℃の加二[温度が確保される
なら、焼戻しと同時に行っても、焼戻し後の冷却過程で
行ってもよい。
The plastic working may be performed at the same time as the tempering or during the cooling process after the tempering, as long as a temperature of 600 to 730°C is secured.

塑性加工としては縮径加工、肉厚調整加工、曲げ加工(
曲げ戻しを含む)等を採用することができ、その種類は
問わない。
Plastic processing includes diameter reduction processing, wall thickness adjustment processing, and bending processing (
(including bending back), etc., and the type is not limited.

塑性加工による変形量は引張または圧縮変形の縮度形量
で表わして1〜20%の範囲内に制限する必要がある。
The amount of deformation due to plastic working must be limited within the range of 1 to 20% expressed in terms of the degree of contraction of tensile or compressive deformation.

これが1%未満では再結晶を生しるのに十分な歪を導入
できず、一方20%を超えると逆にフェライト内部に小
さい歪が残り、2回目の焼入れによりかえってオーステ
ナイトの結晶粒を大きくする。最適な変形量は加工温度
が高いほど大となる。
If this is less than 1%, it will not be possible to introduce enough strain to cause recrystallization, whereas if it exceeds 20%, a small strain will remain inside the ferrite, and the second quenching will actually make the austenite grains larger. . The optimum amount of deformation increases as the processing temperature increases.

加工回数は前記縮度形量が1〜20%の範囲内に制限さ
れるなら、何回でもよい。塑性変形の繰返しはフェライ
ト粒の微細化に有効であり、回数の増加とともに微細化
は進行する。ただし、7回を超えるとその効果は飽和す
る。
The number of times of processing may be any number as long as the amount of shrinkage is limited within the range of 1 to 20%. Repetition of plastic deformation is effective in refining ferrite grains, and the refining progresses as the number of times increases. However, if it exceeds 7 times, the effect will be saturated.

02回目の焼入れ 焼入れ温度が800℃未満ではオーステナイト化が不十
分となる。また、95 (1’cをこえると結晶粒が粗
大化するために耐食性が劣化する。よって、その範囲を
800 ’C〜950℃とする。この焼入れにより微細
な旧オーステナイト粒を得るには800“C以上で、な
るべく低温、短時間の加熱が望ましい。この観点から焼
入れ温度は880℃以下とし、加熱保持時間については
10分以内とすることが望まれる。なお、焼入れ後は9
0%以上のマルテンサイト量を必要とする。
02nd quenching If the quenching temperature is less than 800°C, austenitization will be insufficient. In addition, if the temperature exceeds 95°C (1'c), the crystal grains become coarse and the corrosion resistance deteriorates. Therefore, the range is set at 800'C to 950°C. To obtain fine prior austenite grains through this quenching, It is desirable to heat the temperature at a temperature higher than "C" at a low temperature and for a short time. From this point of view, it is desirable that the quenching temperature be 880 °C or less, and the heating holding time should be within 10 minutes.
Requires martensite content of 0% or more.

02回目の焼戻し この焼戻しは、基本的には所定の強度がも育保てきるな
らば高温はど耐5scc性に対して好ましい結果を与え
る。この観点から焼戻し111.に度は600℃以上と
する。焼戻し温度が60 (1’C未満では強度は得ら
れてもフルテンサイ1〜中の歪が十分に開放されず、耐
5scc性は劣る。しかし、730℃を超えると、焼戻
し後の冷却でマルテンサイトが生成し、耐5scc性を
劣化さセるので、730℃以下に制限する。
02nd Tempering This tempering basically gives favorable results in terms of high temperature resistance to 5scc if the specified strength can be maintained. From this point of view, tempering 111. The temperature shall be 600°C or higher. If the tempering temperature is less than 60°C (1'C), even if strength is obtained, the strain in the full tensile strength 1 to 1 is not sufficiently released, and the 5scc resistance is poor. is generated and the 5 SCC resistance is deteriorated, so the temperature is limited to 730°C or less.

〔実施例〕〔Example〕

第1表にa ” pで示す本発明対象鋼と、同表にq〜
Xで示す本発明対象外の鋼とからなる熱間加工管(外径
70m、内径501m)に対し、1回目の焼入れ・焼戻
しを行うとともに、焼戻しの冷却過程で塑性加工を行い
、しかる後に2回目の焼入れ・焼戻しを行った。また、
比較のために通常の2回焼入れも行った。
In Table 1, the steels subject to the present invention are indicated by a ” p, and in the same table, q -
A hot-worked pipe (outer diameter 70 m, inner diameter 501 m) made of steel not subject to the present invention, indicated by The second quenching and tempering was performed. Also,
For comparison, ordinary quenching was also carried out twice.

塑性加工は1回目の焼戻し後の冷却過程でストレッチレ
デューサにて縮径加二口を行うか、温間矯正機にてクラ
シュまたはオフセット加工を行うものとした。縮径加工
では引張変形が生じ、クラッシュまたはオフセント加工
では引張と圧縮(曲げ)変形が生じる。
The plastic working was performed by performing two diameter reductions using a stretch reducer during the cooling process after the first tempering, or by crushing or offset processing using a warm straightening machine. Diameter reduction processing produces tensile deformation, while crushing or offset processing produces tension and compression (bending) deformation.

製造された各鋼管の旧オーステナイト結晶粒度番号、0
.2%耐力、引張強さ、伸び、シャルピー破面遷移温度
および5c4−の調査結果を製造条件の詳細とともに第
2表に示す。
Prior austenite grain size number of each manufactured steel pipe, 0
.. The investigation results of 2% proof stress, tensile strength, elongation, Charpy fracture transition temperature and 5c4- are shown in Table 2 along with details of manufacturing conditions.

第2表において、本発明例は本発明対象鋼(a〜p)か
らなる鋼管に本発明条件内の熱処理および塑性加工を加
えた例、比較例Iは本発明対象鋼(a−p)からなる鋼
管に本発明条件外の熱処理および塑性加工を加えた例、
比較例2は本発明対象外の鋼(Q−X)からなる銅管に
本発明条件内の熱処理および塑性加工を加えた例、従来
例は油井管用として汎用の鋼である本発明対象外の鋼(
r、s)からなる鋼管に通常の2回焼入れを行った例で
ある。
In Table 2, examples of the present invention are examples in which a steel pipe made of the steels (a to p) subject to the present invention were subjected to heat treatment and plastic working within the conditions of the present invention, and comparative example I is an example of steel pipes made of the steels subject to the present invention (a to p). An example of applying heat treatment and plastic working outside the conditions of the present invention to a steel pipe,
Comparative Example 2 is an example in which a copper tube made of steel (Q-X) not subject to the present invention was subjected to heat treatment and plastic working within the conditions of the present invention, and the conventional example is a copper tube made of steel (Q-X) not subject to the present invention, which is a general-purpose steel for oil country tubular goods. steel(
This is an example in which a steel pipe consisting of (r, s) was quenched twice.

本発明例でば100〜.05ksi  (70〜80.
5kgf/龍2)の0.2%耐力範囲においてSc値1
3.3以上を満足し、一部のものは■10〜125ks
 i  (77〜87.5kgf/u+2)に対し/T
Sc値は14.7以上を満足し、他の特性についても何
ら問題はない。
In the example of the present invention, it is 100~. 05ksi (70~80.
Sc value 1 in 0.2% proof stress range of 5kgf/Ryu 2)
3.3 or more, some items are ■10~125ks
i (77-87.5kgf/u+2)/T
The Sc value satisfies 14.7 or more, and there are no problems with other characteristics.

これに対し、比較例1では強度は高いもののそれに見合
う耐5scc性は確保されておらず、比較例2でも強度
、靭性、耐S S CC性のいずれかが劣っている。ま
た、従来例では強度、耐5SCC性とも低い。
On the other hand, although Comparative Example 1 has high strength, it does not have a commensurate 5 SCC resistance, and Comparative Example 2 also has poor strength, toughness, and S S CC resistance. In addition, the conventional example has low strength and 5SCC resistance.

〔発明の効果〕〔Effect of the invention〕

以」二の説明から明らかなように、本発明の油井管製造
方法は従来の成分改良および2回焼入れでは達成し得な
かった極めて高いレヘルで強度と耐5scc性を両立さ
せ、しかも強度の加工を併用する必要がないので製造設
備、製造能率、製造コストの点で著しく有利となり、そ
の結果、高グレードの油井管を低コストで工業的に製造
できるという産業上多大の効果を奏するものである。
As is clear from the following explanation, the method for manufacturing oil country tubular goods of the present invention achieves both strength and 5scc resistance at an extremely high level, which could not be achieved with conventional component improvement and double quenching, and also allows for strength processing. Since there is no need to use both, it is extremely advantageous in terms of manufacturing equipment, manufacturing efficiency, and manufacturing costs, and as a result, it has a great industrial effect in that high-grade oil country tubular goods can be manufactured industrially at low cost. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は油井管におIJる強度と要求されるS(、値と
の関係を示す図表、第2図は結晶粒度番号とSc値との
関係を示す図表、第3図は鋼中のA7!N量とSc、値
との関係を示す図表である。 (fOIX’!にcl )琲つS (,01X’!Sd )すjり8 (t01X’!5dVJ Oc。
Figure 1 is a chart showing the relationship between the IJ strength and the S value required for oil country tubular goods, Figure 2 is a chart showing the relationship between the grain size number and the Sc value, and Figure 3 is a chart showing the relationship between the IJ strength and the S value in steel. A7! It is a chart showing the relationship between the amount of N and the value of Sc.

Claims (1)

【特許請求の範囲】 1、重量%でC:0.15〜0.45%、Si:0.1
〜1%、Mn:0.3〜1.8%、sol.Al:0.
01%以下、N:0.002%以下、AlN:0.00
5%以下を含み、残部実質的にFeからなる低合金鋼管
に対し、880〜980℃から焼入れを行った後、60
0〜730℃で焼戻しを行うとともに、その温度域にお
いて塑性加工を全歪量が1〜20%となるように1回ま
たは複数回行い、しかる後に800〜950℃からの焼
入れと600〜730℃での焼戻しとを行うことを特徴
とする耐食性に優れた高強度油井管の製造方法。 2、低合金鋼管が重量%でCr:0.05〜2%、Mo
:0.02〜0.8%、Nb:0.005〜0.2%、
V:0.005〜0.2%、B:0.0001〜0.0
03%の1種または2種以上を含有してなる請求項1に
記載の耐食性に優れた高強度油井管の製造方法。
[Claims] 1. C: 0.15 to 0.45% by weight, Si: 0.1
~1%, Mn: 0.3-1.8%, sol. Al: 0.
01% or less, N: 0.002% or less, AlN: 0.00
After quenching at 880 to 980°C to a low alloy steel pipe containing 5% or less and the remainder substantially consisting of Fe,
Tempering is performed at 0 to 730°C, and plastic working is performed once or multiple times in that temperature range so that the total strain is 1 to 20%, followed by quenching from 800 to 950°C and 600 to 730°C. A method for producing high-strength oil country tubular goods with excellent corrosion resistance, the method comprising tempering at 2. Low alloy steel pipe contains Cr: 0.05-2%, Mo
:0.02~0.8%, Nb:0.005~0.2%,
V: 0.005-0.2%, B: 0.0001-0.0
2. The method for manufacturing a high-strength oil country tubular goods excellent in corrosion resistance according to claim 1, wherein the method comprises one or more of the following.
JP8884988A 1988-04-11 1988-04-11 Manufacture of high-strength oil well tube excellent in corrosion resistance Pending JPH01259125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8884988A JPH01259125A (en) 1988-04-11 1988-04-11 Manufacture of high-strength oil well tube excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8884988A JPH01259125A (en) 1988-04-11 1988-04-11 Manufacture of high-strength oil well tube excellent in corrosion resistance

Publications (1)

Publication Number Publication Date
JPH01259125A true JPH01259125A (en) 1989-10-16

Family

ID=13954429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8884988A Pending JPH01259125A (en) 1988-04-11 1988-04-11 Manufacture of high-strength oil well tube excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JPH01259125A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
US8328960B2 (en) 2007-11-19 2012-12-11 Tenaris Connections Limited High strength bainitic steel for OCTG applications
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9222156B2 (en) 2011-02-18 2015-12-29 Siderca S.A.I.C. High strength steel having good toughness
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
WO2016093161A1 (en) * 2014-12-12 2016-06-16 新日鐵住金株式会社 Low-alloy steel for oil well tubular, and method for manufacturing low-alloy steel oil well tubular
US9598746B2 (en) 2011-02-07 2017-03-21 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
CN107974612A (en) * 2017-10-26 2018-05-01 江阴兴澄特种钢铁有限公司 A kind of anti-SSCC spherical tanks high strength steel plate and its manufacture method
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
CN112662952A (en) * 2020-12-16 2021-04-16 黑龙江建龙钢铁有限公司 Low-cost CO2 corrosion-resistant oil pipe and production process thereof
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
US8328958B2 (en) 2007-07-06 2012-12-11 Tenaris Connections Limited Steels for sour service environments
US8328960B2 (en) 2007-11-19 2012-12-11 Tenaris Connections Limited High strength bainitic steel for OCTG applications
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing
US9598746B2 (en) 2011-02-07 2017-03-21 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9188252B2 (en) 2011-02-18 2015-11-17 Siderca S.A.I.C. Ultra high strength steel having good toughness
US9222156B2 (en) 2011-02-18 2015-12-29 Siderca S.A.I.C. High strength steel having good toughness
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378074B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378075B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
JPWO2016093161A1 (en) * 2014-12-12 2017-04-27 新日鐵住金株式会社 Low alloy steel for oil well pipe and method for producing low alloy steel oil well pipe
WO2016093161A1 (en) * 2014-12-12 2016-06-16 新日鐵住金株式会社 Low-alloy steel for oil well tubular, and method for manufacturing low-alloy steel oil well tubular
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
CN107974612A (en) * 2017-10-26 2018-05-01 江阴兴澄特种钢铁有限公司 A kind of anti-SSCC spherical tanks high strength steel plate and its manufacture method
CN112662952A (en) * 2020-12-16 2021-04-16 黑龙江建龙钢铁有限公司 Low-cost CO2 corrosion-resistant oil pipe and production process thereof

Similar Documents

Publication Publication Date Title
JPH01259125A (en) Manufacture of high-strength oil well tube excellent in corrosion resistance
JPH01283322A (en) Production of high-strength oil well pipe having excellent corrosion resistance
JPH01259124A (en) Manufacture of high-strength oil well tube excellent in corrosion resistance
JPS6354765B2 (en)
JPS63230851A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPH05287381A (en) Manufacture of high strength corrosion resistant steel pipe
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPH0741856A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
JP3550726B2 (en) Method for producing high strength steel with excellent low temperature toughness
US7678207B2 (en) Steel product for induction hardening, induction-hardened member using the same, and methods producing them
JPS634046A (en) High-tensile steel for oil well excellent in resistance to sulfide cracking
JPS648686B2 (en)
JPS5916949A (en) Soft-nitriding steel
JP2000178692A (en) 655Nmm-2 CLASS LOW-C HIGH-Cr ALLOY OIL WELL PIPE WITH HIGH STRESS CORROSION CRACKING RESISTANCE, AND ITS MANUFACTURE
JPS6156235A (en) Manufacture of high toughness nontemper steel
JP2000226614A (en) Production of high toughness martensitic stainless steel excellent in stress corrosion cracking resistance
JPH0159333B2 (en)
JPH07109544A (en) Low yield ratio thick steel plate good in toughness
JPH04371547A (en) Production of high strength and high toughness steel
JPH01319629A (en) Production of cr-mo steel sheet having excellent toughness
JPS5920423A (en) Production of 80kgf/mm2 class seamless steel pipe having excellent low temperature toughness
JPH07310118A (en) Production of case hardening steel suitable for cold-working
JPH01234521A (en) Production of high-toughness low-yielding ratio steel material having excellent sulfide stress corrosion cracking resistance
JP2001032047A (en) 862 N/mm2 CLASS LOW C HIGH Cr ALLOY OIL WELL PIPE HAVING HIGH CORROSION RESISTANCE AND ITS PRODUCTION
JPH04297548A (en) High strength and high toughness non-heat treated steel and its manufacture