US20170350410A1 - Centrifugal compressor impeller - Google Patents
Centrifugal compressor impeller Download PDFInfo
- Publication number
- US20170350410A1 US20170350410A1 US15/534,631 US201515534631A US2017350410A1 US 20170350410 A1 US20170350410 A1 US 20170350410A1 US 201515534631 A US201515534631 A US 201515534631A US 2017350410 A1 US2017350410 A1 US 2017350410A1
- Authority
- US
- United States
- Prior art keywords
- edge
- rotating shaft
- fluid
- radial direction
- impeller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 claims abstract description 51
- 230000002093 peripheral effect Effects 0.000 description 8
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/284—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/28—Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
- F04D29/30—Vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/20—Rotors
- F05D2240/30—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
- F05D2240/304—Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor related to the trailing edge of a rotor blade
Definitions
- the present invention relates to a shape of a trailing edge of a blade in an impeller used in a centrifugal compressor.
- a centrifugal compressor utilizes centrifugal force of an impeller rotating together with a rotating shaft to pump a fluid, taken in from the leading edge side of the impeller, outward in a rotating shaft radial direction from the trailing edge side of the impeller and discharge the fluid into a diffuser.
- the fluid taken into the centrifugal compressor is increased in pressure while passing through a flow passage of the rotating impeller and then the speed of the fluid is decreased by flowing through a diffuser.
- Patent Document 1 discloses such a conventional centrifugal compressor.
- Patent Document 1 Japanese Patent No. 3383023
- diffusers of centrifugal compressors include a vaned diffuser and a vaneless diffuser.
- the pressure loss can be suppressed by providing diffuser vanes in the diffuser.
- the centrifugal compressor disclosed in Patent Document 1 listed above includes a vaned diffuser, and the shape of a trailing edge of an impeller is specified in order to reduce noise and pressure pulsation generated when a fluid flowing into the diffuser comes into contact with diffuser vanes.
- the shape of the trailing edge of the impeller disclosed in Patent Document 1 is not for dealing with pressure loss occurring in a vaneless diffuser.
- the present invention solves the problem described above and an object thereof is to provide a centrifugal compressor impeller capable of improving machine operation efficiency by causing a fluid flowing into a vaneless diffuser to have even total pressure distribution.
- a centrifugal compressor impeller in a first aspect of the present invention for solving the aforementioned problem is a centrifugal compressor impeller which comprises a plurality of blades provided radially about a rotating shaft and which utilizes centrifugal force generated by rotating together with the rotating shaft to pump a fluid, taken in from a leading edge side of each of the blades, outward in a rotating shaft radial direction from a trailing edge side of the blade and then discharge the fluid into a vaneless diffuser, the impeller characterized in that
- an edge front end and an edge rear end of the trailing edge are disposed outside an edge center portion of the trailing edge in the rotating shaft radial direction.
- a centrifugal compressor impeller in a second aspect of the present invention for solving the aforementioned problem is characterized in that the edge front end and the edge rear end are disposed to be shifted from each other in the rotating shaft radial direction.
- a centrifugal compressor impeller in a third aspect of the present invention for solving the aforementioned problem is characterized in that thicknesses of the edge front end and the edge rear end are smaller than a thickness of the edge center portion.
- the edge front end and the edge rear end in the trailing edge of the blade are disposed outside the edge center portion in the trailing edge of the blade in the rotating shaft radial direction.
- the centrifugal force acting on the fluid passing the edge front end and the edge rear end can be thereby made greater than the centrifugal force acting on the fluid passing the edge center portion. Accordingly, the total pressure distribution of the fluid passing the trailing edge can be set such that the pressure gradually increases from the edge center portion toward the edge front end and the edge rear end.
- the fluid flowing through the diffuser can have an even (uniform) total pressure distribution.
- operation efficiency of the centrifugal compressor can be improved.
- FIG. 1 is a vertical cross-sectional view illustrating a schematic configuration of a centrifugal compressor to which an impeller in one embodiment of the present invention is applied.
- FIG. 2 is an enlarged view of a main portion of FIG. 1 and is a view illustrating an example of a trailing edge shape in a blade.
- FIGS. 3A to 3D are views illustrating other examples of the trailing edge shape in the blade.
- FIG. 4 is a graph illustrating a relationship between a trailing edge height of the blade and a trailing edge thickness of the blade.
- the centrifugal compressor 1 includes a casing 10 , a rotating shaft 20 , an impeller 30 , and the like.
- the casing 10 has a hollow shape and the rotating shaft 20 is rotatably supported in the hollow portion via a bearing.
- the impeller 30 is fitted on the rotating shaft 20 .
- the impeller 30 includes a hub 31 , a front shroud 32 , and multiple blades 33 .
- the hub 31 is formed in an annular shape whose outer diameter gradually increases from front to rear in a rotating shaft direction, and the rotating shaft 20 is fitted in a center hole of the hub 31 .
- the front shroud 32 is disposed outside the hub 31 in a radial direction, and is formed in an annular shape whose inner diameter gradually increases from front to rear in the rotating shaft direction.
- the blades 33 are provided radially about the rotating shaft 20 , between an outer peripheral surface of the hub 31 and an inner peripheral surface of the front shroud 32 , and are formed to gradually curve toward the outside in the rotating shaft radial direction while extending from front to rear in the rotating shaft direction.
- multiple spaces which are each surrounded by the outer peripheral surface of the hub 31 , the inner peripheral surface of the front shroud 32 , and two blades 33 adjacent to each other in a rotating shaft circumferential direction are formed in the impeller 30 radially about the rotating shaft 20 , and each serve as a flow passage 34 through which a fluid G passes.
- a front wall surface 34 a and a rear wall surface 34 b of the flow passage 34 are formed by the inner peripheral surface of the front shroud 32 and the outer peripheral surface of the hub 31 , and the flow passage 34 as a whole is formed to gradually curve toward the outside in the rotating shaft radial direction while extending from front to rear in the rotating shaft direction.
- the impeller 30 can thus utilize centrifugal force generated by rotating together with the rotating shaft 20 to take in the fluid G from the leading edge 33 a side of the blade 33 forming an entrance of the flow passage 34 , and then discharge the fluid G outward in the rotating shaft radial direction from the trailing edge 33 b side of the blade 33 forming an exit of the flow passage 34 .
- the fluid G taken into the impeller 30 is increased in pressure while passing through the flow passage 34 .
- an intake passage 11 and a diffuser 12 serving as a discharge passage are formed in the casing 10 .
- the intake passage 11 is disposed in front of the impeller 30 in the rotating shaft direction (upstream of the impeller 30 in a fluid flow direction), and is an annular passage which guides the fluid G taken in from the outside of the casing 10 toward the leading edge 33 a of the blade 33 in the impeller 30 in the rotating shaft direction.
- the diffuser 12 is disposed outside the impeller 30 in the rotating shaft radial direction (downstream of the impeller 30 in the fluid flow direction), and is an annular passage extending in the rotating shaft radial direction.
- a front wall surface 12 a and a rear wall surface 12 b which have an annular shape as a whole are formed in the diffuser 12 .
- An annular entrance 12 c of the diffuser 12 is formed by an inner end of the front wall surface 12 a in the radial direction (upstream end of the front wall surface 12 a in the fluid flow direction) and an inner end of the rear wall surface 12 b in the radial direction (upstream end of the rear wall surface 12 b in the fluid flow direction), and is opposed to the exit (trailing edge 33 b of the blade 33 ) of the flow passage 34 in the impeller 30 in the rotation shaft radial direction.
- the diffuser 12 thus takes in the fluid G compressed in the flow passage 34 of the impeller 30 , between the front wall surface 12 a and the rear wall surface 12 b and then discharges the taken-in fluid G outward in the rotating shaft radial direction while reducing the speed of the fluid G.
- the diffuser 12 is a so-called vaneless diffuser and do not have diffuser vanes for suppressing pressure loss inside the diffuser.
- the rotating shaft 20 rotates and the impeller 30 also rotates together with the rotating shaft 20 .
- the fluid G sucked into the intake passage 11 of the casing 10 by this rotation is compressed by being taken into the flow passage 34 of the rotating impeller 30 , and is then discharged from the inside of the flow passage 34 .
- the fluid G discharged from the impeller 30 is taken into the diffuser 12 such that the speed thereof is reduced and the flow thereof is regulated, and then discharged from the inside of the diffuser 12 .
- the trailing edge 33 b of the blade 33 forming the exit of the flow passage 34 is recessed inward in the rotating shaft radial direction in an arc shape.
- the trailing edge 33 b is formed to gradually curve inward in the rotating shaft radial direction from an edge front end 41 and an edge rear end 42 toward an edge center portion 43 .
- the edge front end 41 and the edge rear end 42 are disposed at the same position in the rotating shaft radial direction and are disposed outside the edge center portion 43 in the rotating shaft radial direction.
- edge front end 41 is a portion of the trailing edge 33 b located closest to the front shroud 32 and is joined to a downstream end of the inner peripheral surface of the front shroud 32 (downstream end of the front wall surface 34 a in the flow passage 34 ).
- edge rear end 42 is a portion of the trailing edge 33 b located closest to the hub 31 and is joined to a downstream end of the outer peripheral surface of the hub 31 (downstream end of the rear wall surface 34 b in the flow passage 34 ).
- edge center portion 43 is located in an intermediate portion between the edge front end 41 and the edge rear end 42 and is a portion where a main flow of the fluid G flowing through the flow passage 34 passes.
- the radius of a circle centered on a rotation center of the rotating shaft 20 and passing the edge front end 41 and the edge rear end 42 is thus greater than the radius of a circle centered on the rotation center of the rotating shaft 20 and passing the edge center portion 43 .
- Centrifugal force greater than that acting on the fluid G flowing through a center portion of the flow passage 34 and passing the edge center portion 43 thereby acts on the fluid G flowing along the front wall surface 34 a of the flow passage 34 and passing the edge front end 41 and the fluid G flowing along the rear wall surface 34 b of the flow passage 34 and passing the edge rear end 42 .
- a total pressure distribution P of the fluid G passing the trailing edge 33 b can be set such that the pressure gradually increases from the edge center portion 43 toward the edge front end 41 and the edge rear end 42 .
- the fluid G flowing through the diffuser 12 can have an even (uniform) total pressure distribution.
- operation efficiency of the centrifugal compressor 1 can be improved.
- the recess shape of the trailing edge 33 b is the arc shape in the aforementioned embodiment, the recess shape of the trailing edge 33 b only needs to be such that the edge front end 41 and the edge rear end 42 are disposed outside the edge center portion 43 in the rotating shaft radial direction.
- the recess shape of the trailing edge 33 b may be the recess shapes illustrated in FIGS. 3A to 3D .
- the trailing edge 33 b of the blade 33 is recessed inward in the rotating shaft radial direction in an arc shape, and the edge front end 41 and the edge rear end 42 are shifted from each other in the rotation shaft radial direction.
- the edge front end 41 and the edge rear end 42 are disposed outside the edge center portion 43 in the rotating shaft radial direction and, in addition, the edge front end 41 is disposed outside the edge rear end 42 in the rotating shaft radial direction.
- the configuration may be the opposite such that the edge rear end 42 is disposed outside the edge front end 41 in the radial direction.
- the trailing edge 33 b of the blade 33 is recessed inward in the rotating shaft radial direction in an arc shape, only the edge center portion 43 is recessed inward in the rotating shaft radial direction.
- the edge front end 41 and the edge rear end 42 are disposed at the same position in the rotating shaft radial direction and are disposed outside the edge center portion 43 in the rotating shaft radial direction.
- edge center portion 43 When only the edge center portion 43 is to be recessed inward in the rotating shaft radial direction as described above, the edge center portion 43 may be notched in a rectangular shape or a wedge shape as illustrated in FIGS. 3C and 3D .
- the total pressure of the fluid G passing the edge front end 41 and the edge rear end 42 is made higher than the total pressure of the fluid G passing the edge center portion 43 by forming the trailing edge 33 b of the blade 33 in the recess shape in the aforementioned embodiment, a further total pressure difference may be generated by additionally varying the thickness of the trailing edge 33 b among the edge front end 41 , the edge rear end 42 , and the edge center portion 43 .
- the thickness of the trailing edge 33 b is made to gradually decrease from the edge center portion 43 toward the edge front end 41 and the edge rear end 42 .
- the thinner the thickness is, the more the pressure loss is suppressed. Accordingly, the total pressure of the fluid G passing the edge front end 41 and the edge rear end 42 can be made higher than the total pressure of the fluid G passing the edge center portion 43 .
- the fluid G flowing through the diffuser 12 can have an even (uniform) total pressure distribution.
- the impeller of the centrifugal compressor in the present invention can improve the total pressure distribution of the fluid in the trailing edge. Accordingly, the impeller can be utilized to be highly beneficial in improving the operation efficiency of a machine.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-249532 | 2014-12-10 | ||
JP2014249532A JP6168705B2 (ja) | 2014-12-10 | 2014-12-10 | 遠心式圧縮機のインペラ |
PCT/JP2015/062327 WO2016092873A1 (ja) | 2014-12-10 | 2015-04-23 | 遠心式圧縮機のインペラ |
Publications (1)
Publication Number | Publication Date |
---|---|
US20170350410A1 true US20170350410A1 (en) | 2017-12-07 |
Family
ID=56107081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/534,631 Abandoned US20170350410A1 (en) | 2014-12-10 | 2015-04-23 | Centrifugal compressor impeller |
Country Status (3)
Country | Link |
---|---|
US (1) | US20170350410A1 (enrdf_load_stackoverflow) |
JP (1) | JP6168705B2 (enrdf_load_stackoverflow) |
WO (1) | WO2016092873A1 (enrdf_load_stackoverflow) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240240647A1 (en) * | 2021-06-10 | 2024-07-18 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | Impeller of centrifugal compressor and centrifugal compressor |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107239641A (zh) * | 2017-07-03 | 2017-10-10 | 沈阳鼓风机集团安装检修配件有限公司 | 一种大流量高扬程循环泵水力模型确定方法及装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5559196U (enrdf_load_stackoverflow) * | 1978-10-18 | 1980-04-22 | ||
JP3383023B2 (ja) * | 1993-09-17 | 2003-03-04 | 株式会社日立製作所 | 遠心形流体機械 |
JP3912331B2 (ja) * | 1993-10-18 | 2007-05-09 | 株式会社日立プラントテクノロジー | 遠心形流体機械 |
JP3482668B2 (ja) * | 1993-10-18 | 2003-12-22 | 株式会社日立製作所 | 遠心形流体機械 |
JP2002021574A (ja) * | 2000-06-30 | 2002-01-23 | Toyota Motor Corp | コンプレッサインペラ |
JP2002021785A (ja) * | 2000-07-10 | 2002-01-23 | Mitsubishi Heavy Ind Ltd | 遠心圧縮機 |
JP2009221984A (ja) * | 2008-03-17 | 2009-10-01 | Ihi Corp | 遠心圧縮機 |
ITFI20130261A1 (it) * | 2013-10-28 | 2015-04-29 | Nuovo Pignone Srl | "centrifugal compressor impeller with blades having an s-shaped trailing edge" |
-
2014
- 2014-12-10 JP JP2014249532A patent/JP6168705B2/ja not_active Expired - Fee Related
-
2015
- 2015-04-23 WO PCT/JP2015/062327 patent/WO2016092873A1/ja active Application Filing
- 2015-04-23 US US15/534,631 patent/US20170350410A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240240647A1 (en) * | 2021-06-10 | 2024-07-18 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | Impeller of centrifugal compressor and centrifugal compressor |
US12313079B2 (en) * | 2021-06-10 | 2025-05-27 | Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. | Impeller of centrifugal compressor and centrifugal compressor |
Also Published As
Publication number | Publication date |
---|---|
JP2016109092A (ja) | 2016-06-20 |
WO2016092873A1 (ja) | 2016-06-16 |
JP6168705B2 (ja) | 2017-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9874219B2 (en) | Impeller and fluid machine | |
JP5316365B2 (ja) | ターボ型流体機械 | |
JP7085306B2 (ja) | 遠心圧縮機 | |
US10400788B2 (en) | Intermediate intake-type diaphragm and centrifugal rotating machine | |
US10087950B2 (en) | Centrifugal rotation machine | |
US8939720B2 (en) | Volute shaped pump casing for a centrifugal pump | |
US20130309082A1 (en) | Centrifugal turbomachine | |
WO2018181343A1 (ja) | 遠心圧縮機 | |
US20170306971A1 (en) | Impeller, centrifugal fluid machine, and fluid device | |
US11493054B2 (en) | Impeller of rotating machine and rotating machine | |
JP2015135068A (ja) | 遠心式回転機械の流路形成部、ケーシング、および、遠心式回転機械 | |
JP2016031064A (ja) | 多段ポンプ | |
US10975883B2 (en) | Centrifugal rotary machine | |
US10309413B2 (en) | Impeller and rotating machine provided with same | |
US10670025B2 (en) | Centrifugal compressor | |
WO2014122819A1 (ja) | 遠心圧縮機 | |
JP2016050486A (ja) | 流体機械、及び流体機械の羽根車 | |
US20170350410A1 (en) | Centrifugal compressor impeller | |
WO2008027388B1 (en) | Vacuum pumps with improved pumping channel cross sections | |
US10859092B2 (en) | Impeller and rotating machine | |
JP2016109092A5 (enrdf_load_stackoverflow) | ||
JP2015183575A (ja) | 流路形成部、ケーシング、および、遠心式回転機械 | |
US20180274553A1 (en) | Stationary vane and centrifugal compressor provided with stationary vane | |
JP2014202102A (ja) | 遠心圧縮機 | |
JP2015108342A (ja) | 遠心圧縮機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MITSUBISHI HEAVY INDUSTRIES, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAITO, RYOSUKE;YOSHIDA, SATORU;REEL/FRAME:042677/0438 Effective date: 20170529 Owner name: MITSUBISHI HEAVY INDUSTRIES COMPRESSOR CORPORATION Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAITO, RYOSUKE;YOSHIDA, SATORU;REEL/FRAME:042677/0438 Effective date: 20170529 |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |