US20170167154A1 - Automated vehicle parking system - Google Patents

Automated vehicle parking system Download PDF

Info

Publication number
US20170167154A1
US20170167154A1 US15/304,877 US201415304877A US2017167154A1 US 20170167154 A1 US20170167154 A1 US 20170167154A1 US 201415304877 A US201415304877 A US 201415304877A US 2017167154 A1 US2017167154 A1 US 2017167154A1
Authority
US
United States
Prior art keywords
vehicle
vehicles
platform
transporting mechanism
parking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/304,877
Other languages
English (en)
Inventor
Jarmo Järvinen
Emil Järvinen
Timo Teimonen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LEANPARK Oy
Original Assignee
LEANPARK Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LEANPARK Oy filed Critical LEANPARK Oy
Assigned to LEANPARK OY reassignment LEANPARK OY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JARVINEN, EMIL, JARVINEN, JARMO, TEIMONEN, TIMO
Publication of US20170167154A1 publication Critical patent/US20170167154A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/42Devices or arrangements peculiar to garages, not covered elsewhere, e.g. securing devices, safety devices, monitoring and operating schemes; centering devices
    • E04H6/422Automatically operated car-parks
    • E04H6/424Positioning devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • E04H6/18Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions
    • E04H6/22Garages for many vehicles with mechanical means for shifting or lifting vehicles with means for transport in vertical direction only or independently in vertical and horizontal directions characterised by use of movable platforms for horizontal transport, i.e. cars being permanently parked on palettes

Definitions

  • the present disclosure generally relates to vehicle parking systems, and more specifically, to construction and structure of an automated vehicle parking system. Further, aspects of the disclosure are also directed to software products recorded on machine-readable data storage media, wherein such software products are executable upon computing hardware, to implement the methods of the disclosure.
  • Multi-level vehicle parking systems are quite common nowadays as they facilitate parking of a large number of vehicles in a limited space.
  • Such parking systems include a vehicle storage space and multiple pick up and drop locations, where a vehicle user can leave and/or pick up their vehicle.
  • the vehicle is moved between the pickup/drop location and the vehicle storage space using automatic lifts and movers.
  • a major problem associated with the multi-level vehicle parking systems is the waiting time associated with the pick up of a vehicle. It is likely that some users have to wait for their vehicle when there are many vehicles parked in the storage space and a limited number of pick up locations. When there is one user, the average waiting time for the pickup depends on an operating speed of the delivery mechanism and distance of the vehicle from the pickup location. When there are multiple users, each user is served in a sequence and waiting time of a given user depends on the number of users already requesting their vehicles prior to the given user.
  • a conventional technique to reduce the waiting time in the vehicle parking system is to increase the number of pick up locations and to speed up the delivery mechanism, and further to employ modeling of the average waiting time using mathematical models such as an Erlang distribution.
  • an Erlang C distribution may be used to estimate how long it takes for the vehicle to be delivered to a pick up location.
  • an Engset equation may be used to determine a probability of a user to wait for their vehicle.
  • the conventional techniques have not proved to be very efficient in significantly reducing the waiting time, especially when the number of pickup requests are large.
  • Another problem associated with the conventional multi-level vehicle parking systems is that their structure and construction is limited to the size, shape, and assembly of the building in which they are contained.
  • a vehicle parking system which eliminates or reduces the waiting time for the delivery of the vehicle to a user, has a structure which is not limited to assembly of a building, and results in a more robust delivery, irrespective of number of pickup requests.
  • the present disclosure provides an automatic vehicle parking system and a method for operating the same.
  • embodiments of the present disclosure provide an automated vehicle parking system that includes at least one parking facility structure including a plurality of vehicle storage cells, a vehicle entrance/exit arrangement, and a vehicle transporting mechanism.
  • the parking facility structure is constructed in a modular manner from a plurality of mutually coupled elongate metal members disposed in substantially vertical and horizontal orientations.
  • the vehicle storage cells are disposed in one or more columns and the vehicle transporting mechanism is spatially disposed adjacently to the one or more columns for delivering and retrieving vehicles in respect of the vehicle storage cells.
  • the vehicle transporting mechanism transports vehicles between the entrance/exit arrangement and the at least one parking facility.
  • the vehicle transporting mechanism is spatially disposed adjacently to the one or more columns for delivering and retrieving one or more vehicles in respect of the vehicle storage cells.
  • the vehicle transporting mechanism is operable to lift up and/or lower down and move laterally the one or more vehicles in top of one or more platforms which are movable relative to the vehicle transport mechanisms, by a way of moving a first structure up and/or down, by a way of moving a second structure in respect to the first structure laterally and by a way of moving a third structure laterally in respect to the first structure and in a perpendicular manner in respect to the second structure.
  • the vehicle transporting mechanism is operable to lift up and/or lower down the vehicles, and to move them laterally by way of supporting the vehicles on corresponding platforms which are moveable laterally relative to the vehicle transporting mechanism.
  • the vehicle transporting mechanism employs one or more sets of rails to guide platforms bearing the vehicles when moved laterally between the vehicle transporting mechanism and the vehicle storage cells.
  • the vehicle transporting mechanism is operable to move the vehicles in a x-y-z Cartesian coordinate system within a volume of the automated parking system.
  • the vehicle transporting mechanism includes a movable structure that includes a z-structure movable in the z-direction, a y-structure disposed on top of the z-structure and movable in a y-direction thereon, and a vehicle tray disposed on top of the y-structure and movable in an x-direction thereon.
  • the vehicle transporting mechanism is provided with elevator motors disposed in a roof portion of the automated parking system, and is operable to employ one or more winches for lifting up and/or lowering down the vehicles relative to the storage cells.
  • the motor/winch system is connected to the bottom of the z-structure and connected to the roof by way of the cables for moving the z-structure in the z-direction.
  • the one or more winches used for lifting up and/or lowering down the one or more vehicles relative to the plurality of storage cells are winches connected to outside of the first structure in a manner enabling the second structure to move laterally.
  • the automated vehicle parking system of the disclosed embodiments includes cables supporting the first structure.
  • the cables are positioned outside of the first and the second structure and between adjacent rails connected to vertical structures.
  • the vehicle transporting mechanism is operable to redistribute the vehicles between the storage cells within the at least one parking facility structure so that the vehicles are more rapidly accessible when they are required to be delivered to the entrance/exit arrangement for collection thereat.
  • the redistribution of the vehicles is executed for reducing a waiting time experienced by users when retrieving the vehicles from the system.
  • the redistribution of the vehicles is executed based upon user-entered information indicative of estimated times of collection of the vehicles.
  • the redistribution of the vehicles is further executed based upon a predictive model provided with identification information for identifying the vehicles.
  • the vehicle entrance/exit arrangement includes a plurality of exits/entrances through which vehicles are delivered and/or retrieved.
  • the exits/entrances are provided with one or more user interfaces for users to input data to a control system managing operation of the vehicle transporting mechanism.
  • embodiments of the present disclosure provide a method of operating the automated vehicle parking system.
  • Embodiments of the present disclosure provide a modular automated vehicle parking system that is made of mutually coupled elongate metal members disposed in horizontal and vertical orientations, and has a structure that is not limited to the shape and size of building in which it is contained.
  • the automated vehicle parking system of the disclosed embodiments has a vehicle transporting mechanism that includes structures capable of moving vehicles in x-y-z direction without mutual interference.
  • Embodiments of the present disclosure further substantially reduce the waiting time for the delivery of a vehicle and result in a more robust delivery. The vehicles are moved closer to an entrance/exit just before their pick up, based on information indicative of one or more estimated times of collection of the vehicles, and/or a predictive model provided with identification information for identifying the vehicles.
  • FIG. 1 is an illustration of an automated vehicle parking system that is suitable for practicing various implementations of the present disclosure
  • FIG. 2 is an illustration of a vehicle entrance/exit, in accordance with an aspect of the present disclosure
  • FIG. 3 a is an illustration of a side view of the automated vehicle parking system in accordance with an aspect of the present disclosure
  • FIG. 3 b is an illustration of a front view of the automated vehicle parking system in accordance with an aspect of the present disclosure
  • FIG. 3 c is an illustration of a top view of the automated vehicle parking system in accordance with an aspect of the present disclosure
  • FIG. 4 a is an illustration of a detailed top view of the automated vehicle parking system, in accordance with an aspect of the present disclosure
  • FIG. 4 b is an illustration of a detailed top view of a portion of the automated vehicle parking system, in accordance with an aspect of the present disclosure
  • FIG. 4 c is an illustration of a detailed top view of a motor system of the automated vehicle parking system, in accordance with an aspect of the present disclosure.
  • FIG. 5 is an illustration of steps of a method of operating the automated vehicle parking system, in accordance with aspects of the present disclosure.
  • the present disclosure provides an automated vehicle parking system.
  • the automated vehicle parking system includes at least one parking facility structure, a vehicle entrance/exit arrangement, and a vehicle transporting mechanism.
  • the parking facility structure includes a plurality of vehicle storage cells disposed in one or more columns, and the vehicle transporting mechanism is spatially disposed adjacently to the one or more columns for delivering and retrieving vehicles in respect of the vehicle storage cells.
  • the vehicle transporting mechanism is operable to lift up and/or lower down the vehicles, and to move them laterally by way of supporting the vehicles on corresponding platforms which are moveable laterally relative to the vehicle transporting mechanism.
  • the vehicle transporting mechanism is operable to move the vehicles in an x-y-z Cartesian coordinate system within a volume of the automated parking system.
  • the vehicle entrance/exit arrangement includes a plurality of exits/entrances through which vehicles are delivered and/or retrieved, wherein the plurality of exits/entrances are provided with one or more user interfaces for users to input data to a control system managing operation of the vehicle transporting mechanism.
  • the vehicle transporting mechanism is operable to redistribute the vehicles between the storage cells so that the vehicles are more rapidly accessible when they are required to be delivered to the entrance/exit arrangement for collection thereat.
  • the redistribution of the vehicles is executed based upon user-entered information indicative of one or more estimated times of collection of the vehicles and/or a predictive model provided with identification information for identifying the vehicles for reducing a waiting time experienced by one or more users when retrieving vehicles from the system.
  • FIG. 1 is an illustration of an automated vehicle parking system 100 that is suitable for practicing various implementations of the present disclosure.
  • the automated vehicle parking system 100 includes parking facility structures 102 a and 102 b , hereinafter collectively referred to as parking facility 102 .
  • Each parking facility 102 includes a plurality of parking floors and the plurality of parking floors include a plurality of vehicle storage cells 104 a , 104 b , 104 c and 104 d , hereinafter collectively referred to as vehicle storage cells 104 for parking vehicles 106 a , 106 b , 106 c and 106 d respectively, hereinafter collectively referred to as vehicles 106 .
  • Examples of vehicles 106 include, but are not limited to, automobiles, vehicles, vans, and buses.
  • a vehicle transporting mechanism 108 transports the vehicles 106 between the at least one vehicle entrance/exit (not shown in figure) and the parking facility 102 .
  • Examples of the vehicle transporting mechanism 108 include, but are not limited to, automated lifts and movers.
  • the vehicle transporting mechanism 108 also moves the vehicles 106 among the vehicle storage cells 104 .
  • FIG. 2 is an illustration of a vehicle entrance/exit 200 of the automated vehicle parking system 100 , and is explained in conjunction with FIG. 1 .
  • the vehicle entrance/exit 200 is a room, hereinafter referred to as room 200 , where a vehicle user 206 leaves and/or picks up their vehicle 106 .
  • the vehicle entrance/exit 200 has an automatic door 202 which can be opened for example after identifying the vehicle 106 based on its license plate.
  • the vehicle user 206 drives the vehicle 106 in the room 200 and leaves the vehicle 106 therein.
  • the user 206 may use a control panel 204 to enter a personal code and other instructions such as an estimated time of picking up the vehicle 106 .
  • the door 202 is closed, when the user 206 has entered the information through the control panel 204 .
  • the vehicle transporting mechanism 108 transports the vehicle 106 to an available vehicle storage cell 104 .
  • the particular vehicle storage cell 104 to which the vehicle 106 will be transported may be predefined for the user 206 .
  • the vehicle storage cell 104 to which the vehicle 106 will be transported is dynamically decided by a control logic of the automated vehicle parking system 100 .
  • control panel 204 may be coupled to the control logic of the automated vehicle parking system 100 and may include an interactive graphical user interface (GUI) and an input module for receiving a plurality of instructions from the vehicle user 206 .
  • GUI graphical user interface
  • the control panel 204 may receive the identification information of the vehicle 106 , the estimated pick up time of the vehicle 106 and a request from the user 206 for picking up the vehicle 106 .
  • the vehicle transporting mechanism 108 transports the vehicle 106 from the vehicle storage cell 104 to the room 200 when a request for pick up of the vehicle 106 is received.
  • the door 202 is opened and the user 206 may drive the vehicle 106 out of the room 200 .
  • the vehicle transporting mechanism 108 is operable to redistribute the one or more vehicles 106 between the storage cells 104 within the parking facility 102 so that the one or more vehicles 106 are more rapidly accessible when they are required to be delivered to the entrance/exit 200 for collection thereat.
  • the redistribution of the vehicles 106 is executed based upon user-entered information indicative of one or more estimated times of collection of the one or more vehicles 106 . Further, the redistribution of the vehicles 106 is executed based upon a predictive model provided with identification information for identifying the vehicles 106 .
  • the redistribution of the vehicles 106 is executed for reducing a waiting time experienced by one or more users when retrieving one or more vehicles 106 from the system 100 .
  • FIG. 3 a is an illustration of a side view of an automated vehicle parking system 300 , which is an example of the automated vehicle parking system 100 .
  • the automated vehicle parking system 300 includes parking facility structures 302 a and 302 b , hereinafter collectively referred to as parking facility 302 .
  • the parking facility 302 includes a plurality of vehicle storage cells such as cells 304 a , 304 b , 304 c , 304 d , 304 e and 304 f , hereinafter collectively referred to as vehicle storage cells 304 for parking the vehicles 106 .
  • the vehicle storage cell 304 f illustrates a side view of a vehicle 106 parked therein.
  • the parking facility 302 is formed by interconnecting a plurality of horizontal metallic rails such as rails 306 a and 306 b , (hereinafter collectively referred to as rails 306 ), a plurality of horizontal metallic structures such as structures 308 a and 308 b (hereinafter collectively referred to as horizontal structures 308 ), and a plurality of vertical metallic structures such as structures 310 a and 310 b (hereinafter collectively referred to as vertical structures 310 ).
  • the rails 306 , horizontal structures 308 and vertical structures 310 are elongate metal members disposed in substantially vertical and horizontal orientations and mutually coupled in a manner to form the vehicle storage cells 304 .
  • the parking facility 302 may be constructed in a modular manner from the structures 306 , 308 and 310 , and may be installed/build on a ground or top of an existing parking facility 302 or in a basement.
  • the parking facility 302 include fire safety features as it is built in a modular manner from the structures 306 , 308 and 310 with plenty of air access. The plenty of air access inside the parking facility 302 reduces the possibility of the parking facility 302 bursting into flame on account of a domino effect of one vehicle 106 in a burning state potentially causing another vehicle 106 adjacent thereto bursting into flame.
  • a vehicle transporting mechanism 312 is spatially disposed adjacently to the parking facility 302 for delivering and retrieving the vehicles 106 in respect of the vehicle storage cells 304 .
  • the vehicle transporting mechanism 312 is operable to move the vehicles 106 in an x-y-z Cartesian coordinate system within the parking facility 302 .
  • the x-direction in the parking facility 302 refers to a horizontal direction from front to rear
  • the y-direction refers to a horizontal direction from left to right
  • the z-direction refers to a vertical direction from top to bottom of the parking facility 302 .
  • the vehicle transporting mechanism 312 includes a z-structure or platform 314 a that is movable in the z-direction towards/away from a roof 316 of the parking facility 302 .
  • a motor/winch system 320 is connected to bottom of the z-structure 314 a and is further connected to connection points 322 a and 322 b of the roof 316 by way of the cables 326 , for moving the z-structure 314 a in the z-direction parallel to the vertical structures 310 .
  • the z-structure 314 a includes a y-structure or platform 314 b positioned on top of the z-structure 314 a and an x-structure or platform 314 c positioned on top of the y-structure 314 b .
  • the y-structure 314 b and the x-structure 314 c are operable to move laterally relative to the z-structure 314 a .
  • the y-structure 314 b has a set of wheels (not shown) and is movable in the y-direction on top of the z-structure 314 a by one or more motors/winches (not shown).
  • the x-structure 314 c has a set of wheels (not shown) and is movable in the x-direction along the rails 306 by one or more motors/winches (not shown).
  • Examples of the z-structure 314 a , y-structure 314 b and x-structure 314 c include platforms, frames, trays, and the like.
  • the x-structure 314 c may also be referred to as vehicle tray 314 c as it is used to carry the vehicles 106 and is movable along the rails 306 to position the vehicle 106 for picking/dropping in the corresponding vehicle storage cell 304 f.
  • the positioning of the motor/winch system 320 and the cables 326 is critical to the functionality of the vehicle transporting mechanism 312 .
  • the z-structure 314 a is positioned in respect to the (left) end of the rails 306 in a way that the motor/winch system 320 and the cables 326 can fit between the z-structure 314 a and the vertical structures 310 .
  • the cables 326 are positioned outside of the z-structure 314 a to efficiently lift and lower the z-structure 314 a in the z-direction.
  • the cables 326 are positioned outside of the y-structure 314 b so as to not to cause an obstruction to movement of the y-structure 314 b in the y-direction on top of the z-structure 314 a . Further, the cables 326 and the motor/winch system 320 are positioned in a manner that the rails 306 are close to the y-structure 314 b and the x-structure 314 c may be transferred to the rails 306 smoothly.
  • FIG. 3 b is a front view of the automated vehicle parking system 300 shown in FIG. 3 a with like reference numerals identifying like elements.
  • a vehicle storage cell 304 g illustrates a front view of a vehicle 106 parked therein.
  • the z-structure 314 a is disposed parallel to the roof 316 and extends in the y-direction between left and right ends of the parking facility 302 .
  • the motor/winch system 320 includes rotating wheels 328 a , 328 b , 328 c and 328 d , hereinafter collectively referred to as rotating wheels 328 for aligning corresponding cables 326 to the roof 316 .
  • Each rotating wheel 328 is positioned between the rails 306 of two adjacent vehicle storage cells 304 , for example, the rotating wheel 328 b is located between the rails 306 a and 306 b.
  • the z-structure 314 a when the z-structure 314 a has to pick up a vehicle 106 from the vehicle storage cell 304 g , the z-structure 314 a may move downwards to align the x-structure 314 c with corresponding rails 306 . Then, the y-structure 314 b may move on the z-structure 314 a towards the vehicle storage cell 304 g . Finally, the x-structure 314 c may detach from the y-structure 314 b and moves along the rails 306 towards the vehicle storage cell 304 g to pick up the vehicle 106 therefrom.
  • FIG. 3 c is a top view of the automated vehicle parking system 300 shown in FIGS. 3 a and 3 b with like reference numerals identifying like elements. The top view is illustrated by excluding the roof 316 for clarity purposes. One vehicle 106 a is shown to be waiting for service and a top view of another vehicle 106 b parked in the vehicle storage cell 304 g is shown.
  • the z-structure 314 a extend between the left and right ends of the parking facility 302 to allow the y-structure 314 b to move on top of the z-structure 314 a in the y-direction.
  • the x-structure 314 c is shown to be positioned on top of the y-structure 314 b and is detachable from the y-structure 314 b to be movable along the rails 306 for picking/dropping the vehicles 106 in corresponding vehicle storage cells 304 .
  • the z-structure 314 a is positioned in respect to the (left) end of the rails 306 in a way that the cables 326 can fit between the z-structure 314 a and the vertical structures 310 .
  • the space between the z-structure 314 a and the vertical structures 310 is shown to be sufficient to accommodate the cables 326 /motor system 320 therein.
  • FIGS. 3 a -3 c are merely examples, which should not unduly limit the scope of the claims herein.
  • One of ordinary skill in the art would recognize many variations, alternatives, and modifications of embodiments herein.
  • FIG. 4 a is an illustration of a detailed top view of the automated vehicle parking system 400 , which is an example of the automated vehicle parking system 300 and has been explained in conjunction with FIGS. 3 a -3 c .
  • the automated vehicle parking system 400 includes entrance/exits 402 a and 402 b through which the vehicles 106 are delivered and/or retrieved by the users.
  • Motor systems 404 a and 404 b namely similar to the motor systems 320 are shown to be attached to the z-structure 314 a for enabling the z-structure 314 a to move in the z-direction.
  • a motor system 404 c is shown to be attached to a set of rails 406 disposed on top of the z-structure 314 a , for moving the y-structure 314 b along the set of rails 406 in the y-direction. Further, a motor system 404 d is shown to be attached to the rails 306 for enabling the x-structure 314 c to move in the x-direction along the rails 306 .
  • FIG. 4 b is a detailed top view of a portion 408 of FIG. 4 a with like reference numerals identifying like elements.
  • a motor system 320 including a cable 326 and a wheel 328 is disposed between adjacent rails 306 a and 306 b .
  • the wheel 328 bends the cable 326 coming from the roof 316 and is positioned with an angle with respect to the z-structure 314 a .
  • the y-structure 314 b is disposed in close proximity to the rails 306 so as to allow the x-structure 314 c to shift smoothly to the rails 306 .
  • the cable 326 and the wheel 328 are positioned between the rails 306 in a manner so as not to prevent movement of the y-structure 314 b in the y-direction.
  • the vertical structure 310 a is positioned in respect to the rails 306 in a way that the rails 306 extend away from the vertical structure 310 and there is space for the cables 326 .
  • the illustrated arrangement of the cables 326 and the wheels 328 facilitates the relative motion of the z-structure 314 a , y-structure 314 b and the x-structure 314 c without mutual interference.
  • FIG. 4 c is an illustration of a detailed view of the motor system 404 a of FIGS. 4 a and 4 b with like reference numerals identifying like elements.
  • the motor system 404 a includes the cable 326 and the wheel 328 .
  • the wheel 328 facilitates changing direction of the cable 326 from a vertical to a horizontal direction. As illustrated, the wheel 328 is at angle of 2-5 degrees with respect to the rail 306 a in order to enable smooth collection of the cable 326 to an axis 410 of the motor system 404 a.
  • FIGS. 4 a -4 c are merely examples, which should not unduly limit the scope of the claims herein.
  • One of ordinary skill in the art would recognize many variations, alternatives, and modifications of embodiments herein.
  • FIG. 5 is an illustration of steps of a method of operating the automated vehicle parking system 300 , in accordance with the present disclosure, and has been explained in conjunction with FIGS. 1 and 3 a - 3 c .
  • the method is depicted as a collection of steps in a logical flow diagram, which represents a sequence of steps that can be implemented in hardware, software, or a combination thereof.
  • one or more vehicle storage cells 304 are disposed in one or more columns of the parking facility 302 .
  • the parking facility 302 is constructed in a modular manner from a plurality of mutually coupled elongate metal members 306 , 308 , and 310 disposed in substantially vertical and horizontal orientations.
  • the vehicle transporting mechanism 312 is spatially disposed adjacently to the one or more columns for delivering and retrieving one or more vehicles 106 in respect of the vehicle storage cells 304 .
  • the vehicle transporting mechanism 312 is operable to lift up and/or lower down the vehicles 106 , and to move them laterally by way of supporting the vehicles 106 on corresponding one or more platforms 314 a , 314 b and 314 c which are moveable laterally relative to the vehicle transporting mechanism 312 .
  • the vehicle transporting mechanism 312 is further provided with one or more elevator motors 404 disposed in the roof 316 of the parking facility 302 for moving vehicles 106 in an x-y-z Cartesian coordinate system within a volume of the automated parking system 300 .
  • steps 502 to 504 are only illustrative and other alternatives can also be provided where one or more steps are added, one or more steps are removed, or one or more steps are provided in a different sequence without departing from the scope of the claims herein.
  • invention is related to the construction which enables to implement X-Y and Z direction movement using elevator motors which are installed in the roof of the construction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Warehouses Or Storage Devices (AREA)
US15/304,877 2014-04-21 2014-04-21 Automated vehicle parking system Abandoned US20170167154A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2014/060876 WO2015162449A1 (fr) 2014-04-21 2014-04-21 Système de stationnement de véhicule automatisé

Publications (1)

Publication Number Publication Date
US20170167154A1 true US20170167154A1 (en) 2017-06-15

Family

ID=50897667

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/304,877 Abandoned US20170167154A1 (en) 2014-04-21 2014-04-21 Automated vehicle parking system

Country Status (4)

Country Link
US (1) US20170167154A1 (fr)
EP (1) EP3134594A1 (fr)
CN (1) CN106414870A (fr)
WO (1) WO2015162449A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022187605A1 (fr) * 2021-03-05 2022-09-09 Cheetah Robotic Parking Systems, Llc Robots de transport, systèmes et procédés pour des systèmes automatisés de stationnement, d'inventaire, de stockage et similaires
WO2023026007A1 (fr) 2021-08-27 2023-03-02 Stanley Robotics Système de parking automatisé de voitures automobiles

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE1650844A1 (sv) * 2016-06-15 2017-12-16 Parkeringshus för fordon och förfarande vid parkeringshuset
CN107605213B (zh) * 2017-10-30 2023-08-22 广东科德智能装备有限公司 一种立体停车库回旋台
CN110761606B (zh) * 2019-11-01 2021-06-15 何世新 高构架遥控智能存车库
CN111550097A (zh) * 2020-04-28 2020-08-18 芜湖彰鸿工程技术有限公司 多车位智能机器人停车装备及其停车方法
CN113431403A (zh) * 2020-06-04 2021-09-24 北京德威智泊科技有限公司 一种车库

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069592A (en) * 1990-03-13 1991-12-03 Lev Galperin Automated multistorey parking building
US5330305A (en) * 1990-12-11 1994-07-19 Fujihensokuki Co., Ltd. Driven mechanism for a three dimensional vehicle parking system
US20140294543A1 (en) * 2013-03-26 2014-10-02 Leanpark Oy Automated vehicle parking system
US9701475B2 (en) * 2009-03-11 2017-07-11 Parking Kit Ltd. Modular storage system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070031218A1 (en) * 1999-07-30 2007-02-08 Gerhard Haag A system and method for automated goods storage and retrieval
JP4942299B2 (ja) * 2005-01-04 2012-05-30 Ihi運搬機械株式会社 駐車装置と昇降装置
US8290613B2 (en) * 2007-05-18 2012-10-16 Unitronics (1989) (R″G) Ltd. System and method for controlling and managing an automated vehicle parking garage
US8613582B2 (en) * 2008-10-06 2013-12-24 Unitronics Parking Solutions Ltd Shuttle cars for use in automated parking

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069592A (en) * 1990-03-13 1991-12-03 Lev Galperin Automated multistorey parking building
US5330305A (en) * 1990-12-11 1994-07-19 Fujihensokuki Co., Ltd. Driven mechanism for a three dimensional vehicle parking system
US9701475B2 (en) * 2009-03-11 2017-07-11 Parking Kit Ltd. Modular storage system
US20140294543A1 (en) * 2013-03-26 2014-10-02 Leanpark Oy Automated vehicle parking system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022187605A1 (fr) * 2021-03-05 2022-09-09 Cheetah Robotic Parking Systems, Llc Robots de transport, systèmes et procédés pour des systèmes automatisés de stationnement, d'inventaire, de stockage et similaires
WO2023026007A1 (fr) 2021-08-27 2023-03-02 Stanley Robotics Système de parking automatisé de voitures automobiles
FR3126436A1 (fr) * 2021-08-27 2023-03-03 Stanley Robotics Système de parking automatisé de voitures automobiles

Also Published As

Publication number Publication date
WO2015162449A1 (fr) 2015-10-29
EP3134594A1 (fr) 2017-03-01
CN106414870A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
US20170167154A1 (en) Automated vehicle parking system
US9140028B2 (en) Automated parking system
WO2006086348A2 (fr) Parc de stationnement automatise
WO2010150834A1 (fr) Installation de stationnement mécanique tridimensionnelle pour bicyclettes
US10718128B2 (en) Vehicle inspection system, method and smart garage
US10094131B1 (en) Vehicle vending machine
US20100284771A1 (en) Roof-top parking system and method
TW201036887A (en) Automated warehouse
US9802760B2 (en) Automated warehouse and method for controlling automated warehouse
JP2016535185A (ja) 駐車場および駐車場の操作管理方法
CN207420170U (zh) 地下立体停车库
KR102111163B1 (ko) 개별 격납부를 갖는 건축구조물 및 이의 주차 제어방법
SE1000287A1 (sv) Tredimensionellt kompakt godsförvaringsarrangemang
MXPA06013288A (es) Sistema de almacenamiento de vehiculos.
GB2513346A (en) Automated vehicle parking system
RU2375532C1 (ru) Способ и устройство парковки автомобилей
CN216949718U (zh) 一种车库
JP2007262845A (ja) 機械式駐車設備および当該設備における出庫制御方法
JP2017089123A (ja) 機械式駐車駐輪装置
JP4329099B2 (ja) 駐車装置
JP6133062B2 (ja) 多段式駐車装置
JPH11200653A (ja) 複合型エレベータパーキング
BRPI0900216A2 (pt) processo de armazenagem robotizada de veìculos
RU2634155C1 (ru) Способ парковки автомобиля в многоярусном автоматизированном паркинге и система парковки для осуществления этого способа (варианты)
JP2564819Y2 (ja) エレベータ方式立体駐車装置

Legal Events

Date Code Title Description
AS Assignment

Owner name: LEANPARK OY, FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JARVINEN, JARMO;JARVINEN, EMIL;TEIMONEN, TIMO;REEL/FRAME:040289/0777

Effective date: 20161005

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION