US20160369200A1 - Lubricating oil composition for shock absorber - Google Patents

Lubricating oil composition for shock absorber Download PDF

Info

Publication number
US20160369200A1
US20160369200A1 US14/910,845 US201414910845A US2016369200A1 US 20160369200 A1 US20160369200 A1 US 20160369200A1 US 201414910845 A US201414910845 A US 201414910845A US 2016369200 A1 US2016369200 A1 US 2016369200A1
Authority
US
United States
Prior art keywords
group
carbon atoms
shock absorber
lubricating oil
oil composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/910,845
Other languages
English (en)
Inventor
Shuichi Sakanoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Assigned to IDEMITSU KOSAN CO., LTD. reassignment IDEMITSU KOSAN CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAKANOUE, SHUICHI
Publication of US20160369200A1 publication Critical patent/US20160369200A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/10Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic phosphorus-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/1006Petroleum or coal fractions, e.g. tars, solvents, bitumen used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/10Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring
    • C10M2219/104Heterocyclic compounds containing sulfur, selenium or tellurium compounds in the ring containing sulfur and carbon with nitrogen or oxygen in the ring
    • C10M2219/106Thiadiazoles
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/041Triaryl phosphates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/043Ammonium or amine salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/049Phosphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • C10M2223/065Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/36Seal compatibility, e.g. with rubber
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/08Hydraulic fluids, e.g. brake-fluids
    • C10N2230/06
    • C10N2230/10
    • C10N2230/36
    • C10N2240/08

Definitions

  • the present invention relates to a lubricating oil composition for a shock absorber, in particular, to a lubricating oil composition for a shock absorber that is for use for a shock absorber for cars.
  • a suspension integrated with a shock absorber for reducing the vibration of the body caused by road surface roughness, the shaking thereof which occurs in quick acceleration or sudden braking, and the like.
  • the structure of the shock absorber is based on a cylindrical structure that utilizes the resistance of oil to flow.
  • used is the structure having small holes bored in a hydraulic piston.
  • a bush is provided to be a bearing and sealability is secured by an oil seal.
  • the bush is formed of bronze, and the oil seal is formed of rubber.
  • a shock absorber may receive a great lateral force, and in the case, friction is generated in a bush.
  • the generation of friction may be a factor to worsen the riding comfort performance, and therefore it is desired to reduce friction to the bush.
  • the tightening force of the oil seal is increased to improve the dust resistance, it is also desired to reduce the friction coefficient to the oil seal in order to better the riding comfort performance.
  • a lubricating oil composition for a shock absorber in which a phosphorus acid ester as an extreme-pressure agent is blended and a secondary amine is further blended, for example, as shown in PTL 1.
  • this lubricating oil composition could not still sufficiently reduce the friction to bronze-made bushes and rubber-made oil seals.
  • the present invention has been made in consideration of the above-mentioned problems, and its object is to provide a lubricating oil composition for a shock absorber capable of reducing the friction coefficient to bronze-made bushes and rubber-made oil seals without generating precipitates for a long period of time, even with blending an extreme-pressure agent therein.
  • the present inventors have assiduously studied and, as a result, have found that, with blending a specific zinc dithiophosphate in a lubricating oil composition for a shock absorber in addition to a specific tertiary amine therein, the oil composition can reduce the friction coefficient to rubber and bronze.
  • the present inventors have ascertained that the precipitates caused by an extreme-pressure agent is generated through the reaction with a zinc dithiophosphate, and have found that, when a phosphorus acid ester amine salt which does not react with a zinc dithiophosphate for a long period of time is blended as an extreme-pressure agent, the friction coefficient to rubber and bronze can be reduced without generation of precipitates, and have completed the present invention as described below.
  • a lubricating oil composition for a shock absorber containing (A) a base oil composed of a mineral oil and/or a synthetic oil, (B) a tertiary amine represented by the following general formula (I), (C) a zinc dithiophosphate represented by the following general formula (II), and (D) a phosphorus acid ester amine salt.
  • R 1 and R 2 each independently represent an aliphatic hydrocarbon group having from 1 to 5 carbon atoms
  • R 3 represents an aliphatic hydrocarbon group having from 12 to 24 carbon atoms in the general formula (I).
  • R 4 to R 7 each independently represent one selected from a linear, branched or cyclic alkyl group having from 1 to 24 carbon atoms and a linear, branched or cyclic alkenyl group having from 1 to 24 carbon atoms in the general formula (II).
  • R 1 and R 2 each are independently selected from a linear, branched or cyclic alkyl group having from 1 to 5 carbon atoms and a linear, branched or cyclic alkenyl group having from 1 to 5 carbon atoms
  • R 3 is selected from a linear, branched or cyclic alkyl group having from 12 to 24 carbon atoms and a linear, branched or cyclic alkenyl group having from 12 to 24 carbon atoms in the general formula (I).
  • R 4 to R 7 in the general formula (II) each are independently one selected from a linear, branched or cyclic alkyl group having from 10 to 20 carbon atoms and a linear, branched or cyclic alkenyl group having from 10 to 20 carbon atoms.
  • R 11 is selected from a hydrogen atom, a linear, branched or cyclic alkyl group having from 8 to 24 carbon atoms and a linear, branched or cyclic alkenyl group having from 8 to 24 carbon atoms
  • R 12 is selected from a linear, branched or cyclic alkyl group having from 8 to 24 carbon atoms and a linear, branched or cyclic alkenyl group having from 8 to 24 carbon atoms in the general formula (III).
  • a lubricating oil composition for a shock absorber capable of reducing the friction coefficient to bronze-made bushes and rubber-made oil seals without generation of precipitates for a long period of time, even with blending an extreme-pressure agent therein.
  • the lubricating oil composition for a shock absorber of the present invention contains (A) a base oil, (B) a tertiary amine, (C) a zinc dithiophosphate and (D) a phosphorus acid ester amine salt.
  • base oil in the lubricating oil composition for a shock absorber of the present invention usable are mineral oil and/or synthetic oil.
  • mineral oil examples include paraffin-based mineral oil, intermediate-based mineral oil, naphthene-based mineral oil and the like, which are obtained by usual refining processes such as solvent refining, hydrorefining or the like, those prepared by isomerizing wax produced through Fischer-Tropsch process or the like (gas-to-liquid wax) or mineral oil-based wax, and the like.
  • Examples of the synthetic oil include hydrocarbon synthetic oil, ether synthetic oil, etc.
  • hydrocarbon synthetic oil there are mentioned ⁇ -olefin oligomers such as polybutene, polyisobutylene, 1-octene oligomer, 1-decene oligomer, ethylene-propylene copolymer, etc. and hydrides thereof, alkylbenzene, alkylnaphthalene, etc.
  • ether synthetic oil include polyoxyalkylene glycol, polyphenyl ether, etc.
  • the base oil one alone of the above-mentioned mineral oil and/or the above-mentioned synthetic oil may be used, or two or more of them may be used. Further, a combination of at least one mineral oil and at least one synthetic oil may be used.
  • the base oil preferred is a mineral oil among the above, from the viewpoint of the solubility of additives therein.
  • the kinematic viscosity of the base oil is not specifically limited.
  • the lubricating oil composition for a shock absorber of the present invention is used as a shock absorber oil for cars for example, the kinematic viscosity at 40° C. thereof is preferably from 2 to 20 mm 2 /s, more preferably from 5 to 14 mm 2 /s.
  • the above numerical values mean the kinematic viscosity of the base oil of the mixture thereof.
  • the content ratio of the base oil (A) in the total amount of the lubricating oil composition for a shock absorber is preferably from 80 to 99% by mass, more preferably from 90 to 98% by mass.
  • the tertiary amine for use in the lubricating oil composition for a shock absorber of the present invention is represented by the following general formula (I).
  • R 1 and R 2 each independently represent an aliphatic hydrocarbon group having from 1 to 5 carbon atoms
  • R 3 represents an aliphatic hydrocarbon group having from 12 to 24 carbon atoms.
  • R 1 and R 2 each independently represent a linear, branched or cyclic alkyl group having from 1 to 5 carbon atoms or a linear, branched or cyclic alkenyl group having from 1 to 5 carbon atoms.
  • R 1 and R 2 may be different from each other or may be the same, but preferably, the two are the same.
  • R 3 is preferably a linear, branched or cyclic alkyl group having from 12 to 24 carbon atoms or a linear, branched or cyclic alkenyl group having from 12 to 24 carbon atoms.
  • the carbon number of R 1 and R 2 when the carbon number of R 1 and R 2 were larger than 5, in particular, the friction coefficient to bronze could not be sufficiently lowered.
  • the carbon number of R 1 and R 2 is preferably smaller, and each carbon number is preferably 1 or 2, and each carbon number is most preferably 1.
  • R 1 and R 2 each are an alkyl group.
  • examples of R 1 and R 2 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a vinyl group, a propenyl group, a butenyl group and a pentenyl group, and these may be linear, branched or cyclic. Among these, preferred are a methyl group and an ethyl group, and most preferred is a methyl group.
  • the carbon number of R 3 in the tertiary amine (B) falls outside the above-mentioned range, there might occur some disadvantages that for example the solubility in base oil worsens, or the friction coefficient to bronze could not sufficiently lower. From these viewpoints, the carbon number of R 3 is preferably from 16 to 20, more preferably 18.
  • the main component thereof is preferably a tertiary amine where R 3 has from 16 to 20 carbon atoms, and is more preferably a tertiary amine where the carbon number of the group is 18.
  • the wording “the main component” means that the component is 50% by mass or more of the total amount of the tertiary amine (B), and the content ratio is preferably 80% by mass or more, more preferably 90% by mass or more.
  • R 3 is preferably an alkyl group. Moreover, R 3 is preferably linear.
  • alkyl group of R 3 examples include a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, an eicosyl group, a heneicosyl group, a docosyl group, a tricosyl group, and a tetracosyl group, and these may be linear, branched or cyclic.
  • alkenyl group examples include a dodecenyl group, a tridecenyl group, a tetradecenyl group, a pentadecenyl group, a hexadecenyl group, a heptadecenyl group, an octadecenyl group, a nonadecenyl group, an eicosenyl group, a heneicosenyl group, a docosenyl group, a tricosenyl group and a tetracosenyl group, and these may be linear, branched or cyclic, and in these, the double bond may be at any position.
  • a hexadecyl group an octadecyl group such as a stearyl group, an octadecenyl group such as an oleyl group, an eicosyl group, etc., and most preferred is a stearyl group.
  • Preferred specific compounds of the tertiary amine (B) include dimethylmonostearylamine, diethylstearylamine, etc.
  • the tertiary amine (B) is contained in an amount of from 0.01 to 3% by mass relative to the total amount of the lubricating oil composition for a shock absorber. Falling within the range, the tertiary amine can reduce the friction coefficient for bronze with the suitable amount. From this viewpoint, more preferably, the tertiary amine is contained in an amount of from 0.1 to 1.5% by mass relative to the total amount of the lubricating oil composition for a shock absorber.
  • the zinc dithiophosphate for use in the present invention is represented by the following general formula (II).
  • R 4 to R 7 each independently represent a linear, branched or cyclic alkyl group having from 1 to 24 carbon atoms or a linear, branched or cyclic alkenyl group having from 1 to 24 carbon atoms. These may be different from each other or may be the same, but from the viewpoint of easiness in production, these are preferably the same.
  • use of the zinc dithiophosphate along with the tertiary amine can favorably lower the friction coefficient of the lubricating oil composition to bronze and rubber.
  • the carbon number of R 4 to R 7 is preferably from 10 to 20, more preferably from 12 to 18.
  • the friction coefficient for rubber can be effectively reduced.
  • R 4 to R 7 are linear, and preferably R 4 to R 7 each are an alkyl group.
  • Examples of the alkyl group of R 4 to R 7 include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, an eicosyl group, a heneicosyl group, a docosyl group, a tricosyl group and a tetracosyl group, and these may be any of linear, branched or cyclic ones.
  • alkenyl group examples include a vinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a heptenyl group, an octenyl group, a nonenyl group, a decenyl group, an undecenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, a pentadecenyl group, a hexadecenyl group, a heptadecenyl group, an octadecenyl group, a nonadecenyl group, an eicosenyl group, a heneicosenyl group, a docosenyl group, a tricosenyl group and a tetracosenyl group, and these may be any of linear, branched or
  • a dodecyl group such as a lauryl group, a tetradecyl group, a hexadecyl group, an octadecyl group such as a stearyl group, an eicosyl group, an octadecenyl group such as an oleyl group, and most preferred is a lauryl group.
  • the zinc dithiophosphate (C) is contained in an amount of from 0.01 to 3% by mass relative to the total amount of the lubricating oil composition for a shock absorber. Falling within the above range, the zinc dithiophosphate (C) can reduce the friction to bronze and rubber with the suitable amount. From this viewpoint, more preferably, the zinc dithiophosphate (C) is contained in an amount of from 0.1 to 1.5% by mass relative to the total amount of the lubricating oil composition for a shock absorber.
  • Examples of the phosphorus acid ester amine salt (D) include an acidic phosphoric acid ester amine salt obtained by reacting an acidic phosphoric acid ester and an amine, and/or an acidic phosphorous acid ester amine salt obtained by reacting an acidic phosphorous acid ester and an amine.
  • an acidic phosphoric acid ester amine salt obtained by reacting an acidic phosphoric acid ester and an amine.
  • preferred is an acidic phosphoric acid ester amine salt.
  • the phosphorus acid ester amine salt (D) has a function as a so-called extreme-pressure agent, and can better wear-resistant properties while preventing burning out. Incidentally, even in long-term storage, the phosphorus acid ester amine salt (D) does not react with, for example, the zinc dithiophosphate (C) to generate precipitates.
  • acidic phosphoric acid esters for example, those represented by the following general formula (III) are used.
  • R 11 represents a hydrogen atom, an alkyl group having from 8 to 24 carbon atoms or an alkenyl group having from 8 to 24 carbon atoms. Of those, preferred is an alkyl group or an alkenyl group.
  • R 12 represents an alkyl group having from 8 to 24 carbon atoms or an alkenyl group having from 8 to 24 carbon atoms.
  • the alkyl group and the alkenyl group of R 11 and R 12 may be linear, branched or cyclic, but are preferably linear. Further, the alkyl group and the alkenyl group of R 11 and R 12 each preferably have from 12 to 24 carbon atoms, more preferably from 16 to 20 carbon atoms, and even more preferably, one or both of R 11 and R 12 have 18 carbon atoms.
  • the main component of the acidic phosphoric acid ester to constitute the amine salt (D) is preferably one where R 11 and R 12 have from 16 to 20 carbon atoms, more preferably one where R 11 and R 12 have 18 carbon atoms.
  • the wording “the main component” means that the content ratio of R 11 and R 12 having from 16 to 20 carbon atoms (or 18 carbon atoms) in the total amount of the alkyl group and the alkenyl group of R 11 and R 12 in the acidic phosphoric acid ester to constitute the amine salt (D) is 50% by mass or more, and the content ratio is preferably 80% by mass or more, more preferably 90% by mass or more.
  • Examples of the alkyl group of R 11 and R 12 include an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, an eicosyl group, a heneicosyl group, a docosyl group, a tricosyl group and a tetracosyl group, and these may be any of linear, branched or cyclic ones.
  • alkenyl group examples include an octenyl group, a nonenyl group, a decenyl group, an undecenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, a pentadecenyl group, a hexadecenyl group, a heptadecenyl group, an octadecenyl group, a nonadecenyl group, an eicosenyl group, a heneicosenyl group, a docosenyl group, a tricosenyl group and a tetracosenyl group, and these may be any of linear, branched or cyclic ones, and the double bond may be at any position therein.
  • a linear alkyl or alkenyl group preferred is a linear alkyl or alkenyl group, and most preferred is an octadecenyl group such as an oleyl group.
  • a specific example of the acidic phosphoric acid ester is dioleyl acid phosphate.
  • acidic phosphorous acid esters for example, those represented by the following general formula (IV) are used.
  • R 21 represents a hydrogen atom, an alkyl group having from 8 to 24 carbon atoms or an alkenyl group having from 8 to 24 carbon atoms. Of those, preferred is an alkyl group or an alkenyl group.
  • R22 represents an alkyl group having from 8 to 24 carbon atoms or an alkenyl group having from 8 to 24 carbon atoms.
  • the alkyl group and the alkenyl group of R 21 and R 22 may be linear, branched or cyclic, but are preferably linear. Further, the alkyl group and the alkenyl group of R 2 and R 22 preferably have from 12 to 24 carbon atoms, more preferably from 16 to 20 carbon atoms. Even more preferably one or both of R 21 and R 22 have 18 carbon atoms.
  • the main component of the acidic phosphorous acid ester to constitute the amine salt (D) is preferably one where R 21 and R 22 have from 16 to 20 carbon atoms, more preferably one where R 21 and R 22 have 18 carbon atoms.
  • the wording “the main component” means that the content ratio of R 21 and R 22 having from 16 to 20 carbon atoms (or 18 carbon atoms) in the total amount of the alkyl group and the alkenyl group of R 21 and R 22 in the acidic phosphorous acid ester to constitute the amine salt (D) is 50% by mass or more, and the content ratio is preferably 80% by mass or more, more preferably 90% by mass or more.
  • Examples of the alkyl group of R 21 and R 22 include an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group, a pentadecyl group, a hexadecyl group, a heptadecyl group, an octadecyl group, a nonadecyl group, an eicosyl group, a heneicosyl group, a docosyl group, a tricosyl group and a tetracosyl group, and these may be any of linear, branched or cyclic ones.
  • alkenyl group examples include an octenyl group, a nonenyl group, a decenyl group, an undecenyl group, a dodecenyl group, a tridecenyl group, a tetradecenyl group, a pentadecenyl group, a hexadecenyl group, a heptadecenyl group, an octadecenyl group, a nonadecenyl group, an eicosenyl group, a heneicosenyl group, a docosenyl group, a tricosenyl group and a tetracosenyl group, and these may be any of linear, branched or cyclic ones, and the double bond may be at any position therein.
  • the amine to form the phosphorus acid ester amine salt may be any of primary amines, secondary amines and tertiary amines, and preferred are primary amines.
  • the amine is represented by a general formula NR 3 , in which, preferably, from one to three of R's each are an aliphatic hydrocarbon group, and the remainder is a hydrogen atom.
  • the aliphatic hydrocarbon group is preferably an alkyl group or an unsaturated hydrocarbon group having from 1 to 2 unsaturated bonds.
  • the alkyl group and the unsaturated hydrocarbon group may be linear, branched or cyclic, but are preferably linear.
  • the total amount of the aliphatic hydrocarbon group constituting the amine preferably, 80% by mass or more is an alkyl group and/or an unsaturated hydrocarbon group having one unsaturated bond.
  • the carbon number of the above aliphatic hydrocarbon group is preferably from 6 to 20, more preferably from 12 to 20.
  • amine examples include dilaurylamine, dimyristylamine, distearylamine, dioleylamine, trilaurylamine, trimyristyl amine, tristearylamine, trioleylamine, tallow amine, etc.
  • alkyl amines may be used either singly or as combined.
  • the content of the phosphorus acid ester amine salt (D) is preferably from 0.1 to 3% by mass relative to the total amount of the lubricating oil composition for a shock absorber, more preferably from 0.2 to 1% by mass.
  • the component (D) is, after prepared as a phosphorus acid ester amine salt, mixed with the other components to produce the lubricating oil composition for a shock absorber, but a phosphorus acid ester and an amine may be separately blended in the composition and reacted in the composition to form the amine salt.
  • the total amount of the acidic phosphoric acid ester and the acidic phosphorous acid ester not forming the amine salt is preferably less than 0.05% by mass, more preferably less than 0.01% by mass, and even more preferably, these are not contained in the lubricating oil composition for a shock absorber.
  • the acidic phosphoric acid ester and the acidic phosphorous acid ester not forming the amine salt may react with the zinc dithiophosphate (C) to generate precipitate during long-term storage, but when the amount thereof is restricted to less than 0.05% by mass or so, precipitates hardly generate.
  • the lubricating oil composition for a shock absorber of the present invention can suitably contain, as an optional additive component (E), at least one selected from ash-less dispersants, friction regulators, antioxidants, viscosity index improvers and antifoaming agents, within a range not detracting from the object of the present invention. Also if desired, this may contain any other additives heretofore generally used in lubricating oil compositions for a shock absorber, such as metal-based detergents, rust preventive agents, metal deactivators, pour-point depressants, etc.
  • the content ratio of the optional additive component (E) in the total amount of the lubricating oil composition for a shock absorber is, in general, preferably 10% by mass or less, more preferably from 3 to 8% by mass.
  • ash-less dispersant examples include succinimides, boron-containing succinimides, benzylamines, boron-containing benzylamines, succinates, amides of mono or dicarboxylic acids typified by fatty acid or succinic acid. Of those, preferred are fatty acid amides.
  • the friction regulator examples include partial ester compounds to be obtained through reaction of a fatty acid and an aliphatic polyalcohol.
  • the fatty acid is preferably a fatty acid having a linear or branched hydrocarbon group with from 6 to 30 carbon atoms, in which the carbon number of the hydrocarbon group is preferably from 8 to 24, more preferably from 10 to 20.
  • fatty acid examples include saturated fatty acids such as caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachic acid, behenic acid, lignoceric acid, etc.; and unsaturated fatty acids such as myristoleic acid, palmitoleic acid, oleic acid, linoleic acid, etc.; and preferred is oleic acid.
  • the aliphatic polyalcohol is a di- to hexa-alcohol, including ethylene glycol, glycerin, trimethylolpropane, pentaerythritol, sorbitol, sorbitan, etc. Preferred is sorbitan.
  • sorbitan One alone or two or more of these partial ester compounds may be used either singly or as combined.
  • aliphatic saturated monoamines and unsaturated monoamines having from 10 to 20 carbon atoms or so such as stearylamine, oleylamine, etc. are also preferably usable as the friction regulator.
  • antioxidants examples include monocyclic phenolic antioxidants such as 2,6-di-tert-butyl-p-cresol, 2,6-di-tert-butyl-4-ethylphenol, etc.; polycyclic phenolic antioxidants such as 4,4′-methylenebis(2,6-di-tert-butylphenol), 2,2′-methylenebis(4-ethyl-6-tert-butylphenol), etc.; amine-based antioxidants including monoalkyldiphenylamine compounds such as monooctyldiphenylamine, monononyldiphenylamine, etc., dialkyldiphenylamine compounds such as 4,4′-dibutyldiphenylamine, 4,4′-dipentyldiphenylamine, 4,4′-dihexyldiphenylamine, 4,4′-diheptyldiphenylamine, 4,4′dioctyldiphenylamine, 4,4′-dinony
  • viscosity index improver examples include polymethacrylate, dispersive polymethacrylate, olefinic copolymer (for example, ethylene-propylene copolymer, etc.), dispersive olefinic copolymer, styrenic copolymer (for example, styrene-diene hydrogenated copolymer, etc.), etc.
  • Preferred is polymethacrylate.
  • the antifoaming agent preferred are high-molecular-weight silicone antifoaming agents. With containing the high-molecular-weight silicone antifoaming agent, the antifoaming ability is effectively demonstrated.
  • the high-molecular-weight silicone antifoaming agent for example, organopolysiloxane and fluorinated organopolysiloxanes such as trifluoropropylmethyl silicone oil and the like are mentioned.
  • Examples of the metal-based detergent include neutral metal sulfonates, neutral metal phenates, neutral metal salicylates, neutral metal phosphonates, basic sulfonates, basic phenates, basic salicylates, overbased sulfonates, overbased salicylates, overbased phosphonates, etc.
  • Examples of the rust preventive agent include metal-typed sulfonates, succinates, etc.
  • Examples of the metal deactivator include benzotriazole, thiadiazole, etc.
  • Examples of the pour-point depressant include polymethacrylate having a weight-average molecular weight of from 50,000 to 150,000 or so, etc.
  • the kinematic viscosity at 40° C. of the lubricating oil composition for a shock absorber of the present invention is, from the viewpoint of low-temperature flowability, preferably 18 mm 2 /s or less, more preferably from 2 to 15 mm 2 /s.
  • the lubricating oil composition of the present invention can reduce the friction coefficient to bronze and rubber.
  • the oil composition can better wear-resistant properties and burning-out resistance, and is therefore favorable as a lubricating oil composition for a shock absorber.
  • the extreme-pressure agent is the phosphorus acid ester amine salt (D), which does not react with, for example, the zinc dithiophosphate (C) to generate precipitates.
  • the friction coefficient ⁇ to rubber is preferably less than 0.09 under a load of from 1 to 3 kgf, and is preferably less than 0.08 under a load of from 5 to 7 kgf or so.
  • the friction coefficient ⁇ to bronze is preferably less than 0.18 under a load of 1 kg or so, preferably less than 0.20 under a load of from 2 to 3 kgf, and preferably less than 0.28 under a load of from 5 to 7 kgf.
  • the friction coefficient ⁇ to rubber and bronze falls within the above range, a riding comfort performance is bettered.
  • the friction coefficient ⁇ is measured according to the method to be mentioned below.
  • the lubricating oil composition for a shock absorber of the present invention can be used in any of a multi-cylinder shock absorber and a single-cylinder shock absorber, and can be used in any shock absorbers for cars and motorcycles. Especially preferred is use for cars.
  • the lubricating oil composition for a shock absorber of the present invention is especially favorably used in a shock absorber having a bush whose inner wall being the slide face to a piston rod is at least formed of bronze such as phosphor bronze or the like and having an oil seal that is formed of rubber.
  • this is further favorable for those in which the tightening force of the oil seal is increased to improve the dust resistance.
  • the slide face of the piston rod to the bush is generally formed of chromium, for example, by chromium plating or the like.
  • the lubricating oil composition for a shock absorber of the present invention can be also favorably used as a hydraulic oil for industrial use, a hydraulic oil for construction use, etc.
  • Test piece NBR/chromium-plated plate (50 ⁇ 1,000 ⁇ 5 mm)
  • Load any of 1 kgf, 2 kgf, 3 kgf, 5 kgf or 7 kgf
  • Test piece phosphor bronze ball (ball having a diameter 12.7 mm)/chromium-plated plate (50 ⁇ 1,000 ⁇ 5 mm)
  • Load any of 1 kgf, 2 kgf, 3 kgf, 5 kgf or 7 kgf
  • the prepared lubricating oil composition for a shock absorber was put in an airtight container and kept therein in an environment at 23° C. (room temperature) for 30 days, and then the appearance thereof was observed.
  • lubricating oil compositions for a shock absorber of Examples 1 to 3 and Comparative Examples 1 to 5 were prepared, and tested for measuring the friction coefficient to rubber and bronze, and tested in the storage test.
  • Tertiary amine 2 diethylmonostearylamine.
  • Zinc dithiophosphate 1 zinc dilauryldithiophosphate of the general formula (II) where R 4 to R 7 are all lauryl groups.
  • Zinc dithiophosphate 2 zinc dioleyldithiophosphate of the general formula (II) where R 4 to R 7 are all oleyl groups.
  • Zinc dithiophosphate 3 zinc dithiophosphate of the general formula (II)where R 4 to R 7 are a mixture of n-hexyl group, isopropyl group and n-butyl group.
  • Extreme-pressure agent 1 amine salt of dioleyl acid phosphate of the formula (III) where R 11 and R 12 are oleyl groups (acidic phosphoric acid ester amine salt). As the amine, tallow amine was used.
  • Extreme-pressure agent 2 dilauryl hydrogenphosphite (phosphorous acid ester).
  • Extreme-pressure agent 3 dioleyl acid phosphate (acidic phosphoric acid ester).
  • Extreme-pressure agent 4 ethyl-3-[[bis(1-methylethoxy)phosphinothioyl]thio] propionate (dithiophosphate).
  • Extreme-pressure agent 5 tricresyl phosphate (TCP).
  • Antioxidant 2,6-di-tert-butyl-p-cresol (DBPC).
  • Ashless dispersant fatty acid amide (reaction product of isostearic acid and tetraethylenepentamine).
  • Friction regulator 1 sorbitan monooleate.
  • Friction regulator 2 monooleylamine.
  • Friction regulator 3 glycerin partial ester Metal deactivator: thiadiazole compound (2,5-bis(1,1,3,3-tetramethylbutanedithio)1,3,4-thiadiazole).
  • the lubricating oil compositions for a shock absorber can sufficiently reduce the friction coefficient to rubber and bronze in a broad load range.
  • the extreme-pressure agent composed of the phosphorus acid ester amine salt (D) was blended, the oil composition did not generate any precipitate in storage for 1 month, and the long-term storage stability thereof is good.
  • the lubricating oil compositions for a shock absorber not containing any one or both of the tertiary amine (B) and the zinc dithiophosphate (C) could not sufficiently lower the friction coefficient to rubber and bronze in a broad load range.
  • Comparative Examples 4 and 5 when a phosphoric acid ester or a phosphorous acid ester was used as the extreme-pressure agent along with the zinc dithiophosphate, the composition generated precipitates after 1 month, and the long-term storage stability thereof was not good.
  • the lubricating oil composition for a shock absorber of the present invention can be used in various shock absorbers, and for example, can be favorably used in both a multi-cylinder shock absorber and a single-cylinder shock absorber, and in addition, can be used in shock absorbers for both cars and motorcycles. Especially preferred is use for cars.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
US14/910,845 2013-08-23 2014-08-25 Lubricating oil composition for shock absorber Abandoned US20160369200A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013173918 2013-08-23
JP2013-173918 2013-08-23
PCT/JP2014/072187 WO2015025977A1 (ja) 2013-08-23 2014-08-25 緩衝器用潤滑油組成物

Publications (1)

Publication Number Publication Date
US20160369200A1 true US20160369200A1 (en) 2016-12-22

Family

ID=52483746

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/910,845 Abandoned US20160369200A1 (en) 2013-08-23 2014-08-25 Lubricating oil composition for shock absorber

Country Status (6)

Country Link
US (1) US20160369200A1 (de)
EP (1) EP3037507B1 (de)
JP (1) JP6353840B2 (de)
KR (1) KR20160042910A (de)
CN (1) CN105473693B (de)
WO (1) WO2015025977A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190241825A1 (en) * 2016-07-20 2019-08-08 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
CN111849599A (zh) * 2020-07-03 2020-10-30 浙江物得宝尔新材料有限公司 一种水溶性润滑液及铝冷轧的加工方法
US11384308B2 (en) 2016-07-20 2022-07-12 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
US20230250357A1 (en) * 2020-07-02 2023-08-10 Idemitsu Kosan Co.,Ltd. Lubricating oil composition, shock absorber, and method for using lubricating oil composition
US20240084869A1 (en) * 2019-10-11 2024-03-14 Kyb Corporation Lubricant composition for shock absorbers, shock absorber, and method for adjusting friction of lubricant for shock absorbers
US11932823B2 (en) 2019-04-26 2024-03-19 Kyb Corporation Lubricant composition for shock absorbers, additive for friction adjustment, lubricant additive, shock absorber and friction adjustment method for lubricant composition for shock absorbers

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6661417B2 (ja) * 2016-03-07 2020-03-11 出光興産株式会社 緩衝器用潤滑油組成物、及び緩衝器用潤滑油組成物の製造方法
WO2017221446A1 (ja) * 2016-06-21 2017-12-28 Kyb株式会社 作動油
US11485927B2 (en) * 2018-11-28 2022-11-01 Cosmo Oil Lubricants Co., Ltd. Lubricating oil composition
WO2020171133A1 (ja) * 2019-02-22 2020-08-27 Jxtgエネルギー株式会社 冷凍機油及び冷凍機用作動流体組成物
JP2024093384A (ja) * 2022-12-27 2024-07-09 出光興産株式会社 潤滑油組成物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2476271A (en) * 1946-05-29 1949-07-19 Standard Oil Co Lubricating oil additive
US20070042916A1 (en) * 2005-06-30 2007-02-22 Iyer Ramnath N Methods for improved power transmission performance and compositions therefor
US20120118259A1 (en) * 2010-09-08 2012-05-17 Chevron Japan, Ltd. Lubricating Oil Composition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845293A (ja) * 1981-09-10 1983-03-16 Idemitsu Kosan Co Ltd 緩衝器用流体組成物
JPH05255682A (ja) * 1992-03-11 1993-10-05 Tonen Corp 油圧作動油組成物
JPH05255683A (ja) * 1992-03-11 1993-10-05 Tonen Corp 緩衝器用油圧作動油組成物
JPH05331478A (ja) * 1992-05-30 1993-12-14 Tonen Corp 油圧作動油組成物
KR0145600B1 (ko) * 1995-10-11 1998-08-01 전성원 윤활유 조성물
CN101517055B (zh) 2006-09-28 2014-03-05 出光兴产株式会社 缓冲器用润滑油组合物
JP5426829B2 (ja) * 2007-02-07 2014-02-26 昭和シェル石油株式会社 油圧シリンダーのビビリ、振動、鳴き防止用潤滑油組成物
JP5150154B2 (ja) 2007-07-09 2013-02-20 出光興産株式会社 緩衝器用潤滑油組成物
JP5816554B2 (ja) 2009-09-25 2015-11-18 出光興産株式会社 潤滑油組成物および無段変速機
CN102533409B (zh) * 2010-12-31 2013-08-14 中国石油化工股份有限公司 一种用于摩托车减震器的润滑油组合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2476271A (en) * 1946-05-29 1949-07-19 Standard Oil Co Lubricating oil additive
US20070042916A1 (en) * 2005-06-30 2007-02-22 Iyer Ramnath N Methods for improved power transmission performance and compositions therefor
US20120118259A1 (en) * 2010-09-08 2012-05-17 Chevron Japan, Ltd. Lubricating Oil Composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190241825A1 (en) * 2016-07-20 2019-08-08 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
US11168278B2 (en) * 2016-07-20 2021-11-09 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
US11384308B2 (en) 2016-07-20 2022-07-12 The Lubrizol Corporation Alkyl phosphate amine salts for use in lubricants
US11932823B2 (en) 2019-04-26 2024-03-19 Kyb Corporation Lubricant composition for shock absorbers, additive for friction adjustment, lubricant additive, shock absorber and friction adjustment method for lubricant composition for shock absorbers
US20240084869A1 (en) * 2019-10-11 2024-03-14 Kyb Corporation Lubricant composition for shock absorbers, shock absorber, and method for adjusting friction of lubricant for shock absorbers
US12085139B2 (en) * 2019-10-11 2024-09-10 Kyb Corporation Lubricant composition for shock absorbers, shock absorber, and method for adjusting friction of lubricant for shock absorbers
US20230250357A1 (en) * 2020-07-02 2023-08-10 Idemitsu Kosan Co.,Ltd. Lubricating oil composition, shock absorber, and method for using lubricating oil composition
CN111849599A (zh) * 2020-07-03 2020-10-30 浙江物得宝尔新材料有限公司 一种水溶性润滑液及铝冷轧的加工方法

Also Published As

Publication number Publication date
WO2015025977A1 (ja) 2015-02-26
JP6353840B2 (ja) 2018-07-04
EP3037507A1 (de) 2016-06-29
CN105473693B (zh) 2019-04-02
KR20160042910A (ko) 2016-04-20
CN105473693A (zh) 2016-04-06
EP3037507B1 (de) 2022-06-29
JPWO2015025977A1 (ja) 2017-03-02
EP3037507A4 (de) 2017-02-08

Similar Documents

Publication Publication Date Title
EP3037507B1 (de) Schmierölzusammensetzung für stossdämpfer
EP2826847B1 (de) Schmierölzusammensetzung
US9688941B2 (en) Lubricating oil composition for shock absorber
US9695379B2 (en) Lubricating oil composition for shock absorber and friction reduction method for shock absorber
US20170121626A1 (en) Lubricant oil composition and internal-combustion-engine friction reduction method
JP5280851B2 (ja) 緩衝器用潤滑油組成物
US9745536B2 (en) Lubricating oil composition for shock absorber
US20170051228A1 (en) Lubricating oil composition
EP3115444A1 (de) Schmierölzusammensetzung
US11279898B2 (en) Lubricating oil composition for shock absorber
EP3178911B1 (de) Schmierölzusammensetzung
US20240141249A1 (en) Lubricating oil composition, buffer and method for using lubricating oil composition
EP4001383A1 (de) Schmierölzusammensetzung, verfahren zur herstellung einer schmierölzusammensetzung und verfahren zur schmierung von getriebe- oder untersetzungsgetrieben
JP2006335965A (ja) 緩衝器用油圧作動油組成物

Legal Events

Date Code Title Description
AS Assignment

Owner name: IDEMITSU KOSAN CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAKANOUE, SHUICHI;REEL/FRAME:037689/0410

Effective date: 20151105

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION