US20160122829A1 - Compositions and Methods for Identification, Assessment, Prevention, and Treatment of Cancer Using PD-L1 Isoforms - Google Patents

Compositions and Methods for Identification, Assessment, Prevention, and Treatment of Cancer Using PD-L1 Isoforms Download PDF

Info

Publication number
US20160122829A1
US20160122829A1 US14/895,551 US201414895551A US2016122829A1 US 20160122829 A1 US20160122829 A1 US 20160122829A1 US 201414895551 A US201414895551 A US 201414895551A US 2016122829 A1 US2016122829 A1 US 2016122829A1
Authority
US
United States
Prior art keywords
level
biomarkers
expression
acid sequence
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/895,551
Other languages
English (en)
Inventor
Peter Hammerman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dana Farber Cancer Institute Inc
Original Assignee
Dana Farber Cancer Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dana Farber Cancer Institute Inc filed Critical Dana Farber Cancer Institute Inc
Priority to US14/895,551 priority Critical patent/US20160122829A1/en
Publication of US20160122829A1 publication Critical patent/US20160122829A1/en
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: DANA-FARBER CANCER INST
Assigned to DANA-FARBER CANCER INSTITUTE, INC. reassignment DANA-FARBER CANCER INSTITUTE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAMMERMAN, PETER
Assigned to DANA-FARBER CANCER INSTITUTE, INC. reassignment DANA-FARBER CANCER INSTITUTE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAMMERMAN, PETER
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57492Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/46Assays involving biological materials from specific organisms or of a specific nature from animals; from humans from vertebrates
    • G01N2333/47Assays involving proteins of known structure or function as defined in the subgroups
    • G01N2333/4701Details
    • G01N2333/4703Regulators; Modulating activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70503Immunoglobulin superfamily, e.g. VCAMs, PECAM, LFA-3
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70596Molecules with a "CD"-designation not provided for elsewhere in G01N2333/705
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/50Determining the risk of developing a disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/52Predicting or monitoring the response to treatment, e.g. for selection of therapy based on assay results in personalised medicine; Prognosis

Definitions

  • T cells In order for T cells to respond to foreign proteins, two signals must be provided by antigen-presenting cells (APCs) to resting T lymphocytes (Jenkins, M. and Schwartz, R. (1987) J. Exp. Med. 165:302-319; Mueller, D. L. et al. (1990) J. Immunol. 144:3701-3709).
  • the first signal which confers specificity to the immune response, is transduced via the T cell receptor (TCR) following recognition of foreign antigenic peptide presented in the context of the major histocompatibility complex (MHC).
  • TCR T cell receptor
  • MHC major histocompatibility complex
  • costimulation induces T cells to proliferate and become functional (Lenschow et al. (1996) Annu. Rev. Immunol. 14:233).
  • Costimulation is neither antigen-specific, nor MHC restricted and is thought to be provided by one or more distinct cell surface polypeptides expressed by APCs (Jenkins, M. K. et al. (1988) J. Immunol. 140:3324-3330; Linsley, P. S. et al. (1991) J. Exp. Med. 173:721-730; Gimmi, C. D., et al. 1991 Proc. Nat. Acad. Sci. USA 88:6575-6579; Young. J. W. et al. (1992) J. Clin. Invest. 90:229-237; Koulova, L. et. al. (1991) J. Exp. Med.
  • CD80 and CD86 (B7-2) proteins, expressed on APCs, are critical costimulatory polypeptides (Freeman et al. (1991) J. Exp. Med. 174:625; Freeman et al. (1989) J. Immunol. 143:2714; Azuma et. al. (1993) Nature 366:76; Freeman et al. (1993) Science 262:909).
  • B7-2 appears to play a predominant role during primary immune responses, while B7-1, which is upregulated later in the course of an immune response, may be important in prolonging primary T cell responses or costimulating secondary T cell responses (Bluestone (1995) Immunity 2:555).
  • CD28 One receptor to which B7-1 and B7-2 bind, CD28, is constitutively expressed on resting T cells and increases in expression after activation. After signaling through the T cell receptor, ligation of CD28 and transduction of a costimulatory signal induces T cells to proliferate and secrete IL-2 (Linsley, P. S. et al. (1991) J. Exp. Med. 173:721-730; Gimmi, C. D. et al. (1991) Proc. Natl. Acad. Sci. USA 88:6575-6579; June, C. H. et al. (1990) Immunol. Today 11:211-6; Harding, F. A. et al.
  • CTLA4 A second receptor, termed CTLA4 (CD152) is homologous to CD28 but is not expressed on resting T cells and appears following T cell activation (Brunet, J. F. et al. (1987) Nature 328:267-270). CTLA4 appears to be critical in negative regulation of T cell responses (Waterhouse et al. (1995) Science 270:985). Blockade of CTLA4 has been found to remove inhibitory signals, while aggregation of CTLA4 has been found to provide inhibitory signals that downregulate T cell responses (Allison and Krummel (1995) Science 270:932). The B7 polypeptides have a higher affinity for CTLA4 than for CD28 (Linsley, P. S.
  • ICOS which is a polypeptide related to CD28 appears to be important in IL-10 production (Hutloff et al. (1999) Nature 397:263. WO 98/38216), as has its ligand (Aicher A. et al. (200) J. Immunol. 164:4689-96; Mages H. W. et al. (2000) Eur. J. Immunol.
  • T cells are only stimulated through the 1 cell receptor, without receiving an additional costimulatory signal, they become nonresponsive, anergic, or die, resulting in downmodulation of the immune response.
  • Inhibitory receptors that bind to costimulatory polypeptides have also been identified on immune cells.
  • Activation of CTLA4 for example, transmits a negative signal to a T cell.
  • Engagement of CTLA4 inhibits IL-2 production and can induce cell cycle arrest (Krummel and Allison (1996) J. Exp. Med. 183:2533).
  • mice that lack CTLA4 develop lymphoproliferative disease (Tivol et al. (1995) Immunity 3:541; Waterhouse et al. (1995) Science 270:985).
  • the blockade of CTLA4 with antibodies may remove an inhibitory signal, whereas aggregation of CTLA4 with antibody transmits an inhibitory signal.
  • certain B7 polypeptides can promote T cell costimulation or inhibition.
  • PD-1 has been identified as a receptor which binds to PD-L1 and PD-L2.
  • PD-1 is a member of the immunoglobulin gene superfamily.
  • PD-1 (Ishida et al. (1992) EMBO J. 11:3887; Shinohara et al. (1994) Genomics 23:704; U.S. Pat. No. 5,698,520) has an extracellular region containing immunoglobulin superfamily domain, a transmembrane domain, and an intracellular region including an immunoreceptor tyrosine-based inhibitory motif (ITIM).
  • ITIM immunoreceptor tyrosine-based inhibitory motif
  • immunoinhibitory receptors also includes gp49B, PIR-B, and the killer inhibitory receptors (KIRs) (Vivier and Dacron (1997) Immunol. Today 18:286). It is often assumed that the tyrosyl phosphorylated ITIM motif of these receptors interacts with SH2-domain containing phosphatases, which leads to inhibitory signals.
  • a subset of these immunoinhibitory receptors bind to MHC polypeptides, for example the KIRs, and CTLA4 bind to B7-1 and B7-2. It has been proposed that there is a phylogenetic relationship between the MHC and B7 genes (Henry et al. (1999) Immunol. Today 20(6):285-8).
  • PD-1 was previously identified using a subtraction cloning based approach to select for proteins involved in apoptotic cell death.
  • CTLA4 PD-1 is rapidly induced on the surface of T-cells in response to anti-CD3 (Agata et al. (1996) Int. Immunol. 8:765).
  • PD-1 is also induced on the surface of B-cells (in response to anti-IgM).
  • PD-1 is also expressed on a subset of thymocytes and myeloid cells (Agata et al. (1996) supra; Nishimura et al. (1996) Int. Immunol. 8:773).
  • PD-1 ligand proteins comprise a signal sequence, and an IgV domain, an IgC domain, a transmembrane domain, and a short cytoplasmic tail.
  • PD-L1 Freeman et al. (2000) J. Exp. Med. 192:1027)
  • PD-L2 PD-Latchman et al. (2001) Nat. Immunol. 2:261) are members of the B7 family of polypeptides.
  • Both PD-L1 and PD-L2 are expressed in placenta, spleen, lymph nodes, thymus, and heart.
  • PD-L2 Only PD-L2 is expressed in pancreas, lung and liver while only PD-L1 is expressed in fetal liver. Both PD-1 ligands are upregulated on activated monocytes and dendritic cells. PD-L1 can bind to either PD-1 or B7-1.
  • PD-1 binds to PD-L1 and PD-L2 places PD-1 in a family of inhibitory receptors with CTLA4. While engagement of a costimulatory receptor results in a costimulatory signal in an immune cell, engagement of an inhibitory receptor, e.g., CTLA4 or PD-1 (for example by crosslinking or by aggregation), leads to the transmission of an inhibitory signal in an immune cell, resulting in downmodulation of immune cell responses and/or in immune cell anergy.
  • an inhibitory receptor e.g., CTLA4 or PD-1
  • PD-1 ligands such as PD-L1
  • PD-L1 are usually membrane-bound polypeptides expressed on professional immunological cells
  • ligands can naturally be expressed in a soluble form (i.e., lacking a cellular membrane retention domain, such as a hydrophobic transmembrane domain) and can be expressed by a variety of cells, such as cancer cells.
  • Frigola et al. (2011) Clin. Cancer Res. 17:1915 describes the association of a soluble form of PD-L1 with aggressive renal cell carcinoma.
  • Such soluble versions of PD-1 ligand provide new biomarkers associated with the detection of maladies and allow for a more non-invasive evaluation of cancer status due to easier detection of the biomarker in a bodily fluid as opposed to cancerous or pre-cancerous tissue.
  • protein isoforms are thought to be cleavage products of membrane-bound PD-L1, as opposed to products of alternative splicing and transcript variants. Accordingly, there is a great need to identify additional PD-1 ligand (e.g., soluble PD-L1)-based biomarkers associated with deleterious conditions in subjects, including the generation of diagnostic, prognostic, and therapeutic agents to effectively control such disorders in subjects.
  • the present invention is based, at least in part, on the discovery that PD-L1 isoforms, particularly those encoding soluble forms of PD-L1, are overexpressed by specific cancers (e.g., head, neck, and lung cancers) and maintain the ability to transmit inhibitory signals to immune cells to thereby inhibit immune responses (e.g., T cell activation, proliferation, and cytotoxic function).
  • specific cancers e.g., head, neck, and lung cancers
  • immune responses e.g., T cell activation, proliferation, and cytotoxic function
  • Such PD-L1 isoforms and the encoded PD-L1 variants are useful as biomarkers for the identification, assessment, prevention, and/or treatment of such cancers.
  • a method of determining whether a subject is afflicted with a head, neck, or lung cancer or at risk for developing a head, neck, or lung cancer comprises: a) obtaining a biological sample from the subject; b) determining the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof in the subject sample; c) determining the copy number, level of expression, or level of activity of the one or more biomarkers in a control; and d) comparing the copy number, level of expression, or level of activity of said one or more biomarkers detected in steps b) and c); wherein a significant increase in the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample relative to the control copy number, level of expression, or level of activity of the one or more biomarkers indicates that the subject is afflicted with the head, neck, or lung cancer or is at risk for developing the head, neck, or lung cancer
  • a method of determining whether a subject afflicted with a head, neck, or lung cancer or at risk for developing a head, neck, or lung cancer would benefit from modulating PD-1 and/or PD-L1 levels comprises: a) obtaining a biological sample from the subject: b) determining the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof in the subject sample; c) determining the copy number, level of expression, or level of activity of the one or more biomarkers in a control; and d) comparing the copy number, level of expression, or level of activity of said one or more biomarkers detected in steps b) and c); wherein a significant increase in the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample relative to the control copy number, level of expression, or level of activity of the one or more biomarkers indicates that the subject afflicted with the head, neck, or lung
  • a method for monitoring the progression of a head, neck, or lung cancer in a subject comprises: a) detecting in a subject sample at a first point in time the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof; b) repeating step a) at a subsequent point in time: and c) comparing the copy number, level of expression, or level of activity of said one or more biomarkers detected in steps a) and b) to monitor the progression of the head, neck, or lung cancer, wherein the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or
  • an at least twenty percent increase or an at least twenty percent decrease between the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample at a first point in time relative to the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample at a subsequent point in time indicates progression of the head, neck, or lung cancer; or wherein less than a twenty percent increase or less than a twenty percent decrease between the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample at a first point in time relative to the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample at a subsequent point in time indicates a lack of significant progression of the head, neck, or lung cancer.
  • the subject has undergone treatment to modulate PD-1 and/or PD-L1 levels between the first point in time and the subsequent point in time.
  • a method for stratifying subjects afflicted with a head, neck, or lung cancer according to predicted clinical outcome of treatment with one or more modulators of PD-1 and/or PD-L1 levels comprises: a) determining the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof in a subject sample; b) determining the copy number, level of expression, or level of activity of the one or more biomarkers in a control sample; and c) comparing the copy number, level of expression, or level of activity of said one or more biomarkers detected in steps a) and b); wherein a significant modulation in the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample relative to the normal copy number, level of expression, or level of activity of the one or more biomarkers in the control sample predicts the clinical outcome of the patient to treatment with one or more modulators of PD-1 and/or PD-L levels.
  • the predicted clinical outcome is (a) cellular growth, (b) cellular proliferation, or (c) survival time resulting from treatment with one or more modulators of PD-1 and/or PD-L1 levels.
  • the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.
  • an at least twenty percent increase or an at least twenty percent decrease between the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample compared to the control sample predicts that the subject has a poor clinical outcome; or wherein less than a twenty percent increase or less than a twenty percent decrease between the copy number, level of expression, or level of activity of the one or more biomarkers in the subject sample compared to the control sample predicts that the subject has a favorable clinical outcome.
  • the method further comprises treating the subject with a therapeutic agent that specifically modulates the copy number, level of expression, or level of activity of the one or more biomarkers.
  • the method further comprises treating the subject with one or more modulators of PD-1 and/or PD-L1 levels.
  • a method of determining the efficacy of a test compound for inhibiting a head, neck, or lung cancer in a subject comprises: a) determining the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof in a first sample obtained from the subject and exposed to the test compound; b) determining the copy number, level of expression, or level of activity of the one or more biomarkers in a second sample obtained from the subject, wherein the second sample is not exposed to the test compound, and c) comparing the copy number, level of expression, or level of activity of the one or more biomarkers in the first and second samples, wherein a significantly modulated copy number, level of expression, or level of activity of the biomarker, relative to the second sample, is an indication that the test compound is efficacious for inhibiting the head, neck, or lung cancer in the subject.
  • the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.
  • the first and second samples are portions of a single sample obtained from the subject or portions of pooled samples obtained from the subject.
  • a method of determining the efficacy of a therapy for inhibiting a head, neck, or lung cancer in a subject comprises: a) determining the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof in a first sample obtained from the subject prior to providing at least a portion of the therapy to the subject-b) determining the copy number, level of expression, or level of activity of the one or more biomarkers in a second sample obtained from the subject following provision of the portion of the therapy; and c) comparing the copy number, level of expression, or level of activity of the one or more biomarkers in the first and second samples, wherein a significantly decreased copy number, level of expression, or level of activity of the one or more biomarkers in the second sample, relative to the first sample, is an indication that the therapy as efficacious for inhibiting the head, neck, or lung cancer in the subject.
  • the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO:13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO:13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.
  • a method for identifying a compound which inhibits a head, neck, or lung cancer comprises: a) contacting one or more biomarkers listed in Table 1 or a fragment thereof with a test compound; and b) determining the effect of the test compound on the copy number, level of expression, or level of activity of the one or more biomarkers to thereby identify a compound which inhibits the head, neck, or lung cancer.
  • the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO:13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.
  • the one or more biomarkers is expressed on or in a cell (e.g., cells isolated from an animal model of a head, neck, or lung cancer or cells from a subject afflicted with a head, neck, or lung cancer).
  • a method for inhibiting a head, neck, or lung cancer comprises contacting a cell with an agent that modulates the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof to thereby inhibit the cancer.
  • the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80%/i identical to SEQ ID NO: 1.
  • the copy number, level of expression, or level of activity of the one or more biomarkers is downmodulated.
  • the step of contacting occurs in vivo, e vivo, or in vitro.
  • the method further comprises contacting the cell with an additional agent that inhibits the head, neck, or lung cancer.
  • a method for treating a subject afflicted with a head, neck, or lung cancer comprises administering an agent that downregulates the copy number, level of expression, or level of activity of one or more biomarkers listed in Table 1 or a fragment thereof such that the head, neck, or lung cancer is treated.
  • the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO:13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO:1.
  • the method further comprises administering one or more additional agents that treats the cancer.
  • the agent is one or more modulators of PD-1 levels and/or one or more modulators of PD-L1 levels.
  • a pharmaceutical composition comprising an antisense polynucleotide that specifically binds to a polynucleotide of one or more biomarkers listed in Table 1 or a fragment thereof useful for treating a head, neck, or lung cancer in a pharmaceutically acceptable carrier.
  • the antisense polynucleotide further comprises an expression vector.
  • a method of using such pharmaceutical composition for treating a head, neck, or lung cancer in a subject is provided.
  • kits comprising an agent which selectively binds to one or more biomarkers listed in Table 1 or a fragment thereof and instructions for use.
  • the agent is selected from the group consisting of polynucleotides and antibodies.
  • a biochip comprising a solid substrate, said substrate comprising one or more probes capable of detecting one or more biomarkers listed in Table 1 or a fragment thereof wherein each probe is attached to the substrate at a spatially defined address.
  • the probes are complementary to a genomic or transcribed polynucleotide associated with the one or more biomarkers.
  • the one or more biomarkers comprises soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO:13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO:13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.
  • the control is determined from a non-cancerous sample from the subject or member of the same species to which the subject belongs.
  • the sample consists of or comprises body fluid, cells, cell lines, histological slides, paraffin embedded tissue, fresh frozen tissue, fresh tissue, biopsies, blood, plasma, serum, buccal scrape, saliva, cerebrospinal fluid, urine, stool, mucus, or bone marrow, obtained from the subject.
  • the body fluid is selected from group consisting of amniotic fluid, aqueous humor, bile, blood and blood plasma, cerebrospinal fluid, cerumen and earwax, cowper's fluid or pre-ejaculatory fluid, chyle, chyme, stool, female ejaculate, interstitial fluid, intracellular fluid, lymph, menses, breast milk, mucus, pleural fluid, peritoneal fluid, pus, saliva, sebum, semen, serum, sweat, synovial fluid, tears, urine, vaginal lubrication, vitreous humor, and vomit.
  • the copy number is assessed by microarray, quantitative PCR (qPCR), high-throughput sequencing, comparative genomic hybridization (CGH), or fluorescent in situ hybridization (FISH).
  • the expression level of the one or more biomarkers is assessed by detecting the presence in the samples of a polynucleotide molecule encoding the biomarker or a portion of said polynucleotide molecule (e.g., a mRNA, cDNA, or functional variants or fragments thereof and, optionally, wherein the step of detecting further comprises amplifying the polynucleotide molecule).
  • the expression level of the one or more biomarkers is assessed by annealing a nucleic acid probe with the sample of the polynucleotide encoding the one or more biomarkers or a portion of said polynucleotide molecule under stringent hybridization conditions.
  • the expression level of the biomarker is assessed by detecting the presence in the samples of a protein of the biomarker, a polypeptide, or protein fragment thereof comprising said protein, such as by using a reagent which specifically binds with said protein, polypeptide or protein fragment thereof (e.g., an antibody, an antibody derivative, and an antibody fragment).
  • a reagent which specifically binds with said protein, polypeptide or protein fragment thereof e.g., an antibody, an antibody derivative, and an antibody fragment.
  • the activity level of the biomarker is assessed by determining the magnitude of modulation of the activity or expression level of downstream targets of the one or more biomarkers.
  • the agent or test compound modulates PD-1, PD-L1, and or soluble PD-L1 levels (e.g., compound inhibits the expression and/or activity of soluble PD-L1, optionally wherein the soluble PD-L1 a) comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; or b) comprises a nucleic acid molecule comprising a nucleic acid sequence encoding an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 1.
  • Such agents include a) an antibody against soluble PD-L1, optionally wherein the soluble PD-L1 comprises an amino acid sequence of SEQ ID NO: 13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; b) a small molecule inhibitor of soluble PD-L1, optionally wherein the soluble PD-L1 comprises an amino acid sequence of SEQ ID NO:13 or 15 or an amino acid sequence that is at least 80% identical to SEQ ID NO: 13 or 15; and c) an anti-PD-L1 inhibitor selected from the group consisting of a small molecule, antisense nucleic acid, interfering RNA, shRNA, siRNA, aptamer, ribozyme, and dominant-negative protein binding partner.
  • the head or neck cancer is squamous cell carcinomas of the head and neck (SCCHN) or associated with human papillomavirus infection.
  • the lung cancer is small-cell lung carcinoma (SCLC) or non-small-cell lung carcinoma (NSCLC).
  • SCLC small-cell lung carcinoma
  • NSCLC non-small-cell lung carcinoma
  • the subject is a mammal.
  • the mammal is a human.
  • FIGS. 1-2 show a schematic of a mutational landscape of head and neck cancers from The Cancer Genome Atlas (TCGA; FIG. 1 ) project or an independent cohort of HPV ⁇ (left half) and HPV+ (right half) head and neck cancers ( FIG. 2 ).
  • FIG. 3 shows a representation of sites of HPV integration in the host genome in head and neck cancers analyzed as part of the TCGA project described in FIG. 1 .
  • FIGS. 4 and 5 show sequencing reads for the CD274 (PD-L1) gene in a tumor (CV-5433) with a detected HPV integration in PD-L1.
  • FIG. 5 shows a zoomed in view of FIG. 4 according to a log scale.
  • FIG. 6 shows a consolidation of the sequencing read data of FIGS. 4 and 5 into a schematic showing the HPV integration within the PD-L1 gene of tumor CV-5433.
  • FIG. 7 shows the predicted protein product following HPV integration in tumor CV-5433.
  • FIG. 8 shows expression of each exon of full-length, membrane-bound PD-L1 on a log scale from the CV-5433 sample and demonstrates a dramatic drop in exons following exon 4 which is the site of HPV integration.
  • FIGS. 9-10 show transcript variants of PD-L1 expressed by head, neck, and lung cancers.
  • FIGS. 11A-11J show expression of short PD-L1 forms among various cancers from the TCGA (The Cancer Genome Atlas) database.
  • FIG. 12 shows expression of short PD-L1 forms among various cancers from the Cancer Cell Line Encyclopedia database.
  • FIGS. 13-14 show Western blot results 293T cells transfected with expression vectors encoding the full-length or short PD-L1 forms.
  • FIG. 15 shows the protein expression of short PD-L1 forms from various cell lines.
  • FIG. 16 shows T cell viability in response to exposure to short PD-L1 forms.
  • FIG. 17-18 shows that the short form of PD-L1 can differentially kill proliferating T cells.
  • the present invention is based, at least in part, on the novel discovery of gene profiles useful for distinguishing among cancer subtypes (e.g., head, neck, and/or lung cancers) and for predicting the clinical outcome of such cancer subtypes to therapeutic regimens, particularly to modulators of PD-1 and/or PD-L1.
  • cancer subtypes e.g., head, neck, and/or lung cancers
  • agents such as miRNAs, miRNA analogues, small molecules, RNA interference, aptamer, peptides, peptidomimetics, antibodies that specifically bind to one or more biomarkers of the invention (e.g., biomarkers listed in Table 1) and fragments thereof can be used to identify, diagnose, prognose, assess, prevent, and treat cancers (e.g., head, neck, and/or lung cancers) or other conditions that would benefit from modulating immune responses.
  • biomarkers of the invention e.g., biomarkers listed in Table 1
  • cancers e.g., head, neck, and/or lung cancers
  • an element means one element or more than one element.
  • allogeneic refers to deriving from, originating in, or being members of the same species, where the members are genetically related or genetically unrelated but genetically similar.
  • An “allogeneic transplant” refers to transfer of cells or organs from a donor to a recipient, where the recipient is the same species as the donor.
  • mismatched allogeneic refers to deriving from, originating in, or being members of the same species having non-identical major histocompatability complex (MHC) antigens (i.e., proteins) as typically determined by standard assays used in the art, such as serological or molecular analysis of a defined number of MHC antigens.
  • MHC major histocompatability complex
  • a “partial mismatch” refers to partial match of the MHC antigens tested between members, typically between a donor and recipient. For instance, a “half mismatch” refers to 50% of the MHC antigens tested as showing different MHC antigen type between two members. A “full” or “complete” mismatch refers to all MHC antigens tested as being different between two members. These terms contrast with the term “xenogeneic,” which refers to deriving from, originating in, or being members of different species, e.g., human and rodent, human and swine, human and chimpanzee, etc.
  • a “xenogeneic transplant” refers to transfer of cells or organs from a donor to a recipient where the recipient is a species different from that of the donor.
  • the term “syngeneic” refers to deriving from, originating in, or being members of the same species that are genetically identical, particularly with respect to antigens or immunological reactions. These include identical twins having matching MHC types.
  • a “syngeneic transplant” refers to transfer of cells or organs from a donor to a recipient who is genetically identical to the donor.
  • altered amount of a marker or “altered level” of a marker refers to increased or decreased copy number of the marker and/or increased or decreased expression level of a particular marker gene or genes in a cancer sample, as compared to the expression level or copy number of the marker in a control sample.
  • altered amount also includes an increased or decreased protein level of a marker in a sample, e.g., a cancer sample, as compared to the protein level of the marker in a normal, control sample.
  • the “amount” of a marker, e.g., expression or copy number of a marker or minimal common region (MCR), or protein level of a marker, in a subject is “significantly” higher or lower than the normal amount of a marker, if the amount of the marker is greater or less, respectively, than the normal level by an amount greater than the standard error of the assay employed to assess amount, and preferably at least twice, and more preferably three, four, five, ten or more times that amount.
  • the amount of the marker in the subject can be considered “significantly” higher or lower than the normal amount if the amount is at least about two, and preferably at least about three, four, or five times, higher or lower, respectively, than the normal amount of the marker.
  • the amount of the marker in the subject can be considered “significantly” higher or lower than the normal amount if the amount is 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50% or more, higher or lower, respectively, than the normal amount of the marker.
  • altered level of expression of a marker refers to an expression level or copy number of a marker in a test sample e.g., a sample derived from a subject suffering from cancer, that is greater or less than the standard error of the assay employed to assess expression or copy number, and is preferably at least twice, and more preferably three, four, five or ten or more times the expression level or copy number of the marker or chromosomal region in a control sample (e.g., sample from a healthy subject not having the associated disease) and preferably, the average expression level or copy number of the marker or chromosomal region in several control samples.
  • a test sample e.g., a sample derived from a subject suffering from cancer
  • a control sample e.g., sample from a healthy subject not having the associated disease
  • the altered level of expression is greater or less than the standard error of the assay employed to assess expression or copy number, and is preferably at least twice, and more preferably three, four, five or ten or more times the expression level or copy number of the marker in a control sample (e.g., sample from a healthy subject not having the associated disease) and preferably, the average expression level or copy number of the marker in several control samples.
  • a control sample e.g., sample from a healthy subject not having the associated disease
  • altered activity of a marker refers to an activity of a marker which is increased or decreased in a disease state, e.g., in a cancer sample, as compared to the activity of the marker in a normal, control sample.
  • Altered activity of a marker may be the result of, for example, altered expression of the marker, altered protein level of the marker, altered structure of the marker, or, e.g., an altered interaction with other proteins involved in the same or different pathway as the marker, or altered interaction with transcriptional activators or inhibitors.
  • the term “PD-1 ligand (e.g., soluble PD-L1) activity” includes the ability of a PD-1 ligand (e.g., soluble PD-L1) polypeptide to bind its natural receptor(s) (e.g., PD-1 or B7-1), the ability to modulate immune cell costimulatory or inhibitory signals, and the ability to modulate the immune response.
  • the term “activity” includes the ability of a PD-1 polypeptide to modulate an inhibitory signal in an activated immune cell, e.g., by engaging a natural PD-1 ligand (e.g., soluble PD-L1) on an antigen presenting cell.
  • PD-1 transmits an inhibitory signal to an immune cell in a manner similar to CTLA4. Modulation of an inhibitory signal in an immune cell results in modulation of proliferation of, and/or cytokine secretion by, an immune cell.
  • PD-1 activity includes the ability of a PD-1 polypeptide to bind its natural ligand(s), the ability to modulate immune cell costimulatory or inhibitory signals, and the ability to modulate the immune response.
  • altered structure of a marker refers to the presence of mutations or allelic variants within the marker gene or maker protein, e.g., mutations which affect expression or activity of the marker, as compared to the normal or wild-type gene or protein.
  • mutations include, but are not limited to substitutions, deletions, or addition mutations. Mutations may be present in the coding or non-coding region of the marker.
  • altered subcellular localization refers to the mislocalization of the marker within a cell relative to the normal localization within the cell e.g., within a healthy and/or wild-type cell.
  • An indication of normal localization of the marker can be determined through an analysis of subcellular localization motifs known in the field that are harbored by marker polypeptides.
  • antibody broadly encompass naturally-occurring forms of antibodies (e.g., IgG, IgA, IgM, IgE) and recombinant antibodies such as single-chain antibodies, chimeric and humanized antibodies and multi-specific antibodies, as well as fragments and derivatives of all of the foregoing, which fragments and derivatives have at least an antigenic binding site.
  • Antibody derivatives may comprise a protein or chemical moiety conjugated to an antibody.
  • antibody as used herein also includes an “antigen-binding portion” of an antibody (or simply “antibody portion”).
  • antigen-binding portion refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen. It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody.
  • binding fragments encompassed within the term “antigen-binding portion” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′) 2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR).
  • a Fab fragment a monovalent fragment consisting of the VL, VH, CL and CH1 domains
  • a F(ab′) 2 fragment a bivalent fragment comprising two Fab fragments linked by
  • the two domains of the Fv fragment, VL and VH are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent polypeptides (known as single chain Fv (scFv); see e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883; and Osbounm et al. 1998, Nature Biotechnology 16: 778).
  • scFv single chain Fv
  • single chain antibodies are also intended to be encompassed within the term “antigen-binding portion” of an antibody.
  • Any VH and VL sequences of specific scFv can be linked to human immunoglobulin constant region cDNA or genomic sequences, in order to generate expression vectors encoding complete IgG polypeptidcs or other isotypes.
  • VH and VL can also be used in the generation of Fab, Fv or other fragments of immunoglobulins using either protein chemistry or recombinant DNA technology.
  • Other forms of single chain antibodies, such as diabodies are also encompassed.
  • Diabodies are bivalent, bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see e.g., Holliger, P., et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak. R. J., et al. (1994) Structure 2:1121-1123).
  • an antibody or antigen-binding portion thereof may be part of larger immunoadhesion polypeptides, formed by covalent or noncovalent association of the antibody or antibody portion with one or more other proteins or peptides.
  • immunoadhesion polypeptides include use of the streptavidin core region to make a tetrameric scFv polypeptide (Kipriyanov, S. M., et al. (1995) Human Antibodies and Hybridomas 6:93-101) and use of a cysteine residue, a marker peptide and a C-terminal polyhistidine tag to make bivalent and biotinylated scFv polypeptides (Kipriyanov. S.
  • Antibody portions such as Fab and F(ab′) 2 fragments, can be prepared from whole antibodies using conventional techniques, such as papain or pepsin digestion, respectively, of whole antibodies.
  • antibodies, antibody portions and immunoadhesion polypeptides can be obtained using standard recombinant DNA techniques, as described herein.
  • Antibodies may be polyclonal or monoclonal; xenogeneic, allogeneic, or syngeneic; or modified forms thereof (e.g., humanized, chimeric, etc.). Antibodies may also be fully human.
  • a monoclonal antibody composition typically displays a single binding affinity for a particular antigen with which it immunoreacts.
  • antisense nucleic acid polypeptide comprises a nucleotide sequence which is complementary to a “sense” nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA polypeptide, complementary to an mRNA sequence or complementary to the coding strand of a gene. Accordingly, an antisense nucleic acid polypeptide can hydrogen bond to a sense nucleic acid polypeptide.
  • autologous refers to deriving from or originating in the same subject or patient.
  • An “autologous transplant” refers to the harvesting and reinfusion or transplant of a subject's own cells or organs. Exclusive or supplemental use of autologous cells can eliminate or reduce many adverse effects of administration of the cells back to the host, particular graft versus host reaction.
  • biochip refers to a solid substrate comprising an attached probe or plurality of probes of the invention, wherein the probe(s) comprise at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 150, 200 or more probes.
  • the probes may be capable of hybridizing to a target sequence under stringent hybridization conditions.
  • the probes may be attached at spatially defined address on the substrate. More than one probe per target sequence may be used, with either overlapping probes or probes to different sections of a particular target sequence.
  • the probes may be capable of hybridizing to target sequences associated with a single disorder.
  • the probes may be attached to the biochip in a wide variety of ways, as will be appreciated by those in the art.
  • the probes may either be synthesized first, with subsequent attachment to the biochip, or may be directly synthesized on the biochip.
  • the solid substrate may be a material that may be modified to contain discrete individual sites appropriate for the attachment or association of the probes and is amenable to at least one detection method.
  • substrates include glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, TeflonJ, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses and plastics.
  • the substrates may allow optical detection without appreciably fluorescing.
  • the substrate may be planar, although other configurations of substrates may be used as well. For example, probes may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume.
  • the substrate may be flexible, such as a flexible foam, including closed cell foams made of particular plastics.
  • the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two.
  • the biochip may be derivatized with a chemical functional group including, but not limited to, amino groups, carboxyl groups, oxo groups or thiol groups.
  • the probes may be attached using functional groups on the probes either directly or indirectly using a linker.
  • the probes may be attached to the solid support by either the 5′ terminus, 3′ terminus, or via an internal nucleotide.
  • the probe may also be attached to the solid support non-covalently.
  • biotinylated oligonucleotides can be made, which may bind to surfaces covalently coated with streptavidin, resulting in attachment.
  • probes may be synthesized on the surface using techniques such as photopolymerization and photolithography.
  • body fluid refers to fluids that are excreted or secreted from the body as well as fluids that are normally not (e.g., amniotic fluid, aqueous humor, bile, blood and blood plasma, cerebrospinal fluid, cerumen and earwax, cowper's fluid or pre-ejaculatory fluid, chyle, chyme, stool, female ejaculate, interstitial fluid, intracellular fluid, lymph, menses, breast milk, mucus, pleural fluid, peritoneal fluid, pus, saliva, sebum, semen, serum, sweat, synovial fluid, tears, urine, vaginal lubrication, vitreous humor, vomit).
  • fluids that are excreted or secreted from the body as well as fluids that are normally not (e.g., amniotic fluid, aqueous humor, bile, blood and blood plasma, cerebrospinal fluid, cerumen and earwax, cowper's fluid or pre-eja
  • cancer or “tumor” or “hyperproliferative disorder” refer to the presence of cells possessing characteristics typical of cancer-causing cells, such as uncontrolled proliferation, immortality, metastatic potential, rapid growth and proliferation rate, and certain characteristic morphological features. Cancer cells are often in the form of a tumor, but such cells may exist alone within an animal, or may be a non-tumorigenic cancer cell, such as a leukemia cell.
  • Cancers include, but are not limited to, B cell cancer, e.g., multiple myeloma, Waldenström's macroglobulinemia, the heavy chain diseases, such as, for example, alpha chain disease, gamma chain disease, and mu chain disease, benign monoclonal gammopathy, and inununocytic amyloidosis, melanomas, breast cancer, lung cancer, bronchus cancer, colorectal cancer, prostate cancer, pancreatic cancer, stomach cancer, ovarian cancer, urinary bladder cancer, brain or central nervous system cancer, peripheral nervous system cancer, esophageal cancer, cervical cancer, uterine or endometrial cancer, cancer of the oral cavity or pharynx, liver cancer, kidney cancer, testicular cancer, biliary tract cancer, small bowel or appendix cancer, salivary gland cancer, thyroid gland cancer, adrenal gland cancer, osteosarcoma, chondrosarcoma, cancer of hematological tissues, and the like.
  • the heavy chain diseases such as
  • the cancer whose phenotype is determined by the method of the invention is an epithelial cancer such as, but not limited to, bladder cancer, breast cancer, cervical cancer, colon cancer, gynecologic cancers, renal cancer, laryngeal cancer, lung cancer, oral cancer, head and neck cancer, ovarian cancer, pancreatic cancer, prostate cancer, or skin cancer.
  • the cancer is breast cancer, prostate cancer, lung cancer, or colon cancer.
  • the epithelial cancer is non-small-cell lung cancer, nonpapillary renal cell carcinoma, cervical carcinoma, ovarian carcinoma (e.g., serous ovarian carcinoma), or breast carcinoma.
  • the epithelial cancers may be characterized in various other ways including, but not limited to, serous, endometrioid, mucinous, clear cell, brenner, or undifferentiated.
  • the present invention is used in the treatment, diagnosis, and/or prognosis of lymphoma or its subtypes, including, but not limited to, lymphocyte-rich classical Hodgkin lymphoma, mixed cellularity classical Hodgkin lymphoma, lymphocyte-depleted classical Hodgkin lymphoma, nodular sclerosis classical Hodgkin lymphoma, anaplastic large cell lymphoma, diffuse large B-cell lymphomas, MLL® pre B-cell ALL) based upon analysis of markers described herein.
  • classifying includes “to associate” or “to categorize” a sample with a disease state. In certain instances, “classifying” is based on statistical evidence, empirical evidence, or both. In certain embodiments, the methods and systems of classifying use of a so-called training set of samples having known disease states. Once established, the training data set serves as a basis, model, or template against which the features of an unknown sample are compared, in order to classify the unknown disease state of the sample. In certain instances, classifying the sample is akin to diagnosing the disease state of the sample. In certain other instances, classifying the sample is akin to differentiating the disease state of the sample from another disease state.
  • coding region refers to regions of a nucleotide sequence comprising codons which are translated into amino acid residues
  • noncoding region refers to regions of a nucleotide sequence that are not translated into amino acids (e.g., 5′ and 3′ untranslated regions).
  • complementary refers to the broad concept of sequence complementarity between regions of two nucleic acid strands or between two regions of the same nucleic acid strand. It is known that an adenine residue of a first nucleic acid region is capable of forming specific hydrogen bonds (“base pairing”) with a residue of a second nucleic acid region which is antiparallel to the first region if the residue is thymine or uracil. Similarly, it is known that a cytosine residue of a first nucleic acid strand is capable of base pairing with a residue of a second nucleic acid strand which is antiparallel to the first strand if the residue is guanine.
  • a first region of a nucleic acid is complementary to a second region of the same or a different nucleic acid if, when the two regions are arranged in an antiparallel fashion, at least one nucleotide residue of the first region is capable of base pairing with a residue of the second region.
  • the first region comprises a first portion and the second region comprises a second portion, whereby, when the first and second portions are arranged in an antiparallel fashion, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion. More preferably, all nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion.
  • control refers to any reference standard suitable to provide a comparison to the expression products in the test sample.
  • the control comprises obtaining a “control sample” from which expression product levels are detected and compared to the expression product levels from the test sample.
  • a control sample may comprise any suitable sample, including but not limited to a sample from a control cancer patient (can be stored sample or previous sample measurement) with a known outcome; normal tissue or cells isolated from a subject, such as a normal patient or the cancer patient, cultured primary cells/tissues isolated from a subject such as a normal subject or the cancer patient, adjacent normal cells/tissues obtained from the same organ or body location of the cancer patient, a tissue or cell sample isolated from a normal subject, or a primary cells/tissues obtained from a depository.
  • control may comprise a reference standard expression product level from any suitable source, including but not limited to housekeeping genes, an expression product level range from normal tissue (or other previously analyzed control sample), a previously determined expression product level range within a test sample from a group of patients, or a set of patients with a certain outcome (for example, survival for one, two, three, four years, etc.) or receiving a certain treatment. It will be understood by those of skill in the art that such control samples and reference standard expression product levels can be used in combination as controls in the methods of the present invention.
  • control may comprise normal or non-cancerous cell/tissue sample.
  • control may comprise an expression level for a set of patients, such as a set of cancer patients, or for a set of cancer patients receiving a certain treatment, or for a set of patients with one outcome versus another outcome.
  • the specific expression product level of each patient can be assigned to a percentile level of expression, or expressed as either higher or lower than the mean or average of the reference standard expression level.
  • control may comprise normal cells, cells from patients treated with combination chemotherapy and cells from patients having benign cancer.
  • control may also comprise a measured value for example, average level of expression of a particular gene in a population compared to the level of expression of a housekeeping gene in the same population.
  • control comprises a ratio transformation of expression product levels, including but not limited to determining a ratio of expression product levels of two genes in the test sample and comparing it to any suitable ratio of the same two genes in a reference standard; determining expression product levels of the two or more genes in the test sample and determining a difference in expression product levels in any suitable control; and determining expression product levels of the two or more genes in the test sample, normalizing their expression to expression of housekeeping genes in the test sample, and comparing to any suitable control.
  • control comprises a control sample which is of the same lineage and/or type as the test sample.
  • control may comprise expression product levels grouped as percentiles within or based on a set of patient samples, such as all patients with cancer.
  • a control expression product level is established wherein higher or lower levels of expression product relative to, for instance, a particular percentile, are used as the basis for predicting outcome.
  • a control expression product level is established using expression product levels from cancer control patients with a known outcome, and the expression product levels from the test sample are compared to the control expression product level as the basis for predicting outcome.
  • the methods of the invention are not limited to use of a specific cut-point in comparing the level of expression product in the test sample to the control.
  • costimulate with reference to activated immune cells includes the ability of a costimulatory molecule to provide a second, non-activating receptor mediated signal (a “costimulatory signal”) that induces proliferation or effector function.
  • a costimulatory signal can result in cytokine secretion, e.g., in a T cell that has received a T cell-receptor-mediated signal.
  • Immune cells that have received a cell-receptor mediated signal, e.g., via an activating receptor are referred to herein as “activated immune cells.”
  • diagnosing cancer includes the use of the methods, systems, and code of the present invention to determine the presence or absence of a cancer or subtype thereof in an individual.
  • the term also includes methods, systems, and code for assessing the level of disease activity in an individual.
  • the term “diagnostic marker” includes markers described herein which are useful in the diagnosis of cancer, e.g., over- or under-activity, emergence, expression, growth, remission, recurrence or resistance of tumors before, during or after therapy.
  • the predictive functions of the marker may be confirmed by, e.g., (1) increased or decreased copy number (e.g., by FISH, FISH plus SKY, single-molecule sequencing, e.g., as described in the art at least at J.
  • Biotechnol., 86:289-301, or qPCR overexpression or underexpression (e.g., by ISH, Northern Blot, or qPCR), increased or decreased protein level (e.g., by IHC), or increased or decreased activity (determined by, for example, modulation of a pathway in which the marker is involved), e.g., in more than about 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 20%, 25%, or more of human cancers types or cancer samples; (2) its presence or absence in a biological sample, e.g., a sample containing tissue, whole blood, serum, plasma, buccal scrape, saliva, cerebrospinal fluid, urine, stool, or bone marrow, from a subject, e.g., a human, afflicted with cancer; (3) its presence or absence in clinical subset of subjects with cancer (e.g., those responding to a particular therapy or those developing resistance).
  • a biological sample
  • Diagnostic markers also include “surrogate markers,” e.g., markers which are indirect markers of cancer progression. Such diagnostic markers may be useful to identify populations of subjects amenable to treatment with modulators of PD-1 and/or PD-L1 levels and to thereby treat such stratified patient populations.
  • a molecule is “fixed” or “affixed” to a substrate if it is covalently or non-covalently associated with the substrate such the substrate can be rinsed with a fluid (e.g., standard saline citrate, pH 7.4) without a substantial fraction of the molecule dissociating from the substrate.
  • a fluid e.g., standard saline citrate, pH 7.4
  • gene expression data refers to information regarding the relative or absolute level of expression of a gene or set of genes in a cell or group of cells.
  • the level of expression of a gene may be determined based on the level of RNA, such as mRNA, encoded by the gene. Alternatively, the level of expression may be determined based on the level of a polypeptide or fragment thereof encoded by the gene.
  • Gene expression data may be acquired for an individual cell, or for a group of cells such as a tumor or biopsy sample.
  • Gene expression data and gene expression levels can be stored on computer readable media, e.g., the computer readable medium used in conjunction with a microarray or chip reading device. Such gene expression data can be manipulated to generate gene expression signatures.
  • gene expression signature refers to a group of coordinately expressed genes.
  • the genes making up this signature may be expressed in a specific cell lineage, stage of differentiation, or during a particular biological response.
  • the genes can reflect biological aspects of the tumors in which they are expressed, such as the cell of origin of the cancer, the nature of the non-malignant cells in the biopsy, and the oncogenic mechanisms responsible for the cancer.
  • head cancer and “neck cancer” refer to cancers arising from head or neck region or tissue, respectively. In general, it is a group of cancers originating from the upper aerodigestive tract, including the lip, oral cavity, nasal cavity, paranasal sinuses, salivary glands, pharynx, and larynx.
  • Cancers of the head and neck are further identified by the area in which they begin: cancers of the oral cavity, cancers of the salivary glands, cancer of the paranasal sinuses and nasal cavity, cancers of the pharynx and cancers of the larynx.
  • oral cavity includes the lips, the pharynx, the tongue, the gums (gingiva), the lining inside the checks and lips (buccal mucosa), the bottom (floor) of the mouth under the tongue, the bony top of the mouth (hard palate), the soft palate and the small area behind the wisdom teeth (retromolar area).
  • the salivary glands include the glands under the tongue lower jaw (submandibular and sublingual), in front of the ears (parotid gland), as well as in other parts of the upper digestive tract-minor salivary glands.
  • the term “paranasal sinuses” refers to the small hollow spaces in the bones of the head surrounding the nose.
  • the term “nasal cavity” refers to the hollow space inside the nose.
  • the term “pharynx” refers to the hollow tube that starts behind the nose and leads to the esophagus and the trachea.
  • the pharynx has three parts: “nasopharynx,” the upper part of the pharynx, behind the nose; “oropharynx,” the middle part of the pharynx, which includes the soft palate, the base of the tongue and the tonsils, and “hypopharynx,” the lower part of the pharynx.
  • the term “larynx” is also known as the voicebox, and is the passageway formed by cartilage below the pharynx in the neck. It contains the vocal cords and the epiglottis.
  • oral cancer encompasses all malignancies that originate in the oral tissues, in particular to cancers located in any part of the mouth, including the lips, gum tissue (gingival), tongue, cheek lining (buccal mucosa) and the soft or hard palate, and floor of the mouth, or in the pharynx, the top part of the throat. Sometimes, squamous cancer cells are also found in the lymph nodes of the upper neck.
  • head and neck cancers begin in the squamous cells that line the structures found in the head and neck and are therefore termed squamous cell carcinomas (SCCHN). Because of this, head and neck cancers are often referred to as squamous cell carcinomas. Some head and neck cancers begin in other types of cells. For example, cancers originating from glandular cells are called adenocarcinomas. With approximately 500,000 new cases annually, squamous cell carcinomas of the head and neck, the vast majority of which arise in the oral cavity, represent the sixth most common cancers in the world. This disease results in nearly about 11,000 deaths each year in the United States alone. The five-year survival rate after diagnosis for HNSCC remains considerably low (approximately 50%).
  • squamous cell carcinoma is a cancer arising, at least in part, from a squamous cell population and/or containing, at least in part, a squamous cell population including, without limitation, cancers of the cervix; penis; head and neck, including, without limitation cancers of the oral cavity, salivary glands, paranasal sinuses and nasal cavity, pharynx and larynx; lung; esophageal; skin other than melanoma; vulva and bladder.
  • homologous refers to nucleotide sequence similarity between two regions of the same nucleic acid strand or between regions of two different nucleic acid strands. When a nucleotide residue position in both regions is occupied by the same nucleotide residue, then the regions are homologous at that position. A first region is homologous to a second region if at least one nucleotide residue position of each region is occupied by the same residue. Homology between two regions is expressed in terms of the proportion of nucleotide residue positions of the two regions that are occupied by the same nucleotide residue.
  • a region having the nucleotide sequence 5′-ATTGCC-3′ and a region having the nucleotide sequence 5′-TATGGC-3′ share 50% homology.
  • the first region comprises a first portion and the second region comprises a second portion, whereby, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residue positions of each of the portions are occupied by the same nucleotide residue. More preferably, all nucleotide residue positions of each of the portions are occupied by the same nucleotide residue.
  • host cell is intended to refer to a cell into which a nucleic acid of the invention, such as a recombinant expression vector of the invention, has been introduced.
  • the terms “host cell” and “recombinant host cell” are used interchangeably herein. It should be understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
  • humanized antibody is intended to include antibodies made by a non-human cell having variable and constant regions which have been altered to more closely resemble antibodies that would be made by a human cell, for example, by altering the non-human antibody amino acid sequence to incorporate amino acids found in human germline immunoglobulin sequences.
  • Humanized antibodies may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs.
  • the term “humanized antibody”, as used herein, also includes antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.
  • Immune cell refers to cells that play a role in the immune response. Immune cells are of hematopoietic origin, and include lymphocytes, such as B cells and T cells; natural killer cells; myeloid cells, such as monocytes, macrophages, eosinophils, mast cells, basophils, and granulocytes.
  • lymphocytes such as B cells and T cells
  • natural killer cells such as myeloid cells, such as monocytes, macrophages, eosinophils, mast cells, basophils, and granulocytes.
  • immune response includes T cell mediated and/or B cell mediated immune responses.
  • exemplary immune responses include T cell responses, e.g., cytokine production and cellular cytotoxicity.
  • immune response includes immune responses that are indirectly effected by T cell activation, e.g., antibody production (humoral responses) and activation of cytokine responsive cells, e.g., macrophages.
  • the term “inhibit” includes the decrease, limitation, or blockage, of, for example a particular action, function, or interaction.
  • cancer is “inhibited” if at least one symptom of the cancer, such as hyperproliferative growth, is alleviated, terminated, slowed, or prevented.
  • cancer is also “inhibited” if recurrence or metastasis of the cancer is reduced, slowed, delayed, or prevented.
  • the term “inhibitory signal” refers to a signal transmitted via an inhibitory receptor (e.g., CTLA4 or PD-1) for a polypeptide on a immune cell.
  • an inhibitory receptor e.g., CTLA4 or PD-1
  • an activating receptor e.g., via a TCR, CD3, BCR, or Fc polypeptide
  • an inhibition of second messenger generation e.g., via a TCR, CD3, BCR, or Fc polypeptide
  • an inhibition of proliferation e.g., reduced phagocytosis, reduced antibody production, reduced cellular cytotoxicity
  • mediators such as cytokines (e.g., IL-2) and/or mediators of allergic responses
  • mediators such as cytokines (e.g., IL-2) and/or mediators of allergic responses
  • the term “interaction,” when referring to an interaction between two molecules, refers to the physical contact (e.g., binding) of the molecules with one another. Generally, such an interaction results in an activity (which produces a biological effect) of one or both of said molecules.
  • the activity may be a direct activity of one or both of the molecules.
  • one or both molecules in the interaction may be prevented from binding their ligand, and thus be held inactive with respect to ligand binding activity (e.g., binding its ligand and triggering or inhibiting an immune response).
  • To inhibit such an interaction results in the disruption of the activity of one or more molecules involved in the interaction.
  • To enhance such an interaction is to prolong or increase the likelihood of said physical contact, and prolong or increase the likelihood of said activity.
  • an “isolated antibody.” as used herein, is intended to refer to an antibody that is substantially free of other antibodies having different antigenic specificities. Moreover, an isolated antibody may be substantially free of other cellular material and/or chemicals.
  • an “isolated protein” refers to a protein that is substantially free of other proteins, cellular material, separation medium, and culture medium when isolated from cells or produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized.
  • An “isolated” or “purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the antibody, polypeptide, peptide or fusion protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized.
  • the language “substantially free of cellular material” includes preparations, in which compositions of the invention are separated from cellular components of the cells from which they are isolated or recombinantly produced.
  • the language “substantially free of cellular material” includes preparations of having less than about 30%, 20%, 10, or 5% (by dry weight) of cellular material.
  • an antibody, polypeptide, peptide or fusion protein or fragment thereof, e.g., a biologically active fragment thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation.
  • kits is any manufacture (e.g., a package or container) comprising at least one reagent, e.g., a probe, for specifically detecting or modulating the expression of a marker of the invention.
  • the kit may be promoted, distributed, or sold as a unit for performing the methods of the present invention.
  • lung cancer refers to the collection of cancers affecting lung tissue.
  • NSCLC Non-small cell lung cancer
  • squamous cell carcinoma large cell carcinoma
  • adenocarcinoma is the most common form of lung cancer (30%-40% and reported to be as high as 50%) and is the lung cancer most frequently found in both smokers and non-smokers.
  • Squamous cell carcinoma accounts for 25-30% of all lung cancers and is generally found in a proximal bronchus.
  • Early stage NSCLC tends to be localized, and if detected early it can often be treated by surgery with a favorable outcome and improved survival. Other treatment options include radiation treatment, drug therapy, and a combination of these methods.
  • NSCLC is staged by the size of the tumor and its presence in other tissues including lymph nodes. In the occult stage, cancer cells are found in sputum samples or lavage samples and no tumor is detectable in the lungs. In stage 0, only the innermost lining of the lungs exhibit cancer cells and the tumor has not grown through the lining.
  • stage IA the cancer is considered invasive and has grown deep into the lung tissue but the tumor is less than 3 cm across. In this stage, the tumor is not found in the bronchus or lymph nodes.
  • stage IB the tumor is either larger than 3 cm across or has grown into the bronchus or pleura, but has not grown into the lymph nodes.
  • stage IIA the tumor is more than 3 cm across and has grown into the lymph nodes.
  • stage IIB the tumor has either been found in the lymph nodes and is greater than 3 cm across or grown into the bronchus or pleura, or the cancer is not in the lymph nodes but is found in the chest wall, diaphragm, pleura, bronchus, or tissue that surrounds the heart.
  • stage IIIA cancer cells are found in the lymph nodes near the lung and bronchi and in those between the lungs but on the side of the chest where the tumor is located.
  • stage IIIB cancer cells are located on the opposite side of the chest from the tumor and in the neck.
  • Other organs near the lungs may also have cancer cells and multiple tumors may be found in one lobe of the lungs.
  • stage IV tumors are found in more than one lobe of the same lung or both lungs and cancer cells are found in other parts of the body.
  • Current methods of diagnosis for lung cancer include testing sputum for cancerous cells, chest x-ray, fiber optic evaluation of airways, and low dose spiral computed tomography (CT). Sputum cytology has a very low sensitivity.
  • Chest X-ray is also relatively insensitive, requiring lesions to be greater than 1 cm in size to be visible. Bronchoscopy requires that the tumor is visible inside airways accessible to the bronchoscope.
  • CT computerized computed tomography
  • the most widely recognized diagnostic method is CT, but in common with X-ray, the use of CT involves ionizing radiation, which itself can cause cancer.
  • CT also has significant limitations: the scans require a high level of technical skill to interpret and many of the observed abnormalities are not in fact lung cancer and substantial healthcare costs are incurred in following up CT findings.
  • the most common incidental finding is a benign lung nodule. Lung nodules are relatively round lesions, or areas of abnormal tissue, located within the lung and may vary in size. Lung nodules may be benign or cancerous, but most are benign.
  • a nodule is below 4 mm the prevalence is only 1.5%, if 4-8 mm the prevalence is approximately 6%, and if above 20 mm the incidence is approximately 20%.
  • F or small and medium-sized nodules the patient is advised to undergo a repeat scan within three months to a year. For many large nodules, the patient receives a biopsy (which is invasive and may lead to complications) even though most of these are benign.
  • a “marker” or “biomarker” includes a nucleic acid or polypeptide whose altered level of expression in a tissue or cell from its expression level in a control (e.g., normal or healthy tissue or cell) is associated with a disease state, such as a cancer or subtype thereof (e.g., head, neck, and/or lung cancers).
  • a “marker nucleic acid” is a nucleic acid (e.g., mRNA, cDNA, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof and other classes of small RNAs known to a skilled artisan) encoded by or corresponding to a marker of the invention.
  • marker nucleic acids include DNA (e.g., cDNA) comprising the entire or a partial sequence of any of the nucleic acid sequences set forth in Table 1 and the Examples or the complement of such a sequence.
  • the marker nucleic acids also include RNA comprising the entire or a partial sequence of any of the nucleic acid sequences set forth in the Sequence Listing or the complement of such a sequence, wherein all thymidine residues are replaced with uridine residues.
  • a “marker protein” includes a protein encoded by or corresponding to a marker of the invention.
  • a marker protein comprises the entire or a partial sequence of any of the sequences set forth in Table 1 and the Examples or the Examples.
  • the terms “protein” and “polypeptide” are used interchangeably.
  • specific combinations of biomarkers are preferred. For example, a combination or subgroup of one or more of the biomarkers selected from the group shown in Table.
  • the term “modulate” includes up-regulation and down-regulation, e.g., enhancing or inhibiting a response.
  • the “normal” or “control” level of expression of a marker is the level of expression of the marker in cells of a subject, e.g., a human patient, not afflicted with a cancer.
  • An “over-expression” or “significantly higher level of expression” of a marker refers to an expression level in a test sample that is greater than the standard error of the assay employed to assess expression, and is preferably at least twice, and more preferably 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more higher than the expression activity or level of the marker in a control sample (e.g., sample from a healthy subject not having the marker associated disease) and preferably, the average expression level of the marker in several control samples.
  • a control sample e.g., sample from a healthy subject not having the marker associated
  • a “significantly lower level of expression” of a marker refers to an expression level in a test sample that is at least twice, and more preferably 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more lower than the expression level of the marker in a control sample (e.g., sample from a healthy subject not having the marker associated disease) and preferably, the average expression level of the marker in several control samples.
  • a control sample e.g., sample from a healthy subject not having the marker associated disease
  • pre-malignant lesions refers to a lesion that, while not cancerous, has potential for becoming cancerous. It also includes the term “pre-malignant disorders” or “potentially malignant disorders.” In particular this refers to a benign, morphologically and/or histologically altered tissue that has a greater than normal risk of malignant transformation, and a disease or a patient's habit that does not necessarily alter the clinical appearance of local tissue but is associated with a greater than normal risk of precancerous lesion or cancer development in that tissue (leukoplakia, erythroplakia, erytroleukoplakia lichen planus (lichenoid reaction) and any lesion or an area which histological examination showed atypia of cells or dysplasia.
  • probe refers to any molecule which is capable of selectively binding to a specifically intended target molecule, for example, a nucleotide transcript or protein encoded by or corresponding to a marker. Probes can be either synthesized by one skilled in the art, or derived from appropriate biological preparations. For purposes of detection of the target molecule, probes may be specifically designed to be labeled, as described herein. Examples of molecules that can be utilized as probes include, but are not limited to, RNA, DNA, proteins, antibodies, and organic molecules.
  • prognosis includes a prediction of the probable course and outcome of cancer or the likelihood of recovery from the disease.
  • use of statistical algorithms provides a prognosis of cancer in an individual.
  • the prognosis can be surgery, development of a clinical subtype of cancer (e.g., head, neck, and/or lung cancers), development of one or more clinical factors, development of intestinal cancer, or recovery from the disease.
  • response to cancer therapy relates to any response of the hyperproliferative disorder (e.g., cancer) to a cancer therapy, preferably to a change in tumor mass and/or volume after initiation of neoadjuvant or adjuvant chemotherapy.
  • hyperproliferative disorder response may be assessed, for example for efficacy or in a neoadjuvant or adjuvant situation, where the size of a tumor after systemic intervention can be compared to the initial size and dimensions as measured by CT, PET, mammogram, ultrasound or palpation. Response may also be assessed by caliper measurement or pathological examination of the tumor after biopsy or surgical resection for solid cancers.
  • neoadjuvant or adjuvant therapy may be done early after the onset of neoadjuvant or adjuvant therapy, e.g., after a few hours, days, weeks or preferably after a few months.
  • a typical endpoint for response assessment is upon termination of neoadjuvant chemotherapy or upon surgical removal of residual tumor cells and/or the tumor bed. This is typically three months after initiation of neoadjuvant therapy.
  • clinical efficacy of the therapeutic treatments described herein may be determined by measuring the clinical benefit rate (CBR).
  • CBR clinical benefit rate
  • the clinical benefit rate is measured by determining the sum of the percentage of patients who are in complete remission (CR), the number of patients who are in partial remission (PR) and the number of patients having stable disease (SD) at a time point at least 6 months out from the end of therapy.
  • the CBR for a particular cancer therapeutic regimen is at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, or more.
  • Additional criteria for evaluating the response to cancer therapies are related to “survival,” which includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or tumor related); “recurrence-free survival” (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith).
  • the length of said survival may be calculated by reference to a defined start point (e.g., time of diagnosis or start of treatment) and end point (e.g., death, recurrence or metastasis).
  • criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence.
  • a particular cancer therapeutic regimen can be administered to a population of subjects and the outcome can be correlated to copy number, level of expression, level of activity, etc. of one or more biomarkers listed in Table 1 and the Examples or the Examples that were determined prior to administration of any cancer therapy.
  • the outcome measurement may be pathologic response to therapy given in the neoadjuvant setting.
  • outcome measures such as overall survival and disease-free survival can be monitored over a period of time for subjects following cancer therapy for whom the measurement values are known.
  • the same doses of cancer therapeutic agents are administered to each subject.
  • the doses administered are standard doses known in the art for cancer therapeutic agents.
  • the period of time for which subjects are monitored can vary. For example, subjects may be monitored for at least 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 55, or 60 months.
  • Biomarker threshold values that correlate to outcome of a cancer therapy can be determined using methods such as those described in the Examples section.
  • Outcomes can also be measured in terms of a “hazard ratio” (the ratio of death rates for one patient group to another; provides likelihood of death at a certain time point), “overall survival” (OS), and/or “progression free survival.”
  • the prognosis comprises likelihood of overall survival rate at 1 year, 2 years, 3 years, 4 years, or any other suitable time point.
  • significance associated with the prognosis of poor outcome in all aspects of the present invention is measured by techniques known in the art. For example, significance may be measured with calculation of odds ratio. In a further embodiment, the significance is measured by a percentage.
  • a significant risk of poor outcome is measured as odds ratio of 0.8 or less or at least about 1.2, including by not limited to: 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.5, 3.0, 4.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0 and 40.0.
  • a significant increase or reduction in risk is at least about 20%, including but not limited to about 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95% and 98%.
  • a significant increase in risk is at least about 50%.
  • the present invention further provides methods for making a treatment decision for a cancer patient, comprising carrying out the methods for prognosing a cancer patient according to the different aspects and embodiments of the present invention, and then weighing the results in light of other known clinical and pathological risk factors, in determining a course of treatment for the cancer patient.
  • a cancer patient that is shown by the methods of the invention to have an increased risk of poor outcome by combination chemotherapy treatment can be treated with more aggressive therapies, including but not limited to radiation therapy, peripheral blood stem cell transplant, bone marrow transplant, or novel or experimental therapies under clinical investigation.
  • resistance refers to an acquired or natural resistance of a cancer sample or a mammal to a cancer therapy (i.e., being nonresponsive to or having reduced or limited response to the therapeutic treatment), such as having a reduced response to a therapeutic treatment by 25% or more, for example, 30%, 40%, 50%, 60%, 70%, 80%, or more, to 2-fold 3-fold, 4-fold, 5-fold, 10-fold, 15-fold, 20-fold or more.
  • the reduction in response can be measured by comparing with the same cancer sample or mammal before the resistance is acquired, or by comparing with a different cancer sample or a mammal who is known to have no resistance to the therapeutic treatment.
  • multidrug resistance A typical acquired resistance to chemotherapy is called “multidrug resistance.”
  • the multidrug resistance can be mediated by P-glycoprotein or can be mediated by other mechanisms, or it can occur when a mammal is infected with a multi-drug-resistant microorganism or a combination of microorganisms.
  • the term “reverses resistance” means that the use of a second agent in combination with a primary cancer therapy (e.g., chemotherapeutic or radiation therapy) is able to produce a significant decrease in tumor volume at a level of statistical significance (e.g., p ⁇ 0.05) when compared to tumor volume of untreated tumor in the circumstance where the primary cancer therapy (e.g., chemotherapeutic or radiation therapy) alone is unable to produce a statistically significant decrease in tumor volume compared to tumor volume of untreated tumor. This generally applies to tumor volume measurements made at a time when the untreated tumor is growing log rhythmically.
  • a primary cancer therapy e.g., chemotherapeutic or radiation therapy
  • sample used for detecting or determining the presence or level of at least one biomarker is typically whole blood, plasma, serum, saliva, urine, stool (e.g., feces), tears, and any other bodily fluid (e.g., as described above under the definition of “body fluids”), or a tissue sample (e.g., biopsy) such as a small intestine, colon sample, or surgical resection tissue.
  • body fluids e.g., as described above under the definition of “body fluids”
  • tissue sample e.g., biopsy
  • the method of the present invention further comprises obtaining the sample from the individual prior to detecting or determining the presence or level of at least one marker in the sample.
  • cancer means to alter cancer cells or tumor cells in a way that allows for more effective treatment of the associated cancer with a cancer therapy (e.g., chemotherapeutic or radiation therapy.
  • a cancer therapy e.g., chemotherapeutic or radiation therapy.
  • normal cells are not affected to an extent that causes the normal cells to be unduly injured by the cancer therapy (e.g., chemotherapy or radiation therapy).
  • An increased sensitivity or a reduced sensitivity to a therapeutic treatment is measured according to a known method in the art for the particular treatment and methods described herein below, including, but not limited to, cell proliferative assays (Tanigawa N, Kern D H, Kikasa Y, Morton D L, Cancer Res 1982; 42: 2159-2164), cell death assays (Weisenthal L M, Shoemaker R H, Marsden J A, Dill P L, Baker J A, Moran E M, Cancer Res 1984; 94: 161-173; Weisenthal L M, Lippman M E, Cancer Treat Rep 1985; 69: 615-632; Weisenthal L M, In: Kaspers G J L, Pieters R, Twentyman P R, Weisenthal L M, Veerman A J P, eds.
  • the sensitivity or resistance may also be measured in animal by measuring the tumor size reduction over a period of time, for example, 6 month for human and 4-6 weeks for mouse.
  • a composition or a method sensitizes response to a therapeutic treatment if the increase in treatment sensitivity or the reduction in resistance is 25% or more, for example, 30%, 40%, 50%, 60%, 70%, 80%, or more, to 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 5-fold, 20-fold or more, compared to treatment sensitivity or resistance in the absence of such composition or method.
  • sensitivity or resistance to a therapeutic treatment is routine in the art and within the skill of an ordinarily skilled clinician. It is to be understood that any method described herein for enhancing the efficacy of a cancer therapy can be equally applied to methods for sensitizing hyperproliferative or otherwise cancerous cells (e.g., resistant cells) to the cancer therapy.
  • the term “synergistic effect” refers to the combined effect of two or more anticancer agents or chemotherapy drugs can be greater than the sum of the separate effects of the anticancer agents or chemotherapy drugs alone.
  • subject refers to any healthy animal, mammal or human, or any animal, mammal or human afflicted with a condition of interest (e.g., cancer).
  • condition of interest e.g., cancer
  • subject is interchangeable with “patient.”
  • the language “substantially free of chemical precursors or other chemicals” includes preparations of antibody, polypeptide, peptide or fusion protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein.
  • the language “substantially free of chemical precursors or other chemicals” includes preparations of antibody, polypeptide, peptide or fusion protein having less than about 30% (by dry weight) of chemical precursors or non-antibody, polypeptide, peptide or fusion protein chemicals, more preferably less than about 20% chemical precursors or non-antibody, polypeptide, peptide or fusion protein chemicals, still more preferably less than about 10% chemical precursors or non-antibody, polypeptide, peptide or fusion protein chemicals, and most preferably less than about 5% chemical precursors or non-antibody, polypeptide, peptide or fusion protein chemicals.
  • substantially pure cell population refers to a population of cells having a specified cell marker characteristic and differentiation potential that is at least about 50%, preferably at least about 75-80%, more preferably at least about 85-90%, and most preferably at least about 95% of the cells making up the total cell population.
  • a “substantially pure cell population” refers to a population of cells that contain fewer than about 50%, preferably fewer than about 20-25%, more preferably fewer than about 10-15%, and most preferably fewer than about 5% of cells that do not display a specified marker characteristic and differentiation potential under designated assay conditions.
  • the term “survival” includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or tumor related): “recurrence-free survival” (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith).
  • the length of said survival may be calculated by reference to a defined start point (e.g., time of diagnosis or start of treatment) and end point (e.g., death, recurrence or metastasis).
  • criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence.
  • a “transcribed polynucleotide” or “nucleotide transcript” is a polynucleotide (e.g., an mRNA, hnRNA, cDNA, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof or an analog of such RNA or cDNA) which is complementary to or homologous with all or a portion of a mature mRNA made by transcription of a marker of the invention and normal post-transcriptional processing (e.g., splicing), if any, of the RNA transcript, and reverse transcription of the RNA transcript.
  • normal post-transcriptional processing e.g., splicing
  • vector refers to a nucleic acid capable of transporting another nucleic acid to which it has been linked.
  • plasmid refers to a circular double stranded DNA loop into which additional DNA segments may be ligated.
  • viral vector Another type of vector is a viral vector, wherein additional DNA segments may be ligated into the viral genome.
  • Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors).
  • vectors e.g., non-episomal mammalian vectors
  • Other vectors are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome.
  • certain vectors are capable of directing the expression of genes to which they are operatively linked.
  • Such vectors are referred to herein as “recombinant expression vectors” or simply “expression vectors.”
  • expression vectors of utility in recombinant DNA techniques are often in the form of plasmids.
  • plasmid and vector may be used interchangeably as the plasmid is the most commonly used form of vector.
  • the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.
  • an “underexpression” or “significantly lower level of expression or copy number” of a marker refers to an expression level or copy number in a test sample that is greater than the standard error of the assay employed to assess expression or copy number, but is preferably at least twice, and more preferably three, four, five or ten or more times less than the expression level or copy number of the marker in a control sample (e.g., sample from a healthy subject not afflicted with cancer) and preferably, the average expression level or copy number of the marker in several control samples.
  • the term “unresponsiveness” includes refractivity of immune cells to stimulation, e.g., stimulation via an activating receptor or a cytokine. Unresponsiveness can occur, e.g., because of exposure to immunosuppressants or exposure to high doses of antigen.
  • the term “anergy” or “tolerance” includes refractivity to activating receptor-mediated stimulation. Such refractivity is generally antigen-specific and persists after exposure to the tolerizing antigen has ceased. For example, anergy in T cells (as opposed to unresponsiveness) is characterized by lack of cytokine production, e.g., IL-2.
  • T cell anergy occurs when T cells are exposed to antigen and receive a first signal (a T cell receptor or CD-3 mediated signal) in the absence of a second signal (a costimulatory signal). Under these conditions, reexposure of the cells to the same antigen (even if reexposure occurs in the presence of a costimulatory polypeptide) results in failure to produce cytokines and, thus, failure to proliferate.
  • Anergic T cells can, however, proliferate if cultured with cytokines (e.g., IL-2).
  • cytokines e.g., IL-2
  • T cell anergy can also be observed by the lack of IL-2 production by T lymphocytes as measured by ELISA or by a proliferation assay using an indicator cell line.
  • a reporter gene construct can be used.
  • anergic T cells fail to initiate IL-2 gene transcription induced by a heterologous promoter under the control of the 5′ IL-2 gene enhancer or by a multimer of the API sequence that can be found within the enhancer (Kang et al. (1992) Science 257:1134).
  • nucleotide triplet An important and well known feature of the genetic code is its redundancy, whereby, for most of the amino acids used to make proteins, more than one coding nucleotide triplet may be employed (illustrated above). Therefore, a number of different nucleotide sequences may code for a given amino acid sequence. Such nucleotide sequences are considered functionally equivalent since they result in the production of the same amino acid sequence in all organisms (although certain organisms may translate some sequences more efficiently than they do others). Moreover, occasionally, a methylated variant of a purine or pyrimidine may be found in a given nucleotide sequence. Such methylations do not affect the coding relationship between the trinucleotide codon and the corresponding amino acid.
  • nucleotide sequence of a DNA or RNA coding for a fusion protein or polypeptide of the invention can be used to derive the fusion protein or polypeptide amino acid sequence, using the genetic code to translate the DNA or RNA into an amino acid sequence.
  • corresponding nucleotide sequences that can encode the fusion protein or polypeptide can be deduced from the genetic code (which, because of its redundancy, will produce multiple nucleic acid sequences for any given amino acid sequence).
  • description and/or disclosure herein of a nucleotide sequence which encodes a fusion protein or polypeptide should be considered to also include description and/or disclosure of the amino acid sequence encoded by the nucleotide sequence.
  • description and/or disclosure of a fusion protein or polypeptide amino acid sequence herein should be considered to also include description and/or disclosure of all possible nucleotide sequences that can encode the amino acid sequence.
  • nucleic acid and amino acid sequence information for the loci and biomarkers of the present invention are well known in the art and readily available on publicly available databases, such as the National Center for Biotechnology Information (NCBI).
  • NCBI National Center for Biotechnology Information
  • exemplary nucleic acid and amino acid sequences derived from publicly available sequence databases are provided below.
  • nucleic acid and amino acid sequences of a representative human PD-1 biomarker is available to the public at the GenBank database under NM_005018.2 and NP_005009.2 (see also Ishida et al. (1992) EMBO J. 11:3887; Shinohara et al. (1994) Genomics 23:704; and U.S. Pat. No. 5,698,520).
  • Nucleic acid and polypeptide sequences of PD-1 orthologs in organisms other than humans are well known and include, for example, monkey PD-1 (NM_001114358.1 and NP_001107830.1), mouse PD-1 (NM_0087998.2 and NP_032824.1), rat PD-1 (NM_001106927.1 and NP_001100397.1), chicken PD-1 (XM_422723.3 and XP_422723.2), cow PD-1 (NM_001083506.1 and NP_001076975.1), and dog PD-1 (XM_543338.3 and XP_543338.3).
  • monkey PD-1 NM_001114358.1 and NP_001107830.1
  • mouse PD-1 NM_0087998.2 and NP_032824.1
  • rat PD-1 NM_001106927.1 and NP_001100397.1
  • chicken PD-1 XM_422723.3 and XP_422723.2
  • PD-L1 proteins generally comprise a signal sequence, an IgV domain, and an IgC domain.
  • the sequence of human PD-L1 transcript variant 1 is the canonical sequence, all positional information described with respect to the remaining isoforms are determined from this sequence, and the sequences are available to the public at the GenBank database under NM_014143.3 and NP_054862.1.
  • the signal sequence is shown from about amino acid 1 to about amino acid 18, the IgV domain is shown from about amino acid 19 to about amino acid 134, the IgC domain is shown from about amino acid 135 to about amino acid 227, the transmembrane domain is shown from about amino acids 239 to about amino acid 259, and the cytoplasmic domain is shown from about amino acid 260 to about amino acid 290.
  • human PD-L1 transcript variant 2 can be found under NM_001267706.1 and NP_001254635.1 and the encoded protein lacks an alternate in-frame excon in the 5′ coding region compared to variant 1 (i.e., missing amino acid residues 17-130) so as to result in a shorter protein.
  • the sequences of human PD-L1 transcript variant 3 is provided herein and encodes a naturally occurring B7-4 soluble polypeptide, i.e., having a short hydrophilic domain and no transmembrane domain.
  • the signal sequence is shown from about amino acid 1 to about amino acid 18
  • the IgV domain is shown from about amino acid 19 to about amino acid 134
  • the IgC domain of SEQ ID NO:2 is shown from about amino acid 135 to about amino acid 227
  • the hydrophilic tail is shown from about amino acid 228 to about amino acid 245.
  • soluble PD-L1 isoform exists having the amino acid sequence shown herein.
  • This fourth PD-L1 isoform differs from that of the first PD-L1 isoform in that there is a K to D substitution at amino acid position 178 and amino acid residues 179-290 are deleted.
  • soluble PD-L1 isoform exists having the amino acid sequence of residues 1-227 encoded by transcript variant 1 and thereby only comprising a signal sequence, the IgV domain, and the IgC domain.
  • the soluble PD-L1 isoforms of the present invention do not contain the signal sequence as such a sequence is usually cleaved prior to secretion of the polypeptide from the cell.
  • the soluble PD-L1 isoforms of the presention invention consist of the IgV domain and the IgC domain (i.e., the extracellular portion of the full-length, membrane-bound PD-L1) and can further comprise heterologous sequences, such as Fe domains, protein tags, conjugated therapeutics, and the like.
  • Such soluble PD-L1 isoforms can be generated by alternative splicing in a number of ways well known to the skilled artisan involving the elimination of exons 4, 5, and 6 of full-length, membrane-bound PD-L1 cDNA.
  • Nucleic acid and polypeptide sequences of PD-L1 orthologs in organisms other than humans are well known and include, for example, monkey PD-L1 (NM 001083889.1 and NP_001077358.1), chimpanzee PD-L1 (XM_0011401705.2 and XP_001140705.1), mouse PD-L1 (NM 021893.3 and NP_068693.1), rat PD-L1 (NM_001191954.1 and NP_001178883.1), chicken PD-L1 (XM_424811.3 and XP_424811.3), cow PD-L1 (NM_001163412.1 and NP_001156884.1), and dog PD-L1 (XM_541302.3 and XP_541302.3).
  • Antibodies for the detection of PD-L1 and methods for making them are known in the art.
  • Novel agents and compositions of the present invention are provided herein and can be used for the diagnosis, prognosis, prevention, and treatment of cancer (e.g., head, neck, and/or lung cancers) and cancer subtypes thereof.
  • Such agents and compositions can detect and/or modulate, e.g., up- or down-regulate, expression and/or activity of gene products or fragments thereof encoded by biomarkers of the invention, including the biomarkers listed in Table 1 and the Examples
  • Exemplary agents include antibodies, small molecules, peptides, peptidomimetics, natural ligands, and derivatives of natural ligands, that can either bind and/or activate or inhibit protein biomarkers of the invention, including the biomarkers listed in Table 1 and the Examples, or fragments thereof, RNA interference, antisense, nucleic acid aptamers, etc. that can downregulate the expression and/or activity of the biomarkers of the invention, including the biomarkers listed in Table 1 and the Examples, or fragments thereof.
  • nucleic acid molecules that specifically hybridize with or encode one or more biomarkers listed in Table 1 and the Examples or biologically active portions thereof are presented.
  • nucleic acid molecule is intended to include DNA molecules (i.e., cDNA or genomic DNA) and RNA molecules (i.e., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs.
  • the nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.
  • An “isolated” nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid.
  • an “isolated” nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5′ and 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived.
  • the isolated nucleic acid molecules corresponding to the one or more biomarkers listed in Table 1 and the Examples can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (i.e., a head and neck or lung cancer cell).
  • an “isolated” nucleic acid molecule, such as a cDNA molecule can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.
  • a nucleic acid molecule of the present invention e.g., a nucleic acid molecule having the nucleotide sequence of one or more biomarkers listed in Table 1 and the Examples or a nucleotide sequence which is at least about 50%, preferably at least about 60%, more preferably at least about 70%, yet more preferably at least about 80%, still more preferably at least about 90%, and most preferably at least about 95% or more (e.g., about 98%) homologous to the nucleotide sequence of one or more biomarkers listed in Table 1 and the Examples or a portion thereof (i.e., 100, 200, 300, 400, 450, 500, or more nucleotides), can be isolated using standard molecular biology techniques and the sequence information provided herein.
  • a human cDNA can be isolated from a human cell line (from Stratagene, La Jolla, Calif., or Clontech, Palo Alto, Calif.) using all or portion of the nucleic acid molecule, or fragment thereof, as a hybridization probe and standard hybridization techniques (i.e., as described in Sambrook. J., Fritsh, E. F., and Maniatis. T. Molecular Cloning: A Laboratory Manual. 2 nd, ed., Cold Spring Harbor Laboratory , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N. Y. 1989).
  • nucleic acid molecule encompassing all or a portion of the nucleotide sequence of one or more biomarkers listed in Table 1 and the Examples or a nucleotide sequence which is at least about 50%, preferably at least about 60%, more preferably at least about 70%, yet more preferably at least about 80%, still more preferably at least about 90%, and most preferably at least about 95% or more homologous to the nucleotide sequence, or fragment thereof, can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon the sequence of the one or more biomarkers listed in Table 1 and the Examples, or fragment thereof, or the homologous nucleotide sequence.
  • mRNA can be isolated from muscle cells (i.e., by the guanidinium-thiocyanate extraction procedure of Chirgwin et al. (1979) Biochemistry 18: 5294-5299) and cDNA can be prepared using reverse transcriptase (i.e., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, Md.; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Russia, Fla.).
  • reverse transcriptase i.e., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, Md.; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Russia, Fla.
  • Synthetic oligonucleotide primers for PCR amplification can be designed according to well-known methods in the art.
  • a nucleic acid of the invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques.
  • the nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis.
  • oligonucleotides corresponding to the nucleotide sequence of one or more biomarkers listed in Table 1 and the Examples can be prepared by standard synthetic techniques, i.e., using an automated DNA synthesizer.
  • Probes based on the nucleotide sequences of one or more biomarkers listed in Table 1 and the Examples can be used to detect transcripts or genomic sequences encoding the same or homologous proteins.
  • the probe further comprises a label group attached thereto, i.e., the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor.
  • the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor.
  • Such probes can be used as a part of a diagnostic test kit for identifying cells or tissue which express one or more biomarkers listed in Table 1 and the Examples, such as by measuring a level of nucleic acid in a sample of cells from a subject, i.e., detecting mRNA levels of one or more biomarkers listed in Table 1 and the Examples.
  • Nucleic acid molecules encoding proteins corresponding to one or more biomarkers listed in Table 1 and the Examples from different species are also contemplated.
  • rat or monkey cDNA can be identified based on the nucleotide sequence of a human and/or mouse sequence and such sequences are well known in the art.
  • the nucleic acid molecule(s) of the invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of one or more biomarkers listed in Table 1 and the Examples, such that the protein or portion thereof modulates (e.g., enhance), one or more of the following biological activities: a) binding to the biomarker; b) modulating the copy number of the biomarker; c) modulating the expression level of the biomarker; and d) modulating the activity level of the biomarker.
  • the language “sufficiently homologous” refers to proteins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain as an amino acid residue in one or more biomarkers listed in Table 1 and the Examples, or fragment thereof) amino acid residues to an amino acid sequence of the biomarker, or fragment thereof, such that the protein or portion thereof modulates (e.g., enhance) one or more of the following biological activities: a) binding to the biomarker; b) modulating the copy number of the biomarker, c) modulating the expression level of the biomarker; and d) modulating the activity level of the biomarker.
  • a minimum number of identical or equivalent e.g., an amino acid residue which has a similar side chain as an amino acid residue in one or more biomarkers listed in Table 1 and the Examples, or fragment thereof
  • amino acid residues to an amino acid sequence of the biomarker, or fragment thereof such that the protein or portion thereof modulates (e.g
  • the protein is at least about 50%, preferably at least about 60%, more preferably at least about 70% 75%, 80%, 85%, 90%, 91%, 92% 93%, 94%, 95%, 96%, 97%, 98%, 99% or more homologous to the entire amino acid sequence of the biomarker, or a fragment thereof.
  • Portions of proteins encoded by nucleic acid molecules of the one or more biomarkers listed in Table 1 and the Examples are preferably biologically active portions of the protein.
  • biologically active portion of one or more biomarkers listed in Table 1 and the Examples is intended to include a portion, e.g., a domain/motif, that has one or more of the biological activities of the full-length protein.
  • Standard binding assays e.g., immunoprecipitations and yeast two-hybrid assays, as described herein, or functional assays, e.g., RNAi or overexpression experiments, can be performed to determine the ability of the protein or a biologically active fragment thereof to maintain a biological activity of the full-length protein.
  • the invention further encompasses nucleic acid molecules that differ from the nucleotide sequence of the one or more biomarkers listed in Table 1 and the Examples, or fragment thereof due to degeneracy of the genetic code and thus encode the same protein as that encoded by the nucleotide sequence, or fragment thereof.
  • an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence of one or more biomarkers listed in Table 1 and the Examples, or fragment thereof, or a protein having an amino acid sequence which is at least about 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more homologous to the amino acid sequence of the one or more biomarkers listed in Table 1 and the Examples, or fragment thereof.
  • a nucleic acid encoding a polypeptide consists of nucleic acid sequence encoding a portion of a full-length fragment of interest that is less than 195, 190, 185, 180, 175, 170, 165, 160, 155, 150, 145, 140, 135, 130, 125, 120, 115, 110, 105, 100, 95, 90, 85, 80, 75, or 70 amino acids in length.
  • DNA sequence polymorphisms that lead to changes in the amino acid sequences of the one or more biomarkers listed in Table 1 and the Examples may exist within a population (e.g., a mammalian and/or human population). Such genetic polymorphisms may exist among individuals within a population due to natural allelic variation.
  • the terms “gene” and “recombinant gene” refer to nucleic acid molecules comprising an open reading frame encoding one or more biomarkers listed in Table 1 and the Examples, preferably a mammalian, e.g., human, protein.
  • Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the one or more biomarkers listed in Table 1 and the Examples. Any and all such nucleotide variations and resulting amino acid polymorphisms in the one or more biomarkers listed in Table 1 and the Examples that are the result of natural allelic variation and that do not alter the functional activity of the one or more biomarkers listed in Table 1 and the Examples are intended to be within the scope of the invention. Moreover, nucleic acid molecules encoding one or more biomarkers listed in Table 1 and the Examples from other species.
  • allelic variants of the one or more biomarkers listed in Table 1 and the Examples sequence that may exist in the population the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequence, or fragment thereof, thereby leading to changes in the amino acid sequence of the encoded one or more biomarkers listed in Table 1 and the Examples, without altering the functional ability of the one or more biomarkers listed in Table 1 and the Examples.
  • nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues can be made in the sequence, or fragment thereof.
  • a “non-essential” amino acid residue is a residue that can be altered from the wild-type sequence of the one or more biomarkers listed in Table 1 and the Examples without altering the activity of the one or more biomarkers listed in Table 1 and the Examples, whereas an “essential” amino acid residue is required for the activity of the one or more biomarkers listed in Table 1 and the Examples.
  • Other amino acid residues e.g., those that are not conserved or only semi-conserved between mouse and human) may not be essential for activity and thus are likely to be amenable to alteration without altering the activity of the one or more biomarkers listed in Table 1 and the Examples.
  • sequence identity or homology refers to the sequence similarity between two polypeptide molecules or between two nucleic acid molecules. When a position in both of the two compared sequences is occupied by the same base or amino acid monomer subunit, e.g., if a position in each of two DNA molecules is occupied by adenine, then the molecules are homologous or sequence identical at that position.
  • the percent of homology or sequence identity between two sequences is a function of the number of matching or homologous identical positions shared by the two sequences divided by the number of positions compared ⁇ 100. For example, if 6 of 10, of the positions in two sequences are the same then the two sequences are 60% homologous or have 60% sequence identity.
  • the DNA sequences ATTGCC and TATGGC share 50% homology or sequence identity. Generally, a comparison is made when two sequences are aligned to give maximum homology. Unless otherwise specified “loop out regions”, e.g., those arising from, from deletions or insertions in one of the sequences are counted as mismatches.
  • the comparison of sequences and determination of percent homology between two sequences can be accomplished using a mathematical algorithm.
  • the alignment can be performed using the Clustal Method.
  • the percent identity between two amino acid sequences is determined using the Needleman and Wunsch ( J. Mol. Biol. (48):444-453 (1970)) algorithm which has been incorporated into the GAP program in the GCG software package (available online), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6.
  • the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available online), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6.
  • the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0) (available online), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.
  • An isolated nucleic acid molecule encoding a protein homologous to one or more biomarkers listed in Table 1 and the Examples, or fragment thereof, can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence, or fragment thereof, or a homologous nucleotide sequence such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain.
  • Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine).
  • basic side chains e.g., lysine, arginine, histidine
  • acidic side chains e.g.,
  • a predicted nonessential amino acid residue in one or more biomarkers listed in Table 1 and the Examples is preferably replaced with another amino acid residue from the same side chain family.
  • mutations can be introduced randomly along all or part of the coding sequence of the one or more biomarkers listed in Table 1 and the Examples, such as by saturation mutagenesis, and the resultant mutants can be screened for an activity described herein to identify mutants that retain desired activity.
  • the encoded protein can be expressed recombinantly according to well-known methods in the art and the activity of the protein can be determined using, for example, assays described herein.
  • the levels of one or more biomarkers listed in Table 1 and the Examples levels may be assessed by any of a wide variety of well-known methods for detecting expression of a transcribed molecule or protein.
  • Non-limiting examples of such methods include immunological methods for detection of proteins, protein purification methods, protein function or activity assays, nucleic acid hybridization methods, nucleic acid reverse transcription methods, and nucleic acid amplification methods.
  • the levels of one or more biomarkers listed in Table 1 and the Examples levels are ascertained by measuring gene transcript (e.g., mRNA), by a measure of the quantity of translated protein, or by a measure of gene product activity.
  • Gene transcript e.g., mRNA
  • Expression levels can be monitored in a variety of ways, including by detecting mRNA levels, protein levels, or protein activity, any of which can be measured using standard techniques. Detection can involve quantification of the level of gene expression (e.g., genomic DNA, cDNA, mRNA, protein, or enzyme activity), or, alternatively, can be a qualitative assessment of the level of gene expression, in particular in comparison with a control level. The type of level being detected will be clear from the context.
  • the mRNA expression level can be determined both by in situ and by in vitro formats in a biological sample using methods known in the art.
  • biological sample is intended to include tissues, cells, biological fluids and isolates thereof, isolated from a subject, as well as tissues, cells and fluids present within a subject.
  • Many expression detection methods use isolated RNA.
  • any RNA isolation technique that does not select against the isolation of mRNA can be utilized for the purification of RNA from cells (see, e.g., Ausubel et al., ed., Current Protocols in Molecular Biology , John Wiley & Sons, New York 1987-1999).
  • large numbers of tissue samples can readily be processed using techniques well known to those of skill in the art, such as, for example, the single-step RNA isolation process of Chomezynski (1989, U.S. Pat. No. 4,843,155).
  • the isolated mRNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or Northern analyses, polymerase chain reaction analyses and probe arrays.
  • One preferred diagnostic method for the detection of mRNA levels involves contacting the isolated mRNA with a nucleic acid molecule (probe) that can hybridize to the mRNA encoded by the gene being detected.
  • the nucleic acid probe can be, for example, a full-length cDNA, or a portion thereof, such as an oligonucleotide of at least 7, 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to a mRNA or genomic DNA encoding one or more biomarkers listed in Table 1 and the Examples.
  • Other suitable probes for use in the diagnostic assays of the invention are described herein. Hybridization of an mRNA with the probe indicates that one or more biomarkers listed in Table 1 and the Examples is being expressed.
  • the mRNA is immobilized on a solid surface and contacted with a probe, for example by running the isolated mRNA on an agarose gel and transferring the mRNA from the gel to a membrane, such as nitrocellulose.
  • the probe(s) are immobilized on a solid surface and the mRNA is contacted with the probe(s), for example, in a gene chip array, e.g., an AffymetrixTM gene chip array.
  • a gene chip array e.g., an AffymetrixTM gene chip array.
  • a skilled artisan can readily adapt known mRNA detection methods for use in detecting the level of the One or more biomarkers listed in Table 1 and the Examples mRNA expression levels.
  • An alternative method for determining mRNA expression level in a sample involves the process of nucleic acid amplification, e.g., by RT-PCR (the experimental embodiment set forth in Mullis, 1987, U.S. Pat. No. 4,683,202), ligase chain reaction (Barany, 1991 , Proc. Natl. Acad. Sci. USA, 88:189-193), self-sustained sequence replication (Guatelli et al., 1990 , Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh et al., 1989 , Proc. Natl. Acad. Sci.
  • RT-PCR the experimental embodiment set forth in Mullis, 1987, U.S. Pat. No. 4,683,202
  • ligase chain reaction Barany, 1991 , Proc. Natl. Acad. Sci. USA, 88:189-193
  • self-sustained sequence replication (Guatelli et al., 1990
  • amplification primers are defined as being a pair of nucleic acid molecules that can anneal to 5′ or 3′ regions of a gene (plus and minus strands, respectively, or vice-versa) and contain a short region in between.
  • amplification primers are from about 10 to 30 nucleotides in length and flank a region from about 50 to 200 nucleotides in length. Under appropriate conditions and with appropriate reagents, such primers permit the amplification of a nucleic acid molecule comprising the nucleotide sequence flanked by the primers.
  • mRNA does not need to be isolated from the cells prior to detection.
  • a cell or tissue sample is prepared/processed using known histological methods. The sample is then immobilized on a support, typically a glass slide, and then contacted with a probe that can hybridize to the One or more biomarkers listed in Table 1 and the Examples mRNA.
  • determinations may be based on the normalized expression level of one or more biomarkers listed in Table 1 and the Examples.
  • Expression levels are normalized by correcting the absolute expression level by comparing its expression to the expression of a non-biomarker gene, e.g., a housekeeping gene that is constitutively expressed. Suitable genes for normalization include housekeeping genes such as the actin gene, or epithelial cell-specific genes. This normalization allows the comparison of the expression level in one sample, e.g., a subject sample, to another sample, e.g., a normal sample, or between samples from different sources.
  • the level or activity of a protein corresponding to one or more biomarkers listed in Table 1 and the Examples can also be detected and/or quantified by detecting or quantifying the expressed polypeptide.
  • the polypeptide can be detected and quantified by any of a number of means well known to those of skill in the art.
  • analytic biochemical methods such as electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, and the like, or various immunological methods such as fluid or gel precipitin reactions, immunodiffusion (single or double), immunoelectrophoresis, radioimmunoassay (RIA), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, Western blotting, and the like.
  • analytic biochemical methods such as electrophoresis, capillary electrophoresis, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, and the like
  • immunological methods such as fluid or gel precipitin reactions, immunodiffusion (single or double), immunoelectrophoresis, radioimmunoassay (RIA), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, Western blotting, and
  • the present invention further provides soluble, purified and/or isolated polypeptide forms of one or more biomarkers listed in Table 1 and the Examples, or fragments thereof.
  • any and all attributes of the polypeptides described herein, such as percentage identities, polypeptide lengths, polypeptide fragments, biological activities, antibodies, etc. can be combined in any order or combination with respect to any biomarker listed in Table 1 and the Examples and combinations thereof
  • a polypeptide may comprise a full-length amino acid sequence corresponding to one or more biomarkers listed in Table 1 and the Examples or a full-length amino acid sequence with 1 to about 20 conservative amino acid substitutions.
  • An amino acid sequence of any described herein can also be at least 50, 55, 60, 65, 70, 75, 80, 85, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or 99.5% identical to the full-length sequence of one or more biomarkers listed in Table 1 and the Examples, which is either described herein, well known in the art, or a fragment thereof.
  • the present invention contemplates a composition comprising an isolated polypeptide corresponding to one or more biomarkers listed in Table 1 and the Examples polypeptide and less than about 25%, or alternatively 15%, or alternatively 5%, contaminating biological macromolecules or polypeptides.
  • the present invention further provides compositions related to producing, detecting, characterizing, or modulating the level or activity of such polypeptides, or fragment thereof, such as nucleic acids, vectors, host cells, and the like.
  • Such compositions may serve as compounds that modulate the expression and/or activity of one or more biomarkers listed in Table 1 and the Examples.
  • anti-PD-L1 antibodies that may bind specifically to PD-L1 or soluble PD-L1 can be used to reduce soluble PD-L1 (i.e., both forms of PD-L1 contain an extracellular domain typically targeted by antibodies) and thereby a) stop the titration of such therapeutic agents from binding to membrane-bound forms of PD-L1 and/or b) inhibit the inhibition of immunological responses promoted by the soluble forms of PD-L1.
  • An isolated polypeptide or a fragment thereof (or a nucleic acid encoding such a polypeptide) corresponding to one or more biomarkers of the invention, including the biomarkers listed in Table 1 and the Examples or fragments thereof, can be used as an immunogen to generate antibodies that bind to said immunogen, using standard techniques for polyclonal and monoclonal antibody preparation according to well-known methods in the art.
  • An antigenic peptide comprises at least 8 amino acid residues and encompasses an epitope present in the respective full length molecule such that an antibody raised against the peptide forms a specific immune complex with the respective full length molecule.
  • the antigenic peptide comprises at least 10 amino acid residues.
  • such epitopes can be specific for a given polypeptide molecule from one species, such as mouse or human (i.e., an antigenic peptide that spans a region of the polypeptide molecule that is not conserved across species is used as immunogen; such non conserved residues can be determined using an alignment such as that provided herein).
  • a polypeptide immunogen typically is used to prepare antibodies by immunizing a suitable subject (e.g., rabbit, goat, mouse or other mammal) with the immunogen.
  • An appropriate immunogenic preparation can contain, for example, a recombinantly expressed or chemically synthesized molecule or fragment thereof to which the immune response is to be generated.
  • the preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or similar immunostimulatory agent.
  • immunization of a suitable subject with an immunogenic preparation induces a polyclonal antibody response to the antigenic peptide contained therein.
  • Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a polypeptide immunogen.
  • the polypeptide antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide.
  • ELISA enzyme linked immunosorbent assay
  • the antibody directed against the antigen can be isolated from the mammal (e.g., from the blood) and further purified by well-known techniques, such as protein A chromatography, to obtain the IgG fraction.
  • antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique (originally described by Kohler and Milstein (1975) Nature 256:495-497) (see also Brown et al. (1981) J. Immunol. 127:539-46; Brown et al. (1980), J. Biol. Chem. 255:4980-83; Yeh et al. (1976) Proc. Natl. Acad. Sci. 76:2927-31; Yeh et al. (1982) Int. J.
  • an immortal cell line typically a myeloma
  • lymphocytes typically splenocytes
  • the culture supernatants of the resulting hybridoma cells are screened to identify a hybridoma producing a monoclonal antibody that binds to the polypeptide antigen, preferably specifically.
  • any of the many well-known protocols used for fusing lymphocytes and immortalized cell lines can be applied for the purpose of generating a monoclonal antibody against one or more biomarkers of the invention, including the biomarkers listed in Table 1 and the Examples, or a fragment thereof (see, e.g., Galfre, G. et al. (1977) Nature 266:550-52; Gefter et al. (1977) supra: Lerner (1981) supra; Kenneth (1980) supra).
  • the immortal cell line e.g., a myeloma cell line
  • the immortal cell line is derived from the same mammalian species as the lymphocytes.
  • murine hybridomas can be made by fusing lymphocytes from a mouse immunized with an immunogenic preparation of the present invention with an immortalized mouse cell line.
  • Preferred immortal cell lines are mouse myeloma cell lines that are sensitive to culture medium containing hypoxanthine, aminopterin and thymidine (“HAT medium”).
  • HAT medium hypoxanthine, aminopterin and thymidine
  • Any of a number of myeloma cell lines can be used as a fusion partner according to standard techniques, e.g., the P3-NS1/1-Ag4-1, P3-x63-Ag8.653 or Sp2/O-Ag14 myeloma lines. These myeloma lines are available from the American Type Culture Collection (ATCC), Rockville, Md.
  • ATCC American Type Culture Collection
  • HAT-sensitive mouse myeloma cells are fused to mouse splenocytes using polyethylene glycol (“PEG”).
  • PEG polyethylene glycol
  • Hybridoma cells resulting from the fusion are then selected using HAT medium, which kills unfused and unproductively fused myeloma cells (unfused splenocytes die after several days because they are not transformed).
  • Hybridoma cells producing a monoclonal antibody of the invention are detected by screening the hybridoma culture supernatants for antibodies that bind a given polypeptide, e.g., using a standard ELISA assay.
  • a monoclonal specific for one of the above described polypeptides can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the appropriate polypeptide to thereby isolate immunoglobulin library members that bind the polypeptide.
  • Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System , Catalog No. 27-9400-01; and the Stratagene SurfZAPTM Phage Display Kit , Catalog No. 240612).
  • examples of methods and reagents particularly amenable for use in generating and screening an antibody display library can be found in, for example, Ladner et al. U.S. Pat. No. 5,223,409; Kang et al. International Publication No. WO 92/18619; Dower et al. International Publication No. WO 91/17271; Winter et al. International Publication WO 92/20791; Markland et al. International Publication No. WO 92/15679; Breitling et al. International Publication WO 93/01288; McCafferty et al. International Publication No. WO 92/01047; Garrard et al. International Publication No.
  • recombinant polypeptide antibodies such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention.
  • chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in Robinson et al. International Patent Publication PCT/US86/02269; Akira et al. European Patent Application 184.187; Taniguchi, M. European Patent Application 171,496; Morrison et al. European Patent Application 173,494; Neuberger et al. PCT Application WO 86/01533; Cabilly et al. U.S. Pat.
  • humanized antibodies can be made according to standard protocols such as those disclosed in U.S. Pat. No. 5,565,332.
  • antibody chains or specific binding pair members can be produced by recombination between vectors comprising nucleic acid molecules encoding a fusion of a polypeptide chain of a specific binding pair member and a component of a replicable generic display package and vectors containing nucleic acid molecules encoding a second polypeptide chain of a single binding pair member using techniques known in the art, e.g., as described in U.S. Pat. Nos. 5,565,332, 5,871,907, or 5,733,743.
  • Fully human antibodies could be made against biomarkers of the invention, including the biomarkers listed in Table 1 and the Examples, or fragments thereof.
  • Fully human antibodies can be made in mice that are transgenic for human immunoglobulin genes, e.g., according to Hogan, et al., “Manipulating the Mouse Embryo: A Laboratory Manuel,” Cold Spring Harbor Laboratory. Briefly, transgenic mice are immunized with purified immunogen. Spleen cells are harvested and fused to myeloma cells to produce hybridomas. Hybridomas are selected based on their ability to produce antibodies which bind to the immunogen. Fully human antibodies would reduce the immunogenicity of such antibodies in a human.
  • an antibody for use in the instant invention is a bispecific antibody.
  • a bispecific antibody has binding sites for two different antigens within a single antibody polypeptide. Antigen binding may be simultaneous or sequential.
  • Triomas and hybrid hybridomas are two examples of cell lines that can secrete bispecific antibodies. Examples of bispecific antibodies produced by a hybrid hybridoma or a trioma are disclosed in U.S. Pat. No. 4,474,893. Bispecific antibodies have been constructed by chemical means (Staerz et al. (1985) Nature 314:628, and Perez et al. (1985) Nature 316:354) and hybridoma technology (Staerz and Bevan (1986) Proc. Natl. Acad. Sci.
  • bispecific antibodies are also described in U.S. Pat. No. 5,959,084. Fragments of bispecific antibodies are described in U.S. Pat. No. 5,798,229.
  • Bispecific agents can also be generated by making heterohybridomas by fusing hybridomas or other cells making different antibodies, followed by identification of clones producing and co-assembling both antibodies. They can also be generated by chemical or genetic conjugation of complete immunoglobulin chains or portions thereof such as Fab and Fv sequences.
  • the antibody component can bind to a polypeptide or a fragment thereof of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof.
  • the bispecific antibody could specifically bind to both a polypeptide or a fragment thereof and its natural binding partner(s) or a fragment(s) thereof.
  • peptides or peptide mimetics can be used to antagonize or promote the activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment(s) thereof.
  • variants of one or more biomarkers listed in Table 1 and the Examples which function as a modulating agent for the respective full length protein can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, for antagonist activity.
  • a variegated library of variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library.
  • a variegated library of variants can be produced, for instance, by enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential polypeptide sequences is expressible as individual polypeptides containing the set of polypeptide sequences therein.
  • methods which can be used to produce libraries of polypeptide variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector.
  • degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential polypeptide sequences.
  • Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang. S. A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323, Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477.
  • libraries of fragments of a polypeptide coding sequence can be used to generate a variegated population of polypeptide fragments for screening and subsequent selection of variants of a given polypeptide.
  • a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a polypeptide coding sequence with a nuclease under conditions wherein nicking occurs only about once per polypeptide, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector.
  • an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the polypeptide.
  • REM Recursive ensemble mutagenesis
  • a technique which enhances the frequency of functional mutants in the libraries can be used in combination with the screening assays to identify variants of interest (Arkin and Youvan (1992) Proc. Natl. Acad. Sci. USA 89:7811-7815; Delagrave et al. (1993) Protein Eng. 6(3):327-331).
  • cell based assays can be exploited to analyze a variegated polypeptide library.
  • a library of expression vectors can be transfected into a cell line which ordinarily synthesizes one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof.
  • transfected cells are then cultured such that the full length polypeptide and a particular mutant polypeptide are produced and the effect of expression of the mutant on the full length polypeptide activity in cell supernatants can be detected, e.g., by any of a number of functional assays.
  • Plasmid DNA can then be recovered from the cells which score for inhibition, or alternatively, potentiation of full length polypeptide activity, and the individual clones further characterized.
  • Systematic substitution of one or more amino acids of a polypeptide amino acid sequence with a D-amino acid of the same type can be used to generate more stable peptides.
  • constrained peptides comprising a polypeptide amino acid sequence of interest or a substantially identical sequence variation can be generated by methods known in the art (Rizo and Gierasch (1992) Annu. Rev. Biochem. 61:387, incorporated herein by reference); for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.
  • polypeptides corresponding peptide sequences and sequence variants thereof.
  • Such polypeptides can be produced in prokaryotic or eukaryotic host cells by expression of polynucleotides encoding the peptide sequence, frequently as part of a larger polypeptide.
  • peptides can be synthesized by chemical methods. Methods for expression of heterologous proteins in recombinant hosts, chemical synthesis of polypeptides, and in vitro translation are well known in the art and are described further in Maniatis et al.
  • Peptides can be produced, typically by direct chemical synthesis. Peptides can be produced as modified peptides, with nonpeptide moieties attached by covalent linkage to the N-terminus and/or C-terminus. In certain preferred embodiments, either the carboxy-terminus or the amino-terminus, or both, are chemically modified. The most common modifications of the terminal amino and carboxyl groups are acetylation and amidation, respectively. Amino-terminal modifications such as acylation (e.g., acetylation) or alkylation (e.g., methylation) and carboxy-terminal-modifications such as amidation, as well as other terminal modifications, including cyclization, can be incorporated into various embodiments of the invention.
  • acylation e.g., acetylation
  • alkylation e.g., methylation
  • carboxy-terminal-modifications such as amidation, as well as other terminal modifications, including cyclization
  • Certain amino-terminal and/or carboxy-terminal modifications and/or peptide extensions to the core sequence can provide advantageous physical, chemical, biochemical, and pharmacological properties, such as: enhanced stability, increased potency and/or efficacy, resistance to serum proteases, desirable pharmacokinetic properties, and others.
  • Peptides disclosed herein can be used therapeutically to treat disease, e.g., by altering costimulation in a patient.
  • Peptidomimetics (Fauchere, J. (1986) Adv. Drug Res. 15:29; Veber and Freidinger (1985) TINS p. 392; and Evans et al. (1987) J. Med. Chem. 30:1229, which are incorporated herein by reference) are usually developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to therapeutically useful peptides can be used to produce an equivalent therapeutic or prophylactic effect.
  • peptidomimetics are structurally similar to a paradigm polypeptide (i.e., a polypeptide that has a biological or pharmacological activity), but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: —CH2NH—, —CH2S—, —CH2-CH2-, —CH ⁇ CH— (cis and trans), —COCH2-, —CH(OH)CH2-, and —CH2SO—, by methods known in the art and further described in the following references: Spatola, A. F. in “ Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins” Weinstein, B., ed., Marcel Dekker, New York, p.
  • a particularly preferred non-peptide linkage is —CH2NH—.
  • Such peptide mimetics may have significant advantages over polypeptide embodiments, including, for example: more economical production, greater chemical stability, enhanced pharmacological properties (half-life, absorption, potency, efficacy, etc.), altered specificity (e.g., a broad-spectrum of biological activities), reduced antigenicity, and others.
  • Labeling of peptidomimetics usually involves covalent attachment of one or more labels, directly or through a spacer (e.g., an amide group), to non-interfering position(s) on the peptidomimetic that are predicted by quantitative structure-activity data and/or molecular modeling.
  • Such non-interfering positions generally are positions that do not form direct contacts with the macropolypeptides(s) to which the peptidomimetic binds to produce the therapeutic effect.
  • Derivitization (e.g., labeling) of peptidomimetics should not substantially interfere with the desired biological or pharmacological activity of the peptidomimetic.
  • small molecules which can modulate (either enhance or inhibit) interactions, e.g., between biomarkers listed in Table 1 and the Examples and their natural binding partners, or inhibit activity.
  • the small molecules of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the ‘one-bead one-compound’ library method; and synthetic library methods using affinity chromatography selection. (Lam, K. S. (1997) Anticancer Drug Des. 12:145).
  • Compounds can be screened in cell based or non-cell based assays. Compounds can be screened in pools (e.g., multiple compounds in each testing sample) or as individual compounds.
  • the invention also relates to chimeric or fusion proteins of the biomarkers of the invention, including the biomarkers listed in Table 1 and the Examples, or fragments thereof.
  • a “chimeric protein” or “fusion protein” comprises one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof, operatively linked to another polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the respective biomarker.
  • the fusion protein comprises at least one biologically active portion of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or fragments thereof.
  • the term “operatively linked” is intended to indicate that the biomarker sequences and the non-biomarker sequences are fused in-frame to each other in such a way as to preserve functions exhibited when expressed independently of the fusion.
  • the “another” sequences can be fused to the N-terminus or C-terminus of the biomarker sequences, respectively.
  • Such a fusion protein can be produced by recombinant expression of a nucleotide sequence encoding the first peptide and a nucleotide sequence encoding the second peptide.
  • the second peptide may optionally correspond to a moiety that alters the solubility, affinity, stability or valency of the first peptide, for example, an immunoglobulin constant region.
  • the first peptide consists of a portion of a biologically active molecule (e.g., the extracellular portion of the polypeptide or the ligand binding portion).
  • the second peptide can include an immunoglobulin constant region, for example, a human C ⁇ 1 domain or C ⁇ 4 domain (e.g., the hinge, CH2 and CH3 regions of human IgC ⁇ 1, or human IgC ⁇ 4, see e.g., Capon et al. U.S. Pat. Nos. 5,116,964; 5,580,756; 5,844,095 and the like, incorporated herein by reference).
  • Such constant regions may retain regions which mediate effector function (e.g., Fe receptor binding) or may be altered to reduce effector function.
  • a resulting fusion protein may have altered solubility, binding affinity, stability and/or valency (i.e., the number of binding sites available per polypeptide) as compared to the independently expressed first peptide, and may increase the efficiency of protein purification.
  • Fusion proteins and peptides produced by recombinant techniques can be secreted and isolated from a mixture of cells and medium containing the protein or peptide. Alternatively, the protein or peptide can be retained cytoplasmically and the cells harvested, lysed and the protein isolated.
  • a cell culture typically includes host cells, media and other byproducts. Suitable media for cell culture are well known in the art. Protein and peptides can be isolated from cell culture media, host cells, or both using techniques known in the art for purifying proteins and peptides. Techniques for transfecting host cells and purifying proteins and peptides are known in the art.
  • a fusion protein of the invention is produced by standard recombinant DNA techniques.
  • DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation.
  • the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers.
  • PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology , eds. Ausubel et al. John Wiley & Sons: 1992).
  • the fusion protein contains a heterologous signal sequence at its N-terminus.
  • expression and/or secretion of a polypeptide can be increased through use of a heterologous signal sequence.
  • the fusion proteins of the invention can be used as immunogens to produce antibodies in a subject. Such antibodies may be used to purify the respective natural polypeptidcs from which the fusion proteins were generated, or in screening assays to identify polypeptides which inhibit the interactions between one or more biomarkers polypeptide or a fragment thereof and its natural binding partner(s) or a fragment(s) thereof.
  • compositions comprising one or more nucleic acids comprising or capable of expressing at least 1, 2, 3, 4, 5, 10, 20 or more small nucleic acids or antisense oligonucleotides or derivatives thereof, wherein said small nucleic acids or antisense oligonucleotides or derivatives thereof in a cell specifically hybridize (e.g., bind) under cellular conditions, with cellular nucleic acids (e.g., small non-coding RNAS such as miRNAs, pre-miRNAs, pri-miRNAs, miRNA*, anti-miRNA, a miRNA binding site, a variant and/or functional variant thereof, cellular mRNAs or a fragments thereof).
  • small non-coding RNAS such as miRNAs, pre-miRNAs, pri-miRNAs, miRNA*, anti-miRNA, a miRNA binding site, a variant and/or functional variant thereof, cellular mRNAs or a fragments thereof.
  • expression of the small nucleic acids or antisense oligonucleotides or derivatives thereof in a cell can enhance or upregulate one or more biological activities associated with the corresponding wild-type, naturally occurring, or synthetic small nucleic acids.
  • expression of the small nucleic acids or antisense oligonucleotides or derivatives thereof in a cell can inhibit expression or biological activity of cellular nucleic acids and/or proteins, e.g., by inhibiting transcription, translation and/or small nucleic acid processing of, for example, one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or fragment(s) thereof.
  • the small nucleic acids or antisense oligonucleotides or derivatives thereof are small RNAs (e.g., microRNAs) or complements of small RNAs.
  • the small nucleic acids or antisense oligonucleotides or derivatives thereof can be single or double stranded and are at least six nucleotides in length and are less than about 1000, 900, 800, 700, 600, 500, 400, 300, 200, 100, 50, 40, 30, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, or 10 nucleotides in length.
  • a composition may comprise a library of nucleic acids comprising or capable of expressing small nucleic acids or antisense oligonucleotides or derivatives thereof, or pools of said small nucleic acids or antisense oligonucleotides or derivatives thereof.
  • a pool of nucleic acids may comprise about 2-5, 5-10, 10-20, 10-30 or more nucleic acids comprising or capable of expressing small nucleic acids or antisense oligonucleotides or derivatives thereof.
  • binding may be by conventional base pair complementarity, or, for example, in the case of binding to DNA duplexes, through specific interactions in the major groove of the double helix.
  • antisense refers to the range of techniques generally employed in the art, and includes any process that relies on specific binding to oligonucleotide sequences.
  • the term “functional variant” of a miRNA sequence refers to an oligonucleotide sequence that varies from the natural miRNA sequence, but retains one or more functional characteristics of the miRNA (e.g., cancer cell proliferation inhibition, induction of cancer cell apoptosis, enhancement of cancer cell susceptibility to chemotherapeutic agents, specific miRNA target inhibition).
  • a functional variant of a miRNA sequence retains all of the functional characteristics of the miRNA.
  • a functional variant of a miRNA has a nucleobase sequence that is a least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the miRNA or precursor thereof over a region of about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60), 65, 70, 75, 80, 85, 90, 95, 100 or more nucleobases, or that the functional variant hybridizes to the complement of the miRNA or precursor thereof under stringent hybridization conditions. Accordingly, in certain embodiments the nucleobase sequence of a functional variant is capable of hybridizing to one or more target sequences of the miRNA.
  • miRNAs and their corresponding stem-loop sequences described herein may be found in miRBase, an online searchable database of miRNA sequences and annotation, found on the world wide web at microrna.sanger.ac.uk.
  • Entries in the miRBase Sequence database represent a predicted hairpin portion of a miRNA transcript (the stem-loop), with information on the location and sequence of the mature miRNA sequence.
  • the miRNA stem-loop sequences in the database are not strictly precursor miRNAs (pre-miRNAs), and may in some instances include the pre-miRNA and some flanking sequence from the presumed primary transcript.
  • the miRNA nucleobase sequences described herein encompass any version of the miRNA, including the sequences described in Release 10.0 of the miRBase sequence database and sequences described in any earlier Release of the miRBase sequence database.
  • a sequence database release may result in the re-naming of certain miRNAs.
  • a sequence database release may result in a variation of a mature miRNA sequence.
  • miRNA sequences of the invention may be associated with a second RNA sequence that may be located on the same RNA molecule or on a separate RNA molecule as the miRNA sequence.
  • the miRNA sequence may be referred to as the active strand
  • the second RNA sequence which is at least partially complementary to the miRNA sequence
  • the active and complementary strands are hybridized to create a double-stranded RNA that is similar to a naturally occurring miRNA precursor.
  • the activity of a miRNA may be optimized by maximizing uptake of the active strand and minimizing uptake of the complementary strand by the miRNA protein complex that regulates gene translation. This can be done through modification and/or design of the complementary strand.
  • the complementary strand is modified so that a chemical group other than a phosphate or hydroxyl at its 5′ terminus.
  • the presence of the 5′ modification apparently eliminates uptake of the complementary strand and subsequently favors uptake of the active strand by the miRNA protein complex.
  • the 5′ modification can be any of a variety of molecules known in the art, including NH 2 , NHCOCH 3 , and biotin.
  • the uptake of the complementary strand by the miRNA pathway is reduced by incorporating nucleotides with sugar modifications in the first 2-6 nucleotides of the complementary strand. It should be noted that such sugar modifications can be combined with the 5′ terminal modifications described above to further enhance miRNA activities.
  • the complementary strand is designed so that nucleotides in the 3′ end of the complementary strand are not complementary to the active strand. This results in double-strand hybrid RNAs that are stable at the 3′ end of the active strand but relatively unstable at the 5′ end of the active strand. This difference in stability enhances the uptake of the active strand by the miRNA pathway, while reducing uptake of the complementary strand, thereby enhancing miRNA activity.
  • Small nucleic acid and/or antisense constructs of the methods and compositions presented herein can be delivered, for example, as an expression plasmid which, when transcribed in the cell, produces RNA which is complementary to at least a unique portion of cellular nucleic acids (e.g., small RNAs, mRNA, and/or genomic DNA).
  • the small nucleic acid molecules can produce RNA which encodes mRNA, miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof.
  • plasmids suitable for expressing the miRNAs selection of plasmids suitable for expressing the miRNAs, methods for inserting nucleic acid sequences into the plasmid, and methods of delivering the recombinant plasmid to the cells of interest are within the skill in the art. See, for example, Zeng et al. (2002), Molecular Cell 9:1327-1333; Tuschl (2002), Nat. Biotechnol, 20:446-448; Brummelkamp et al. (2002), Science 296:550-553; Miyagishi et al. (2002), Nat. Biotechnol. 20:497-500; Paddison et al. (2002), Genes Dev. 16:948-958; Lee et al. (2002), Nat. Biotechnol. 20:500-505; and Paul et al. (2002), Nat. Biotechnol. 20:505-508, the entire disclosures of which are herein incorporated by reference.
  • small nucleic acids and/or antisense constructs are oligonucleotide probes that are generated ex vivo and which, when introduced into the cell, results in hybridization with cellular nucleic acids.
  • Such oligonucleotide probes are preferably modified oligonucleotides that are resistant to endogenous nucleases, e.g., exonucleases and/or endonucleases, and are therefore stable in vivo.
  • Exemplary nucleic acid molecules for use as small nucleic acids and/or antisense oligonucleotides are phosphoramidate, phosphothioate and methylphosphonate analogs of DNA (see also U.S. Pat. Nos.
  • Antisense approaches may involve the design of oligonucleotides (either DNA or RNA) that are complementary to cellular nucleic acids (e.g., complementary to biomarkers listed in Table 1 and the Examples). Absolute complementarity is not required. In the case of double-stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the longer the hybridizing nucleic acid, the more base mismatches with a nucleic acid (e.g., RNA) it may contain and still form a stable duplex (or triplex, as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.
  • Oligonucleotides that are complementary to the 5′ end of the mRNA should work most efficiently at inhibiting translation.
  • sequences complementary to the 3′ untranslated sequences of mRNAs have recently been shown to be effective at inhibiting translation of mRNAs as well (Wagner, R. (1994) Nature 372:333). Therefore, oligonucleotides complementary to either the 5′ or 3′ untranslated, non-coding regions of genes could be used in an antisense approach to inhibit translation of endogenous mRNAs.
  • Oligonucleotides complementary to the 5′ untranslated region of the mRNA may include the complement of the AUG start codon.
  • Antisense oligonucleotides complementary to mRNA coding regions are less efficient inhibitors of translation but could also be used in accordance with the methods and compositions presented herein. Whether designed to hybridize to the 5′,3′ or coding region of cellular mRNAs, small nucleic acids and/or antisense nucleic acids should be at least six nucleotides in length, and can be less than about 1000, 900), 800, 700, 600, 500, 400, 300, 200, 100, 50, 40, 30, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, or 10 nucleotides in length.
  • in vitro studies are first performed to quantitate the ability of the antisense oligonucleotide to inhibit gene expression.
  • these studies utilize controls that distinguish between antisense gene inhibition and nonspecific biological effects of oligonucleotides.
  • these studies compare levels of the target nucleic acid or protein with that of an internal control nucleic acid or protein. Additionally, it is envisioned that results obtained using the antisense oligonucleotide are compared with those obtained using a control oligonucleotide.
  • control oligonucleotide is of approximately the same length as the test oligonucleotide and that the nucleotide sequence of the oligonucleotide differs from the antisense sequence no more than is necessary to prevent specific hybridization to the target sequence.
  • Small nucleic acids and/or antisense oligonucleotides can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded.
  • Small nucleic acids and/or antisense oligonucleotides can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc., and may include other appended groups such as peptides (e.g., for targeting host cell receptors), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al (1989) Proc. Natl. Acad. Sci. U.S.A.
  • small nucleic acids and/or antisense oligonucleotides may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.
  • Small nucleic acids and/or antisense oligonucleotides may comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxytiethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil,
  • Small nucleic acids and/or antisense oligonucleotides may also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.
  • a compound comprises an oligonucleotide (e.g., a miRNA or miRNA encoding oligonucleotide) conjugated to one or more moieties which enhance the activity, cellular distribution or cellular uptake of the resulting oligonucleotide.
  • the moiety is a cholesterol moiety (e.g., antagomirs) or a lipid moiety or liposome conjugate. Additional moieties for conjugation include carbohydrates, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes.
  • a conjugate group is attached directly to the oligonucleotide.
  • a conjugate group is attached to the oligonucleotide by a linking moiety selected from amino, hydroxyl, carboxylic acid, thiol, unsaturations (e.g., double or triple bonds), 8-amino-3,6-dioxaoctanoic acid (ADO), succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), 6-aminohexanoic acid (AHEX or AHA), substituted C1-C10 alkyl, substituted or unsubstituted C2-C10 alkenyl, and substituted or unsubstituted C2-C10 alkynyl.
  • a linking moiety selected from amino, hydroxyl, carboxylic acid, thiol, unsaturations (e.g., double or triple bonds), 8-amino-3,6-dioxaoc
  • a substituent group is selected from hydroxyl, amino, alkoxy, carboxy, benzyl, phenyl, nitro, thiol, thioalkoxy, halogen, alkyl, aryl, alkenyl and alkynyl.
  • the compound comprises the oligonucleotide having one or more stabilizing groups that are attached to one or both termini of the oligonucleotide to enhance properties such as, for example, nuclease stability.
  • stabilizing groups include cap structures. These terminal modifications protect the oligonucleotide from exonuclease degradation, and can help in delivery and/or localization within a cell.
  • the cap can be present at the 5′-terminus (5′-cap), or at the 3′-terminus (3′-cap), or can be present on both termini.
  • Cap structures include, for example, inverted deoxy abasic caps.
  • Suitable cap structures include a 4′,5′-methylene nucleotide, a 1-(beta-D-erythrofuranosyl) nucleotide, a 4′-thio nucleotide, a carbocyclic nucleotide, a 1,5-anhydrohexitol nucleotide, an L-nucleotide, an alpha-nucleotide, a modified base nucleotide, a phosphorodithioate linkage, a threo-pentofuranosyl nucleotide, an acyclic 3′,4′-seco nucleotide, an acyclic 3,4-dihydroxybutyl nucleotide, an acyclic 3,5-dihydroxypentyl nucleotide, a 3′-3′-inverted nucleotide moiety, a 3′-3′-inverted abasic moiety, a 3′-2′-inverted nucle
  • Small nucleic acids and/or antisense oligonucleotides can also contain a neutral peptide-like backbone.
  • Such molecules are termed peptide nucleic acid (PNA)-oligomers and are described, e.g., in Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. U.S.A. 93:14670 and in Eglom et al. (1993) Nature 365:566.
  • PNA peptide nucleic acid
  • One advantage of PNA oligomers is their capability to bind to complementary DNA essentially independently from the ionic strength of the medium due to the neutral backbone of the DNA.
  • small nucleic acids and/or antisense oligonucleotides comprises at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.
  • small nucleic acids and/or antisense oligonucleotides are ⁇ -anomeric oligonucleotides.
  • An ⁇ -anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual b-units, the strands run parallel to each other (Gautier et al. (1987) Nucl. Acids Res. 15:6625-6641).
  • the oligonucleotide is a 2′-0-methylribonucleotide (Inoue et al. (1987) Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).
  • Small nucleic acids and/or antisense oligonucleotides of the methods and compositions presented herein may be synthesized by standard methods known in the art, e.g., by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.).
  • an automated DNA synthesizer such as are commercially available from Biosearch, Applied Biosystems, etc.
  • phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. (1988) Nucl. Acids Res. 16:3209
  • methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al. (1988) Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.
  • an isolated miRNA can be chemically synthesized or recombinantly produced using methods known in the art.
  • miRNA are chemically synthesized using appropriately protected ribonucleoside phosphoramidites and a conventional DNA/RNA synthesizer.
  • RNA molecules or synthesis reagents include, e.g., Proligo (Hamburg, Germany), Dharmacon Research (Lafayette, Colo., USA), Pierce Chemical (part of Perbio Science, Rockford, Ill., USA), Glen Research (Sterling, Va., USA), ChemGenes (Ashland, Mass., USA), Cruachem (Glasgow, UK), and Exiqon (Vedbaek, Denmark).
  • Small nucleic acids and/or antisense oligonucleotides can be delivered to cells in vivo.
  • a number of methods have been developed for delivering small nucleic acids and/or antisense oligonucleotides DNA or RNA to cells, e.g., antisense molecules can be injected directly into the tissue site, or modified antisense molecules, designed to target the desired cells (e.g., antisense linked to peptides or antibodies that specifically bind receptors or antigens expressed on the target cell surface) can be administered systematically.
  • small nucleic acids and/or antisense oligonucleotides may comprise or be generated from double stranded small interfering RNAs (siRNAs), in which sequences fully complementary to cellular nucleic acids (e.g., mRNAs) sequences mediate degradation or in which sequences incompletely complementary to cellular nucleic acids (e.g., mRNAs) mediate translational repression when expressed within cells.
  • siRNAs double stranded small interfering RNAs
  • double stranded siRNAs can be processed into single stranded antisense RNAs that bind single stranded cellular RNAs (e.g., microRNAs) and inhibit their expression.
  • RNA interference is the process of sequence-specific, post-transcriptional gene silencing in animals and plants, initiated by double-stranded RNA (dsRNA) that is homologous in sequence to the silenced gene, in vivo, long dsRNA is cleaved by ribonuclease III to generate 21- and 22-nucleotide siRNAs. It has been shown that 21-nucleotide siRNA duplexes specifically suppress expression of endogenous and heterologous genes in different mammalian cell lines, including human embryonic kidney (293) and HeLa cells (Elbashir et al. (2001) Nature 411:494-498).
  • RNAs having a length of about 15 to 30 nucleotides or of about 18 to 21 nucleotides or of about 19 to 21 nucleotides.
  • a vector encoding for such siRNAs or short hairpin RNAs (shRNAs) that are metabolized into siRNAs can be introduced into a target cell (see, e.g., McManus et al. (2002) RNA 8:842; Xia et al. (2002) Nature Biotechnology 20:1006; and Brummelkamp et al. (2002) Science 296:550).
  • Vectors that can be used are commercially available, e.g., from OligoEngine under the name pSuper RNAi SystemTM.
  • Ribozyme molecules designed to catalytically cleave cellular mRNA transcripts can also be used to prevent translation of cellular mRNAs and expression of cellular polypeptides, or both (See, e.g., PCT International Publication WO90/11364, published Oct. 4, 1990; Sarver et al. (1990) Science 247:1222-1225 and U.S. Pat. No. 5,093,246). While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy cellular mRNAs, the use of hammerhead ribozymes is preferred. Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA.
  • the target mRNA have the following sequence of two bases: 5′-UG-3′.
  • the construction and production of hammerhead ribozymes is well known in the art and is described more fully in Haseloff and Gerlach (1988) Nature 334:585-591.
  • the ribozyme may be engineered so that the cleavage recognition site is located near the 5′ end of cellular mRNAs; i.e. to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.
  • RNA endoribonucleases such as the one which occurs naturally in Tetrahymena thermophila (known as the IVS, or L-19 IVS RNA) and which has been extensively described by Thomas Cech and collaborators (Zaug, et al. (1984) Science 224:574-578; Zaug, et al. (1986) Science 231:470-475; Zaug, et al. (1986) Nature 324:429-433; published International patent application No. WO88/04300 by University Patents Inc.; Been, et al. (1986) Cell 47:207-216).
  • Cech-type ribozymes such as the one which occurs naturally in Tetrahymena thermophila (known as the IVS, or L-19 IVS RNA) and which has been extensively described by Thomas Cech and collaborators (Zaug, et al. (1984) Science 224:574-578; Zaug, et al. (1986) Science 231:470-475; Zaug,
  • the Cech-type ribozymes have an eight base pair active site which hybridizes to a target RNA sequence whereafter cleavage of the target RNA takes place.
  • the methods and compositions presented herein encompasses those Cech-type ribozymes which target eight base-pair active site sequences that are present in cellular genes.
  • the ribozymes can be composed of modified oligonucleotides (e.g., for improved stability, targeting, etc.).
  • a preferred method of delivery involves using a DNA construct “encoding” the ribozyme under the control of a strong constitutive pol III or pol II promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous cellular messages and inhibit translation. Because ribozymes unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.
  • Nucleic acid molecules to be used in triple helix formation for the inhibition of transcription of cellular genes are preferably single stranded and composed of deoxyribonucleotides.
  • the base composition of these oligonucleotides should promote triple helix formation via Hoogsteen base pairing rules, which generally require sizable stretches of either purines or pyrimidines to be present on one strand of a duplex.
  • Nucleotide sequences may be pyrimidine-based, which will result in TAT and CGC triplets across the three associated strands of the resulting triple helix.
  • the pyrimidine-rich molecules provide base complementarity to a purine-rich region of a single strand of the duplex in a parallel orientation to that strand.
  • nucleic acid molecules may be chosen that are purine-rich, for example, containing a stretch of G residues. These molecules will form a triple helix with a DNA duplex that is rich in GC pairs, in which the majority of the purine residues are located on a single strand of the targeted duplex, resulting in CGC triplets across the three strands in the triplex.
  • the potential sequences that can be targeted for triple helix formation may be increased by creating a so called “switchback” nucleic acid molecule.
  • Switchback molecules are synthesized in an alternating 5′-3′, 3′-5′ manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizable stretch of either purines or pyrimidines to be present on one strand of a duplex.
  • Small nucleic acids e.g., miRNAs, pre-miRNAs, pri-miRNAs, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof
  • antisense oligonucleotides, ribozymes, and triple helix molecules of the methods and compositions presented herein may be prepared by any method known in the art for the synthesis of DNA and RNA molecules. These include techniques for chemically synthesizing oligodeoxyribonucleotides and oligoribonucleotides well known in the art such as for example solid phase phosphoramidite chemical synthesis.
  • RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding the antisense RNA molecule.
  • DNA sequences may be incorporated into a wide variety of vectors which incorporate suitable RNA polymerase promoters such as the T7 or SP6 polymerase promoters.
  • RNA polymerase promoters such as the T7 or SP6 polymerase promoters.
  • antisense cDNA constructs that synthesize antisense RNA constitutively or inducibly, depending on the promoter used, can be introduced stably into cell lines.
  • nucleic acid molecules may be introduced as a means of increasing intracellular stability and half-life. Possible modifications include but are not limited to the addition of flanking sequences of ribonucleotides or deoxyribonucleotides to the 5′ and/or 3′ ends of the molecule or the use of phosphorothioate or 2′ O-methyl rather than phosphodiesterase linkages within the oligodeoxyribonucleotide backbone.
  • polypeptides, small nucleic acids, and antisense oligonucleotides can be further linked to another peptide or polypeptide (e.g., a heterologous peptide), e.g., that serves as a means of protein detection.
  • a heterologous peptide e.g., that serves as a means of protein detection.
  • Non-limiting examples of label peptide or polypeptide moieties useful for detection in the invention include, without limitation, suitable enzymes such as horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; epitope tags, such as FLAG, MYC, HA, or HIS tags; fluorophores such as green fluorescent protein; dyes; radioisotopes; digoxygenin; biotin; antibodies; polymers: as well as others known in the art, for example, in Principles of Fluorescence Spectroscopy, Joseph R. Lakowicz (Editor), Plenum Pub Corp, 2nd edition (July 1999).
  • suitable enzymes such as horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase
  • epitope tags such as FLAG, MYC, HA, or HIS tags
  • fluorophores such as green fluorescent
  • additional agents are particularly useful for upregulating or downregulating immune responses according to the present invention.
  • modulation of the interaction between PD-1 and PD-1 ligand e.g., soluble PD-L1 (e.g., membrane-bound PD-L1 and/or soluble PD-L1), or between PD-1 ligand (e.g., soluble PD-L1) (e.g., membrane-bound PD-L1 and/or soluble PD-L1) and a B7 polypeptide, results in modulation of the immune response.
  • PD-L1 binds to a costimulatory receptor such as B7-1
  • upregulation of PD-L1 activity results in upregulation of immune responses
  • downregulation of PD-L1 activity results in downregulation of immune responses
  • upregulation of PD-L1 activity results in downregulation of immune responses
  • downregulation of PD-L1 activity results in upregulation of immune responses.
  • soluble forms of PD-L1 whether naturally occurring or cleavage products of membrane-bound PD-L, can still interact with PD-L1 receptors, such as B7-1 or PD-L1, to modulate immune responses as the membrane-bound version.
  • Non-limiting examples of how such agents can modify immune responses include the observation that the interaction between a B7 polypeptide and a PD-1 ligand (e.g., soluble PD-L1) polypeptide prevents PD-1 ligand (e.g., soluble PD-L1) from binding to PD-1 and, thus, inhibits delivery of an inhibitory immune signal.
  • a PD-1 ligand e.g., soluble PD-L1
  • agents which block the interaction between PD-1 and PD-1 ligand e.g., soluble PD-L1 can prevent inhibitory signaling.
  • agents that block the binding of a B7 polypeptide to a PD-1 ligand (e.g., soluble PD-L1) polypeptide allow PD-1 ligand (e.g., soluble PD-L1) to bind PD-1 and provide an inhibitory signal to an immune cell.
  • PD-1 ligand e.g., soluble PD-L1
  • PD-1 ligand by binding to a B7 polypeptide, also reduces the B7 polypeptide binding to the inhibitory receptor CTLA4.
  • agents that block the binding of a B7 polypeptide to a PD-1 ligand allow the B7 polypeptide to bind CTLA4 and provide an inhibitory signal to an immune cell.
  • PD-L1 by binding to a B7 polypeptide, also reduces the B7 polypeptide binding to the costimulatory receptor CD28.
  • agents that block the binding of a B7 polypeptide to a PD-1 ligand allow the B7 polypeptide to bind CD28, and provide a costimulatory signal to an immune cell.
  • agents that increase the interaction between a PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide can enhance an immune response while agents that decrease the interaction between a PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide can reduce an immune response by enhancing the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1 and or the interaction between the B7 polypeptide and CTLA4.
  • agents that modulate the interaction between a PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide do not produce inhibition of the interaction between a PD-1 ligand (e.g., soluble PD-L1) and PD-1 and/or between the B7 polypeptide and CTLA4.
  • agents that increase a PD-1 ligand (e.g., soluble PD-L1) interaction with a B7 polypeptide also decrease the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1, and/or between the B7 polypeptide and CTLA4.
  • agents that decrease the interaction of a PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide enhance or increase the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1, and/or between the B7 polypeptide and CTLA4.
  • agents for modulating (e.g., reducing) an immune response include antibodies against PD-1, a PD-1 ligand (e.g., soluble PD-L1), or a B7 polypeptide which inhibit the interaction of the PD-1 ligand (e.g., soluble PD-L1) with PD-1 or B7 polypeptide; bispecific antibodies that enhance PD-1 signaling, such as bispecific antibodies against PD-1 and PD-L1; agents that reduce the expression of inhibitory receptor-ligand interactions, such as antisense nucleic acid molecules, triplex oligonucleotides, or ribozymes targeting PD-1 and/or PD-L1; small molecules or peptides which inhibit the interaction of the PD-1 ligand (e.g., soluble PD-L1) with the B7 polypeptide; and fusion proteins (e.g., the extracellular portion of the PD-1 ligand (e.g., soluble PD-L1) or B7 polypeptide,
  • agents that increase the interaction between a PD-ligand (e.g., soluble PD-L1) and a B7 polypeptide decrease an immune response by decreasing the ability of the B7 polypeptide to bind to CD28.
  • agents that decrease the interaction between a PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide can increase the immune response by increasing the interaction between the B7 polypeptide and CD28.
  • Agents that modulate the interaction between a PD-1 ligand (e.g., soluble PD-L1) and a PD-1 polypeptide can also be used to up or down regulate the immune response.
  • agents that increase the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1 polypeptide can decrease an immune response while agents that decrease the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1 polypeptide can increase an immune response.
  • agents that modulate the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1 do not modulate (have no direct affect on) the interaction between the PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide.
  • agents that increase the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1 decrease the interaction between the PD-1 ligand (e.g., soluble PD-L1) and the B7 polypeptide.
  • agents that decrease the interaction between the PD-L1 ligand and PD-1 increase the interaction between the PD-1 ligand (e.g., soluble PD-L1) and the B7 polypeptide.
  • agents for modulating (e.g., enhancing) an immune response include antibodies against PD-1 or a PD-1 ligand (e.g., soluble PD-L1) which block the interaction between PD-1 and the PD-1 ligand (e.g., soluble PD-L1); bispecific antibodies that enhance 87 signaling, such as bispecific antibodies against PD-L1 and B7-1; multivalent antibodies against such a target that ligate many such molecules together in order to increase local concentrations and stimulate interactions; agents that reduce the expression of costimulatory receptor-ligand interactions, such as antisense nucleic acid molecules, triplex oligonucleotides, or ribozymes targeting B7-1; small molecules or peptides which block the interaction between PD-1 and the PD-1
  • agents useful for upregulating or downregulating PD-1 and/or PD-L1 in particular are useful. Combinations of any such agents are contemplated.
  • Exemplary agents for use in downmodulating PD-L1 include (for example): antisense molecules, antibodies that recognize PD-L1, compounds that block interaction of PD-L1 and one of its naturally occurring receptors on a immune cell (e.g., soluble, monovalent PD-L1 molecules, and soluble forms of B7-4 ligands or compounds identified in the subject screening assays).
  • antisense molecules antibodies that recognize PD-L1
  • compounds that block interaction of PD-L1 and one of its naturally occurring receptors on a immune cell e.g., soluble, monovalent PD-L1 molecules, and soluble forms of B7-4 ligands or compounds identified in the subject screening assays.
  • combinations of antibodies that target either the membrane-bound PD-L1 form or the soluble PD-L1 form are useful for functionally inactivating both forms of PD-L1.
  • Exemplary agents for use in downmodulating PD-1 include (for example): antisense molecules, antibodies that bind to PD-1, but do not transduce an inhibitory signal to the immune cell (“non-activating antibodies”), and soluble forms of PD-1.
  • Exemplary agents for use in upmodulating PD-L1 include (for example): nucleic acid molecules encoding PD-L1 polypeptides, multivalent forms of PD-L1, compounds that increase the expression of PD-L1, and cells that express PD-L1, and the like.
  • Exemplary agents for use in upmodulating PD-1 include (for example): antibodies that transmit an inhibitory signal via PD-1, compounds that enhance the expression of PD-1, nucleic acid molecules encoding PD-1, and forms of B7-4 that transduce a signal via PD-1.
  • the modulatory agents described herein can be incorporated into pharmaceutical compositions and administered to a subject in vivo.
  • the compositions may contain a single such molecule or agent or any combination of agents described herein. Based on the genetic pathway analyses described herein, it is believed that such combinations of agents is especially effective in diagnosing, prognosing, preventing, and treating cancer.
  • single active agents described herein can be combined with other pharmacologically active compounds (“second active agents”) known in the art according to the methods and compositions provided herein. It is believed that certain combinations work synergistically in the treatment of particular types of cancer.
  • Second active agents can be large molecules (e.g., proteins) or small molecules (e.g., synthetic inorganic, organometallic, or organic molecules).
  • large molecule active agents include, but are not limited to, hematopoietic growth factors, cytokines, and monoclonal and polyclonal antibodies.
  • Typical large molecule active agents are biological molecules, such as naturally occurring or artificially made proteins. Proteins that are particularly useful in this invention include proteins that stimulate the survival and/or proliferation of hematopoietic precursor cells and immunologically active poietic cells in vi/ro or in vivo. Others stimulate the division and differentiation of committed erythroid progenitors in cells in vitro or in vivo.
  • interleukins such as IL-2 (including recombinant IL-I1 (“rIL2”) and canarypox IL-2), IL-10, IL-12, and IL-18
  • interferons such as interferon alfa-2a, interferon alfa-2b, interferon alpha-n1, interferon alpha-n3, interferon beta-1a, and interferon gamma-1b
  • GM-CF and GM-CSF and EPO.
  • GM-CSF GM-CSF
  • Neupogen® Amgen, Thousand Oaks, Calif.
  • sargramostim which is sold in the United States under the trade name Leukine® (Immunex, Seattle. Wash.)
  • recombinant EPO which is sold in the United States under the trade name Epogen® (Amgen, Thousand Oaks, Calif.).
  • Recombinant and mutated forms of GM-CSF can be prepared as described in U.S. Pat. Nos. 5,391,485; 5,393,870; and 5,229,496; all of which are incorporated herein by reference.
  • G-CSF Recombinant and mutated forms of G-CSF can be prepared as described in U.S. Pat. Nos. 4,810,643; 4,999,291; 5,528,823; and 5,580,755; all of which are incorporated herein by reference.
  • Antibodies that can be used in combination form include monoclonal and polyclonal antibodies.
  • Examples of antibodies include, but are not limited to, trastuzumab (Herceptin®), rituximab (Rituxan®), bevacizumab (Avastin®), pertuzumab (Omnitarg®), tositumomab (Bexxar®), edrecolomab (Panorex®), and G250.
  • Compounds of the invention can also be combined with, or used in combination with, anti-TNF- ⁇ antibodies. Large molecule active agents may be administered in the form of anti-cancer vaccines.
  • vaccines that secrete, or cause the secretion of, cytokines such as IL-2, G-CSF, and GM-CSF can be used in the methods, pharmaceutical compositions, and kits provided herein. See, e.g., Emens, L. A., et al., Curr. Opinion Mol. Ther. 3(1):77-84 (2001).
  • Second active agents that are small molecules can also be used to in combination as provided herein.
  • small molecule second active agents include, but are not limited to, anti-cancer agents, antibiotics, immunosuppressive agents, and steroids.
  • the combination chemotherapy comprises a combination of two or more of cyclophosphamide, hydroxydaunorubicin (also known as doxorubicin or adriamycin), oncovorin (vincristine), and prednisone.
  • the combination chemotherapy comprises a combination of cyclophsophamide, oncovorin, prednisone, and one or more chemotherapeutics selected from the group consisting of anthracycline, hydroxydaunorubicin, epirubicin, and motixantrone.
  • anti-cancer agents include, but are not limited to: acivicin; aclarubicin; acodazole hydrochloride; acronine; adozelesin; aldesleukin; altretamine; ambomycin; ametantrone acetate; amsacrine; anastrozole; anthramycin; asparaginase; asperlin; azacitidine; azetepa; azotomycin; batimastat; benzodepa; bicalutamide; bisantrene hydrochloride; bisnafide dimesylate; bizelesin; bleomycin sulfate; brequinar sodium; bropirimine; busulfan; cactinomycin; calusterone; caracemide; carbetimer; carboplatin; carmustine; carubicin hydrochloride; carzelesin; cedefingol; celecoxib (COX-2 inhibitor); chloram
  • anti-cancer drugs include, but are not limited to: 20-epi-1,25 dihydroxyvitamin D3; 5-ethynyluracil; abiraterone; aclarubicin; acylfulvene; adecypenol; adozelesin; aldesleukin; ALL-TK antagonists; altretamine; ambamustine; amidox; amifostine; aminolevulinic acid; amrubicin; amsacrine; anagrelide; anastrozole; andrographolide; angiogenesis inhibitors; antagonist D; antagonist G; antarelix; anti-dorsalizing morphogenetic protein-1; antiandrogen, prostatic carcinoma; antiestrogen; antineoplaston; antisense oligonucleotides; aphidicolin glycinate; apoptosis gene modulators; apoptosis regulators; apurinic acid; ara-CDP-DL-PTBA;
  • Specific second active agents include, but are not limited to, chlorambucil, fludarabine, dexamethasone (Decadron®), hydrocortisone, methylprednisolone, cilostamide, doxorubicin (Doxil®), forskolin, rituximab, cyclosporin A, cisplatin, vincristine, PDE7 inhibitors such as BRL-50481 and IR-202, dual PDE4/7 inhibitors such as IR-284, cilostazol, meribendan, milrinone, vesnarionone, enoximone and pimobendan. Syk inhibitors such as fostamatinib disodium (R406/R788), R343, R-112 and Excellair® (ZaBeCor Pharmaceuticals, Bala Cynwyd, Pa.).
  • Another aspect of the invention relates to methods of selecting agents (e.g., antibodies, fusion proteins, peptides, small molecules, or small nucleic acids) which bind to upregulate, downregulate, or modulate one or more biomarkers of the invention listed in Table 1 and the Examples and/or a cancer (e.g., a head, neck, or lung cancer).
  • agents e.g., antibodies, fusion proteins, peptides, small molecules, or small nucleic acids
  • Such methods can use screening assays, including cell based and non-cell based assays.
  • the invention relates to assays for screening candidate or test compounds which bind to or modulate the expression or activity level of, one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof.
  • biomarkers of the invention including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof.
  • Such compounds include, without limitation, antibodies, proteins, fusion proteins, nucleic acid molecules, and small molecules.
  • an assay is a cell-based assay, comprising contacting a cell expressing one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof, with a test compound and determining the ability of the test compound to modulate (e.g., stimulate or inhibit) the level of interaction between the biomarker and its natural binding partners as measured by direct binding or by measuring a parameter of cancer.
  • the biomarker polypeptide, a binding partner polypeptide of the biomarker, or a fragment(s) thereof can be coupled with a radioisotope or enzymatic label such that binding of the biomarker polypeptide or a fragment thereof to its natural binding partner(s) or a fragment(s) thereof can be determined by detecting the labeled molecule in a complex.
  • the biomarker polypeptide, a binding partner polypeptide of the biomarker, or a fragment(s) thereof can be labeled with 125 I, 35 S, 14 C, or 3 H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting.
  • polypeptides of interest a can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.
  • a compound it is also within the scope of this invention to determine the ability of a compound to modulate the interactions between one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof, and its natural binding partner(s) or a fragment(s) thereof, without the labeling of any of the interactants (e.g., using a microphysiometer as described in McConnell, H. M. et al. (1992) Science 257:1906-1912).
  • a “microphysiometer” e.g., Cytosensor
  • LAPS light-addressable potentiometric sensor
  • determining the ability of the blocking agents e.g., antibodies, fusion proteins, peptides, nucleic acid molecules, or small molecules
  • determining the ability of the blocking agents can be accomplished by determining the activity of one or more members of the set of interacting molecules.
  • the activity of one or more biomarkers of the invention can be determined by detecting induction of cytokine or chemokine response, detecting catalytic/enzymatic activity of an appropriate substrate, detecting the induction of a reporter gene (comprising a target-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., chloramphenicol acetyl transferase), or detecting a cellular response regulated by the biomarker or a fragment thereof (e.g., modulations of biological pathways identified herein, such as modulated proliferation, apoptosis, cell cycle, and/or ligand-receptor binding activity).
  • a reporter gene comprising a target-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., chloramphenicol acetyl transferase
  • detecting a cellular response regulated by the biomarker or a fragment thereof e.g
  • Determining the ability of the blocking agent to bind to or interact with said polypeptide can be accomplished by measuring the ability of an agent to modulate immune responses, for example, by detecting changes in type and amount of cytokine secretion, changes in apoptosis or proliferation, changes in gene expression or activity associated with cellular identity, or by interfering with the ability of said polypeptide to bind to antibodies that recognize a portion thereof.
  • an assay of the present invention is a cell-free assay in which one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof, e.g., a biologically active fragment thereof, is contacted with a test compound, and the ability of the test compound to bind to the polypeptide, or biologically active portion thereof, is determined. Binding of the test compound to the biomarker or a fragment thereof, can be determined either directly or indirectly as described above.
  • Biomolecular Interaction Analysis Sjolander, S. and Urbaniczky, C. (1991) Anal. Chem. 63:2338-2345 and Szabo et al. (1995) Curr. Opin. Struct. Biol. 5:699-705.
  • BIOA Biomolecular Interaction Analysis
  • Changes in the optical phenomenon of surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological polypeptides.
  • One or more biomarkers polypeptide or a fragment thereof can be immobilized on a BIAcore chip and multiple agents, e.g., blocking antibodies, fusion proteins, peptides, or small molecules, can be tested for binding to the immobilized biomarker polypeptide or fragment thereof.
  • agents e.g., blocking antibodies, fusion proteins, peptides, or small molecules.
  • the cell-free assays of the present invention are amenable to use of both soluble and/or membrane-bound forms of proteins.
  • a solubilizing agent such that the membrane-bound form of the protein is maintained in solution.
  • solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide.
  • Triton® X-100, Triton® X-114, Thesit®, Isotridecypoly(ethylene glycol ether) n , 3-[(3-cholamidopropyl)dimethylamminio]-1-propane sulfonate (CHAPS), 3-[(3-cholamidopropyl)dimethylamminio]-2-hydroxy-1-propane sulfonate (CHAPSO), or N-dodecyl N,N-dimethyl-3-ammonio-1-propane sulfonate.
  • binding of a test compound in the assay can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes.
  • a fusion protein can be provided which adds a domain that allows one or both of the proteins to be bound to a matrix.
  • glutathione-S-transferase-base fusion proteins can be adsorbed onto glutathione Sepharose® beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtiter plates, which are then combined with the test compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of binding or activity determined using standard techniques.
  • determining the ability of the test compound to modulate the activity of one or more biomarkers of the invention can be accomplished by determining the ability of the test compound to modulate the expression or activity of a gene, e.g., nucleic acid, or gene product, e.g., polypeptide, that functions downstream of the interaction.
  • a gene e.g., nucleic acid, or gene product, e.g., polypeptide
  • inflammation e.g., cytokine and chemokine
  • the activity of the interactor polypeptide on an appropriate target can be determined, or the binding of the interactor to an appropriate target can be determined as previously described.
  • modulators of one or more biomarkers of the invention including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof, are identified in a method wherein a cell is contacted with a candidate compound and the expression or activity level of the biomarker is determined. The level of expression of biomarker mRNA or polypeptide or fragments thereof in the presence of the candidate compound is compared to the level of expression of biomarker mRNA or polypeptide or fragments thereof in the absence of the candidate compound. The candidate compound can then be identified as a modulator of biomarker expression based on this comparison.
  • biomarker mRNA or polypeptide or fragments thereof when expression of biomarker mRNA or polypeptide or fragments thereof is greater (statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of biomarker expression.
  • the candidate compound when expression of biomarker mRNA or polypeptide or fragments thereof is reduced (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of biomarker expression.
  • the expression level of biomarker mRNA or polypeptide or fragments thereof in the cells can be determined by methods described herein for detecting biomarker mRNA or polypeptide or fragments thereof.
  • a biomarker of the invention including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof, can be used as “bait proteins” in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al.
  • biomarker-binding proteins are also likely to be involved in the propagation of signals by the biomarker polypeptides or biomarker natural binding partner(s) as, for example, downstream elements of one or more biomarkers-mediated signaling pathway.
  • the two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains.
  • the assay utilizes two different DNA constructs.
  • the gene that codes for one or more biomarkers polypeptide is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4).
  • a DNA sequence, from a library of DNA sequences, that encodes an unidentified polypeptide (“prey” or “sample”) is fused to a gene that codes for the activation domain of the known transcription factor.
  • the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) which is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene which encodes the polypeptide which interacts with one or more biomarkers polypeptide of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof.
  • a reporter gene e.g., LacZ
  • the invention pertains to a combination of two or more of the assays described herein.
  • a modulating agent can be identified using a cell-based or a cell-free assay, and the ability of the agent to modulate the activity of one or more biomarkers polypeptide or a fragment thereof can be confirmed in vivo, e.g., in an animal such as an animal model for cellular transformation and/or tumorigenesis.
  • This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent. Furthermore, this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.
  • biomarkers of the invention described herein can be used in one or more of the following methods: a) screening assays; b) predictive medicine (e.g., diagnostic assays, prognostic assays, and monitoring of clinical trials); and c) methods of treatment (e.g., therapeutic and prophylactic, e.g., by up- or down-modulating the copy number, level of expression, and/or level of activity of the one or more biomarkers).
  • methods of treatment e.g., therapeutic and prophylactic, e.g., by up- or down-modulating the copy number, level of expression, and/or level of activity of the one or more biomarkers.
  • biomarkers described herein or agents that modulate the expression and/or activity of such biomarkers can be used, for example, to (a) express one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof (e.g., via a recombinant expression vector in a host cell in gene therapy applications or synthetic nucleic acid molecule), (b) detect biomarker mRNA or a fragment thereof (e.g., in a biological sample) or a genetic alteration in one or more biomarkers gene, and/or (c) modulate biomarker activity, as described further below.
  • biomarkers or modulatory agents thereof can be used to treat conditions or disorders characterized by insufficient or excessive production of one or more biomarkers polypeptide or fragment thereof or production of biomarker polypeptide inhibitors.
  • the biomarker polypeptides or fragments thereof can be used to screen for naturally occurring biomarker binding partner(s), to screen for drugs or compounds which modulate biomarker activity, as well as to treat conditions or disorders characterized by insufficient or excessive production of biomarker polypeptide or a fragment thereof or production of biomarker polypeptide forms which have decreased, aberrant or unwanted activity compared to biomarker wild-type polypeptides or fragments thereof (e.g., cancers, including head, neck, and/or lung cancers).
  • biomarker wild-type polypeptides or fragments thereof e.g., cancers, including head, neck, and/or lung cancers.
  • the present invention relates to a method for preventing in a subject, a disease or condition associated with an unwanted, more than desirable, or less than desirable, expression and/or activity of one or more biomarkers described herein.
  • Subjects at risk for a disease that would benefit from treatment with the claimed agents or methods can be identified, for example, by any one or combination of diagnostic or prognostic assays known in the art and described herein (see, for example, agents and assays described in III. Methods of Selecting Agents and Compositions).
  • the present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, and monitoring of clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically.
  • diagnostic assays for determining the expression and/or activity level of biomarkers of the invention, including biomarkers listed in Table 1 and the Examples or fragments thereof, in the context of a biological sample (e.g., blood, serum, cells, or tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant or unwanted biomarker expression or activity.
  • a biological sample e.g., blood, serum, cells, or tissue
  • the present invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with biomarker polypeptide, nucleic acid expression or activity. For example, mutations in one or more biomarkers gene can be assayed in a biological sample.
  • Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with biomarker polypeptide, nucleic acid expression or activity.
  • Another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds, and small nucleic acid-based molecules) on the expression or activity of biomarkers of the invention, including biomarkers listed in Table 1 and the Examples, or fragments thereof, in clinical trials.
  • agents e.g., drugs, compounds, and small nucleic acid-based molecules
  • the present invention provides, in part, methods, systems, and code for accurately classifying whether a biological sample is associated with a cancer or a clinical subtype thereof (e.g., head, neck, and/or lung cancers).
  • a biological sample is associated with a cancer or a clinical subtype thereof (e.g., head, neck, and/or lung cancers).
  • the present invention is useful for classifying a sample (e.g., from a subject) as a cancer sample using a statistical algorithm and/or empirical data (e.g., the presence or level of one or biomarkers described herein).
  • An exemplary method for detecting the level of expression or activity of one or more biomarkers of the invention involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting the biomarker (e.g., polypeptide or nucleic acid that encodes the biomarker or fragments thereof) such that the level of expression or activity of the biomarker is detected in the biological sample.
  • a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting the biomarker (e.g., polypeptide or nucleic acid that encodes the biomarker or fragments thereof) such that the level of expression or activity of the biomarker is detected in the biological sample.
  • a compound or an agent capable of detecting the biomarker e.g., polypeptide or nucleic acid that encodes the biomarker or fragments thereof
  • the presence or level of at least one, two, three, four, five, six, seven, eight, nine, ten, fifty, hundree, or more biomarkers of the invention are determined in the individual's sample.
  • the statistical algorithm is a single learning statistical classifier system. Exemplary statistical analyses are presented in the Examples and can be used in certain embodiments.
  • a single learning statistical classifier system can be used to classify a sample as a cancer sample, a cancer subtype sample, or a non-cancer sample based upon a prediction or probability value and the presence or level of one or more biomarkers described herein.
  • a single learning statistical classifier system typically classifies the sample as a cancer sample with a sensitivity, specificity, positive predictive value, negative predictive value, and/or overall accuracy of at least about 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%.
  • learning statistical classifier systems include a machine learning algorithmic technique capable of adapting to complex data sets (e.g., panel of markers of interest) and making decisions based upon such data sets.
  • a single learning statistical classifier system such as a classification tree (e.g., random forest) is used.
  • a combination of 2, 3, 4, 5, 6, 7, 8, 9, 10, or more learning statistical classifier systems are used, preferably in tandem.
  • Examples of learning statistical classifier systems include, but are not limited to, those using inductive learning (e.g., decision/classification trees such as random forests, classification and regression trees (C&RT), boosted trees, etc.), Probably Approximately Correct (PAC) learning, connectionist learning (e.g., neural networks (NN), artificial neural networks (ANN), neuro fuzzy networks (NFN), network structures, perceptrons such as multi-layer perceptrons, multi-layer feed-forward networks, applications of neural networks, Bayesian learning in belief networks, etc.), reinforcement learning (e.g., passive learning in a known environment such as naive learning, adaptive dynamic learning, and temporal difference learning, passive learning in an unknown environment, active learning in an unknown environment, learning action-value functions, applications of reinforcement learning, etc.), and genetic algorithms and evolutionary programming.
  • inductive learning e.g., decision/classification trees such as random forests, classification and regression trees (C&RT), boosted trees, etc.
  • PAC Probably Approximately Correct
  • connectionist learning e.g., neural networks
  • the method of the present invention further comprises sending the cancer classification results to a clinician, e.g., an oncologist or hematologist.
  • a clinician e.g., an oncologist or hematologist.
  • the method of the present invention further provides a diagnosis in the form of a probability that the individual has a cancer or a clinical subtype thereof.
  • the individual can have about a 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60% 65%, 70%, 75%, 80%, 85%, 90%, 95%, or greater probability of having cancer or a clinical subtype thereof.
  • the method of the present invention further provides a prognosis of cancer in the individual.
  • the prognosis can be surgery, development of a clinical subtype of the cancer (e.g., subtype of leukemia), development of one or more symptoms, development of malignant cancer, or recovery from the disease.
  • the method of classifying a sample as a cancer sample is further based on the symptoms (e.g., clinical factors) of the individual from which the sample is obtained.
  • the symptoms or group of symptoms can be, for example, those associated with the IPI.
  • the diagnosis of an individual as having cancer or a clinical subtype thereof is followed by administering to the individual a therapeutically effective amount of a drug useful for treating one or more symptoms associated with cancer or the cancer.
  • an agent for detecting biomarker mRNA, genomic DNA, or fragments thereof is a labeled nucleic acid probe capable of hybridizing to biomarker mRNA, genomic DNA, or fragments thereof.
  • the nucleic acid probe can be, for example, full-length biomarker nucleic acid, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions well known to a skilled artisan to biomarker mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.
  • the nucleic acid probe is designed to detect transcript variants (i.e., different splice forms) of a gene.
  • a preferred agent for detecting one or more biomarkers listed in Table 1 and the Examples or a fragment thereof is an antibody capable of binding to the biomarker, preferably an antibody with a detectable label.
  • Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab′)2) can be used.
  • the term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled.
  • Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin.
  • biological sample is intended to include tissues, cells, and biological fluids isolated from a subject, as well as tissues, cells, and fluids present within a subject. That is, the detection method of the invention can be used to detect biomarker mRNA, polypeptide, genomic DNA, or fragments thereof, in a biological sample in vitro as well as in fly.
  • in vitro techniques for detection of biomarker mRNA or a fragment thereof include Northern hybridizations and in situ hybridizations.
  • In vitro techniques for detection of biomarker polypeptide include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence.
  • In vitro techniques for detection of biomarker genomic DNA or a fragment thereof include Southern hybridizations.
  • in vivo techniques for detection of one or more biomarkers polypeptide or a fragment thereof include introducing into a subject a labeled anti-biomarker antibody.
  • the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
  • the biological sample contains polypeptide molecules from the test subject.
  • the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject.
  • a preferred biological sample is a hematological tissue (e.g., a sample comprising blood, plasma, B cell, bone marrow, etc.) sample isolated by conventional means from a subject.
  • the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting polypeptide, mRNA, cDNA, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, genomic DNA, or fragments thereof of one or more biomarkers listed in Table 1 and the Examples such that the presence of biomarker polypeptide, mRNA, genomic DNA, or fragments thereof, is detected in the biological sample, and comparing the presence of biomarker polypeptide, mRNA, cDNA, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, genomic DNA, or fragments thereof in the control sample with the presence of biomarker polypeptide, mRNA, cDNA, small RNAs, mature miRNA, pre-m
  • the kit can comprise a labeled compound or agent capable of detecting one or more biomarkers polypeptide, mRNA, cDNA, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, genomic DNA, or fragments thereof, in a biological sample; means for determining the amount of the biomarker polypeptide, mRNA, cDNA, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, genomic DNA, or fragments thereof, in the sample: and means for comparing the amount of the biomarker polypeptide, mRNA, cDNA, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, genomic DNA, or fragments thereof, in
  • the compound or agent can be packaged in a suitable container.
  • the kit can further comprise instructions for using the kit to detect the biomarker polypeptide, mRNA, cDNA, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, genomic DNA, or fragments thereof.
  • therapies tailored to treat stratified patient populations based on the described diagnostic assays are further administered.
  • the diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant expression or activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof.
  • aberrant includes biomarker expression or activity levels which deviates from the normal expression or activity in a control.
  • the assays described herein can be utilized to identify a subject having or at risk of developing a disorder associated with a misregulation of biomarker activity or expression, such as in a cancer (e.g., head, neck, and/or lung cancers).
  • the prognostic assays can be used to identify a subject having or at risk for developing a disorder associated with a misregulation of biomarker activity or expression.
  • the present invention provides a method for identifying and/or classifying a disease associated with aberrant expression or activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof.
  • the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, polypeptide, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant biomarker expression or activity.
  • an agent e.g., an agonist, antagonist, peptidomimetic, polypeptide, peptide, nucleic acid, small molecule, or other drug candidate
  • an agent for a cancer e.g., head, neck, and/or lung cancers.
  • the present invention provides methods for determining whether a subject can be effectively treated with an agent for a disease associated with aberrant biomarker expression or activity in which a test sample is obtained and biomarker polypeptide or nucleic acid expression or activity is detected (e.g., wherein a significant increase or decrease in biomarker polypeptide or nucleic acid expression or activity relative to a control is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant biomarker expression or activity).
  • significant increase or decrease in biomarker expression or activity comprises at least 2 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more higher or lower, respectively, than the expression activity or level of the marker in a control sample.
  • the methods of the invention can also be used to detect genetic alterations in one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof, thereby determining if a subject with the altered biomarker is at risk for cancer (e.g., head, neck, and/or lung cancers) characterized by aberrant biomarker activity or expression levels.
  • the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic alteration characterized by at least one alteration affecting the integrity of a gene encoding one or more biomarkers polypeptide, or the mis-expression of the biomarker (e.g., mutations and/or splice variants).
  • such genetic alterations can be detected by ascertaining the existence of at least one of 1) a deletion of one or more nucleotides from one or more biomarkers gene, 2) an addition of one or more nucleotides to one or more biomarkers gene, 3) a substitution of one or more nucleotides of one or more biomarkers gene, 4) a chromosomal rearrangement of one or more biomarkers gene, 5) an alteration in the level of a messenger RNA transcript of one or more biomarkers gene, 6) aberrant modification of one or more biomarkers gene, such as of the methylation pattern of the genomic DNA, 7) the presence of a non-wild type splicing pattern of a messenger RNA transcript of one or more biomarkers gene, 8) a non-wild type level of one or more biomarkers polypeptide, 9) allelic loss of one or more biomarkers gene, and 10) inappropriate post-translational modification of one or more biomarkers polypeptide.
  • detection of the alteration involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al. (1988) Science 241:1077-1080; and Nakazawa et al. (1994) Proc. Natl. Acad. Sci. USA 91:360-364), the latter of which can be particularly useful for detecting point mutations in one or more biomarkers gene (see Abravaya et al.
  • PCR polymerase chain reaction
  • LCR ligation chain reaction
  • This method can include the steps of collecting a sample of cells from a subject, isolating nucleic acid (e.g., genomic DNA, mRNA, cDNA, small RNA, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to one or more biomarkers gene of the invention, including the biomarker genes listed in Table 1 and the Examples, or fragments thereof, under conditions such that hybridization and amplification of the biomarker gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutation
  • nucleic acid e.g., genomic DNA,
  • Alternative amplification methods include: self-sustained sequence replication (Guatelli, J. C. et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh. D. Y. et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi, P. M, et al. (1988) Bio-Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
  • mutations in one or more biomarkers gene of the invention can be identified by alterations in restriction enzyme cleavage patterns.
  • sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA.
  • sequence specific ribozymes see, for example, U.S. Pat. No. 5,498,531 can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.
  • genetic mutations in one or more biomarkers gene of the invention can be identified by hybridizing a sample and control nucleic acids, e.g., DNA, RNA, mRNA, small RNA, cDNA, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, to high density arrays containing hundreds or thousands of oligonucleotide probes (Cronin, M. T. et al. (1996) Hum. Mutat. 7:244-255; Kozal. M. J. et al. (1996) Nat. Med.
  • a sample and control nucleic acids e.g., DNA, RNA, mRNA, small RNA, cDNA, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof.
  • genetic mutations in one or more biomarkers can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin et al. (1996) supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential, overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.
  • any of a variety of sequencing reactions known in the art can be used to directly sequence one or more biomarkers gene of the invention, including a gene listed in Table 1 and the Examples, or a fragment thereof, and detect mutations by comparing the sequence of the sample biomarker gene with the corresponding wild-type (control) sequence.
  • Examples of sequencing reactions include those based on techniques developed by Maxam and Gilbert (1977) Proc. Natl. Acad. Sci. USA 74:560 or Sanger (1977) Proc. Natl. Acad Sci. USA 74:5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve, C. W.
  • RNA/RNA or RNA/DNA heteroduplexes examples include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 230:1242).
  • the art technique of “mismatch cleavage” starts by providing heteroduplexes formed by hybridizing (labeled) RNA or DNA containing the wild-type sequence with potentially mutant RNA or DNA obtained from a tissue sample.
  • RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with S1 nuclease to enzymatically digest the mismatched regions.
  • either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. Sec, for example, Cotton et al.
  • control DNA or RNA can be labeled for detection.
  • the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called “DNA mismatch repair” enzymes) in defined systems for detecting and mapping point mutations in biomarker genes of the invention, including genes listed in Table 1 and the Examples, or fragments thereof, obtained from samples of cells.
  • DNA mismatch repair enzymes
  • the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662).
  • the duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, for example, U.S. Pat. No. 5,459,039.
  • alterations in electrophoretic mobility will be used to identify mutations in biomarker genes of the invention, including genes listed in Table 1 and the Examples, or fragments thereof.
  • SSCP single strand conformation polymorphism
  • Single-stranded DNA fragments of sample and control nucleic acids will be denatured and allowed to renature.
  • the secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change.
  • the DNA fragments may be labeled or detected with labeled probes.
  • the sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence.
  • the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophorectic mobility (Keen et al. (1991) Trends Genet. 7:5).
  • the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495).
  • DGGE denaturing gradient gel electrophoresis
  • DNA will be modified to ensure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR.
  • a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys. Chem. 265: 12753).
  • oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163; Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 86:6230).
  • Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.
  • the hybridization reactions can occur using biochips, microarrays, etc., or other array technology that are well known in the art.
  • Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3′ end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) Tibtech 11:238).
  • amplification may also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci USA 88:189). In such cases, ligation will occur only if there is a perfect match at the 3′ end of the 5′ sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.
  • the methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or fragments thereof.
  • Monitoring the influence of agents (e.g., drugs) on the expression or activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof (e.g., the modulation of a cancer state) can be applied not only in basic drug screening, but also in clinical trials.
  • the effectiveness of an agent determined by a screening assay as described herein to increase expression and/or activity of one or more biomarkers of the invention can be monitored in clinical trials of subjects exhibiting decreased expression and/or activity of one or more biomarkers of the invention, including one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples, or a fragment thereof, relative to a control reference.
  • the effectiveness of an agent determined by a screening assay to decrease expression and/or activity of one or more biomarkers of the invention can be monitored in clinical trials of subjects exhibiting decreased expression and/or activity of the biomarker of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof relative to a control reference.
  • the expression and/or activity of the biomarker can be used as a “read out” or marker of the phenotype of a particular cell.
  • the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, polypeptide, peptide, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) including the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression and/or activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or fragments thereof in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the biomarker in the post-administration samples; (v) comparing the level of expression or activity of the biomarker or fragments thereof in the pre-administration sample with the that of the biomarker in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly.
  • an agent e.g
  • increased administration of the agent may be desirable to increase the expression or activity of one or more biomarkers to higher levels than detected (e.g., to increase the effectiveness of the agent.)
  • decreased administration of the agent may be desirable to decrease expression or activity of the biomarker to lower levels than detected (e.g., to decrease the effectiveness of the agent).
  • biomarker expression or activity may be used as an indicator of the effectiveness of an agent, even in the absence of an observable phenotypic response.
  • the present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder characterized by insufficient or excessive production of biomarkers of the invention, including biomarkers listed in Table 1 and the Examples or fragments thereof, which have aberrant expression or activity compared to a control.
  • agents of the invention described herein can be used to detect and isolate the biomarkers or fragments thereof, regulate the bioavailability of the biomarkers or fragments thereof, and modulate biomarker expression levels or activity.
  • the invention provides a method for preventing in a subject, a disease or condition associated with an aberrant expression or activity of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof, by administering to the subject an agent which modulates biomarker expression or at least one activity of the biomarker.
  • Subjects at risk for a disease or disorder which is caused or contributed to by aberrant biomarker expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein.
  • Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the biomarker expression or activity aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression.
  • Another aspect of the invention pertains to methods of modulating the expression or activity or interaction with natural binding partner(s) of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or fragments thereof, for therapeutic purposes.
  • the biomarkers of the invention have been demonstrated to correlate with cancer (e.g., head, neck, and/or lung cancers). Accordingly, the activity and/or expression of the biomarker, as well as the interaction between one or more biomarkers or a fragment thereof and its natural binding partner(s) or a fragment(s) thereof can be modulated in order to modulate the immune response.
  • Modulatory methods of the invention involve contacting a cell with one or more biomarkers of the invention, including one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof or agent that modulates one or more of the activities of biomarker activity associated with the cell.
  • the biomarkers are or encode secreted molecules such that contacting a cell with one or more biomarkers of the invention or agent that modulates one or more of the activities of biomarker activity is unnecessary and contact with a bodily fluid (e.g., blood, serum, lung pleural fluid, etc.) is sufficient.
  • a bodily fluid e.g., blood, serum, lung pleural fluid, etc.
  • An agent that modulates biomarker activity can be an agent as described herein, such as a nucleic acid or a polypeptide, a naturally-occurring binding partner of the biomarker, an antibody against the biomarker, a combination of antibodies against the biomarker and antibodies against other immune related targets, one or more biomarkers agonist or antagonist, a peptidomimetic of one or more biomarkers agonist or antagonist, one or more biomarkers peptidomimetic, other small molecule, or small RNA directed against or a mimic of one or more biomarkers nucleic acid gene expression product.
  • an agent as described herein such as a nucleic acid or a polypeptide, a naturally-occurring binding partner of the biomarker, an antibody against the biomarker, a combination of antibodies against the biomarker and antibodies against other immune related targets, one or more biomarkers agonist or antagonist, a peptidomimetic of one or more biomarkers agonist or antagonist, one or more biomarkers peptidomim
  • An agent that modulates the expression of one or more biomarkers of the invention including one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof is, e.g., an antisense nucleic acid molecule, RNAi molecule, shRNA, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, or other small RNA molecule, triplex oligonucleotide, ribozyme, or recombinant vector for expression of one or more biomarkers polypeptide.
  • an antisense nucleic acid molecule e.g., an antisense nucleic acid molecule, RNAi molecule, shRNA, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, or other small RNA molecule, triplex oligonu
  • an oligonucleotide complementary to the area around one or more biomarkers polypeptide translation initiation site can be synthesized.
  • One or more antisense oligonucleotides can be added to cell media, typically at 200 ⁇ g/ml, or administered to a patient to prevent the synthesis of one or more biomarkers polypeptide.
  • the antisense oligonucleotide is taken up by cells and hybridizes to one or more biomarkers mRNA to prevent translation.
  • an oligonucleotide which binds double-stranded DNA to form a triplex construct to prevent DNA unwinding and transcription can be used. As a result of either, synthesis of biomarker polypeptide is blocked.
  • biomarker expression is modulated, preferably, such modulation occurs by a means other than by knocking out the biomarker gene.
  • Agents which modulate expression by virtue of the fact that they control the amount of biomarker in a cell, also modulate the total amount of biomarker activity in a cell.
  • the agent stimulates one or more activities of one or more biomarkers of the invention, including one or more biomarkers listed in Table 1 and the Examples or a fragment thereof.
  • stimulatory agents include active biomarker polypeptide or a fragment thereof and a nucleic acid molecule encoding the biomarker or a fragment thereof that has been introduced into the cell (e.g., cDNA, mRNA, shRNAs, siRNAs, small RNAs, mature miRNA, pre-miRNA, pri-miRNA, miRNA*, anti-miRNA, or a miRNA binding site, or a variant thereof, or other functionally equivalent molecule known to a skilled artisan).
  • the agent inhibits one or more biomarker activities.
  • the agent inhibits or enhances the interaction of the biomarker with its natural binding partner(s).
  • inhibitory agents include antisense nucleic acid molecules, anti-biomarker antibodies, biomarker inhibitors, and compounds identified in the screening assays described herein.
  • modulatory methods can be performed in vitro (e.g., by contacting the cell with the agent) or, alternatively, by contacting an agent with cells in vivo (e.g., by administering the agent to a subject).
  • the present invention provides methods of treating an individual afflicted with a condition or disorder that would benefit from up- or down-modulation of one or more biomarkers of the invention listed in Table 1 and the Examples or a fragment thereof, e.g., a disorder characterized by unwanted, insufficient, or aberrant expression or activity of the biomarker or fragments thereof.
  • the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., upregulates or downregulates) biomarker expression or activity.
  • an agent e.g., an agent identified by a screening assay described herein
  • the method involves administering one or more biomarkers polypeptide or nucleic acid molecule as therapy to compensate for reduced, aberrant, or unwanted biomarker expression or activity.
  • Stimulation of biomarker activity is desirable in situations in which the biomarker is abnormally downregulated and/or in which increased biomarker activity is likely to have a beneficial effect.
  • inhibition of biomarker activity is desirable in situations in which biomarker is abnormally upregulated and/or in which decreased biomarker activity is likely to have a beneficial effect.
  • these modulatory agents can also be administered in combination therapy with, e.g., chemotherapeutic agents, hormones, antiangiogens, radiolabelled, compounds, or with surgery, cryotherapy, and/or radiotherapy.
  • chemotherapeutic agents e.g., hormones, antiangiogens, radiolabelled, compounds, or with surgery, cryotherapy, and/or radiotherapy.
  • the preceding treatment methods can be administered in conjunction with other forms of conventional therapy (e.g. standard-of-care treatments for cancer well known to the skilled artisan), either consecutively with, pre- or post-conventional therapy.
  • these modulatory agents can be administered with a therapeutically effective dose of chemotherapeutic agent.
  • these modulatory agents are administered in conjunction with chemotherapy to enhance the activity and efficacy of the chemotherapeutic agent.
  • the Physicians' Desk Reference discloses dosages of chemotherapeutic agents that have been used in the treatment of various cancers.
  • the dosing regimen and dosages of these aforementioned chemotherapeutic drugs that are therapeutically effective will depend on the particular cancer (e.g., head, neck, and/or lung cancers), being treated, the extent of the disease and other factors familiar to the physician of skill in the art and can be determined by the physician.
  • it is useful to downregulate immune responses. In other embodiments, it is useful to upregulate immune responses.
  • a PD-1 ligand e.g., soluble PD-L1
  • Downregulation can be in the form of inhibiting or blocking an immune response already in progress, or may involve preventing the induction of an immune response.
  • the functions of activated immune cells can be inhibited by down-regulating immune cell responses, or by inducing specific anergy in immune cells, or both.
  • the immune response can be downmodulated using PD-1 ligand (e.g., soluble PD-L1) polypeptides (e.g., soluble, monomeric forms of a PD-1 ligand (e.g., soluble PD-L1) polypeptide such as PD-1 ligand (e.g., soluble PD-L1)-Ig) and/or anti-PD-1 ligand (e.g., soluble PD-L1) antibodies that block the interaction of PD-1 ligand (e.g., soluble PD-L1) with a B7 polypeptide (e.g., while not affecting or increasing the interaction between PD-L1 and PD-1) or which promote the binding of a PD-1 ligand (e.g., soluble PD-L1) with PD-1, (e.g., while not affecting or while inhibiting the interaction between a B7 polypeptide and the PD-1 ligand (e.g., soluble PD-L1)
  • forms of PD-L1 that bind to the inhibitory receptor e.g., multivalent PD-L1 on a cell surface, can be used to downmodulate the immune response.
  • the PD-1 pathway can also be stimulated by the use of an agent to thereby downmodulate the immune response.
  • Inhibition of the interaction of B7-4 with a stimulatory receptor on an immune cell e.g., by using a soluble form of PD-1 and/or CTLA4
  • activation of PD-1 e.g., using an activating antibody which cross-links PD-1 may provide negative signals to immune cells.
  • Agents that promote binding of a PD-1 ligand (e.g., soluble PD-L1) to PD-1 or a B7 polypeptide to CTLA4, while not affecting or reducing the binding of the PD-1 ligand (e.g., soluble PD-L1) to the B7 polypeptide, can also be used to down modulate the immune response.
  • a PD-1 ligand e.g., soluble PD-L1
  • a B7 polypeptide to CTLA4 e.g., CTLA4
  • Exemplary agents include PD-1 peptide mimetics, identified by the methods described herein.
  • an activating antibody used to stimulate PD-1 activity is a bispecific antibody.
  • such an antibody can comprise a PD-1 binding site and another binding site which targets a cell surface receptor on an immune cell, e.g., on a T cell, a B cell, or a myeloid cell.
  • such an antibody in addition to comprising a PD-1 binding site can further comprise a binding site which binds to a molecule which is in proximity to an activating or inhibitory receptor, e.g., B-cell antigen receptor, a T-cell antigen receptor, or an Fe receptor in order to target the molecule to a specific cell population.
  • a CD3 antigen for example, a CD3 antigen, a T-cell receptor chain, LFA-1, CD2, CTLA-4, immunoglobulin, B cell receptor, Ig alpha, Ig beta, CD22, or Fc receptor could be used.
  • Such antibodies or other bispecific agents) are art recognized and can be produced, e.g., as described herein. Selection of this second antigen for the bispecific antibody provides flexibility in selection of cell population to be targeted for inhibition.
  • the co-ligation of PD-1 and an activating or inhibitory receptor on a cell can enhance the generation of a negative signal via PD-1.
  • Such co-ligation can be accomplished e.g., by use of a bispecific agent, e.g., a bispecific antibody as described herein having specificity for both PD-1 and a molecule associated with a receptor.
  • the use of a multivalent form of an agent that transmits a negative signal via PD-1 can be used to enhance the transmission of a negative signal via PD-1, e.g., an agent presented on a bead or on a surface.
  • a such a multivalent agent can comprise two specificities to achieve co-ligation of PD-1 and a receptor or a receptor associated molecule (e.g., a bead comprising anti CD3 and PD-L1).
  • Agents that block or inhibit interaction of PD-L1 with a costimulatory receptor e.g., soluble forms of PD-L1 or blocking antibodies to PD-L1
  • agents that promote a PD-L1-mediated inhibitory signal or agonists of PD-1 which activate PD-1 can be identified by their ability to inhibit immune cell proliferation and/or effector function or to induce anergy when added to an in vitro assay.
  • cells can cultured in the presence of an agent that stimulates signal transduction via an activating receptor.
  • a number of art recognized readouts of cell activation can be employed to measure, e.g., cell proliferation or effector function (e.g., antibody production, cytokine production, phagocytosis) in the presence of the activating agent.
  • cell proliferation or effector function e.g., antibody production, cytokine production, phagocytosis
  • the ability of a test agent to block this activation can be readily determined by measuring the ability of the agent to effect a decrease in proliferation or effector function being measured.
  • tolerance is induced against specific antigens by co-administering an antigen with an agent (e.g., antibody, peptide, fusion protein, or small molecule) which blocks the interaction between a PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide.
  • an agent e.g., antibody, peptide, fusion protein, or small molecule
  • tolerance can be induced to specific proteins.
  • immune responses to allergens, or to foreign proteins to which an immune response is undesirable can be inhibited. For example, patients that receive Factor VIII frequently generate antibodies against this clotting factor.
  • Co-administration of an agent that blocks a PD-1 ligand (e.g., soluble PD-L1)-mediated costimulatory signal or an agent that stimulates a PD-1 mediated inhibitory signal in combination with recombinant factor VIII (or by physically linked to Factor VIII, e.g., by cross-linking) can result in downmodulation.
  • an agent that blocks a PD-1 ligand e.g., soluble PD-L1
  • an agent that stimulates a PD-1 mediated inhibitory signal in combination with recombinant factor VIII or by physically linked to Factor VIII, e.g., by cross-linking
  • fusion proteins comprising a first PD-1 ligand (e.g., soluble PD-L1) peptide fused to a second peptide can be used to block the interaction of the PD-1 ligand (e.g., soluble PD-L1) with a B7 polypeptide on an immune cell, to thereby downmodulate immune responses.
  • the second peptide blocks an activity of another B lymphocyte antigen (e.g., B7-1, B7-2, or B7-3) to further downmodulate immune responses.
  • B lymphocyte antigen e.g., B7-1, B7-2, or B7-3
  • two separate agents that downmodulate immune responses can be combined as a single composition or administered separately (simultaneously or sequentially) to more effectively downregulate immune cell mediated immune responses in a subject.
  • a PD-1 ligand e.g., soluble PD-L1
  • a B7 polypeptide or with a combination of blocking antibodies (e.g., antibodies against a PD-1 ligand (e.g., soluble PD-L1) polypeptide with anti-B7-1 and/or anti-B7-2 monoclonal antibodies).
  • blocking antibodies e.g., antibodies against a PD-1 ligand (e.g., soluble PD-L1) polypeptide with anti-B7-1 and/or anti-B7-2 monoclonal antibodies.
  • a therapeutically active amount of one or more of the subject agents can be used in conjunction with other downmodulating reagents to influence immune responses.
  • immunomodulating reagents include, without limitation, antibodies that block a costimulatory signal, (e.g., against CD28 or ICOS), antibodies that act as agonists of CTLA4, and/or antibodies against other immune cell markers (e.g., against CD40, against CD40 ligand, or against cytokines), fusion proteins (e.g., CTLA4-Fc), and immunosuppressive drugs, (e.g., rapamycin, cyclosporine A or FK506).
  • a costimulatory signal e.g., against CD28 or ICOS
  • antibodies that act as agonists of CTLA4 e.g., against CD40, against CD40 ligand, or against cytokines
  • fusion proteins e.g., CTLA4-Fc
  • immunosuppressive drugs e.g., rapamycin, cyclosporine A or FK506
  • the agents described herein can also be useful in the construction of therapeutic agents which block immune cell function by destruction of cells.
  • portions of a PD-L1 or PD-1 polypeptide can be linked to a toxin to make a cytotoxic agent capable of triggering the destruction of cells to which it binds.
  • polypeptides of the invention may be linked, or operatively attached, to toxins using techniques that are known in the art, e.g., crosslinking or via recombinant DNA techniques.
  • the preparation of immunotoxins is, in general, well known in the art (see, e.g., U.S. Pat. No. 4,340,535, and EP 44167, both incorporated herein by reference).
  • Numerous types of disulfide-bond containing linkers are known which can successfully be employed to conjugate the toxin moiety with a polypeptide.
  • linkers that contain a disulfide bond that is sterically “hindered” are to be preferred, due to their greater stability in vivo, thus preventing release of the toxin moiety prior to binding at the site of action.
  • a wide variety of toxins are known that may be conjugated to polypeptides or antibodies of the invention.
  • examples include: numerous useful plant-, fungus- or even bacteria-derived toxins, which, by way of example, include various A chain toxins, particularly ricin A chain, ribosome inactivating proteins such as saporin or gelonin, .alpha.-sarcin, aspergillin, restrictocin, ribonucleases such as placental ribonuclease, angiogenic, diphtheria toxin, and pseudomonas exotoxin, etc.
  • a preferred toxin moiety for use in connection with the invention is toxin A chain which has been treated to modify or remove carbohydrate residues, deglycosylated A chain. (U.S. Pat. No. 5,776,427).
  • cytotoxic agents e.g., PD-L1 ricin (alone or in combination with B7-2-ricin or B7-1-ricin
  • cytotoxic agents e.g., PD-L1 ricin (alone or in combination with B7-2-ricin or B7-1-ricin)
  • an antibody against PD-1 can be used to target the depletion of these specific cells by Fc-R dependent mechanisms or by ablation by conjugating a cytotoxic drug (e.g., ricin, saporin, or calicheamicin) to the antibody.
  • the antibody toxin can be a bispecific antibody.
  • bispecific antibodies are useful for targeting a specific cell population, e.g., using a marker found only on a certain type of cell, e.g., a TCR, BCR, or FcR molecule.
  • Downregulating or preventing a PD-1 ligand (e.g., soluble PD-L1) interaction with a B7 polypeptide, or promoting an interaction between a PD-1 ligand (e.g., soluble PD-L1) and PD-1 (for example, without modulating, or by additionally enhancing) the interaction between the PD-1 ligand (e.g., soluble PD-L1) and the B7 polypeptide (e.g., by stimulation of the negative signaling function of PD-1) is useful to downmodulate the immune response, e.g., in situations of excess inflammation; in tissue, skin and organ transplantation; in graft-versus-host disease (GVHD); or in autoimmune diseases such as systemic lupus erythematosus, and multiple sclerosis.
  • blockage of immune cell function results in reduced tissue destruction in tissue transplantation.
  • rejection of the transplant is initiated through its recognition as foreign by immune cells, followed by an immune reaction that destroys the transplant.
  • a polypeptide which inhibits or blocks interaction of a PD-1 ligand (e.g., soluble PD-L1) with a B7 polypeptide (such as a soluble, monomeric form of the PD-1 ligand (e.g., soluble PD-L1) or PD-1) alone or in conjunction with another downmodulatory agent, prior to or at the time of transplantation can promote the generation of an inhibitory signal.
  • inhibition of PD-1 ligand e.g., soluble PD-L1 costimulatory signals, or promotion of a PD-1 ligand (e.g., soluble PD-L, 1) or PD-1 inhibitory signals, may also be sufficient to anergize the immune cells, thereby inducing tolerance in a subject.
  • Induction of long-term tolerance by blocking a PD-1 ligand (e.g., soluble PD-L1) mediated costimulatory signal may avoid the necessity of repeated administration of these blocking reagents.
  • B7-1 and PD-L1; B7-2 and PD-L1; B7-1 and B7-2 and PD-L1; B7-1; B7-2; or B7-1 and B7-2 by administering a soluble form of a combination of peptides having an activity of each of these antigens, blocking antibodies against these antigens or blocking small molecules (separately or together in a single composition) prior to or at the time of transplantation.
  • a PD-1 ligand e.g., soluble PD-L1
  • PD-1 e.g., soluble PD-L1
  • Other downmodulatory agents that can be used in connection with the downmodulatory methods of the invention include, for example, agents that transmit an inhibitory signal via CTLA4, soluble forms of CTLA4, antibodies that activate an inhibitory signal via CTLA4, blocking antibodies against other immune cell markers or soluble forms of other receptor ligand pairs (e.g., agents that disrupt the interaction between CD40 and CD40 ligand (e.g., anti CD40 ligand antibodies)), antibodies against cytokines, or immunosuppressive drugs.
  • a combination of at least two different PD-L1 antibodies can be administered to achieve optimal blocking activity.
  • autoimmune disorders are the result of inappropriate activation of immune cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive immune cells may reduce or eliminate disease symptoms.
  • reagents which block costimulation of immune cells by disrupting interactions between PD-1 ligand (e.g., soluble PD-L1) and B7 polypeptides, or by promoting the interaction between PD-1 ligand (e.g., soluble PD-L1) and PD-1, without modulating or while downmodulating the interaction between PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide are useful for inhibiting immune cell activation and preventing production of autoantibodies or cytokines which may be involved in the disease process.
  • agents that promote an inhibitory function of a PD-1 ligand (e.g., soluble PD-L1) or PD-1 may induce antigen-specific tolerance of autoreactive immune cells, which could lead to long-term relief from the disease.
  • the efficacy of reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythematosus in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see. e.g., Paul ed., Fundamental Immunology , Raven Press, New York, Third Edition 1993, chapter 30).
  • Inhibition of immune cell activation is useful therapeutically in the treatment of allergy and allergic reactions, e.g., by inhibiting IgE production.
  • An agent that promotes a PD-1 ligand (e.g., soluble PD-L1) or PD-1 inhibitory function can be administered to an allergic subject to inhibit immune cell mediated allergic responses in the subject.
  • Inhibition of PD-1 ligand (e.g., soluble PD-L1) costimulation of immune cells or stimulation of a PD-1 ligand (e.g., soluble PD-L1) or PD-1 inhibitory pathway can be accompanied by exposure to allergen in conjunction with appropriate MHC polypeptides.
  • Allergic reactions can be systemic or local in nature, depending on the route of entry of the allergen and the pattern of deposition of IgE on mast cells or basophils.
  • inhibition of immune cell mediated allergic responses locally or systemically by administration of an inhibitory form of an agent that inhibits the interaction of a PD-1 ligand (e.g., soluble PD-L1) with a costimulatory receptor, or an agent that promotes an inhibitory function of a PD-1 ligand (e.g., soluble PD-L1) or PD-1.
  • AIDS acquired immune deficiency syndrome
  • PD-1 ligand e.g., soluble PD-L1
  • PD-1 ligand is normally highly expressed in placental trophoblasts, the layer of cells that forms the interface between mother and fetus and may play a role in preventing maternal rejection of the fetus.
  • Females at risk for spontaneous abortion e.g., those who have previously had a spontaneous abortion or those who have had difficulty conceiving
  • immunologic rejection of the embryo or fetus can be treated with agents that modulate these interactions.
  • Downregulation of an immune response by modulation of PD-1 ligand (e.g., soluble PD-L1)/B7 polypeptide, binding or by modulation of PD-1 ligand (e.g., soluble PD-L1)/PD-1 binding may also be useful in treating an autoimmune attack of autologous tissues.
  • PD-1 ligand e.g., soluble PD-L1
  • PD-1 ligand is normally highly expressed in the heart and may protect the heart from autoimmune attack. This is evidenced by the fact that the Balb/c PD-1 knockout mouse exhibits massive autoimmune attack on the heart with thrombosis.
  • conditions that are caused or exacerbated by autoimmune attack may be ameliorated or improved by modulation of these interactions. It is therefore within the scope of the invention to modulate conditions exacerbated by autoimmune attack, such as autoimmune disorders (as well as conditions such as heart disease, myocardial infarction, and atherosclerosis).
  • Also useful therapeutically is the blockage of the interaction of a PD-1 ligand (e.g., soluble PD-L1) with PD-1, and/or a B7 polypeptide with CTLA4, without modulating or while upregulating the interaction between the B7 polypeptide and the PD-1 ligand (e.g., soluble PD-L1), or by promoting the interaction of the PD-1 ligand (e.g., soluble PD-L1) with the B7 polypeptide (e.g., while not affecting or while inhibiting the interaction between the PD-1 ligand (e.g., soluble PD-L1) and PD-1) as a means of upregulating an immune response.
  • a PD-1 ligand e.g., soluble PD-L1
  • CTLA4 a B7 polypeptide with CTLA4
  • Blocking the interaction between a B7 polypeptide and a PD-1 ligand (e.g., soluble PD-L1) to thereby increase the interaction between the B7 polypeptide and CD28, is also useful to upregulate immune responses.
  • Upregulation of immune responses can be in the form of enhancing an existing immune response or eliciting an initial immune response.
  • enhancing an immune response using the subject compositions and methods is useful in cases of infections with microbes (e.g., bacteria, viruses, or parasites).
  • an agent that blocks the interaction of a PD-1 ligand (e.g., soluble PD-L1) with PD-1, without modulating or while upregulating the interaction between a B7 polypeptide and the PD-1 ligand (e.g., soluble PD-L1), or by promoting the interaction of the PD-1 ligand (e.g., soluble PD-L1) with the B7 polypeptide is used to enhance the immune response.
  • a PD-1 ligand e.g., soluble PD-L1
  • Such an agent e.g., a non-activating antibody that blocks PD-L1 binding to PD-1 is therapeutically useful in situations where upregulation of antibody and cell-mediated responses would be beneficial.
  • the agent inhibits the interaction between PD-1 and a PD-1 ligand (e.g., soluble PD-L1), without inhibiting the interaction between the PD-1 ligand (e.g., soluble PD-L1) and a B7 polypeptide (e.g., an interaction which prevents PD-L1 from binding to PD-1).
  • a PD-1 ligand e.g., soluble PD-L1
  • a B7 polypeptide e.g., an interaction which prevents PD-L1 from binding to PD-1.
  • Exemplary disorders include viral skin diseases, such as Herpes or shingles, in which case such an agent can be delivered topically to the skin.
  • systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by systemic administration of such agents.
  • immune responses can be enhanced in an infected patient through an er vivo approach, for instance, by removing immune cells from the patient, contacting immune cells in vitro with an agent that blocks the interaction of a PD-1 ligand (e.g., soluble PD-L1) with PD-1, without modulating or while upmodulating the interaction between a B7 polypeptide and the PD-1 ligand (e.g., soluble PD-L1), or by promoting the interaction of the PD-1 ligand (e.g., soluble PD-L1) with the B7 polypeptide, and reintroducing the in vitro stimulated immune cells into the patient.
  • a PD-1 ligand e.g., soluble PD-L1
  • agents that upregulate immune responses for example, forms of other B7 family members that transduce signals via costimulatory receptors, in order to further augment the immune response.
  • An agent that blocks the interaction of a PD-1 ligand (e.g., soluble PD-L1) with PD-1 e.g., without modulating or while upmodulating the interaction between a B7 polypeptide and the PD-1 ligand (e.g., soluble PD-L1) or by enhancing the interaction of the PD-1 ligand (e.g., soluble PD-L1) with the B7 polypeptide)
  • a PD-1 ligand e.g., soluble PD-L1
  • a B7 polypeptide and the PD-1 ligand e.g., soluble PD-L1
  • enhancing the interaction of the PD-1 ligand (e.g., soluble PD-L1) with the B7 polypeptide) can be used prophylactically in vaccines against various polypeptides (e.g., polypeptides derived from pathogens).
  • Immunity against a pathogen can be induced by vaccinating with a viral protein along with an agent that blocks the interaction of a PD-1 ligand (e.g., soluble PD-L1) with PD-1, without modulating or while upmodulating the interaction between a B7 polypeptide and the PD-1 ligand (e.g., soluble PD-L1), or by promoting the interaction of the PD-1 ligand (e.g., soluble PD-L1) with the B7 polypeptide, in an appropriate adjuvant.
  • a PD-1 ligand e.g., soluble PD-L1
  • upregulation or enhancement of an immune response function is useful in the induction of tumor immunity
  • the immune response can be stimulated by the methods described herein, such that preexisting tolerance is overcome.
  • immune responses against antigens to which a subject cannot mount a significant immune response e.g., to an autologous antigen, such as a tumor specific antigens can be induced by administering an agent that blocks the interaction of a PD-1 ligand (e.g., soluble PD-L1) with PD-1 (e.g., without modulating or while upmodulating the interaction between a B7 polypeptide and the PD-1 ligand (e.g., soluble PD-L1) or by promoting the interaction of the PD-1 ligand (e.g., soluble PD-L1) with the B7 polypeptide).
  • a PD-1 ligand e.g., soluble PD-L1
  • B7 polypeptide e.g., soluble PD-L1
  • soluble PD-L1 e.g., soluble PD-L1
  • a soluble PD-1 or a soluble PD-1 ligand that inhibits the interaction of a PD-1 ligand (e.g., soluble PD-L1) with PD-1, without modulating or while upmodulating the interaction between a B7 polypeptide and the PD-1 ligand (e.g., soluble PD-L1), or by promoting the interaction of the PD-1 ligand (e.g., soluble PD-L1) with the B7 polypeptide, can be used to enhance an immune response (e.g., to a tumor cell).
  • an autologous antigen such as a tumor-specific antigen can be coadministered.
  • the subject agents can be used as adjuvants to boost responses to foreign antigens in the process of active immunization.
  • the production of a form of PD-L1 that binds to an inhibitory receptor or that competes with the binding of PD-L1 to a costimulatory receptor e.g., a form of PD-L1 that binds to PD-1 or a naturally occurring soluble molecule
  • a costimulatory receptor e.g., a form of PD-L1 that binds to PD-1 or a naturally occurring soluble molecule
  • the production of inhibitory PD-L1 molecules by a rumor cell can be inhibited in order to increase anti-tumor immunity.
  • immune cells are obtained from a subject and cultured ex vivo in the presence of an agent as described herein, to expand the population of immune cells and/or to enhance immune cell activation.
  • the immune cells are then administered to a subject.
  • Immune cells can be stimulated in vitro by, for example, providing to the immune cells a primary activation signal and a costimulatory signal, as is known in the art.
  • Various agents can also be used to costimulate proliferation of immune cells.
  • immune cells are cultured ex vivo according to the method described in PCT Application No. WO 94/29436.
  • the costimulatory polypeptide can be soluble, attached to a cell membrane, or attached to a solid surface, such as a bead.
  • the present invention provides pharmaceutically acceptable compositions which comprise a therapeutically-effective amount of an agent that modulates (e.g., increases or decreases) PD-1, membrane-bound PD-L1, and/or soluble PD-L1 levels, formulated together with one or more pharmaceutically acceptable carriers (additives) and/or diluents.
  • an agent that modulates e.g., increases or decreases
  • PD-1 membrane-bound PD-L1, and/or soluble PD-L1 levels
  • compositions of the present invention may be specially formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, boluses, powders, granules, pastes; (2) parenteral administration, for example, by subcutaneous, intramuscular or intravenous injection as, for example, a sterile solution or suspension: (3) topical application, for example, as a cream, ointment or spray applied to the skin; (4) intravaginally or intrarectally, for example, as a pessary, cream or foam; or (5) aerosol, for example, as an aqueous aerosol, liposomal preparation or solid particles containing the compound.
  • oral administration for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, boluses, powders, granules, pastes
  • parenteral administration for example, by subcutaneous, intramuscular or intravenous injection
  • therapeutically-effective amount means that amount of an agent that modulates (e.g., inhibits) PD-1, membrane-bound PD-L1, and/or soluble PD-L1 levels, or expression and/or activity of the receptor/ligand complex, or composition comprising an agent that modulates (e.g., inhibits) PD-1, membrane-bound PD-L1, and/or soluble PD-L1 levels, or expression and/or activity of the receptor/ligand complex, which is effective for producing some desired therapeutic effect, e.g., cancer treatment, at a reasonable benefit/risk ratio.
  • phrases “pharmaceutically acceptable” is employed herein to refer to those agents, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically-acceptable carrier means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject chemical from one organ, or portion of the body, to another organ, or portion of the body.
  • a pharmaceutically-acceptable material such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject chemical from one organ, or portion of the body, to another organ, or portion of the body.
  • Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the subject.
  • materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth: (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (1) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide
  • pharmaceutically-acceptable salts refers to the relatively non-toxic, inorganic and organic acid addition salts of the agents that modulates (e.g., inhibits) PD-1, membrane-bound PD-L1, and/or soluble PD-L1 levels, or expression and/or activity of the receptor/ligand complex encompassed by the invention.
  • These salts can be prepared in situ during the final isolation and purification of the respiration uncoupling agents, or by separately reacting a purified respiration uncoupling agent in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed.
  • Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, napthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts and the like (See, for example, Berge et al. (1977) “Pharmaceutical Salts”, J. Pharm. Sci. 66:1-19).
  • the agents useful in the methods of the present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically-acceptable salts with pharmaceutically-acceptable bases.
  • pharmaceutically-acceptable salts in these instances refers to the relatively non-toxic, inorganic and organic base addition salts of agents that modulates (e.g., inhibits) PD-1, membrane-bound PD-L1, and/or soluble PD-L1 levels, or expression and/or activity of the receptor/ligand complex.
  • These salts can likewise be prepared in situ during the final isolation and purification of the respiration uncoupling agents, or by separately reacting the purified respiration uncoupling agent in its free acid form with a suitable base, such as the hydroxide, carbonate or bicarbonate of a pharmaceutically-acceptable metal cation, with ammonia, or with a pharmaceutically-acceptable organic primary, secondary or tertiary amine.
  • a suitable base such as the hydroxide, carbonate or bicarbonate of a pharmaceutically-acceptable metal cation, with ammonia, or with a pharmaceutically-acceptable organic primary, secondary or tertiary amine.
  • Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like.
  • Organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like (see, for example, Berge et al., supra).
  • wetting agents such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.
  • antioxidants examples include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BIA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.
  • water soluble antioxidants such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like
  • oil-soluble antioxidants such as ascorbyl palmitate, butylated hydroxyanisole (BIA), butylated hydroxytoluene (BHT), le
  • Formulations useful in the methods of the present invention include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal, aerosol and/or parenteral administration.
  • the formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy.
  • the amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration.
  • the amount of active ingredient, which can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 1% to about 99% of active ingredient, preferably from about 5% to about 70%, most preferably from about 10% to about 30%.
  • Methods of preparing these formulations or compositions include the step of bringing into association an agent that modulates (e.g., increases or decreases) PD-1, membrane-bound PD-L1, and/or soluble PD-L1 levels, with the carrier and, optionally, one or more accessory ingredients.
  • the formulations are prepared by uniformly and intimately bringing into association a respiration uncoupling agent with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.
  • Formulations suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a respiration uncoupling agent as an active ingredient.
  • a compound may also be administered as a bolus, electuary or paste.
  • the active ingredient is mixed with one or more pharmaceutically-acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, acet
  • compositions may also comprise buffering agents.
  • Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.
  • a tablet may be made by compression or molding, optionally with one or more accessory ingredients.
  • Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent.
  • Molded tablets may be made by molding in a suitable machine a mixture of the powdered peptide or peptidomimetic moistened with an inert liquid diluent.
  • Tablets, and other solid dosage forms may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions, which can be dissolved in sterile water, or some other sterile injectable medium immediately before use.
  • compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner.
  • opacifying agents include polymeric substances and waxes.
  • the active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.
  • Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs.
  • the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers
  • the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
  • adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.
  • Suspensions in addition to the active agent may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
  • suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.
  • Formulations for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing one or more respiration uncoupling agents with one or more suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active agent.
  • suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active agent.
  • Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.
  • Dosage forms for the topical or transdermal administration of an agent that modulates (e.g., increases or decreases) PD-1, membrane-bound PD-L1, and/or soluble PD-L1 levels include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants.
  • the active component may be mixed under sterile conditions with a pharmaceutically-acceptable carrier, and with any preservatives, buffers, or propellants which may be required.
  • the ointments, pastes, creams and gels may contain, in addition to a respiration uncoupling agent, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
  • excipients such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.
  • Powders and sprays can contain, in addition to an agent that modulates (e.g., increases or decreases) PD-1, membrane-bound PD-L1, and/or soluble PD-L1 levels, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances.
  • Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.
  • the agent that modulates (e.g., increases or decreases) PD-1, membrane-bound PD-L1, and/or soluble PD-L1 levels can be alternatively administered by aerosol. This is accomplished by preparing an aqueous aerosol, liposomal preparation or solid particles containing the compound. A nonaqueous (e.g., fluorocarbon propellant) suspension could be used. Sonic nebulizers are preferred because they minimize exposing the agent to shear, which can result in degradation of the compound.
  • an aqueous aerosol is made by formulating an aqueous solution or suspension of the agent together with conventional pharmaceutically acceptable carriers and stabilizers.
  • the carriers and stabilizers vary with the requirements of the particular compound, but typically include nonionic surfactants (Tweens, Pluronics, or polyethylene glycol), innocuous proteins like serum albumin, sorbitan esters, oleic acid, lecithin, amino acids such as glycine, buffers, salts, sugars or sugar alcohols.
  • Aerosols generally are prepared from isotonic solutions.
  • Transdermal patches have the added advantage of providing controlled delivery of a respiration uncoupling agent to the body.
  • dosage forms can be made by dissolving or dispersing the agent in the proper medium.
  • Absorption enhancers can also be used to increase the flux of the peptidomimetic across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the peptidomimetic in a polymer matrix or gel.
  • Ophthalmic formulations are also contemplated as being within the scope of this invention.
  • compositions of this invention suitable for parenteral administration comprise one or more respiration uncoupling agents in combination with one or more pharmaceutically-acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.
  • aqueous and nonaqueous carriers examples include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate.
  • polyols such as glycerol, propylene glycol, polyethylene glycol, and the like
  • vegetable oils such as olive oil
  • injectable organic esters such as ethyl oleate.
  • Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
  • compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.
  • adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents.
  • Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride
  • the absorption of the drug in order to prolong the effect of a drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally-administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.
  • Injectable depot forms are made by forming microencapsule matrices of an agent that modulates (e.g., increases or decreases) PD-1, membrane-bound PD-L1, and/or soluble PD-L1 levels, in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of drug to polymer, and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions, which are compatible with body tissue.
  • respiration uncoupling agents of the present invention are administered as pharmaceuticals, to humans and animals, they can be given per se or as a pharmaceutical composition containing, for example, 0.1 to 99.5% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.
  • Actual dosage levels of the active ingredients in the pharmaceutical compositions of this invention may be determined by the methods of the present invention so as to obtain an amount of the active ingredient, which is effective to achieve the desired therapeutic response for a particular subject, composition, and mode of administration, without being toxic to the subject.
  • the nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors.
  • Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see U.S. Pat. No. 5,328,470) or by stereotactic injection (see e.g., Chen et al. (1994) Proc. Natl. Acad. Sci. USA 91:3054 3057).
  • the pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded.
  • the pharmaceutical preparation can include one or more cells which produce the gene delivery system.
  • the cancer diagnostic, prognostic, prevention, and/or treatment modulating agents of the invention are administered to subjects in a biologically compatible form suitable for pharmaceutical administration in vivo, to either enhance or suppress immune cell mediated immune responses.
  • biologically compatible form suitable for administration in vivo is meant a form of the protein to be administered in which any toxic effects are outweighed by the therapeutic effects of the protein.
  • subject is intended to include living organisms in which an immune response can be elicited, e.g., mammals. Examples of subjects include humans, dogs, cats, mice, rats, and transgenic species thereof.
  • Administration of an agent as described herein can be in any pharmacological form including a therapeutically active amount of an agent alone or in combination with a pharmaceutically acceptable carrier.
  • a therapeutically active amount of the therapeutic composition of the present invention is defined as an amount effective, at dosages and for periods of time necessary, to achieve the desired result.
  • a therapeutically active amount of a blocking antibody may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of peptide to elicit a desired response in the individual. Dosage regimens can be adjusted to provide the optimum therapeutic response. For example, several divided doses can be administered daily or the dose can be proportionally reduced as indicated by the exigencies of the therapeutic situation.
  • agents of the invention described herein can be administered in a convenient manner such as by injection (subcutaneous, intravenous, etc.), oral administration, inhalation, transdermal application, or rectal administration.
  • the active compound can be coated in a material to protect the compound from the action of enzymes, acids and other natural conditions which may inactivate the compound.
  • An agent can be administered to an individual in an appropriate carrier, diluent or adjuvant, co-administered with enzyme inhibitors or in an appropriate carrier such as liposomes.
  • Pharmaceutically acceptable diluents include saline and aqueous buffer solutions.
  • Adjuvant is used in its broadest sense and includes any immune stimulating compound such as interferon.
  • Adjuvants contemplated herein include resorcinols, non-ionic surfactants such as polyoxyethylene oleyl ether and n-hexadecyl polyethylene ether.
  • Enzyme inhibitors include pancreatic trypsin inhibitor, diisopropylfluorophosphate (DEEP) and trasylol.
  • Liposomes include water-in-oil-in-water emulsions as well as conventional liposomes (Sterna et al. (1984) J. Neuroimmunol. 7:27).
  • the agent may also be administered parenterally or intraperitoneally.
  • Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof, and in oils. Under ordinary conditions of storage and use, these preparations may contain a preservative to prevent the growth of microorganisms.
  • compositions of agents suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
  • the composition will preferably be sterile and must be fluid to the extent that easy syringeability exists. It will preferably be stable under the conditions of manufacture and storage and preserved against the contaminating action of microorganisms such as bacteria and fungi.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
  • the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like.
  • isotonic agents for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition.
  • Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
  • Sterile injectable solutions can be prepared by incorporating an agent of the invention (e.g., an antibody, peptide, fusion protein or small molecule) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
  • agent of the invention e.g., an antibody, peptide, fusion protein or small molecule
  • dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above.
  • the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the agent plus any additional desired ingredient from a previously sterile-filtered solution thereof.
  • the protein can be orally administered, for example, with an inert diluent or an assimilable edible carrier.
  • pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the therapeutic compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
  • Dosage unit form refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • the specification for the dosage unit forms of the invention are dictated by, and directly dependent on, (a) the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active compound for the treatment of sensitivity in individuals.
  • an agent of the invention is an antibody.
  • a therapeutically effective amount of antibody i.e., an effective dosage ranges from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight.
  • an effective dosage ranges from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight.
  • certain factors may influence the dosage required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present.
  • treatment of a subject with a therapeutically effective amount of an antibody can include a single treatment or, preferably, can include a series of treatments.
  • a subject is treated with antibody in the range of between about 0.1 to 20 mg/kg body weight, one time per week for between about 1 to 10 weeks, preferably between 2 to 8 weeks, more preferably between about 3 to 7 weeks, and even more preferably for about 4, 5, or 6 weeks.
  • the effective dosage of antibody used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result from the results of diagnostic assays.
  • an antibody of the invention can also be administered in combination therapy with, e.g., chemotherapeutic agents, hormones, antiangiogens, radiolabelled, compounds, or with surgery, cryotherapy, and/or radiotherapy.
  • An antibody of the invention can also be administered in conjunction with other forms of conventional therapy, either consecutively with, pre- or post-conventional therapy.
  • the antibody can be administered with a therapeutically effective dose of chemotherapeutic agent.
  • the antibody can be administered in conjunction with chemotherapy to enhance the activity and efficacy of the chemotherapeutic agent.
  • the Physicians' Desk Reference discloses dosages of chemotherapeutic agents that have been used in the treatment of various cancers.
  • chemotherapeutic drugs that are therapeutically effective will depend on the particular immune disorder, e.g., Hodgkin lymphoma, being treated, the extent of the disease and other factors familiar to the physician of skill in the art and can be determined by the physician.
  • agents of the invention described herein can be administered using nanoparticle-based composition and delivery methods well known to the skilled artisan.
  • nanoparticle-based delivery for improved nucleic acid (e.g., small RNAs) therapeutics are well known in the art ( Expert Opinion on Biological Therapy 7:1811-1822).
  • HPV-Mediated PD-L1 Splice Variants are Associated with Head, Neck, and Lung Cancers and Other Cancers
  • FIG. 1 shows a schematic of a mutational landscape of head and neck cancers analyzed by The Cancer Genome Atlas (TCGA) project. Sequencing results of 279 tumors using whole-exome hybrid capture identified genes displaying significant enrichment for mutation in this dataset. The start indicates samples with evidence of HPV infection. Each column represents one tumor and the different types of tumors are shown by the different marks. Also listed are the number of mutations per sample, the percent of samples with mutations in each of the listed genes and whether these genes have been reported in the COSMIC (Sanger Cancer Gene Census) database.
  • FIG. 2 shows data in the same format as for FIG. 1 , except that the data is drawn from an independent cohort of HPV ⁇ (left half) and HPV+ (right half) head and neck cancers in which 700 cancer-related genes were sequenced.
  • FIG. 2 further shows amplified (middle box) or deleted genes (bottom box).
  • FIG. 3 shows a representation of sites of HPV integration in the host genome in head and neck cancers analyzed as part of the TCGA project described in FIG. 1 .
  • the circle shows the human chromosomes around the perimeter and the green lines show sites of integration.
  • FIGS. 4 and 5 show sequencing reads for the CD274 (PD-L1) gene in a squamous head and neck cancer tumor from the larynx (CV-5433) with a detected HPV integration in the PD-L1 gene.
  • On the right panel is seen a white space in the center of the reads which corresponds to where HPV is detected (see left panel).
  • the site of integrations spans positions 5,464,244 to 5,464,509 on chromosome 9 of the Human Genome Reference Consortium Human Build 37 (GRCh37/hg19) assembly publicly available as GenBank Assembly ID: GCA_000001405.1 and RefSeq Assembly ID: GCF_00001405.13 dated Feb. 27, 2009.
  • FIG. 5 shows a zoomed in view of FIG. 4 according to a log scale.
  • FIG. 6 shows a consolidation of the sequencing read data of FIGS. 4 and 5 into a schematic showing the HPV integration within the PD-L1 gene of tumor CV-5433.
  • FIG. 7 shows predicted protein products following HPV integration in tumor CV-5433.
  • One protein is a short form of PD-L1 (soluble 1) made of 227 amino acids (plus a stop codon) instead of the full-length, membrane-bound form having 290 amino acids (i.e., the nucleic acid encodes from 5′ to 3′ the following domains: Exon 1 (L-region), Exon 2 (IgV-like-domain), Exon 3 (IgC-like-domain), Exon 4 (the connecting-region, transmembrane-region, and the start of the intracytoplasmic region), and Exons 5 and 6 (intracytoplasmic-region).
  • PD-L1 soluble 1
  • Exon 2 IgV-like-domain
  • Exon 3 IgC-like-domain
  • Exon 4 the connecting-region, transmembrane-region, and the start of the intracytoplasmic region
  • Exons 5 and 6 intracytoplasmic-region
  • PD-L1 results in loss of the transmembrane and intracellular domains to generate a soluble/secreted polypeptide.
  • soluble 2 another short form of PD-L1 (soluble 2) was identified and confirmed via RNA sequencing as being identical to the soluble 1 form, but further containing an additional C-terminal sequence ( FIG. 7 ) that is not contained in the wild-type, full-length, membrane-bound PD-L1 form.
  • FIG. 8 shows expression of each exon of full-length, membrane-bound PD-L1 on a log scale from the CV-5433 sample and demonstrates a dramatic drop in exons following exon 4 which is the site of HPV integration.
  • FIGS. 9-10 show transcript variants of PD-L1 expressed by head, neck, and lung cancers.
  • FIG. 9 shows that samples from the TCGA head and neck (left panel) and lung cancer (right panel) projects display a diversity of splicing in PD-L1 indicating that many tumors produce soluble PD-L1.
  • FIG. 10 shows the data from FIG. 9 for head and neck cancers in a different manner. Each head and neck tumor is represented as a circle and the tumors are ordered left to right according to total PD-L1 expression. Tumors which favor the short form are lower on the y-axis and normal samples are shown as square boxes.
  • the sample with the HPV integration is labeled as the index case and is a clear outlier in terms of high PD-L1 expression favoring the soluble form.
  • FIG. 11 shows that, in addition to head and neck cancer (HNSC), RNA sequencing analyses generated by TCGA (The Cancer Genome Atlas) using computational methods to detect PD-L1 short forms identified expression of such forms in bladder cancer (BLCA), breast cancer (BRCA), glioblastoma (GBM), kidney cancer (KIRC), acute myelogenous leukemia (LAML), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), ovarian cancer (OV), and also summarized in a pan-cancer graph. Tumors are shown in dark gray and normal samples, when available, are shown in light gray. The y-axis indicates total PD-L1 expression and the x-axis indicates the fraction of short PD-L1.
  • HNSC head and neck cancer
  • Amplification of PD-L1 is shown by the intensity of the circle.
  • the results indicate that there is a spectrum of PD-L1 expression across many cancer types with many tumors displaying evidence of at least some production of the short form, typically consistent with the soluble 2 form having the C-terminal sequence, VIPGNILNVSIKICLTLSPST*.
  • the soluble 2 form sequences were identified by analysis of an index case of head and neck cancer from The Cancer Genome Atlas project (TCGA-CV-5443) in which we identified integration of HPV in the PDL1 (CD274) gene using the Pathseq algorithm as described above. Assembly of PDL1 transcripts from RNA sequencing data from this tumor using Cufflinks demonstrated a proportion of transcripts with evidence of sequence beyond the normal exon boundary.
  • FIG. 12 shows similar results using similar analyses as those conducted in FIG. 11 using the Cancer Cell Line Encyclopedia dataset. Since the TCGA samples shown in FIG. 11 are bulk tumors which contain both tumor and normal stroma, the source of soluble/short PD-L1 could be either the tumor or normal immune cells. However, FIG. 12 demonstrates that cancer cells grown without any stroma produce short PD-L1.
  • the circle at approximately ⁇ 12 on the y-axis and 0.38 on the x-axis and within the circles at the very top row of circles on the y-axis is the index head and neck case for comparison.
  • Soluble PD-L1 Isoforms Associated with Head, Neck, and Lung Cancers and Other Cancers are Immunologically Active
  • FIGS. 13-14 show Western blot results 293T cells transfected with expression vectors encoding the full-length or short PD-L1 forms.
  • FIG. 13 demonstrates that full-length PD-L1 is only found in the cells (left) and the short form is only found in the media (right), thereby confirming that the short form is soluble.
  • FIG. 14 demonstrates that the short form of PD-L1 was produced and affinity purified. Specifically, nucleic acid molecules encoding full-length PD-L1 were purchased from Origene and PCR was used to introduce an early termination codon. PCR was also used to add 3′ HA epitope tags.
  • the short and long forms were cloned into the expression vector pCDNA3 and also pBabe Puro and pMSCV puro.
  • Cell lines expressing short and long PD-L1 forms were created by introducing the PD-L1 transgene by transient transfection (293T cells) or retroviral infection (K562 and Ba/F3 cells).
  • HA. 11 Clone 16B12 monoclonal antibody was used to detect the HA epitope tag and the ab58810 polyclonal antibody to detect PD-L1 (Abcam).
  • FIG. 15 shows the detection of short PDL1 in culture media obtained from cell lines predicted to make higher amounts of using immunoblot analyses (e.g., the RKO colon cancer cell lines, the BDCM acute myclogenous leukemia cell line, and the CAL62 thyroid anaplastic carcinoma cell line).
  • immunoblot analyses e.g., the RKO colon cancer cell lines, the BDCM acute myclogenous leukemia cell line, and the CAL62 thyroid anaplastic carcinoma cell line.
  • FIG. 15 further shows the distribution of PD-L1 in cells engineered to make the wild-type or short forms, which indicates that the short form is present in the media.
  • FIG. 16 shows the results of T cell viability assays using T cells obtained from two independent donors and incubated in the presence of vehicle or either of the two short PDL1 forms (i.e., PD-L1S-Soluble 1 or PD-L1S2-Soluble 2) or media from cells engineered to make wild-type PD-L1 in which most should have been retained in the cell.
  • T cells were isolated from peripheral blood from healthy blood donors at the Dana-Farber Cancer Institute using the auto-MACS system. T cells were cultured in RPMI media and stimulated with CD3 and CD28 conjugated antibody beads for 48 hours.
  • Recombinant soluble PDL1 (both forms) produced via HA-tag affinity purification from transiently transfected HEK293T cells was then as added at 10 micrograms/ml and cells were cultured for an additional 48 hours. Cell viability was measured by propidium iodide exclusion using a flow cytometer. As a control, HA-affinity purification was performed from the supernatant of 293T cells expressing full-length PDL1 using exactly the same conditions as for the soluble form. Etoposide at 10 micromolar was used as a positive control for cell death.
  • FIG. 16 shows a reduction in T cell viability by approximately 10-20% with soluble PD-L1 treatment, but further shows that this effect can be blunted by addition of anti-PD1 or anti-PDL1 antibodies.
  • FIG. 17-18 shows that the short form of PD-L1 can differentially kill proliferating T cells.
  • FIG. 17 shows the results of T cells obtained from a healthy donor and stimulated to proliferate and then treated with either a) the short form of PD-L1 (undiluted, “high input”), b) the short form of PD-L1 (diluted, “low input”), c) the long form of PD-L1 or d) the chemotherapeutic topoisomerase inhibitor, etoposide.
  • the treated T cells then underwent flow cytometry analysis to determine the proportion of live cells. CD8 staining is shown on the x-axis and cell viability is shown on the y-axis.
  • FIG. 18 shows the results of the experiment described in FIG. 17 , except that the T cells were not stimulated to proliferate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Oncology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Plant Pathology (AREA)
US14/895,551 2013-06-06 2014-06-02 Compositions and Methods for Identification, Assessment, Prevention, and Treatment of Cancer Using PD-L1 Isoforms Abandoned US20160122829A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/895,551 US20160122829A1 (en) 2013-06-06 2014-06-02 Compositions and Methods for Identification, Assessment, Prevention, and Treatment of Cancer Using PD-L1 Isoforms

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361831894P 2013-06-06 2013-06-06
PCT/US2014/040504 WO2014197369A1 (fr) 2013-06-06 2014-06-02 Compositions et procédés d'identification, d'évaluation, de prévention et de traitement du cancer en utilisant des isoformes pd-l1
US14/895,551 US20160122829A1 (en) 2013-06-06 2014-06-02 Compositions and Methods for Identification, Assessment, Prevention, and Treatment of Cancer Using PD-L1 Isoforms

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/040504 A-371-Of-International WO2014197369A1 (fr) 2013-06-06 2014-06-02 Compositions et procédés d'identification, d'évaluation, de prévention et de traitement du cancer en utilisant des isoformes pd-l1

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/530,204 Continuation US11926874B2 (en) 2013-06-06 2019-08-02 Methods for identification, assessment, prevention, and treatment of cancer using PD-L1 isoforms

Publications (1)

Publication Number Publication Date
US20160122829A1 true US20160122829A1 (en) 2016-05-05

Family

ID=52008513

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/895,551 Abandoned US20160122829A1 (en) 2013-06-06 2014-06-02 Compositions and Methods for Identification, Assessment, Prevention, and Treatment of Cancer Using PD-L1 Isoforms
US16/530,204 Active 2034-10-13 US11926874B2 (en) 2013-06-06 2019-08-02 Methods for identification, assessment, prevention, and treatment of cancer using PD-L1 isoforms

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/530,204 Active 2034-10-13 US11926874B2 (en) 2013-06-06 2019-08-02 Methods for identification, assessment, prevention, and treatment of cancer using PD-L1 isoforms

Country Status (6)

Country Link
US (2) US20160122829A1 (fr)
EP (2) EP3004877A4 (fr)
AU (1) AU2014275166B2 (fr)
CA (1) CA2913490A1 (fr)
HK (1) HK1252149A1 (fr)
WO (1) WO2014197369A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160098519A1 (en) * 2014-06-11 2016-04-07 Jorge S. Zwir Systems and methods for scalable unsupervised multisource analysis
US9920123B2 (en) 2008-12-09 2018-03-20 Genentech, Inc. Anti-PD-L1 antibodies, compositions and articles of manufacture
WO2018085935A1 (fr) 2016-11-09 2018-05-17 Engene, Inc. Expression intestinale du ligand de mort programmée 1
WO2019014664A1 (fr) * 2017-07-14 2019-01-17 Dana-Farber Cancer Institute, Inc. Modulation de biomarqueurs pour accroître l'immunité antitumorale et améliorer l'efficacité d'une immunothérapie anticancéreuse
WO2018226685A3 (fr) * 2017-06-06 2019-01-17 Dana-Farber Cancer Institute, Inc. Procédés de sensibilisation de cellules cancéreuses à une destruction médiée par des lymphocytes t par modulation de voies moléculaires
WO2019014665A1 (fr) * 2017-07-14 2019-01-17 Dana-Farber Cancer Institute, Inc. Modulation de biomarqueurs pour accroître l'immunité antitumorale et améliorer l'efficacité d'une immunothérapie anticancéreuse
WO2019014663A1 (fr) * 2017-07-14 2019-01-17 Dana-Farber Cancer Institute, Inc. Modulation de biomarqueurs pour accroître l'immunité anti-tumorale et améliorer l'efficacité de l'immunothérapie du cancer
US10336824B2 (en) 2015-03-13 2019-07-02 Cytomx Therapeutics, Inc. Anti-PDL1 antibodies, activatable anti-PDL1 antibodies, and methods of thereof
WO2019168947A1 (fr) * 2018-02-28 2019-09-06 Ap Biosciences, Inc. Protéines bifonctionnelles combinant un blocage des points de contrôle pour une thérapie ciblée
WO2019195815A1 (fr) * 2018-04-06 2019-10-10 Children's Hospital Los Angeles Adn acellulaire d'humeur aqueuse et maladie ophtalmique
US10513558B2 (en) 2015-07-13 2019-12-24 Cytomx Therapeutics, Inc. Anti-PD1 antibodies, activatable anti-PD1 antibodies, and methods of use thereof
US20210003579A1 (en) * 2018-03-27 2021-01-07 Kyoto University Method for assisting determination of efficacy of immune checkpoint inhibitor
US11168144B2 (en) 2017-06-01 2021-11-09 Cytomx Therapeutics, Inc. Activatable anti-PDL1 antibodies, and methods of use thereof
US11840737B2 (en) * 2017-11-03 2023-12-12 Oxford BioDynamics PLC Genetic regulation of immunoresponse by chromosome interactions
WO2023239919A1 (fr) * 2022-06-10 2023-12-14 Dana-Farber Cancer Institute, Inc. Un déséquilibre allélique de l'accessibilité de la chromatine dans le cancer identifie des variants de risque causal et leurs mécanismes

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2913490A1 (fr) 2013-06-06 2014-12-11 Dana-Farber Cancer Institute, Inc. Compositions et procedes d'identification, d'evaluation, de prevention et de traitement du cancer en utilisant des isoformes pd-l1
WO2015077717A1 (fr) 2013-11-25 2015-05-28 The Broad Institute Inc. Compositions et méthodes pour diagnostiquer, évaluer et traiter un cancer au moyen d'un état de méthylation d'adn
US11725237B2 (en) 2013-12-05 2023-08-15 The Broad Institute Inc. Polymorphic gene typing and somatic change detection using sequencing data
AU2014368898B2 (en) 2013-12-20 2020-06-11 Dana-Farber Cancer Institute, Inc. Combination therapy with neoantigen vaccine
CA2935804A1 (fr) 2014-01-14 2015-07-23 Dana-Farber Cancer Institute, Inc. Compositions et methodes pour l'identification, l'evaluation, la prevention, et le traitement d'un melanome a l'aide d'isoformes de pd-l1
RU2711729C2 (ru) 2014-12-09 2020-01-21 Регенерон Фармасьютикалз, Инк. Не относящиеся к человеку животные, имеющие гуманизированный ген кластера дифференцировки 274
WO2016100975A1 (fr) 2014-12-19 2016-06-23 Massachsetts Institute Ot Technology Biomarqueurs moléculaires pour l'immunothérapie d'un cancer
US10993997B2 (en) 2014-12-19 2021-05-04 The Broad Institute, Inc. Methods for profiling the t cell repertoire
AU2016222928B2 (en) * 2015-02-26 2021-05-13 Merck Patent Gmbh PD-1 / PD-L1 inhibitors for the treatment of cancer
WO2016144673A1 (fr) * 2015-03-06 2016-09-15 Dana-Farber Cancer Institute, Inc. Biomarqueurs pd-l2 prédictifs de réponses d'inhibiteurs de la voie pd-1 dans les cancers oesophagogastriques
LT3294770T (lt) * 2015-05-12 2020-12-28 F. Hoffmann-La Roche Ag Vėžio gydymo ir diagnostikos būdai
EP3297660A2 (fr) 2015-05-20 2018-03-28 The Broad Institute Inc. Néo-antigènes partagés
CN108026533B (zh) * 2015-09-01 2021-08-17 中央研究院 拮抗性pdl1适体及其在癌症治疗中的应用
US11549149B2 (en) 2017-01-24 2023-01-10 The Broad Institute, Inc. Compositions and methods for detecting a mutant variant of a polynucleotide
US10452503B2 (en) * 2017-09-29 2019-10-22 Hewlett Packard Enterprise Development Lp Bidirectional replication
US11793867B2 (en) 2017-12-18 2023-10-24 Biontech Us Inc. Neoantigens and uses thereof
CN108828227B (zh) * 2018-05-17 2020-06-30 浙江大学 PD-L1剪接体c作为预测肿瘤预后靶标的应用
CN108823307B (zh) * 2018-05-17 2020-10-30 浙江大学 Pd‐l1剪接体b作为指导抗pd‐l1/pd1免疫治疗的用药的标志物的应用
WO2023178290A1 (fr) * 2022-03-18 2023-09-21 Foundation Medicine, Inc. Utilisation de changements combinés du nombre de copies de cd274 et de la cmt pour prédire une réponse à des immunothérapies

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2437213A1 (fr) 1978-09-28 1980-04-25 Cm Ind Produits cytotoxiques formes par liaison covalente de la chaine a de la ricine avec un anticorps et leur procede de preparation
EP0044167A3 (fr) 1980-07-14 1982-04-21 The Regents Of The University Of California Agent cytotoxique dirigé par un anticorps
US4474893A (en) 1981-07-01 1984-10-02 The University of Texas System Cancer Center Recombinant monoclonal antibodies
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
JPS6147500A (ja) 1984-08-15 1986-03-07 Res Dev Corp Of Japan キメラモノクロ−ナル抗体及びその製造法
EP0173494A3 (fr) 1984-08-27 1987-11-25 The Board Of Trustees Of The Leland Stanford Junior University Récepteurs chimériques par liaison et expression de l'ADN
GB8422238D0 (en) 1984-09-03 1984-10-10 Neuberger M S Chimeric proteins
JPS61134325A (ja) 1984-12-04 1986-06-21 Teijin Ltd ハイブリツド抗体遺伝子の発現方法
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US5391485A (en) 1985-08-06 1995-02-21 Immunex Corporation DNAs encoding analog GM-CSF molecules displaying resistance to proteases which cleave at adjacent dibasic residues
US4810643A (en) 1985-08-23 1989-03-07 Kirin- Amgen Inc. Production of pluripotent granulocyte colony-stimulating factor
JPS63500636A (ja) 1985-08-23 1988-03-10 麒麟麦酒株式会社 多分化能性顆粒球コロニー刺激因子をコードするdna
US5225539A (en) 1986-03-27 1993-07-06 Medical Research Council Recombinant altered antibodies and methods of making altered antibodies
US4902505A (en) 1986-07-30 1990-02-20 Alkermes Chimeric peptides for neuropeptide delivery through the blood-brain barrier
US5116742A (en) 1986-12-03 1992-05-26 University Patents, Inc. RNA ribozyme restriction endoribonucleases and methods
US4987071A (en) 1986-12-03 1991-01-22 University Patents, Inc. RNA ribozyme polymerases, dephosphorylases, restriction endoribonucleases and methods
US4904582A (en) 1987-06-11 1990-02-27 Synthetic Genetics Novel amphiphilic nucleic acid conjugates
US5080891A (en) 1987-08-03 1992-01-14 Ddi Pharmaceuticals, Inc. Conjugates of superoxide dismutase coupled to high molecular weight polyalkylene glycols
US4843155A (en) 1987-11-19 1989-06-27 Piotr Chomczynski Product and process for isolating RNA
AU4308689A (en) 1988-09-02 1990-04-02 Protein Engineering Corporation Generation and selection of recombinant varied binding proteins
US5223409A (en) 1988-09-02 1993-06-29 Protein Engineering Corp. Directed evolution of novel binding proteins
US5176996A (en) 1988-12-20 1993-01-05 Baylor College Of Medicine Method for making synthetic oligonucleotides which bind specifically to target sites on duplex DNA molecules, by forming a colinear triplex, the synthetic oligonucleotides and methods of use
US5116964A (en) 1989-02-23 1992-05-26 Genentech, Inc. Hybrid immunoglobulins
US5328470A (en) 1989-03-31 1994-07-12 The Regents Of The University Of Michigan Treatment of diseases by site-specific instillation of cells or site-specific transformation of cells and kits therefor
US5459039A (en) 1989-05-12 1995-10-17 Duke University Methods for mapping genetic mutations
US5256775A (en) 1989-06-05 1993-10-26 Gilead Sciences, Inc. Exonuclease-resistant oligonucleotides
US5264564A (en) 1989-10-24 1993-11-23 Gilead Sciences Oligonucleotide analogs with novel linkages
US5580756A (en) 1990-03-26 1996-12-03 Bristol-Myers Squibb Co. B7Ig fusion protein
US5427908A (en) 1990-05-01 1995-06-27 Affymax Technologies N.V. Recombinant library screening methods
AU665190B2 (en) 1990-07-10 1995-12-21 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
ATE160379T1 (de) 1990-10-29 1997-12-15 Chiron Corp Bispezifische antikörper, verfahren zu ihrer herstellung und deren verwendungen
DK0564531T3 (da) 1990-12-03 1998-09-28 Genentech Inc Berigelsesfremgangsmåde for variantproteiner med ændrede bindingsegenskaber
ATE363532T1 (de) 1991-03-01 2007-06-15 Dyax Corp Verfahren zur herstellung bindender miniproteine
ES2315612T3 (es) 1991-04-10 2009-04-01 The Scripps Research Institute Genotecas de receptores heterodimericos usando fagemidos.
DE69230142T2 (de) 1991-05-15 2000-03-09 Cambridge Antibody Technology Ltd. Verfahren zur herstellung von spezifischen bindungspaargliedern
US5844095A (en) 1991-06-27 1998-12-01 Bristol-Myers Squibb Company CTLA4 Ig fusion proteins
DE4122599C2 (de) 1991-07-08 1993-11-11 Deutsches Krebsforsch Phagemid zum Screenen von Antikörpern
ES2136092T3 (es) 1991-09-23 1999-11-16 Medical Res Council Procedimientos para la produccion de anticuerpos humanizados.
US5660827A (en) 1992-03-05 1997-08-26 Board Of Regents, The University Of Texas System Antibodies that bind to endoglin
US5733743A (en) 1992-03-24 1998-03-31 Cambridge Antibody Technology Limited Methods for producing members of specific binding pairs
CA2137558A1 (fr) 1992-07-17 1994-02-03 Wayne A. Marasco Methode de fixation intracellulaire de molecules cibles
EP1362913B1 (fr) 1992-10-30 2006-01-25 The General Hospital Corporation Système de piégeage d'intéraction pour l'isolation de protéines
US5360352A (en) 1992-12-24 1994-11-01 The Whitaker Corporation Wire retainer for current mode coupler
US5547835A (en) 1993-01-07 1996-08-20 Sequenom, Inc. DNA sequencing by mass spectrometry
ES2240962T3 (es) 1993-06-04 2005-10-16 The United States Of America As Represented By The Secretary Of The Navy Metodo para estimular selectivamente la proliferacion de celulas t.
CA2168349A1 (fr) 1993-07-30 1995-02-09 Lingxun Duan Immunisation intracellulaire
UA40577C2 (uk) 1993-08-02 2001-08-15 Мерк Патент Гмбх Біспецифічна молекула, що використовується для лізису пухлинних клітин, спосіб її одержання, моноклональне антитіло (варіанти), фармацевтичний препарат, фармацевтичний набір (варіанти), спосіб видалення пухлинних клітин
US5498531A (en) 1993-09-10 1996-03-12 President And Fellows Of Harvard College Intron-mediated recombinant techniques and reagents
CA2143491C (fr) 1994-03-01 2011-02-22 Yasumasa Ishida Nouveau peptide lie a l'apoptose humaine et adn codant ledit peptide
US5854033A (en) 1995-11-21 1998-12-29 Yale University Rolling circle replication reporter systems
JP3521382B2 (ja) 1997-02-27 2004-04-19 日本たばこ産業株式会社 細胞間接着及びシグナル伝達を媒介する細胞表面分子
AR036993A1 (es) * 2001-04-02 2004-10-20 Wyeth Corp Uso de agentes que modulan la interaccion entre pd-1 y sus ligandos en la submodulacion de respuestas inmunologicas
CA2442066C (fr) * 2001-04-02 2005-11-01 Wyeth Le pd-1, recepteur du b7-4, et ses utilisations
WO2002086083A2 (fr) * 2001-04-20 2002-10-31 Mayo Foundation For Medical Education And Research Procedes d'amelioration de la capacite de reaction de cellules t
CA2998281C (fr) * 2008-09-26 2022-08-16 Dana-Farber Cancer Institute, Inc. Anticorps anti-pd-1 humains et leurs utilisations
KR101050829B1 (ko) * 2008-10-02 2011-07-20 서울대학교산학협력단 항 pd-1 항체 또는 항 pd-l1 항체를 포함하는 항암제
CN108997498A (zh) 2008-12-09 2018-12-14 霍夫曼-拉罗奇有限公司 抗-pd-l1抗体及它们用于增强t细胞功能的用途
IT1395574B1 (it) 2009-09-14 2012-10-16 Guala Dispensing Spa Dispositivo di erogazione
WO2011049603A1 (fr) * 2009-10-22 2011-04-28 Dana-Farber Cancer Institute, Inc. Biomarqueurs permettant d'identifier des sous-ensembles de cellules t spécifiques du vih
EP2555778A4 (fr) * 2010-04-06 2014-05-21 Alnylam Pharmaceuticals Inc Compositions et procédés permettant d'inhiber l'expression du gène cd274/pd-l1
CA2913490A1 (fr) 2013-06-06 2014-12-11 Dana-Farber Cancer Institute, Inc. Compositions et procedes d'identification, d'evaluation, de prevention et de traitement du cancer en utilisant des isoformes pd-l1

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9920123B2 (en) 2008-12-09 2018-03-20 Genentech, Inc. Anti-PD-L1 antibodies, compositions and articles of manufacture
US20160098519A1 (en) * 2014-06-11 2016-04-07 Jorge S. Zwir Systems and methods for scalable unsupervised multisource analysis
US10336824B2 (en) 2015-03-13 2019-07-02 Cytomx Therapeutics, Inc. Anti-PDL1 antibodies, activatable anti-PDL1 antibodies, and methods of thereof
US11174316B2 (en) 2015-03-13 2021-11-16 Cytomx Therapeutics, Inc. Anti-PDL1 antibodies, activatable anti-PDL1 antibodies, and methods of use thereof
US10669339B2 (en) 2015-03-13 2020-06-02 Cytomx Therapeutics, Inc. Anti-PDL1 antibodies, activatable anti-PDL1 antibodies, and methods of use thereof
US10513558B2 (en) 2015-07-13 2019-12-24 Cytomx Therapeutics, Inc. Anti-PD1 antibodies, activatable anti-PD1 antibodies, and methods of use thereof
WO2018085935A1 (fr) 2016-11-09 2018-05-17 Engene, Inc. Expression intestinale du ligand de mort programmée 1
US11168144B2 (en) 2017-06-01 2021-11-09 Cytomx Therapeutics, Inc. Activatable anti-PDL1 antibodies, and methods of use thereof
WO2018226685A3 (fr) * 2017-06-06 2019-01-17 Dana-Farber Cancer Institute, Inc. Procédés de sensibilisation de cellules cancéreuses à une destruction médiée par des lymphocytes t par modulation de voies moléculaires
US11820822B2 (en) 2017-06-06 2023-11-21 Dana-Farber Cancer Institute, Inc. Methods for sensitizing cancer cells to T cell-mediated killing by modulating molecular pathways
US11740242B2 (en) 2017-07-14 2023-08-29 Dana-Farber Cancer Institute, Inc. Modulating biomarkers to increase tumor immunity and improve the efficacy of cancer immunotherapy
US20200149042A1 (en) * 2017-07-14 2020-05-14 William N. Haining Modulating biomarkers to increase tumor immunity and improve the efficacy of cancer immunotherapy
WO2019014665A1 (fr) * 2017-07-14 2019-01-17 Dana-Farber Cancer Institute, Inc. Modulation de biomarqueurs pour accroître l'immunité antitumorale et améliorer l'efficacité d'une immunothérapie anticancéreuse
WO2019014663A1 (fr) * 2017-07-14 2019-01-17 Dana-Farber Cancer Institute, Inc. Modulation de biomarqueurs pour accroître l'immunité anti-tumorale et améliorer l'efficacité de l'immunothérapie du cancer
WO2019014664A1 (fr) * 2017-07-14 2019-01-17 Dana-Farber Cancer Institute, Inc. Modulation de biomarqueurs pour accroître l'immunité antitumorale et améliorer l'efficacité d'une immunothérapie anticancéreuse
US11840737B2 (en) * 2017-11-03 2023-12-12 Oxford BioDynamics PLC Genetic regulation of immunoresponse by chromosome interactions
RU2756899C1 (ru) * 2018-02-28 2021-10-06 ЭйПи БАЙОСАЙЕНСИЗ, ИНК. Бифункциональные белки, комбинирующие блокаду контрольной точки, для таргетной терапии
WO2019168947A1 (fr) * 2018-02-28 2019-09-06 Ap Biosciences, Inc. Protéines bifonctionnelles combinant un blocage des points de contrôle pour une thérapie ciblée
US11780922B2 (en) 2018-02-28 2023-10-10 Ap Biosciences, Inc. Bifunctional proteins combining checkpoint blockade for targeted therapy
US20210003579A1 (en) * 2018-03-27 2021-01-07 Kyoto University Method for assisting determination of efficacy of immune checkpoint inhibitor
WO2019195815A1 (fr) * 2018-04-06 2019-10-10 Children's Hospital Los Angeles Adn acellulaire d'humeur aqueuse et maladie ophtalmique
WO2023239919A1 (fr) * 2022-06-10 2023-12-14 Dana-Farber Cancer Institute, Inc. Un déséquilibre allélique de l'accessibilité de la chromatine dans le cancer identifie des variants de risque causal et leurs mécanismes

Also Published As

Publication number Publication date
AU2014275166A1 (en) 2016-01-28
EP3004877A4 (fr) 2017-04-19
EP3004877A1 (fr) 2016-04-13
US11926874B2 (en) 2024-03-12
CA2913490A1 (fr) 2014-12-11
EP3293275B1 (fr) 2021-08-04
AU2014275166B2 (en) 2020-09-10
WO2014197369A1 (fr) 2014-12-11
HK1252149A1 (zh) 2019-05-17
US20200095644A1 (en) 2020-03-26
EP3293275A1 (fr) 2018-03-14

Similar Documents

Publication Publication Date Title
US11926874B2 (en) Methods for identification, assessment, prevention, and treatment of cancer using PD-L1 isoforms
US11584788B2 (en) Compositions and methods for identification, assessment, prevention, and treatment of melanoma using PD-L1 isoforms
US11708412B2 (en) Methods for treating hematologic cancers
US20190071668A1 (en) Compositions and methods for identification, assessment, prevention, and treatment of cancer using slncr isoforms
US20150004158A1 (en) Compositions, Kits, and Methods for the Identification, Assessment, Prevention, and Therapy of Cancer
JP2023529026A (ja) Mhc-i発現を調節するための方法及びその免疫療法の使用
US11740242B2 (en) Modulating biomarkers to increase tumor immunity and improve the efficacy of cancer immunotherapy
EP4093513A1 (fr) Utilisations de biomarqueurs pour améliorer une immunothérapie
AU2019227641B2 (en) Methods for treating cancer using combinations of anti-BTNL2 and immune checkpoint blockade agents
US20200149042A1 (en) Modulating biomarkers to increase tumor immunity and improve the efficacy of cancer immunotherapy
US12109266B2 (en) Modulating gabarap to modulate immunogenic cell death
US20220289854A1 (en) Methods for treating cancer using combinations of anti-cx3cr1 and immune checkpoint blockade agents

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:DANA-FARBER CANCER INST;REEL/FRAME:039452/0154

Effective date: 20160721

AS Assignment

Owner name: DANA-FARBER CANCER INSTITUTE, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAMMERMAN, PETER;REEL/FRAME:039503/0876

Effective date: 20160815

Owner name: DANA-FARBER CANCER INSTITUTE, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HAMMERMAN, PETER;REEL/FRAME:039503/0763

Effective date: 20160815

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION