US20150259759A1 - Method for heating process gases for direct reduction systems - Google Patents

Method for heating process gases for direct reduction systems Download PDF

Info

Publication number
US20150259759A1
US20150259759A1 US14/428,116 US201314428116A US2015259759A1 US 20150259759 A1 US20150259759 A1 US 20150259759A1 US 201314428116 A US201314428116 A US 201314428116A US 2015259759 A1 US2015259759 A1 US 2015259759A1
Authority
US
United States
Prior art keywords
gas
reduction
unit
heating
enriching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/428,116
Other languages
English (en)
Inventor
Hermann Wolfmeir
Thomas Bürgler
Peter Schwab
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50277660&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20150259759(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE201210109284 external-priority patent/DE102012109284A1/de
Priority claimed from DE102013104002.0A external-priority patent/DE102013104002A1/de
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Assigned to VOESTALPINE STAHL GMBH reassignment VOESTALPINE STAHL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BÜRGLER, Thomas, WOLFMEIR, Hermann, SCHWAB, PETER
Publication of US20150259759A1 publication Critical patent/US20150259759A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0073Selection or treatment of the reducing gases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/004Making spongy iron or liquid steel, by direct processes in a continuous way by reduction from ores
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0086Conditioning, transformation of reduced iron ores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/122Reduction of greenhouse gas [GHG] emissions by capturing or storing CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Definitions

  • the invention relates to a method for heating process gases for direct reduction systems.
  • Sponge irons in the form of HDRI, CDRI, and HBI usually undergo further processing in electric furnaces, which is extraordinarily energy-intensive.
  • the direct reduction is carried out using hydrogen and carbon monoxide from natural gas (methane) and possibly synthesis gas as well as coke oven gas.
  • methane natural gas
  • synthesis gas possibly synthesis gas
  • coke oven gas possibly synthesis gas
  • Fe 2 O 3 +6CO(H 2 ) 2Fe+3CO 2 (H 2 O)+3 CO(H 2 ).
  • This method also emits CO 2 .
  • DE 198 53 747 C1 has disclosed a combined process for the direct reduction of fine ores in which the reduction is to be carried out with hydrogen or another reduction gas in a horizontal turbulence layer.
  • WO 2011/018124 has disclosed methods and systems for producing storable and transportable carbon-based energy sources using carbon dioxide and using regenerative electrical energy and fossil fuels.
  • a percentage of regeneratively produced methanol is prepared together with a percentage of methanol that is produced by means of non-regenerative electrical energy and/or by means of direct reduction and/or by means of partial oxidation and/or reforming.
  • this gas is in turn enriched with natural gas in order to supply fresh reduction gas.
  • the gas, which the gas purification has cooled from approximately 105° C., is heated again to approximately 700 to 1100° C. and then a partial oxidation with oxygen is performed.
  • the additionally used fossil fuel namely natural gas, is used to heat the process gases and to heat the reformer.
  • One object of the invention is to create a method for heating process gases for direct reduction systems with which the heating of process gases can be better and more flexibly adapted to and optimized for an overall process that is adapted to the energy demand and to the available energy.
  • Another object of the invention is to reduce CO 2 emissions.
  • the heating of the reduction gases and of the reformer is changed to an electrical heating.
  • the electrical energy can be produced from renewable resources, thus replacing fossil fuels.
  • the invention has the advantage that electrical current can be considered to be 100% energy so that it can be completely converted into high temperature heat.
  • the direct convertibility of electrical energy into heat permits the addition of a high degree of flexibility, particularly also with regard to the use of current peaks that are inexpensively available on the market.
  • renewable energy sources such as hydroelectric, wind power, or solar energy does not cause any CO 2 emissions when it is produced.
  • FIG. 1 shows as an example the HYL Energiron method according to the prior art, with a natural gas-powered process gas heating;
  • FIG. 2 shows the HYL Energiron method according to the invention, with an electrically-powered process gas heating
  • FIG. 3 is a very schematic depiction of the MIDREX method
  • FIG. 4 is a very schematic depiction of an expensive and complex CO 2 -optimized MIDREX method according to the prior art, with a CO 2 -removal unit (e.g. VPSA—vacuum-pressure swing adsorption).
  • VPSA vacuum-pressure swing adsorption
  • the HYL method is shown by way of example in FIG. 2 on the basis of a capacity of two million metric tons of direct reduced iron (DRI) per year, including an electric arc furnace (EAF).
  • the process gas from the shaft in which the iron ore is reduced is first conveyed through a water separation and then through a CO 2 separation.
  • the circulating gas volume flow in this case is approximately 500,000 m 3 per hour.
  • Approximately 72,000 m 3 of natural gas per hour is added to this gas flow, 56,000 m 3 of which is used for the reduction and approximately 16,000 m 3 of which is diverted for heating the process gas from 105 to 970° C.
  • oxygen is added to the heated process gas and this is then fed back into the reduction shaft.
  • the reduction gas is likewise taken from the shaft and conveyed through a water separation and a CO 2 separation. Thanks to the electrical heating of the process gas heating, it is only necessary to add a quantity of approximately 56,000 m 3 of natural gas per hour, which is split with oxygen into CO and hydrogen in accordance with the above-mentioned formulas.
  • the table in FIG. 2 shows that this achieves a 21% reduction in CO 2 per ton of reduced iron.
  • the process can be used in an exactly controllable and flexible way.
  • FIG. 3 shows the MIDREX method in which the exhaust gas is likewise withdrawn in the reduction shaft and divided into a process gas flow and a heating gas flow.
  • the process gas flow is conveyed through a process gas compressor until natural gas is added to it—particularly in a system that is likewise designed for 2 million metric tons of reduced iron per year—in a quantity of approximately 63,000 m 3 of natural gas per hour.
  • This process gas passes through a heat exchanger, in which it is preheated by the exhaust gases from the reformer to 600° C. and then passes through the reformer and in so doing, is heated to 980° C. and is conveyed back to the shaft as process gas, which is enriched with additional natural gas and oxygen.
  • the heating gas is likewise taken from the shaft furnace, enriched with natural gas, and conveyed into the reformer together with preheated combustion air.
  • the total required quantity of natural gas is approximately 68,200 m 3 per hour; by heating the reformer electrically, it is possible to compensate for approximately 5,100 m 3 of exhaust gas per hour with 52 Megawatts of electric power. As a result of this, it is possible on the one hand to achieve a 7.5% reduction of CO 2 per metric ton of reduced iron ore. In addition, this process can also be controlled in a more flexible, precise fashion thanks to the electric heating.
  • the invention has the advantage of achieving a simple and quickly implementable option for replacing fossil fuels with electrical power from renewable energies. CO 2 emissions from direct reduction systems are also reduced.
  • the invention also makes it possible to successfully operate direct reduction systems in an effective and flexible way. In particular, in a steel production that is adapted to the availability of regenerative energies with an electrically-powered preheating of process gas, particularly one with heating based on renewable energies, it is possible to achieve an improvement and reciprocal adaptation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Manufacture Of Iron (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Furnace Details (AREA)
US14/428,116 2012-09-14 2013-09-10 Method for heating process gases for direct reduction systems Abandoned US20150259759A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE102012108631 2012-09-14
DE102012108631.1 2012-09-14
DE102012109284.2 2012-09-28
DE201210109284 DE102012109284A1 (de) 2012-09-14 2012-09-28 Verfahren zum Erzeugen von Stahl und Verfahren zum Speichern diskontinuierlich anfallender Energie
DE102013104002.0 2013-04-19
DE102013104002.0A DE102013104002A1 (de) 2013-04-19 2013-04-19 Verfahren zum Aufheizen von Prozessgasen für Direktreduktionsanlagen
PCT/EP2013/068743 WO2014040997A1 (de) 2012-09-14 2013-09-10 Verfahren zum aufheizen von prozessgasen für direktreduktionsanlagen

Publications (1)

Publication Number Publication Date
US20150259759A1 true US20150259759A1 (en) 2015-09-17

Family

ID=50277660

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/428,206 Abandoned US20150259760A1 (en) 2012-09-14 2013-09-10 Method for producing steel
US14/428,280 Abandoned US20150329931A1 (en) 2012-09-14 2013-09-10 Method for storing discontinuously produced energy
US14/428,116 Abandoned US20150259759A1 (en) 2012-09-14 2013-09-10 Method for heating process gases for direct reduction systems

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US14/428,206 Abandoned US20150259760A1 (en) 2012-09-14 2013-09-10 Method for producing steel
US14/428,280 Abandoned US20150329931A1 (en) 2012-09-14 2013-09-10 Method for storing discontinuously produced energy

Country Status (8)

Country Link
US (3) US20150259760A1 (es)
EP (3) EP2895631B1 (es)
JP (3) JP2015534604A (es)
KR (3) KR20150063075A (es)
CN (3) CN104662177A (es)
ES (2) ES2689779T3 (es)
FI (1) FI2895630T3 (es)
WO (3) WO2014040989A2 (es)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015534604A (ja) 2012-09-14 2015-12-03 フェストアルピネ シュタール ゲーエムベーハーVoestalpine Stahl Gmbh 不連続に作り出されるエネルギの貯蔵方法
CN107058749A (zh) * 2016-12-27 2017-08-18 武汉钢铁有限公司 利用竖炉脱除瓦斯泥中锌与铅的装置及其方法
EP3581663A1 (de) 2018-06-12 2019-12-18 Primetals Technologies Austria GmbH Herstellung von karburiertem eisenschwamm mittels wasserstoffbasierter direktreduktion
DE102018211104A1 (de) * 2018-07-05 2020-01-09 Thyssenkrupp Ag Verfahren und Einrichtung zum Betrieb einer Produktionsanlage
EP3670676A1 (de) * 2018-12-17 2020-06-24 Primetals Technologies Austria GmbH Verfahren und vorrichtung zur direktreduktion mit elektrisch aufgeheiztem reduktionsgas
CN111910036B (zh) * 2019-05-10 2022-05-03 中冶长天国际工程有限责任公司 一种利用生物质还原钒钛磁铁矿联产高品质合成气的方法
CN113874486B (zh) 2019-06-06 2023-02-24 米德雷克斯技术公司 利用氢气的直接还原工艺
US11952638B2 (en) * 2019-09-27 2024-04-09 Midrex Technologies, Inc. Direct reduction process utilizing hydrogen
SE2030072A1 (en) * 2020-03-10 2021-09-11 Hybrit Dev Ab Methanol as hydrogen carier in H-DRI process
KR20220162174A (ko) * 2020-04-27 2022-12-07 제이에프이 스틸 가부시키가이샤 제철 설비 및 환원철의 제조 방법
SE2050508A1 (en) * 2020-05-04 2021-11-05 Hybrit Dev Ab Process for the production of carburized sponge iron
DE102020116425A1 (de) 2020-06-22 2021-12-23 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung von Rohstahl mit niedrigem N-Gehalt
CN114525518B (zh) * 2020-11-09 2023-01-31 中国石油大学(北京) 一种利用可再生能源电的方法
SE545311C2 (en) 2020-11-25 2023-06-27 Hybrit Dev Ab Process for the production of carburized sponge iron
SE2150068A1 (en) * 2021-01-22 2022-07-23 Hybrit Dev Ab Arrangement and process for charging iron ore to, and/or discharging sponge iron from, a direct reduction shaft
SE2150180A1 (en) * 2021-02-19 2022-08-20 Luossavaara Kiirunavaara Ab Metal oxide material reduction means
CA3219995A1 (en) * 2021-05-18 2022-11-24 Arcelormittal A method for manufacturing direct reduced iron
SE545624C2 (en) * 2021-06-11 2023-11-14 Hybrit Dev Ab Process for the production of carburized sponge iron
EP4350011A1 (en) * 2021-06-14 2024-04-10 JFE Steel Corporation Method for producing reduced iron
SE545625C2 (en) 2021-07-07 2023-11-14 Hybrit Dev Ab Iron briquettes
EP4163402A1 (en) * 2021-10-07 2023-04-12 voestalpine Texas LLC Induction heating of dri
DE102021128987A1 (de) 2021-11-08 2023-05-11 Rhm Rohstoff-Handelsgesellschaft Mbh Verfahren zum Umschmelzen von Eisenschwamm und/oder von heißgepresstem Eisenschwamm sowie von Schrott zu Rohstahl in einem Konverter
EP4194569A1 (en) * 2021-12-08 2023-06-14 Doosan Lentjes GmbH Method for handling particulate metal
DE102022201918A1 (de) 2022-02-24 2023-08-24 Sms Group Gmbh Hüttentechnische Produktionsanlage und Verfahren zu deren Betrieb
SE2250421A1 (en) 2022-04-01 2023-10-02 Luossavaara Kiirunavaara Ab Method for producing steel and sponge iron manufacturing process
EP4373209A1 (de) 2022-11-15 2024-05-22 Primetals Technologies Austria GmbH Elektrische aufheizung von gas

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376648A (en) * 1980-12-04 1983-03-15 Mitsubishi Jukogyo Kabushiki Kaisha Process for producing reduced iron
US4790517A (en) * 1984-08-28 1988-12-13 Korf Engineering Gmbh Apparatus for the direct reduction of sulphurous iron ores
US4880459A (en) * 1988-06-27 1989-11-14 T.C., Inc. Method of and apparatus for reducing iron oxide to metallic iron
US5238487A (en) * 1990-11-29 1993-08-24 Deutsche Voest Alpine Industrieanlagenbau Gmbh Process for the production of pig iron and sponge iron
US6156262A (en) * 1996-06-20 2000-12-05 Voest-Alpine Industrieanlagenbau Gmbh Melter gasifier for the production of a metal melt
DE102007045888A1 (de) * 2007-09-25 2009-04-02 Ea Energiearchitektur Gmbh Verfahren zur Umwandlung und Speicherung von regenerativer Energie

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1167016A (en) * 1913-12-24 1916-01-04 Emil Bruce Pratt Process of reducing iron ores and other metallic oxids to the metallic state.
GB657824A (en) * 1948-08-06 1951-09-26 Alfred Gordon Evans Robiette Improvements in and relating to the direct reduction of iron ores
US2609288A (en) * 1949-03-08 1952-09-02 Isobel E Stuart Process for the reduction of metal oxides by gases
GB846284A (en) * 1956-01-07 1960-08-31 Norsk Hydro Elektrisk Improvements in and relating to the production of sponge iron
US4054444A (en) * 1975-09-22 1977-10-18 Midrex Corporation Method for controlling the carbon content of directly reduced iron
US4046556A (en) * 1976-01-02 1977-09-06 Fierro Esponja, S.A. Direct gaseous reduction of oxidic metal ores with dual temperature cooling of the reduced product
DE2733785A1 (de) * 1977-07-27 1979-02-08 Didier Eng Verfahren zur weiterverarbeitung von koksofengas
DE3317701C2 (de) * 1983-05-16 1986-08-07 Hylsa S.A., Monterrey, N.L. Verfahren zum Betreiben eines Bewegtbett-Reduktionsreaktors mit vertikalem Schacht zum Reduzieren von Eisenerz zu Schwammeisen
JPS6220889A (ja) * 1985-07-18 1987-01-29 Terukazu Suzuki 自然力利用発電電解法による補助燃料製造とその利用法
US4834792A (en) * 1986-08-21 1989-05-30 Hylsa S.A. De C.V. Method for producing hot sponge iron by introducing hydrocarbon for carburizing into reduction zone
US5618032A (en) 1994-05-04 1997-04-08 Midrex International B.V. Rotterdam, Zurich Branch Shaft furnace for production of iron carbide
US5454853A (en) * 1994-06-10 1995-10-03 Borealis Technical Incorporated Limited Method for the production of steel
JP2727436B2 (ja) * 1995-05-31 1998-03-11 川崎重工業株式会社 鉄カーバイドの製造方法及び製造装置
AT404256B (de) * 1996-11-06 1998-10-27 Voest Alpine Ind Anlagen Verfahren zum herstellen von eisenschwamm
DE19714512C2 (de) * 1997-04-08 1999-06-10 Tassilo Dipl Ing Pflanz Maritime Kraftwerksanlage mit Herstellungsprozeß zur Gewinnung, Speicherung und zum Verbrauch von regenerativer Energie
DE19838368C1 (de) * 1998-08-24 1999-08-12 Ferrostaal Ag Verfahren und Vorrichtung zum Betreiben eines Reaktors zur Reduktion von Eisenerzen
DE19853747C1 (de) 1998-11-21 2000-03-30 Ferrostaal Ag Kombinierter Prozeß zur Direktreduktion von Feinerzen
IT1302811B1 (it) 1998-12-11 2000-09-29 Danieli & C Ohg Sp Procedimento e relativo apparato per la riduzione direttadi ossidi di ferro
IT1310535B1 (it) * 1999-02-18 2002-02-18 Danieli Off Mecc Procedimento di riduzione diretta di materiale metallicoe relativo impianto
EP1160337A1 (en) * 2000-05-31 2001-12-05 DANIELI & C. OFFICINE MECCANICHE S.p.A. Process to preheat and carburate directly reduced iron (DRI) to be fed to an electric arc furnace (EAF)
US6858953B2 (en) * 2002-12-20 2005-02-22 Hawaiian Electric Company, Inc. Power control interface between a wind farm and a power transmission system
DE102005060094A1 (de) 2005-12-15 2007-06-21 Linde Ag Stoffliche Nutzung von Biogas
DE102006048600B4 (de) * 2006-10-13 2012-03-29 Siemens Vai Metals Technologies Gmbh Verfahren und Vorrichtung zur Herstellung von geschmolzenem Material
WO2009019159A2 (de) * 2007-08-09 2009-02-12 Werner Leonhard Unterstuetzung einer nachhaltigen energieversorgung mit einem kohlenstoff-kreislauf unter einsatz von regenerativ erzeugtem wasserstoff
US20090249922A1 (en) * 2008-04-02 2009-10-08 Bristlecone International, Llc Process for the production of steel using a locally produced hydrogen as the reducing agent
JP5413821B2 (ja) * 2008-05-19 2014-02-12 公益財団法人若狭湾エネルギー研究センター 高速製錬可能な低温製鉄法
CN104032059B (zh) * 2008-09-23 2015-11-18 樊显理 氢冶金法
JP5311334B2 (ja) * 2008-11-21 2013-10-09 公益財団法人若狭湾エネルギー研究センター 海綿鉄を利用した水素製造方法
WO2011018124A1 (de) 2009-08-13 2011-02-17 Silicon Fire Ag Verfahren und anlage zum bereitstellen eines kohlenwasserstoff-basierten energieträgers unter einsatz eines anteils von regenerativ erzeugtem methanol und eines anteils von methanol, der mittels direktoxidation oder über partielle oxidation oder über reformierung erzeugt wird
US8915981B2 (en) * 2009-04-07 2014-12-23 Gas Technology Institute Method for producing methane from biomass
CN101638702B (zh) * 2009-08-14 2011-07-20 中冶赛迪工程技术股份有限公司 一种煤气作还原气的直接还原工艺出口煤气的回用方法
AU2010320483A1 (en) * 2009-11-20 2012-07-12 Cri Ehf Storage of intermittent renewable energy as fuel using carbon containing feedstock
WO2011116141A2 (en) 2010-03-18 2011-09-22 Sun Hydrogen, Inc. Clean steel production process using carbon-free renewable energy source
US8600572B2 (en) 2010-05-27 2013-12-03 International Business Machines Corporation Smarter-grid: method to forecast electric energy production and utilization subject to uncertain environmental variables
JP5593883B2 (ja) * 2010-07-02 2014-09-24 Jfeスチール株式会社 炭酸ガス排出量の削減方法
JP5510199B2 (ja) * 2010-08-31 2014-06-04 Jfeスチール株式会社 水素および酸素の製造・使用方法
DK2426236T3 (da) * 2010-09-03 2013-04-15 Carbon Clean Technologies Ag Fremgangsmåde og energibærer-produktionsanlæg til carbondioxidneutral udligning af produktionsspidser og produktionsdale ved produktion af elektrisk energi og/eller til produktion af en carbonhydridholdig energibærer
JP5594013B2 (ja) * 2010-09-21 2014-09-24 Jfeスチール株式会社 還元鉄製造方法
CN101975141B (zh) * 2010-10-20 2013-09-04 中电普瑞科技有限公司 一种海上风电功率/频率控制方法
DE102011112093A1 (de) 2011-06-03 2012-12-06 Carbon-Clean Technologies Ag Verfahren und Anlage zur kohlendioxidarmen, vorzugsweise kohlendioxidfreien, Erzeugung eines flüssigen kohlenwasserstoffhaltigen Energieträgers und/oder zur Direktreduktion von Metalloxiden
CN102424873B (zh) * 2011-12-03 2013-01-30 石家庄市新华工业炉有限公司 一种太阳能还原炼铁的装置
JP2015534604A (ja) 2012-09-14 2015-12-03 フェストアルピネ シュタール ゲーエムベーハーVoestalpine Stahl Gmbh 不連続に作り出されるエネルギの貯蔵方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376648A (en) * 1980-12-04 1983-03-15 Mitsubishi Jukogyo Kabushiki Kaisha Process for producing reduced iron
US4790517A (en) * 1984-08-28 1988-12-13 Korf Engineering Gmbh Apparatus for the direct reduction of sulphurous iron ores
US4880459A (en) * 1988-06-27 1989-11-14 T.C., Inc. Method of and apparatus for reducing iron oxide to metallic iron
US5238487A (en) * 1990-11-29 1993-08-24 Deutsche Voest Alpine Industrieanlagenbau Gmbh Process for the production of pig iron and sponge iron
US6156262A (en) * 1996-06-20 2000-12-05 Voest-Alpine Industrieanlagenbau Gmbh Melter gasifier for the production of a metal melt
DE102007045888A1 (de) * 2007-09-25 2009-04-02 Ea Energiearchitektur Gmbh Verfahren zur Umwandlung und Speicherung von regenerativer Energie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Nester, W et al. DE 102007045888 published 04-2009. Machine translation *

Also Published As

Publication number Publication date
EP2895629A1 (de) 2015-07-22
ES2689779T3 (es) 2018-11-15
US20150259760A1 (en) 2015-09-17
EP2895631A2 (de) 2015-07-22
FI2895630T3 (en) 2023-08-15
KR20150053809A (ko) 2015-05-18
ES2952386T3 (es) 2023-10-31
CN104662175A (zh) 2015-05-27
EP2895630B1 (de) 2023-06-07
WO2014040997A1 (de) 2014-03-20
JP2015534604A (ja) 2015-12-03
KR20150063075A (ko) 2015-06-08
KR20150065728A (ko) 2015-06-15
WO2014040990A2 (de) 2014-03-20
EP2895630A2 (de) 2015-07-22
WO2014040990A3 (de) 2014-06-12
CN104662177A (zh) 2015-05-27
WO2014040989A2 (de) 2014-03-20
US20150329931A1 (en) 2015-11-19
JP2015529751A (ja) 2015-10-08
WO2014040989A3 (de) 2014-06-12
EP2895631B1 (de) 2018-07-18
JP2015532948A (ja) 2015-11-16
CN104662176A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
US20150259759A1 (en) Method for heating process gases for direct reduction systems
EP3649264B1 (en) Method for operating an iron- or steelmaking- plant
EP1641945B1 (en) Method and apparatus for improved use of primary energy sources in integrated steel plants
CN113924372A (zh) 排放减少的用于生产钢或含熔融铁的材料的方法和系统
US20230160028A1 (en) Process for the Production of Carburized Sponge Iron
US20240052441A1 (en) Smart hydrogen production for dri making
EP4118244A1 (en) Process for the production of sponge iron
US20170298461A1 (en) Method for producing steel
CN105671228A (zh) 氧气高炉与气基竖炉联合生产系统和联合生产方法
EP4032991A1 (en) Smart hydrogen production for dri making
US20140083252A1 (en) Reduction of metal oxides using gas stream containing both hydrocarbon and hydrogen
Pang et al. The Low‐Carbon Production of Iron and Steel Industry Transition Process in China
DE102013104002A1 (de) Verfahren zum Aufheizen von Prozessgasen für Direktreduktionsanlagen
GB2507246A (en) Direct reduction of iron using a carbon monoxide-hydrogen mixture derived from carbon dioxide and water
CN105671229A (zh) 氧气高炉与气基竖炉联合生产系统和联合生产方法
CN116888281A (zh) 用于dri制造的智能氢气生产
WO2023052308A1 (en) Method for operating a shaft furnace plant
KR20230138002A (ko) 직접 환원 공정에서의 배출 가스 회수
EP4347898A1 (en) Operating method of a network of plants
WO2017185178A1 (en) System and method of high pressure oxy-fired (hiprox) flash metallization

Legal Events

Date Code Title Description
AS Assignment

Owner name: VOESTALPINE STAHL GMBH, AUSTRIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WOLFMEIR, HERMANN;BUERGLER, THOMAS;SCHWAB, PETER;SIGNING DATES FROM 20150709 TO 20150730;REEL/FRAME:036239/0302

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION