US20150064448A1 - High strength and high formability steel sheet and manufacturing method thereof - Google Patents

High strength and high formability steel sheet and manufacturing method thereof Download PDF

Info

Publication number
US20150064448A1
US20150064448A1 US14/382,363 US201314382363A US2015064448A1 US 20150064448 A1 US20150064448 A1 US 20150064448A1 US 201314382363 A US201314382363 A US 201314382363A US 2015064448 A1 US2015064448 A1 US 2015064448A1
Authority
US
United States
Prior art keywords
less
steel sheet
formability
strength
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/382,363
Other languages
English (en)
Inventor
Takumi Tanaka
Katsumi Kojima
Yoichi Tobiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Assigned to JFE STEEL CORPORATION reassignment JFE STEEL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TOBIYAMA, YOICHI, KOJIMA, KATSUMI, TANAKA, TAKUMI
Publication of US20150064448A1 publication Critical patent/US20150064448A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/14Linings or internal coatings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2701/00Coatings being able to withstand changes in the shape of the substrate or to withstand welding
    • B05D2701/10Coatings being able to withstand changes in the shape of the substrate or to withstand welding withstanding draw and redraw process, punching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2251/00Treating composite or clad material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • This disclosure relates to a high strength and high formability steel sheet suitable for application to a steel sheet for easy open ends, and a manufacturing method thereof.
  • a steel sheet referred to as a double reduced (DR) material may be used for lids, bottoms, bodies of three-pieced cans, drawn cans, or the like.
  • DR double reduced
  • sheet thickness can be made thin more easily than with a single reduced (SR) material manufactured only by temper rolling after annealing at a small reduction ratio.
  • SR single reduced
  • the cold rolling performed again after annealing causes work hardening.
  • a thin and hard steel sheet can be manufactured, its formability is less than the SR material.
  • EOEs easy open ends
  • steel sheets as materials for manufacturing cans are required to have strengths according to sheet thicknesses and, as for the DR material, a tensile strength of not lower than about 520 MPa is necessary to ensure an economic effect due to thinning thereof. It is difficult to ensure for conventional DR materials both of formability and strength as mentioned above and thus the SR material has been used for EOEs.
  • demands for applying the DR material to EOEs also are currently increasing in terms of cost reduction.
  • Japanese Patent No. 3740779 discloses a steel sheet for easy open cans lids excellent in rivet formability, characterized in that its carbon content is not greater than 0.02% and its boron content is in a range of 0.010 to 0.020%, and a manufacturing method thereof, characterized in that second cold rolling is performed with a rolling reduction ratio of not greater than 30%.
  • WO 2008/018531 discloses a DR material characterized in that its average Lankford value after an aging treatment is not greater than 1.0, and describes that the DR material is excellent in EOE rivet formability.
  • the steel sheet described in WO '531 achieves good rivet formability by reducing the average Lankford value.
  • that method exerts its effects only when a rivet is formed by column-like bulging, and when a rivet is formed by sphere-like bulging, the rivet formability becomes insufficient. Therefore, provision of a high strength and high formability steel sheet having a tensile strength of not lower than 520 MPa and an Erichsen value of not less than 5.0 mm has been desired.
  • the high strength and high formability steel sheet and the manufacturing method thereof it is possible to obtain a high strength and high formability steel sheet having a tensile strength of not lower than 520 MPa and an Erichsen value of not less than 5.0 mm. Further, as a result, it is possible to manufacture a lid with a DR material having a small thickness, without cracking upon EOE rivet formation, and thus to achieve thinning of a steel sheet for EOEs to a great extent.
  • the high strength and high formability steel sheet can be applied to a steel sheet for easy open ends having tensile strength of not lower than 520 MPa and an Erichsen value of not less than 5.0 mm.
  • a steel sheet can be manufactured with steel having carbon content of less than 0.040%, by setting the coiling temperature after hot rolling and the second cold rolling reduction ratio to appropriate conditions, and attaching a resin film on a side to become an inner surface of a can.
  • the component composition of the high strength and high formability steel sheet is described.
  • the high strength and high formability steel sheet exerts high formability by suppressing the carbon (C) content.
  • C content When the C content is not less than 0.040%, a steel sheet becomes excessively hard, thus making it impossible to manufacture a thin steel sheet by second cold rolling while ensuring formability.
  • the upper limit of C content is less than 0.040%.
  • the tensile strength of 520 MPa that is required to obtain significant economic effects resulted by thinning of a steel sheet cannot be obtained.
  • the lower limit of C content is to exceed more than 0.020%.
  • the silicon (Si) content exceeds 0.100%, there occur problems of deterioration of surface treatability, deterioration of corrosion resistance and the like.
  • the upper limit of Si content is 0.100%.
  • the lower limit of Si content is 0.003%.
  • the preferable Si content is not less than 0.003% and not greater than 0.035%.
  • Manganese (Mn) has functions of preventing red shortness during hot rolling due to sulfur (S) and of refining crystal grains, and is an element necessary to ensure the desirable quality of a material.
  • S sulfur
  • Mn has functions of preventing red shortness during hot rolling due to sulfur (S) and of refining crystal grains, and is an element necessary to ensure the desirable quality of a material.
  • the addition of at least 0.10% or more of Mn is required to exert such effects.
  • the upper limit of Mn amount is therefore 0.60%.
  • the preferable Mn content is not less than 0.19% and not greater than 0.60%.
  • Phosphorus (P) is a harmful element that hardens steel, and deteriorates formability and, in addition, also deteriorates corrosion resistance.
  • the upper limit of P content is 0.100%.
  • the lower limit of P content is therefore 0.001%.
  • the preferable P content is not less than 0.001% and not greater than 0.015%.
  • S exists as inclusions in steel, and is a harmful element causing deterioration of formability and deterioration of corrosion resistance.
  • the upper limit of S content is therefore 0.020%.
  • the lower limit of S content is therefore 0.001%.
  • the preferable P content is not less than 0.007% and not greater than 0.014%.
  • Aluminum (Al) is an element necessary as a deoxidizer in a steelmaking process.
  • Al content is small, deoxidation is insufficient, and inclusions increase, thus deteriorating formability.
  • the Al content is not less than 0.005%, it can be considered that deoxidation is performed sufficiently.
  • the Al content exceeds 0.100%, the frequency of occurrence of surface defects due to alumina clusters and the like is increased. The Al content is therefore not less than 0.005% and not greater than 0.100%.
  • N Greater than 0.0130% and not greater than 0.0170%
  • N content is increased, instead of reducing C content, to ensure strength.
  • Strengthening using N has small effects on bulging formability, and thus it is possible to strengthen a steel sheet without deteriorating an Erichsen value.
  • N content is not greater than 0.0130%, the strength necessary for a can lid cannot be obtained.
  • the upper limit of N content is therefore 0.0170%.
  • the balance other than the components described above is iron (Fe) and inevitable impurities, and may include component elements normally contained in a known steel sheet for welded cans.
  • the component elements such as chromium (Cr): not greater than 0.10%, copper (Cu): not greater than 0.20%, nickel (Ni): not greater than 0.15%, molybdenum (Mo): not greater than 0.05%, titanium (Ti): not greater than 0.3%, niobium (Nb): not greater than 0.3%, zirconium (Zr): not greater than 0.3%, vanadium (V): not greater than 0.3%, calcium (Ca): not greater than 0.01%, may be contained depending on a purpose.
  • the tensile strength of the high strength and high formability steel sheet is not lower than 520 MPa.
  • a steel sheet cannot be made thin enough to obtain significant economic effects to ensure the strength of the steel sheet as a material for manufacturing lids.
  • the tensile strength is therefore not lower than 520 MPa.
  • the above tensile strength can be measured by Metallic materials-Tensile testing defined by “JIS Z 2241.”
  • the Erichsen value of the high strength and high formability steel sheet is not less than 5.0 mm.
  • the Erichsen value can be measured by Method of Erichsen cupping test defined by “JIS Z 2247.”
  • JIS Z 2247 Method of Erichsen cupping test defined by “JIS Z 2247.”
  • JIS Z 2247 Method of Erichsen cupping test defined by “JIS Z 2247.”
  • the processing form applied on a steel sheet is bulging, which can be regarded as tensile deformation toward all directions parallel to a sheet surface.
  • the evaluation of deformability of a steel sheet by such processing requires a test by similar bulging, and the deformability cannot be evaluated with a total elongation value or a Lankford value by the simple uniaxial tensile testing.
  • Rivet formation is performed by bulging, and processing for bulging toward the outer side of a can is performed. In the processing, therefore, a steel sheet is deformed by a tool contacting the inner side surface of the can.
  • the lubricating ability between a tool and a steel sheet is improved by contacting them with a resin film interposed therebetween.
  • uniformity of bulging is improved, effectively suppressing the occurrence of a crack.
  • a surface of a steel sheet be coated with a resin film in addition to interposing a resin film between a tool and a steel sheet, because those contribute to corrosion resistance.
  • a resin film is not particularly limited, and various thermoplastic resins and thermosetting resins can be used.
  • an olefin resin film such as of polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic ester copolymer, and ionomer, or a polyester film such as of polybutylene terephthalate, or a thermoplastic resin film including a polyamide film such as of nylon 6, nylon 6-6, nylon 11, and nylon 12, a polyvinylchloride film, and a polyvinylidene chloride film without stretching them or by stretching them biaxially.
  • an adhesive When an adhesive is used to attach a resin film on a steel sheet, an urethane adhesive, an epoxy adhesive, an acid-modified olefin resin adhesive, a copolyamide adhesive, a copolyester adhesive (thickness: 0.1 to 5.0 ⁇ m) and the like are used preferably. Moreover, thermosetting coating is applied on the steel sheet side or the resin film side with a thickness of 0.05 to 2.0 ⁇ m, and this may be regarded as an adhesive.
  • thermoplastic or thermosetting coating including modified epoxy coating such as of phenol epoxy and amino-epoxy, vinyl chloride-vinyl acetate copolymer, vinyl chloride acetate saponified copolymer, vinyl chloride-vinyl acetate-maleic anhydride copolymer, epoxy modified-, epoxy amino modified-, epoxy phenol modified-vinyl coating or modified vinyl coating, acryl coating, and a synthetic rubber coating such as of styrene-butadiene copolymer may be used individually or in combination of two or more thereof.
  • modified epoxy coating such as of phenol epoxy and amino-epoxy
  • vinyl chloride-vinyl acetate copolymer vinyl chloride acetate saponified copolymer
  • vinyl chloride-vinyl acetate-maleic anhydride copolymer epoxy modified-, epoxy amino modified-, epoxy phenol modified-vinyl coating or modified vinyl coating
  • acryl coating and a synthetic rubber coating such as of styrene-butadiene copo
  • the thickness of a resin film is preferably 5 to 100 ⁇ m.
  • the thickness of a resin film is smaller than 5 ⁇ m, the resin film is fractured in bulging, and it is more possible that the effects are not exerted sufficiently.
  • the thickness of a resin film exceeds 100 ⁇ m, the effect of increasing a deformation amount of a steel sheet becomes greater, and a crack of the steel sheet will occur more easily.
  • the high strength and high formability steel sheet is manufactured, with use of a steel slab having the above composition manufactured by continuous casting, by performing hot rolling at a slab reheating temperature of not lower than 1150° C., coiling it at a temperature of not higher than 600° C., performing first cold rolling, performing continuous annealing at a soaking temperature of 600 to 700° C. for a soaking period of 10 to 50 seconds, performing second cold rolling with a reduction ratio of 8.0 to 15.0%, forming a surface treatment film by an electrolytic process, and then attaching a resin film at least on a side to become an inner surface of a can.
  • the cold rolling for the second time (second cold rolling) be performed after annealing to obtain an ultrathin steel sheet.
  • the coiling temperature after hot rolling is therefore preferably not higher than 600° C., and is more preferably 550 to 600° C.
  • the continuous annealing is therefore preferably performed under conditions of a soaking temperature of 600 to 700° C. and a soaking period of 10 to 50 seconds.
  • the second cold rolling reduction ratio is therefore preferably not greater than 15.0%.
  • the lower limit of the second cold rolling reduction ratio is preferably 8.0%.
  • a surface treatment film is formed by an electrolytic process.
  • a Sn electroplating film, an electrolytic Cr acid treatment film, or the like which is widely used for a can lid as a tin plate or tin-free steel, can be applied. Adherence between a resin film and a steel sheet can be improved by providing such a film.
  • the attachment method can be a method of heating a steel sheet and heat-sealing a resin film, or a method of attaching it using an adhesive.
  • a steel slab was obtained by melting steel having the component compositions illustrated in Table 1 and the balance including Fe and inevitable impurities in an actual converter and subjecting it to continuous casting.
  • the obtained steel slab was heated again and subjected to hot rolling under the conditions illustrated in Table 2.
  • a finish rolling temperature of hot rolling was set at 880° C., and pickling was performed after the rolling.
  • first cold rolling was performed with a reduction ratio of 90%
  • continuous annealing and second cold rolling were performed under the conditions illustrated in Table 2.
  • the electrolytic Cr acid treatment was continuously performed on the both surfaces of the steel sheet obtained in the above manner, whereby tin-free steel having a Cr coating build-up per side of 100 mg/m 2 was obtained.
  • an isophthalic acid copolymerized polyethylene terephthalate film having a copolymerization ratio of 12 mol % was laminated on the both surfaces, and thus a resin coated steel sheet was obtained.
  • the laminating was performed such that a steel sheet heated to 245° C. and a film were nipped by a pair of rubber covered rolls so that the film was fused to the metallic sheet, and the laminate was cooled with water within one second after it passed the rubber covered rolls.
  • a feed rate of the steel sheet was 40 m/min, and the nip length of the rubber covered rolls was 17 mm.
  • the nip length is a length in a feed direction of a part where the rubber covered rolls and the steel sheet are in contact.
  • the thickness of film layers was listed in Table 1.
  • the resin coated steel sheet obtained as described above was subjected to tensile testing.
  • the tensile testing conforms to Metallic materials-Tensile testing defined by “JIS Z 2241,” and strength of tension (tensile strength) was measured using a test piece for tensile testing having a size of JIS5.
  • the obtained resin coated steel sheet was subjected to Erichsen test.
  • the Erichsen test conforms to Method of Erichsen cupping test defined by “JIS Z 2247,” and an Erichsen value (a bulging height at which a penetration crack occurred) was measured using a test piece of 90 mm ⁇ 90 mm.
  • a rivet to attach an EOE tab was formed using the obtained resin coated steel sheet, and the rivet formability was evaluated.
  • Rivet formation was performed by three phases of press working, and processing to reduce the diameter was performed after bulging to form a spherical-head-formed rivet having a diameter of 4.0 mm and a height of 2.5 mm.
  • Occurrence of a crack in a rivet portion was evaluated as “C”
  • occurrence of necking in a thickness direction which is a previous stage leading to a crack, was evaluated as “B”
  • no occurrence of a crack or necking in a thickness direction was evaluated as “A.”
  • Table 3 The obtained results are listed in Table 3.
  • the steel sheets of Examples No. 1 to No. 6 are excellent in strength, and achieve tensile strength of not lower than 520 MPa that is required as an ultrathin steel sheet for cans. Moreover, they are also excellent in formability, and have an Erichsen value of not less than 5.0 mm that is required in EOE processing. Furthermore, even if the rivet formation is performed, no crack or necking in a thickness direction occurs.
  • each of the steel sheets of Comparative Examples No. 7 and No. 9 has such small C and N content that they are lacking in tensile strength.
  • the steel sheet of Comparative Example No. 8 has such large C content that the formability is deteriorated by second cold rolling, resulting in the lack in Erichsen value and thus causing a crack in rivet formation.
  • the steel sheet of Comparative Example No. 10 has such large N content that a slab crack has occurred in continuous casting.
  • the local elongation deteriorates because the coiling temperature after hot rolling is too high, resulting in the lack in Erichsen value and thus causing a crack in rivet formation.
  • the steel sheet of Comparative Example No. 12 recrystallization is insufficient because the soaking temperature in continuous annealing is too low, resulting in the lack in Erichsen value and thus causing a crack in rivet formation.
  • grain growth is excessive because the soaking temperature in continuous annealing is too high, resulting in the lack in tensile strength.
  • recrystallization is insufficient because the soaking period in continuous annealing is too short, resulting in the lack in Erichsen value and thus causing a crack in rivet formation.
  • the thickness of the resin film coating the surface of the steel sheet is too thin, and thus the effects thereof are not sufficiently exerted in rivet formation, causing necking in a thickness direction before leading to a crack.
  • the thickness of the resin film coating the surface of the steel sheet is too thick, and thus the deformation amount of the steel sheet is increased in rivet formation, causing necking in a thickness direction before leading to a crack.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Laminated Bodies (AREA)
US14/382,363 2012-04-06 2013-04-03 High strength and high formability steel sheet and manufacturing method thereof Abandoned US20150064448A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012-087940 2012-04-06
JP2012087940 2012-04-06
PCT/JP2013/060175 WO2013151085A1 (ja) 2012-04-06 2013-04-03 高強度高加工性鋼板及びその製造方法

Publications (1)

Publication Number Publication Date
US20150064448A1 true US20150064448A1 (en) 2015-03-05

Family

ID=49300566

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/382,363 Abandoned US20150064448A1 (en) 2012-04-06 2013-04-03 High strength and high formability steel sheet and manufacturing method thereof

Country Status (9)

Country Link
US (1) US20150064448A1 (es)
EP (1) EP2835438B1 (es)
JP (1) JP5804195B2 (es)
KR (1) KR20140117602A (es)
CN (1) CN104245985B (es)
CO (1) CO7061066A2 (es)
MY (1) MY185149A (es)
TW (1) TWI473889B (es)
WO (1) WO2013151085A1 (es)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY191191A (en) 2014-04-30 2022-06-07 Jfe Steel Corp High-strength steel sheet and method for manufacturing the same
JP6028884B1 (ja) * 2015-03-31 2016-11-24 Jfeスチール株式会社 缶用鋼板及び缶用鋼板の製造方法
WO2016157877A1 (ja) * 2015-03-31 2016-10-06 Jfeスチール株式会社 缶蓋用鋼板およびその製造方法
JP6421772B2 (ja) * 2016-02-29 2018-11-14 Jfeスチール株式会社 缶用鋼板の製造方法
DE102020106164A1 (de) * 2020-03-06 2021-09-09 Thyssenkrupp Rasselstein Gmbh Kaltgewalztes Stahlflachprodukt für Verpackungen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228524A1 (en) * 2003-05-22 2006-10-12 Hiroshi Kubo Easy-open end and laminated steel sheet

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533188A (ja) * 1991-07-30 1993-02-09 Nippon Steel Corp 耐錆性と外観性の優れた容器用表面処理鋼板
JP3740779B2 (ja) 1997-03-12 2006-02-01 Jfeスチール株式会社 開蓋性とリベット成形性に優れるイージーオープン缶蓋用鋼板およびその製造方法、ならびにイージーオープン缶蓋
JP3840004B2 (ja) * 1999-08-17 2006-11-01 新日本製鐵株式会社 缶強度、缶成形性に優れる容器用極薄軟質鋼板及びその製造方法
DE60124792T2 (de) * 2000-02-23 2007-03-29 Jfe Steel Corp. Hochfestes warmgewalztes Stahlblech mit ausgezeichneten Reckalterungseigenschaften und Herstellungsverfahren dafür
JP4665302B2 (ja) * 2000-11-02 2011-04-06 Jfeスチール株式会社 高r値と優れた歪時効硬化特性および常温非時効性を有する高張力冷延鋼板およびその製造方法
US20030015263A1 (en) * 2000-05-26 2003-01-23 Chikara Kami Cold rolled steel sheet and galvanized steel sheet having strain aging hardening property and method for producing the same
JP4519373B2 (ja) * 2000-10-27 2010-08-04 Jfeスチール株式会社 成形性、歪時効硬化特性および耐常温時効性に優れた高張力冷延鋼板およびその製造方法
JP4133520B2 (ja) * 2002-11-21 2008-08-13 新日本製鐵株式会社 耐変形性が著しく良好な容器用鋼板およびその製造方法
TW200827460A (en) * 2006-08-11 2008-07-01 Nippon Steel Corp DR steel sheet and manufacturing method thereof
JP5453884B2 (ja) * 2008-04-03 2014-03-26 Jfeスチール株式会社 高強度容器用鋼板およびその製造方法
BRPI0911139B1 (pt) * 2008-04-03 2018-03-13 Jfe Steel Corporation Chapa de aço de alta resistência para latas e método para produção da mesma
CN102286688A (zh) * 2010-06-21 2011-12-21 宝山钢铁股份有限公司 一种高硬度镀锡原板用钢及其制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060228524A1 (en) * 2003-05-22 2006-10-12 Hiroshi Kubo Easy-open end and laminated steel sheet

Also Published As

Publication number Publication date
CO7061066A2 (es) 2014-09-19
TWI473889B (zh) 2015-02-21
TW201410879A (zh) 2014-03-16
JPWO2013151085A1 (ja) 2015-12-17
JP5804195B2 (ja) 2015-11-04
MY185149A (en) 2021-04-30
EP2835438B1 (en) 2019-06-26
CN104245985A (zh) 2014-12-24
EP2835438A4 (en) 2015-12-23
WO2013151085A1 (ja) 2013-10-10
CN104245985B (zh) 2017-08-11
EP2835438A1 (en) 2015-02-11
KR20140117602A (ko) 2014-10-07

Similar Documents

Publication Publication Date Title
JP5135868B2 (ja) 缶用鋼板およびその製造方法
WO2013008457A1 (ja) 缶用鋼板およびその製造方法
EP2835438B1 (en) High-strength, highly workable steel sheet, and method for manufacturing same
WO2013018334A1 (ja) 高強度高加工性缶用鋼板およびその製造方法
EP3725511B1 (en) Resin coated metal plate for containers
CN110462086B (zh) 两片罐用钢板及其制造方法
US20160362761A1 (en) Steel sheet for crown cap, method for manufacturing same, and crown cap
EP2860124B1 (en) Three-piece can and method for producing same
WO1999063124A1 (fr) Feuillard enduit de resine approprie pour une utilisation dans une boite en fer, a emboutissage profond, a paroi mince, et feuillard a utiliser a cet effet
CA2828547C (en) Steel sheet for bottom of aerosol cans with high resistance to pressure and high formability and method for manufacturing the same
JP3826442B2 (ja) 加工性が良好でかつ肌荒れのない製缶用鋼板の製造方 法
JP6455639B1 (ja) 2ピース缶用鋼板及びその製造方法
JP6019719B2 (ja) 高強度高延性鋼板の製造方法
JPH05247669A (ja) 薄肉化深絞り缶用高強度鋼板の製造方法
KR102587650B1 (ko) 캔용 강판 및 그의 제조 방법
US11459149B2 (en) Steel sheet for crown cap, crown cap and method for producing steel sheet for crown cap
JP5803510B2 (ja) 高強度高加工性缶用鋼板およびその製造方法
JP6822617B1 (ja) 缶用鋼板およびその製造方法
KR102677317B1 (ko) 캔용 강판 및 그의 제조 방법

Legal Events

Date Code Title Description
AS Assignment

Owner name: JFE STEEL CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANAKA, TAKUMI;KOJIMA, KATSUMI;TOBIYAMA, YOICHI;SIGNING DATES FROM 20140722 TO 20140724;REEL/FRAME:033649/0007

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION