US20150007963A1 - Ionic liquids for cooling in high temperature environment - Google Patents

Ionic liquids for cooling in high temperature environment Download PDF

Info

Publication number
US20150007963A1
US20150007963A1 US14/375,117 US201214375117A US2015007963A1 US 20150007963 A1 US20150007963 A1 US 20150007963A1 US 201214375117 A US201214375117 A US 201214375117A US 2015007963 A1 US2015007963 A1 US 2015007963A1
Authority
US
United States
Prior art keywords
cooling medium
medium according
ionic liquid
aggregates
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/375,117
Other languages
English (en)
Inventor
Roland Kalb
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VTU Holding GmbH
Original Assignee
VTU Holding GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VTU Holding GmbH filed Critical VTU Holding GmbH
Assigned to VTU HOLDING GMBH reassignment VTU HOLDING GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KALB, ROLAND
Publication of US20150007963A1 publication Critical patent/US20150007963A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/58Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/048Boiling liquids as heat transfer materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/066Cooling mixtures; De-icing compositions

Definitions

  • the present invention relates to ionic liquids which are useful for cooling in high temperature environment.
  • an ionic liquid is a salt in the liquid state, more particularly a melt of a low melting salt, e.g. with a melting point equal or below 100° C.
  • a melting point equal or below 100° C.
  • Such ionic liquids may exhibit some very interesting characteristics, e.g. having a very low, virtually non measurable vapor pressure, a large liquidus range, good electrical conductivity and interesting solvation characteristics. These characteristics make ionic liquids prone for several applications, e.g. as solvents (for example, in organic or inorganic synthesis, transition metal catalysis, biocatalysis, multiphase reactions, photochemistry, polymer synthesis, and nanotechnology), extracting agent (e.g.
  • liquid-liquid or liquid gaseous extraction for example, in batteries, fuel cells, capacitors, solar cells, sensors, electroplating, electrochemical metal processing, electrochemical synthesis, and nanotechnology
  • electrolytes for example, in batteries, fuel cells, capacitors, solar cells, sensors, electroplating, electrochemical metal processing, electrochemical synthesis, and nanotechnology
  • lubricants for example, in batteries, fuel cells, capacitors, solar cells, sensors, electroplating, electrochemical metal processing, electrochemical synthesis, and nanotechnology
  • lubricants for example, in batteries, fuel cells, capacitors, solar cells, sensors, electroplating, electrochemical metal processing, electrochemical synthesis, and nanotechnology
  • lubricants for example, in batteries, fuel cells, capacitors, solar cells, sensors, electroplating, electrochemical metal processing, electrochemical synthesis, and nanotechnology
  • lubricants for example, in batteries, fuel cells, capacitors, solar cells, sensors, electroplating, electrochemical metal processing, electrochemical synthesis, and nanotechnology
  • lubricants for example, in batteries,
  • ionic liquids for use as a cooling medium are disclosed. It is described that ionic liquids are exclusively composed from ions (cations and anions) and are salts that are liquid at temperatures below 100° C. without the salts being dissolved in a solvent such as water.
  • Cations according to WO 2010/136403 include imidazolium, pyridinium, pyrrolidinium, guanidinium, uronium, thiouronium, piperidinium, morpholinium, phosphonium or ammonium, which cations additionally can be alkylated and anions include sulfates, phosphates, halides, fluorinated anions such as tetrafluoroborate, hexafluoroborate, trifluoroacetate, trifluoromethanesulfonate and hexafluorophosphate, sulfonates, phosphinates or tosylates.
  • ionic liquids do have virtually no vapor pressure and are therefore generally non flammable below their high thermal decomposition point of up to 300° C. and even more. When heated up above their thermal decomposition temperature, however, they form gaseous, molecular decomposition products, which are flammable.
  • a typical ionic liquid starts to burn after the bulk phase has reached the flashpoint temperature and that in many cases the combustion only continues, if a quite high input of external heat from a heat source is given.
  • ionic liquids do not form a highly explosive mixture of hydrogen and oxygen (detonating gas or oxyhydrogen gas) when in contact with hot (reducing) surfaces or hot (reducing) melts at temperatures above approx. 500° C. That is in contrast to water, which still is widely used as cooling agent.
  • Drawbacks of ionic liquids in contrast to water may be the higher viscosity in the range of typically some 10 to some 100 mPas at 20° C. and a specific heat capacity of approx. 50 to 75% of water.
  • ionic liquid cooling media generally are superior to water or thermo oils as cooling agents in terms of safety. However, if ionic liquids are heated above their thermal decomposition point, they still form flammable or non flammable gaseous products, which will lead to an increase or even hazardous increase of pressure in a closed cooling system. In the case of an accidental efflux by e.g. disruption of a pipe into e.g. a molten metal it will cause heavy sputtering or even minor explosions.
  • cooling media comprising ionic liquids with 8,5 weight % of hydrogen or less, show much lower, or even practically no sputtering or explosive reaction behavior in contrast to ionic liquids (and other cooling media) with higher hydrogen content.
  • hydrogen denotes hydrogen atoms bound to other atoms e.g. carbon atoms, being part of the ionic liquids anions or cations or being part of ionic or molecular byproducts or additives, but not gaseous hydrogen.
  • the content of carbon atoms or other atoms forming volatile combustion products like sulfur, nitrogen, fluorine or chlorine seems to be of less importance as was found by experimental investigations.
  • the present invention provides a cooling medium, e.g. for the application in high temperature environment, comprising an ionic liquid with a hydrogen content of 0% to 8.5%, such as 0% to 7% by weight, e.g. 0% to 6.5% by weight.
  • a cooling medium provided by the present invention is herein also designated as “cooling medium of (according to) the present invention”.
  • a cooling medium comprising an ionic liquid may be a cooling medium consisting of an ionic liquid.
  • An ionic liquid provided by the present invention as a cooling medium is herein also designated as “ionic liquid of (according to) the present invention”.
  • ionic liquid as used herein, e.g. in a process of the present invention, includes salts with melting temperatures of up to 250° C., e.g. ⁇ 100° C. and >100° C., but ⁇ 250° C.; preferably ⁇ 100° C. and more preferably less than room temperature.
  • ionic liquid as used herein, further includes all liquid organic salts and mixtures of salts consisting of inorganic cations and organic anions or inorganic anions. Moreover additional salts with inorganic cation and organic or inorganic anion can be dissolved in the ionic liquid, containing but definitely not limited to the identical anion or identical anions as found in the basic ionic liquid. Moreover, additives may be dissolved in the ionic liquid, e.g. small amounts thereof, such as flame retardants.
  • the present invention provides a cooling medium according to the present invention, further comprising dissolved salts with inorganic cations and organic or inorganic anions, and/or dissolved flame retardants.
  • cations and anions which form the ionic liquid in a cooling medium according to the present invention is less important.
  • Appropriate cations and anions are such which form ionic liquids having a hydrogen content of not more than 8.5%, e.g. 0% to 8.5%.
  • the term “moieties” denote alkyl, perfluorated alkyl, alkenyl, alkinyl, aryl, aralkyl or heteroaryl groups having 1 to 8 carbon atoms, such as C1-C4-alkyl, C2-C4-alkenyl, C2-C4-alkinyl, phenyl, benzyl or heteroaryl, preferably alkyl.
  • C1-C4-alkyl or similar terms is an abbreviatory notation for C1-alkyl (methyl), C2-alkyl (ethyl), . . . , C4-alkyl (n-butyl, isobutyl, tert-butyl) or similar terms.
  • branched chains are preferred, having found to be superior over linear chains.
  • the cation is selected from imidazolium, benzimidazolium or phosphonium, optionally and preferably being substituted by C1 to C4 alkyl, e.g. including 1,3-dialkylimidazolium, 1,2,3-trialkylimidazolium, 1,3-dialkylbenzimidazolium, 1,2,3-trialkylbenzimidazolium, tetraalkylphosphonium cations, wherein preferably alkyl independently is C1 to C4 alkyl.
  • the cation is a quaternary ammonium, phosphonium, pyridinium, pyrrolium, piperidinium, pyrrolidinium, morpholinium, (benz)imidazolium or pyrazolium
  • the cation is a quaternary ammonium or a quaternary phosphonium cation.
  • the cation comprises one to four moieties as described above.
  • the cation is one out of the group consisting of pyridinium, pyrrolium, e.g. wherein one moiety is bound to the nitrogen atom and/or one to three moieties are bound to carbon atoms of the carbon ring.
  • the cation is one out of the group consisting of piperidinium, pyrrolidinium and morpholinium, e.g. wherein one or two moieties are bound to the nitrogen atom and/or one to three of the one to four moieties are bound to carbon atoms of the carbon ring.
  • the cation is one out of the group consisting of (benz)imidazolium and pyrazolium, e.g. wherein a respective one of the one to four moieties is bound to each nitrogen atom and/or one to three of the one to four moieties are bound to carbon atoms of the carbon ring.
  • a first moiety may be bound to a first nitrogen atom and a second moiety may be bound to a second nitrogen atom.
  • the cation is preferably one out of the group consisting of tetramethylammonium, tetraethylammonium, triethylmethylammonium, tetrabutylammonium, tributylmethylammonium, 1,3-dimethylimidazolium, 1,3-diethylimidazolium, 1-butyl-3-methylimidazolium, 1,2,3-trimethylimidazolium, 1-ethyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, and 1-butyl-2,3-dimethylimidazolium, 1-propyl-3-methylimidazolium, 1-propyl-2,3-dimethylimidazolium, 1,3-dimethylbenzimidazolium, 1-butyl-3-methylbenzimidazolium, 1,2,3-trimethylbenzimidazolium, 1-ethyl-3-methyl
  • the cation is preferably one out of the group of N-Butyl-N-Methylpyrrolidinium, N-Propyl-N-Methylpyrrolidinium, N-Ethyl-N-Methylpyrrolidinium, N,N-Dimethylpyrrolidinium, N-tert.Butyl-N-Methylpyrrolidinium, N-iso-Propyl-N-Methylpyrrolidinium, N-iso-Propyl-N-Ethylpyrrolidinium, N,N-Di-iso-Propylpyrrolidinium, N-tert.Butyl-N-Ethylpyrrolidinium, N-Butyl-N-Methylmorpholinium, N-Propyl-N-Methylmorpholinium, N-Ethyl-N-Methylmorpholinium, N,N-Dimethyl
  • the present invention provides a cooling medium according to the present invention, wherein the cation of the ionic liquid is selected from imidazolium, e.g. C1-C6 alky-imidazolium, such as 1-ethyl- or 1-buylimidazolium, wherein the imidzalolyl ring optionally is substituted by alkyl, e.g. C1-C4 alkyl, such as methyl.
  • imidazolium e.g. C1-C6 alky-imidazolium, such as 1-ethyl- or 1-buylimidazolium
  • alkyl e.g. C1-C4 alkyl, such as methyl.
  • the present invention provides a cooling medium according to the present invention, wherein the cation of the ionic liquid is selected from imidazolium, benzimidazolium or phosphonium, optionally independently substituted by C1 to C4 alkyl, perfluoro C1 to C4 alkyl and/or by cyano, e.g. one or more cyano groups.
  • Anions in a ionic liquid according to the present invention include anions common in ionic liquid chemistry.
  • the chemical formula of the anion contains 3 or less hydrogen atoms, more preferably the anions are completely hydrogen free.
  • the anions comprise hetero elements, such as halogen, O, N, S, Si, B, P, a metallic element, such as Fe, Sb, Sn, Cu, Mo, Al, Zn, Co, Ni, Mn, W, V or Ti; these hetero elements may form (but are not limited to) complex anions with each other, e.g. the metallic elements listed above with halogen, SCN ⁇ , CN ⁇ , N(CN) 2 ⁇ or O-containing ligands, or any other hydrogen-free ligand.
  • Appropriate anions include e.g. fluoride; chloride; bromide; thiocyanate; dicyanamide; hexafluorophosphate; sulfate; phosphate; hydrogen phosphate; dihydrogen phosphate; phosphonate HPO 3 2 ⁇ , hydrogen phosphonate H 2 PO 3 ⁇ ; sulfamate H 2 N—SO 3 ⁇ , methanesulfonate, dimethylphosphate, dimethylphosphonate, diethylphosphate, diethylphosphonate, tetrafluoroborate, trifluormethanesulfonate, trifluoracetate, bis(trifluormethylsulfonyl)imide, tris(trifluormethylsulfonyl)methide, fluorous alkyl phosphate, e.g.
  • R i to R l independently of each other, are fluorine or an organic, inorganic, aliphatic or perfluorinated aliphatic, aromatic, heteroaromatic or perfluorinated aromatic or heteroaromatic residues, e.g. aliphatic residues comprising 1 to 4, aromatic or heteroaromatic residues comprising 5 to 10 carbon atoms, optionally comprising one or more heteroatoms and/or optionally substituted by one or more hydrogen-free functional groups or halogen; organic sulfonate, e.g. of formula
  • R m is an organic, inorganic, aliphatic or perfluorinated aliphatic, aromatic, heteroaromatic or perfluorinated aromatic or heteroaromatic residue, e.g. aliphatic residues comprising 1 to 4, aromatic or heteroaromatic residues comprising 5 to 10 carbon atoms, optionally comprising one or more heteroatoms and/or optionally substituted by one or more hydrogen-free functional groups or halogen; organic sulfate, e.g. of formula
  • R m is an organic, inorganic, aliphatic or perfluorinated aliphatic, aromatic, heteroaromatic or perfluorinated aromatic or heteroaromatic residue, e.g. aliphatic residues comprising 1 to 4, aromatic or heteroaromatic residues comprising 5 to 10 carbon atoms, optionally comprising one or more heteroatoms and/or optionally substituted by one or more hydrogen-free functional groups or halogen; carboxylate, e.g. of formula
  • R n is an organic, inorganic, aliphatic or perfluorinated aliphatic, aromatic, heteroaromatic or perfluorinated aromatic or heteroaromatic residue, e.g. aliphatic residues comprising 1 to 4, aromatic or heteroaromatic residues comprising 5 to 10 carbon atoms, which optionally comprises one or more heteroatoms and/or optionally substituted by one or more hydrogen-free functional groups or halogen; (fluoroalkyl)fluorophosphate e.g. of formula
  • R o to R u independently of each other are fluorine or an organic, inorganic, aliphatic or perfluorinated aliphatic, aromatic, heteroaromatic or perfluorinated aromatic or heteroaromatic residue , e.g. aliphatic residues comprising 1 to 4, aromatic or heteroaromatic residues comprising 5 to 10 carbon atoms, which optionally comprises one or more heteroatoms and/or optionally is substituted by one or more hydrogen-free functional groups or halogen; organic phosphate of formula
  • R m is an organic, inorganic, aliphatic or perfluorinated aliphatic, aromatic, heteroaromatic or perfluorinated aromatic or heteroaromatic residue, e.g. aliphatic residues comprising 1 to 4, aromatic or heteroaromatic residues comprising 5 to 10 carbon atoms, which optionally comprises one or more heteroatoms and/or which optionally is substituted by one or more hydrogen-free functional groups or halogen; and wherein R n is hydrogen or an organic, inorganic, aliphatic or perfluorinated aliphatic, aromatic, heteroaromatic or perfluorinated aromatic or heteroaromatic residue, e.g.
  • R m is an organic, inorganic, aliphatic or perfluorinated aliphatic, aromatic, heteroaromatic or perfluorinated aromatic or heteroaromatic residue, e.g. aliphatic residues comprising 1 to 4, aromatic or heteroaromatic residues comprising 5 to 10 carbon atoms, which optionally comprises one or more heteroatoms and/or optionally is substituted by one or more hydrogen free functional groups or halogen; and wherein IV is hydrogen or an organic, inorganic, aliphatic or perfluorinated aliphatic, aromatic, heteroaromatic or perfluorinated aromatic or heteroaromatic residue, e.g. aliphatic residues comprising 1 to 4, aromatic or heteroaromatic residues comprising 5 to 10 carbon atoms, which optionally comprises one or more heteroatoms and/or optionally substituted by one or more hydrogen-free functional groups or halogen.
  • an anion includes sulfates, phosphates, sulfonates.
  • C1-C4 alkylsulfates such as methylsulfate, ethylsulfate, C1-C6 dialkylphosphates, such as diethylphosphate, C1-C4 alkylsulfonates wherein alkyl optionally is halogenated, e.g. fluorinated, such as methansulfonate, trifluoromethansulfonate, SiF 6 2 ⁇ , halogenated, e.g. fluorinated borates, e.g. tetrafluoroborate, arylated phosphates, e.g.
  • halogenated e.g. fluorinated borates, e.g. tetrafluoroborate, arylated phosphates, e.g.
  • triphenylphosphate ferrates, such as tetrachloroferrate-(III); e.g. diethylphosphate, triphenylphosphate, methansulfonate, trifluormethansulfonate, methylsulfate, ethylsulfate, SiF 6 2 ⁇ , tetrachloroferrat-(III) and/or tetrafluoroborate.
  • ferrates such as tetrachloroferrate-(III); e.g. diethylphosphate, triphenylphosphate, methansulfonate, trifluormethansulfonate, methylsulfate, ethylsulfate, SiF 6 2 ⁇ , tetrachloroferrat-(III) and/or tetrafluoroborate.
  • Ionic liquids according to the present invention may be prepared as appropriate, e.g. according, e.g. analogously to a known method, e.g. as described in prior art. Processes for the preparation of ionic liquids are known e.g. from Was serscheid, Peter; Welton, Tom (Eds.); “Ionic Liquids in Synthesis”, Wiley-VCH 2008; ISBN 978-3-527-31239-9; Rogers, Robin D.; Seddon, Kenneth R. (Eds.); “Ionic Liquids—Industrial Applications to Green Chemistry”, ACS Symposium Series 818, 2002; ISBN 0841237891 and numberous references cited therein.
  • ionic liquids according to the present invention have a high flash point.
  • the present invention provides a cooling medium according of the present invention wherein the ionic liquid has a flash point of at least 200° C., such as 250° C., determined according to DIN ISO 2592.
  • a ionic liquid according to the present invention has a low melting point, e.g. from ⁇ 20° C. and below to 40° C.
  • the present invention provides a cooling medium according to the present invention, wherein the ionic liquid has a melting point from 40° C. and below, such as 20° C. and below, e.g. 0° C. and below, such as ⁇ 20° C. and below.
  • a cooling medium of the present invention comprising ionic liquids with low hydrogen content is particularly useful in terms of safe use because of low reactivity, low flame volume and low explosiviness in a high temperature environment, especially when getting in contact with high temperature melts or surfaces.
  • a cooling medium of the present invention is particularly useful for the following applications:
  • the present invention provides the use of a cooling medium according to the present invention for the cooling of
  • composition of ionic liquids their sum formulae, the calculated content in weight % of carbon atoms “C”, hydrogen atoms “H” and other atoms “Z” which may form gaseous combustion products, the T-Onset temperature for the decomposition in air measured by a thermo balance (according to DIN 51007), the flashpoint (according to DIN ISO 2592) and the ratings for the reactivity (RA) and the flame volume (FV).
  • the individual weight %s listed are based on the total mol weight of the composition.
  • Z other atoms forming gaseous combustion products, e.g. N, S, F, Cl , but except O.
  • EMIM is 1-Ethyl-3-methylimidazolium
  • BMIM 1-Butyl-3-methylimidazolium.
  • reactivity RA decreases from 3.5 of the compound with a hydrogen content from more than 8.5% (9.26%) at least to 3 (decrease of ca. 14%) down to 1 (decrease of ca. 71%) of ionic liquids of the present invention.
  • flame volume decreases from 3.5 of the compound with a hydrogen content from more than 8.5% (9.26%) to at least to 2 (decrease of ca. 43%) down to 1 (decrease of ca. 71%) of the ionic liquids of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fireproofing Substances (AREA)
  • Pyridine Compounds (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Fuel Cell (AREA)
US14/375,117 2012-02-02 2012-12-28 Ionic liquids for cooling in high temperature environment Abandoned US20150007963A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP12153670 2012-02-02
EP12153670.0 2012-02-02
PCT/EP2012/077010 WO2013113461A1 (en) 2012-02-02 2012-12-28 Ionic liquids for cooling in high temperature environment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/077010 A-371-Of-International WO2013113461A1 (en) 2012-02-02 2012-12-28 Ionic liquids for cooling in high temperature environment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/991,674 Division US10677532B2 (en) 2012-02-02 2016-01-08 Ionic liquids for cooling in high temperature environment

Publications (1)

Publication Number Publication Date
US20150007963A1 true US20150007963A1 (en) 2015-01-08

Family

ID=47470019

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/375,117 Abandoned US20150007963A1 (en) 2012-02-02 2012-12-28 Ionic liquids for cooling in high temperature environment
US14/991,674 Active US10677532B2 (en) 2012-02-02 2016-01-08 Ionic liquids for cooling in high temperature environment

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/991,674 Active US10677532B2 (en) 2012-02-02 2016-01-08 Ionic liquids for cooling in high temperature environment

Country Status (16)

Country Link
US (2) US20150007963A1 (pt)
EP (1) EP2809739B1 (pt)
JP (2) JP2015509130A (pt)
KR (1) KR101621184B1 (pt)
CN (1) CN104080880B (pt)
AU (1) AU2012367944B2 (pt)
BR (1) BR112014018886B1 (pt)
CA (1) CA2861775C (pt)
CL (1) CL2014001852A1 (pt)
HK (1) HK1202570A1 (pt)
IN (1) IN2014DN06708A (pt)
MX (1) MX367572B (pt)
PE (1) PE20142105A1 (pt)
PH (1) PH12014501742B1 (pt)
RU (1) RU2621105C2 (pt)
WO (1) WO2013113461A1 (pt)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10168080B2 (en) * 2016-05-26 2019-01-01 Yazaki Corporation Eutectic mixtures of ionic liquids in absorption chillers
US10465950B2 (en) 2016-05-26 2019-11-05 Yazaki Corporation Guanidinium-based ionic liquids in absorption chillers

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT515566A1 (de) 2014-03-06 2015-10-15 Inteco Special Melting Technologies Gmbh Verfahren zur Kühlung von flüssigkeitsgekühlten Kokillen für metallurgische Prozesse
DE102015001190B4 (de) 2015-01-31 2016-09-01 Karlfried Pfeifenbring Kühlelement für metallurgische Öfen sowie Verfahren zur Herstellung eines Kühlelements
AT519400B1 (de) * 2016-11-23 2019-08-15 Mettop Gmbh Verfahren zur Herstellung eines Kühlelementes
JP2018144027A (ja) * 2017-03-01 2018-09-20 パナソニックIpマネジメント株式会社 調湿システム用液体吸湿材料
JP7002048B2 (ja) * 2017-03-01 2022-01-20 パナソニックIpマネジメント株式会社 調湿システム用液体吸湿材料
CN106907333A (zh) * 2017-04-12 2017-06-30 浙江贝德泵业有限公司 一种微通道冷却器空调泵
DE102017127497A1 (de) * 2017-11-21 2019-05-23 Sms Group Gmbh Verfahren zur Herstellung von Mehrphasenstählen mittels ionischer Flüssigkeiten
JP7266201B2 (ja) * 2018-08-23 2023-04-28 パナソニックIpマネジメント株式会社 調湿システム用液体吸湿材料
EP3636638A1 (de) 2018-10-08 2020-04-15 proionic GmbH Zusammensetzung umfassend eine ionische flüssigkeit mit fluoriertem anion
EP3757189A1 (en) * 2019-06-26 2020-12-30 Evonik Operations GmbH Use of ionic liquids as coolants for vehicle engines, motors and batteries
CN114958454B (zh) * 2022-05-26 2023-10-10 金宏气体股份有限公司 离子液体组合物及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110039467A1 (en) * 2009-08-11 2011-02-17 H&C Chemical Ionic liquid flame retardants

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL20C (nl) * 1911-06-03 1913-08-01 Krupp Gmbh Verbetering aan geschut met verstelbare dubbelknievormig gebogen rad-as
CN1142235C (zh) * 2000-01-01 2004-03-17 华东理工大学 (LiNO3-KNO3-NaNO3-NaNO2混合熔盐及制备方法
DE20100506U1 (de) 2001-01-12 2001-05-10 Heidel Gmbh & Co Kg Gießhaut zur Herstellung von Kraftfahrzeuginnenverkleidungen aus flexiblem Polyurethanmaterial
DE10208822A1 (de) * 2002-03-01 2003-09-11 Solvent Innovation Gmbh Halogenfreie ionische Flüssigkeiten
DE10316418A1 (de) * 2003-04-10 2004-10-21 Basf Ag Verwendung einer ionischen Flüssigkeit
DE102004046042A1 (de) * 2004-09-21 2005-09-15 Basf Ag Verfahren zur Durchführung von endothermen oder exothermen heterogen katalysierten Gasphasenreaktionen an einem Festbett aus porösen Katalysatorformkörpern
US8506839B2 (en) * 2005-12-14 2013-08-13 E I Du Pont De Nemours And Company Absorption cycle utilizing ionic liquids and water as working fluids
EP1844880A1 (en) 2006-04-12 2007-10-17 So & So Sommerhofer OEG Strip casting
JP5200406B2 (ja) 2006-06-13 2013-06-05 Jfeスチール株式会社 鋼帯の冷却方法
DE102007006455B4 (de) * 2007-02-05 2008-11-13 Q-Cells Ag Wärmereservoir und Verfahren zur Bearbeitung eines mit einem Wärmereservoir thermisch gekoppelten Substrates sowie Verwendung eines Wärmetransportmediums
CN101657515B (zh) * 2007-04-03 2013-04-17 纳幕尔杜邦公司 使用多元醇与离子液体的混合物的热传递体系
JP5237681B2 (ja) * 2007-08-03 2013-07-17 出光興産株式会社 潤滑油基油および潤滑油組成物
US20090071155A1 (en) * 2007-09-14 2009-03-19 General Electric Company Method and system for thermochemical heat energy storage and recovery
DE102009051087A1 (de) 2008-10-29 2010-05-06 Basf Se Arbeitsmedium für Kälte- und Wärmeprozesse, enthaltend ein Tetraalkylammoniumsalz
AT508292B1 (de) 2009-05-28 2011-03-15 Mettop Gmbh Verfahren zur kühlung eines metallurgischen ofens sowie kühlkreislaufsystem für metallurgischeöfen
KR20120030103A (ko) * 2009-06-25 2012-03-27 브이티유 홀딩 게엠베하 유기분자 합성방법
JP6358799B2 (ja) * 2010-11-08 2018-07-18 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 吸収式ヒートポンプのための作動媒体
DE102011014713B4 (de) 2011-03-23 2016-05-19 Audi Ag Tankentlüftungsvorrichtung für ein Kraftfahrzeug
CN114292627B (zh) * 2013-11-22 2024-01-30 科慕埃弗西有限公司 包含四氟丙烯和四氟乙烷的组合物、它们在功率循环中的用途、以及功率循环设备
JP6305845B2 (ja) * 2014-06-19 2018-04-04 デクセリアルズ株式会社 イオン液体、潤滑剤及び磁気記録媒体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110039467A1 (en) * 2009-08-11 2011-02-17 H&C Chemical Ionic liquid flame retardants

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10168080B2 (en) * 2016-05-26 2019-01-01 Yazaki Corporation Eutectic mixtures of ionic liquids in absorption chillers
US10465950B2 (en) 2016-05-26 2019-11-05 Yazaki Corporation Guanidinium-based ionic liquids in absorption chillers

Also Published As

Publication number Publication date
EP2809739B1 (en) 2020-12-09
RU2621105C2 (ru) 2017-05-31
EP2809739A1 (en) 2014-12-10
MX367572B (es) 2019-08-27
BR112014018886A2 (pt) 2017-06-20
BR112014018886B1 (pt) 2021-05-25
RU2014135520A (ru) 2016-03-27
JP6559167B2 (ja) 2019-08-14
WO2013113461A1 (en) 2013-08-08
CN104080880A (zh) 2014-10-01
PH12014501742A1 (en) 2014-11-10
CA2861775A1 (en) 2013-08-08
JP2015509130A (ja) 2015-03-26
HK1202570A1 (en) 2015-10-02
KR101621184B1 (ko) 2016-05-13
BR112014018886A8 (pt) 2017-07-11
AU2012367944A1 (en) 2014-07-17
CL2014001852A1 (es) 2015-02-06
IN2014DN06708A (pt) 2015-05-22
MX2014008635A (es) 2014-10-24
CN104080880B (zh) 2017-07-25
US20160138876A1 (en) 2016-05-19
KR20140119732A (ko) 2014-10-10
PE20142105A1 (es) 2014-12-20
US10677532B2 (en) 2020-06-09
CA2861775C (en) 2017-01-17
PH12014501742B1 (en) 2014-11-10
JP2017110229A (ja) 2017-06-22
AU2012367944B2 (en) 2016-03-03

Similar Documents

Publication Publication Date Title
US10677532B2 (en) Ionic liquids for cooling in high temperature environment
Fabre et al. A review of the thermophysical properties and potential of ionic liquids for thermal applications
CN102597277B (zh) 用于金属和金属化合物的全卤化物类型的离子液体溶剂
Green et al. Thermal, rheological, and ion-transport properties of phosphonium-based ionic liquids
Vogl et al. The influence of cation structure on the chemical–physical properties of protic ionic liquids
KR20170093888A (ko) 하이드로플루오로올레핀 및 그의 사용 방법
Bagh et al. Solubility of sodium chloride in phosphonium-based deep eutectic solvents
Salgado et al. Liquid range of ionic liquid–Metal salt mixtures for electrochemical applications
Stolarska et al. Thermal behaviour of mixtures of 1-alkylpyridinium halides with and without a common ion
Alhadid et al. Cocrystal formation in l-menthol/phenol eutectic system: experimental study and thermodynamic modeling
Cruz et al. Ionic liquids in wonderland: from electrostatics to coordination chemistry
Fernández Requejo et al. Mutual solubility of aromatic hydrocarbons in pyrrolidinium and ammonium-based ionic liquids and its modeling using the Cubic-Plus-Association (CPA) Equation of State
US7687513B1 (en) Aminopyridinium ionic liquids
Bouarab et al. Physical properties and solid-liquid equilibria for hexafluorophosphate-based ionic liquid ternary mixtures and their corresponding subsystems
Devi Ionic Liquids-Useful Reaction Green Solvents for the Future (A Review)
ZIYADA TAHA Thermophysical properties and carbon dioxide solubility of novel room temperature ionic liquids
Kojima et al. Molten Salt Liquid–Liquid Immiscibility, KNO3–(Li0. 435Na0. 315K0. 25) 2CO3 at 773 K and Cation Distribution between Two Liquids
WO2015157441A1 (en) Ionic liquid solvent for electroplating process
Pulukkody et al. Synthesis and Characterization of Fluorinated Ionic Liquids and Their Application in Hydrofluorocarbon Gas Uptake
McCants Synthesis, Characterization, and Thermal Stability Studies of Halogen Containing Phosphonium-Based Ionic Liquids
Reichert The effects of cation-anion interactions on the physical and solvent properties of ionic liquids
Crosthwaite Liquid phase behavior and thermal stability of ionic liquid systems
Taher Orthoborate Ionic Liquids for Lubricated Interfaces
Mustafa Binary Mixtures' Thermophysical Properties Study of Novel Ionic Liquids Incorporating Thiosalicylate Anion

Legal Events

Date Code Title Description
AS Assignment

Owner name: VTU HOLDING GMBH, AUSTRIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KALB, ROLAND;REEL/FRAME:033405/0476

Effective date: 20140715

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION