US20140294665A1 - Cu-Ni-Zn-Mn Alloy - Google Patents

Cu-Ni-Zn-Mn Alloy Download PDF

Info

Publication number
US20140294665A1
US20140294665A1 US13/982,764 US201213982764A US2014294665A1 US 20140294665 A1 US20140294665 A1 US 20140294665A1 US 201213982764 A US201213982764 A US 201213982764A US 2014294665 A1 US2014294665 A1 US 2014294665A1
Authority
US
United States
Prior art keywords
alloy
less
copper alloy
alloys
beta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/982,764
Other languages
English (en)
Inventor
Florian Dalla Torre
Jean-Pierre Tardent
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAOSHIDA SWISSMETAL AG
Original Assignee
BAOSHIDA SWISSMETAL AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BAOSHIDA SWISSMETAL AG filed Critical BAOSHIDA SWISSMETAL AG
Assigned to BAOSHIDA SWISSMETAL AG reassignment BAOSHIDA SWISSMETAL AG ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TORRE, FLORIAN DALLA, TARDENT, Jean-Pierre
Publication of US20140294665A1 publication Critical patent/US20140294665A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • Copper Tellurium alloys (C14500) contain 0.4-0.7 wt. % Te with minor additions of P and Ag and the rest being Cu. They form CuTe-intermetallics with a satisfactory chip breaking effect.
  • the alloy is not an easy to manufacture alloy due to the high sensitivity of forming oxides causing embrittlement.
  • Te forms brittle ZnTe intermetallics as well results in unfavorable properties.
  • brasses or nickel-silver alloys having a certain range of Zn content exhibit a duplex alpha (face-centered cubic, fcc) and beta (body-centered-cubic, bcc) structure, which apart from representing a fifth mode of increasing strength, is also beneficially influencing the machinability, grain size stability and hot workability.
  • Current commercially available leaded Cu—Ni—Zn—Mn alloys range in the Ni content from 5 to 25 wt. %, a Mn 0-7 wt. %, Zn 25-40 wt. % and rest Cu and impurities typically ⁇ 1 wt. %. According to Guillet's rule [L. Guillet and A.
  • the invention relates to age hardenable high-strength Cu—Zn—Ni—Mn-based alloys with superior mechanical properties and excellent machinability suitable for applications, where intensive free-machining operations are required as for example for the production of pen tips and reservoirs for writing implants of reduced tip dimensions.
  • intensive free-machining operations are required as for example for the production of pen tips and reservoirs for writing implants of reduced tip dimensions.
  • the composition of the invented alloy is given as follows:
  • the invention of the alloy aims to satisfy the current needs for lead-free machinable Cu—Ni—Zn—Mn alloys suitable free-machining operations as required for example in writing applications.
  • the invented alloys exhibit an attractive combination of high strength with sufficient ductility required for subsequent operations or safety margins. While the flow stress reaches values comparable to those of typical stainless steels used for pen tip and other free-machining applications, sufficient cold-formability is often still required in order to perform further bending operations or other cold-deformation steps, such as the insertion of the pen ball onto the tip socket.
  • the machinability of this alloy family is superior due to the precipitation hardened phases. Additions of arsenic as well as minor additions of P, Si, Al and Sn demonstrate beneficial effects on the corrosion resistance.
  • FIG. 1 shows an optical microscopy images of samples heat treated at 350° C. ( FIG. 1 a ) and 450° C. ( FIG. 1 b ) of alloy No 1;
  • FIG. 8 shows optical microscopy image of a sample annealed at 540° C. followed by a second annealing process at 400° C. ( FIG. 8 a ); secondary electron microscopy image of alloy with NiSn preciptates in beta phase matrix and at boundary to alpha grains ( FIG. 8 b ) both of alloy No: 6.
  • thermodynamic software tool In order to determine the precise temperature range of heat treatments a special thermodynamic software tool has been applied, which allows calculating the phase stability fields in a multi-component system as a function of temperature and chemical composition [J. ⁇ gren, F. H. Hayes, L. Höglund, U. R. Kattner, B. Legendre, R. Schmid-Fetzer: Applications of Computational Thermodynamics. Z. Metallischen 93, (2002), 128-142].
  • One aim of the present alloy invention was to increase the beta content of the microstructure to a level, which shows good machinability suitable for turning operations. This is realized by an increased Zn content as compared to the alloy composition of the first and second alloy of the present invention.
  • FIG. 3 a shows the as-extruded microstructure of the duplex phased alloy.
  • Chip length is significantly longer than in the leaded alloys, however not affecting significantly the machining performance. Note that the surface quality is significantly better compared to the surface of the leaded alloy No: 1 (see FIG. 6 ).
  • FIGS. 6 a to 6 d represent machining tests with Mikron Multistar made at 100 Hz on alloy No 3 with composition A annealed at 450° C. ( FIGS. 6 a and 6 b ); and alloy No: 1 ( FIGS. 6 c and 6 d ). Chip length of the leaded alloy No: 1 is smaller than that in alloy No 3.
  • the main difficulty with this type of alloy is the avoidance of oxidation of Ca as it strongly reacts with oxygen. This can be avoided by pre-alloying of Ca with Zn in inert atmosphere. Subsequent alloying with a pre-alloy of Cu—Mn incl. the above mentioned amounts of Fe, Si, Al.
  • the fifth alloy of the present invention can be unleaded and has the following chemical composition: 43.5-48 wt. % Cu, 36-40 wt. % Zn, 9-12 wt. % Ni, 5-7 wt. % Mn, ⁇ 1.0 wt. % Al, ⁇ 0.5 wt. % Sn, ⁇ 0.5 wt. % Fe, ⁇ 0.03 wt. % P, ⁇ 0.15 wt. % As and ⁇ 2.0 wt. % Pb.
  • the tensile properties of the alloy show values ranging from 850-900 MPa with elongations of 2-12% (see Table 4).
  • the sixth alloy of the present invention is also age hardenable and has the following chemical composition: 43.5-48 wt. % Cu, 36-40 wt. % Zn, 9-12 wt. % Ni, 5-7 wt. % Mn, ⁇ 1.0 wt. % Al, ⁇ 2.0 wt. % Sn, ⁇ 0.5 wt. % Fe, Si ⁇ 0.2 wt. %, ⁇ 0.03 wt. % P, ⁇ 0.15 wt. % As and ⁇ 2 wt. % Pb.
  • the main focus of this alloy was to evaluate the influence Sn in the system, which has been added to provoke precipitation of NiSn phases.
  • the scanning electron microscopy (SEM) image shown in FIG. 8 shows the material in the overaged condition heat treated at 400° C., where NiSn precipitates are visible as white dots in the beta phase and localized to the phase boundary.
  • FIGS. 8 a and b show optical microscopy image of a sample annealed at 540° C. followed by a second annealing process at 400° C. ( FIG. 8 a ); Secondary electron microscopy image of alloy with NiSn preciptates in beta phase matrix and at boundary to alpha grains ( FIG. 8 b ) both of alloy No: 6.
  • Silicon has the strongest effect of all alloying elements on the alpha beta phase boundary in brasses and thus has to be added to the alloy with great care.
  • Thermodynamic simulations have shown that additions of up to ⁇ 0.5 wt. % are still tolerable with respect to the balance of alpha/beta ratio (3:1, at 800° C.), while a Si content of 1.0 wt. % reverses the fraction of alpha/beta completely for a Zn content of 37 wt. %.
  • the age hardened stage of these alloys show a high mechanical resistance reaching hardness values beyond 250 HV and tensile strength above 1000 MPa with tensile elongation of 1-5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Adornments (AREA)
  • Heat Treatment Of Steel (AREA)
  • Conductive Materials (AREA)
US13/982,764 2011-02-04 2012-02-03 Cu-Ni-Zn-Mn Alloy Abandoned US20140294665A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH2112011 2011-02-04
CH00211/11 2011-02-04
PCT/EP2012/051890 WO2012104426A2 (en) 2011-02-04 2012-02-03 Cu-ni-zn-mn alloy

Publications (1)

Publication Number Publication Date
US20140294665A1 true US20140294665A1 (en) 2014-10-02

Family

ID=45875923

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/982,764 Abandoned US20140294665A1 (en) 2011-02-04 2012-02-03 Cu-Ni-Zn-Mn Alloy

Country Status (14)

Country Link
US (1) US20140294665A1 (enExample)
EP (1) EP2670876A2 (enExample)
JP (1) JP2014512452A (enExample)
KR (1) KR20140021554A (enExample)
CN (1) CN103502488B (enExample)
AU (1) AU2012213342A1 (enExample)
BR (1) BR112013019625A2 (enExample)
CA (1) CA2826185A1 (enExample)
IL (1) IL227758A0 (enExample)
MX (1) MX2013008503A (enExample)
RU (1) RU2013140681A (enExample)
SG (1) SG192046A1 (enExample)
WO (1) WO2012104426A2 (enExample)
ZA (1) ZA201306143B (enExample)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10760146B2 (en) * 2012-08-09 2020-09-01 Ykk Corporation Fastening copper alloy
US10984931B2 (en) 2015-03-18 2021-04-20 Materion Corporation Magnetic copper alloys
US20210178461A1 (en) * 2019-12-11 2021-06-17 Ngk Insulators, Ltd. Article superior in design and method for producing the same
EP3971312A1 (en) * 2020-09-17 2022-03-23 Société BIC Brass alloy for writing instrument tips
US11447847B2 (en) 2018-04-20 2022-09-20 Wieland-Werke Ag Copper-zinc-nickel-manganese alloy
US11519055B2 (en) * 2014-10-28 2022-12-06 Advanced Alloy Holdings Pty Ltd Metal alloys including copper

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103042318B (zh) * 2013-01-16 2015-08-05 苏州金仓合金新材料有限公司 一种用于焊接的环保锡锌锰铜合金新材料及其制备方法
US10287653B2 (en) 2013-03-15 2019-05-14 Garrett Transportation I Inc. Brass alloys for use in turbocharger bearing applications
CN103741005A (zh) * 2014-01-27 2014-04-23 苏州乾雄金属材料有限公司 一种易导热金属材料
CN104911443A (zh) * 2014-03-15 2015-09-16 紫旭盛业(昆山)金属科技有限公司 一种玻璃模具
CN103972563A (zh) * 2014-04-03 2014-08-06 上海华篷防爆科技有限公司 带有铜基合金复合材料储氢瓶的发电装置
CN104264028B (zh) * 2014-10-09 2016-04-06 江苏航天动力机电有限公司 一种用于电机转子上铜合金护环
CN105059469A (zh) * 2015-07-13 2015-11-18 苏州金业船用机械厂 一种高韧性防锈船用钢板
CN105316521A (zh) * 2015-12-02 2016-02-10 苏州龙腾万里化工科技有限公司 一种便于铸造加工用黄铜合金
CN105568150A (zh) * 2016-01-27 2016-05-11 太仓捷公精密金属材料有限公司 一种金属材料的配方
DE202016102696U1 (de) 2016-05-20 2017-08-29 Otto Fuchs - Kommanditgesellschaft - Sondermessinglegierung sowie Sondermessinglegierungsprodukt
CN106086517A (zh) * 2016-08-31 2016-11-09 芜湖楚江合金铜材有限公司 一种镍锌高强度白铜合金及其制备方法
RU2622194C1 (ru) * 2016-10-10 2017-06-13 Юлия Алексеевна Щепочкина Сплав на основе меди
CN110004321B (zh) * 2018-01-05 2021-04-20 比亚迪股份有限公司 一种铜基微晶合金及其制备方法和一种电子产品
CN110004322B (zh) * 2018-01-05 2021-05-14 比亚迪股份有限公司 一种铜基微晶合金及其制备方法和一种电子产品
KR102120295B1 (ko) * 2018-12-26 2020-06-08 태원공업(주) 양백각선의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177327A (ja) * 1988-01-06 1989-07-13 Sanpo Shindo Kogyo Kk 銀白色を呈する快削性銅基合金
US20060065336A1 (en) * 2003-03-21 2006-03-30 Swissmetal Ums Usines Metallurgiques Suisse Sa Copper-based alloy

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH508049A (fr) * 1970-04-13 1971-05-31 Int Nickel Ltd Alliages de la classe des maillechorts
DE4006410C2 (de) 1990-03-01 1994-01-27 Wieland Werke Ag Halbzeug aus Kupfer oder einer Kupferlegierung mit Kohlenstoffzusatz
US5167726A (en) 1990-05-15 1992-12-01 At&T Bell Laboratories Machinable lead-free wrought copper-containing alloys
JP2828418B2 (ja) * 1995-09-21 1998-11-25 株式会社紀長伸銅所 改良快削白色合金
CN1058531C (zh) * 1997-05-08 2000-11-15 华南理工大学 β黄铜形状记忆合金及其制备方法
EP0911419A1 (en) 1997-10-21 1999-04-28 Ykk Corporation Nickel-free copper alloy
JP3917304B2 (ja) 1998-10-09 2007-05-23 三宝伸銅工業株式会社 快削性銅合金
DE10308778B3 (de) 2003-02-28 2004-08-12 Wieland-Werke Ag Bleifreie Kupferlegierung und deren Verwendung
CN100424207C (zh) 2004-03-29 2008-10-08 三越金属株式会社 黄铜
KR100864909B1 (ko) 2007-01-30 2008-10-22 주식회사 풍산 쾌삭성 구리합금
DE102009021336B9 (de) * 2009-05-14 2024-04-04 Wieland-Werke Ag Kupfer-Nickel-Zink-Legierung und deren Verwendung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01177327A (ja) * 1988-01-06 1989-07-13 Sanpo Shindo Kogyo Kk 銀白色を呈する快削性銅基合金
US20060065336A1 (en) * 2003-03-21 2006-03-30 Swissmetal Ums Usines Metallurgiques Suisse Sa Copper-based alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10760146B2 (en) * 2012-08-09 2020-09-01 Ykk Corporation Fastening copper alloy
US11519055B2 (en) * 2014-10-28 2022-12-06 Advanced Alloy Holdings Pty Ltd Metal alloys including copper
US10984931B2 (en) 2015-03-18 2021-04-20 Materion Corporation Magnetic copper alloys
US11447847B2 (en) 2018-04-20 2022-09-20 Wieland-Werke Ag Copper-zinc-nickel-manganese alloy
US20210178461A1 (en) * 2019-12-11 2021-06-17 Ngk Insulators, Ltd. Article superior in design and method for producing the same
EP3971312A1 (en) * 2020-09-17 2022-03-23 Société BIC Brass alloy for writing instrument tips
WO2022058466A1 (en) * 2020-09-17 2022-03-24 Societe Bic Brass alloy for writing instrument tips

Also Published As

Publication number Publication date
SG192046A1 (en) 2013-08-30
BR112013019625A2 (pt) 2017-01-31
JP2014512452A (ja) 2014-05-22
EP2670876A2 (en) 2013-12-11
WO2012104426A3 (en) 2012-09-27
AU2012213342A1 (en) 2013-08-22
WO2012104426A2 (en) 2012-08-09
CN103502488B (zh) 2016-01-06
KR20140021554A (ko) 2014-02-20
CN103502488A (zh) 2014-01-08
MX2013008503A (es) 2014-07-30
RU2013140681A (ru) 2015-03-10
ZA201306143B (en) 2014-10-29
CA2826185A1 (en) 2012-08-09
IL227758A0 (en) 2013-09-30

Similar Documents

Publication Publication Date Title
US20140294665A1 (en) Cu-Ni-Zn-Mn Alloy
US8262815B2 (en) High-purity ferritic stainless steel with excellent corrosion resistance and workability and method of production of same
US9017604B2 (en) Magnesium alloys containing rare earths
JP4605514B2 (ja) チタン板ならびにチタン板製造方法
US20040159375A1 (en) Copper-based alloy excellent in dezincing resistance
JP6602463B2 (ja) Cr基二相合金及びその製造物
CN105039777A (zh) 一种可切削加工黄铜合金及制备方法
WO2009151031A1 (ja) α-β型チタン合金
CN101386932A (zh) 低密度钛合金、高尔夫球头以及制造低密度钛合金部件的方法
JP2002012927A (ja) 耐脱亜鉛性銅基合金
JP4658695B2 (ja) 耐水素割れ性にすぐれた鍛造用鋼およびクランク軸
EP2995698A1 (en) HOT-DIP ZINC-COATED STEEL SHEET OR ALLOYED HOT-DIP ZINC-COATED STEEL SHEET HAVING SUPERIOR STRENGTH-BENDABILITY BALANCE WITH TENSILE STRENGTH OF 1180 MPa OR MORE
JP5642603B2 (ja) 鋳造用無鉛快削黄銅合金
JP2000239765A (ja) 金型鋳造用若しくは砂型鋳造用無鉛耐食性黄銅合金又は金型鋳物若しくは砂型鋳物並びに連続鋳造用無鉛耐食性黄銅合金又は連続鋳造鋳物
JPS6383251A (ja) 高力高弾性アルミニウム合金の製造法
JP6927418B2 (ja) チタン合金およびその製造方法
AU2024265143A1 (en) Free-cutting copper alloy and method for manufacturing free-cutting copper alloy
JP3920656B2 (ja) ホウ素含有高剛性Al合金
CN111971404B (zh) 铜锌镍锰合金
CN118742663A (zh) 奥氏体类不锈钢及奥氏体类不锈钢的制造方法
JPWO2018221561A1 (ja) Ni基合金及びそれを用いた燃料噴射部品、Ni基合金の製造方法
CN116479302B (zh) 高耐蚀兼具强塑性匹配的Fe-Cr-Ni-Co-Ti-Al系高熵合金及其制备方法
JP4841308B2 (ja) 高強度非磁性ステンレス鋼板及びその製造方法
HK1190438A (en) Cu-ni-zn-mn alloy
CN118541502A (zh) 奥氏体类不锈钢及奥氏体类不锈钢的制造方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAOSHIDA SWISSMETAL AG, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TORRE, FLORIAN DALLA;TARDENT, JEAN-PIERRE;SIGNING DATES FROM 20131017 TO 20131022;REEL/FRAME:031629/0110

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION